PHYSICAL REVIEW C, VOLUME 65, 024302

Attenuation of the intensity within a superdeformed band
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The attenuation of the intraband intensity of a superdeformed band, which results from mixing with nor-
mally deformed configurations, is calculated using reaction theory. It is found that the sharp increase of the
attenuation is mostly due to the tunneling through a spin dependent barrier and not to the chaotic nature of the
normally deformed states.
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It is now well established that the intensities BR2 (iii ) A width for the SD states due to mixing with the ND
gamma transitions within a superdeformésD) rotational  states arises naturally without appealing to the “golden rule”
band show cascades down to low angular momerjtl7].  whose range of validity has been found to be restricted
These cascades exhibit the distinct feature that the intensify.6,17).
remains constant until a certain spin is reached whereafter In Fig. 1 we show a schematic plot of the energy of ND
the intensity drops to zero within a few transitions. The shargand SD bands as a function of spin. The observable in which
drop in intensity is commonly referred to as the decay out ofttenuation is seen is the total intensity of two consecutive
a superdeformed band and is believed to arise from mixindge2 photons in the cascade down the SD band.|Dedenote
of the SD states with normally deformé@dD) states of iden- an SD configuration Withyspiﬂ.yThe relative intensity of the
tical spin. . 1 2 ) .

The earliest theoretical work to implement such an inter-Wo-Step transition)J + 2)—[J)—[J—2) (relative to the in-
pretation[8—11] used a statistical model of the coupling be- f[en5|ty of the same two—s.tep.trar)smon in the absence of mix-
tween the SD and ND states. More recently, Rgf®,13  Ing with other configurationsis given by
used a framework originally developed for the study of com-

pound nuclear reactions to derive formulas for the intensity _ J“ j” _

in a more rigorous fashiofthe expressions for the intensity J 27}, _deH _xdE72|<‘] 2IT(Ey2+ EYz)

in Refs.[8-11] are deduced from probability arguments )

Referencg13] concluded that Ref§8—11] are valid in the X[3+2)[°6(E-E;-»,—E,)

nonoverlapping resonance region. Referer8esl]] further 1

calculate the spin dependence of the relevant paramers _ fw _ NE
electromagnetic widths of the SD and ND states, the level 2w}, , _wdE|<J 2[TE)I+2)%, @

density of the ND states, and spin dependence of the barrier
Se?a'lr'atin? t?e SD and NDt ngl?ghiig] Ref(S_j[t1h2,13 dOf whereE=E;, ,—E, =E, takes account of the Hamiltonian
not. fwo teatures common o Retwi—1J are(l) tn€ use ot ¢y, electromagnetic fields; being the energy ofJ) and
the Gaqssmn orthogonal“ensem(ﬁOI;:) to simulate the ND E, andE,_ the energies of the two consecutive photons.
states(ii) the use of the “golden rule” to extract a width for —1 v2 ) ) ) )
the SD states due to mixing with the ND states. The electromagnetic width ofJ+2) is I'J,, making

Here, as in Refd.12,13 we exploit the similarity between
the decay out of superdeformed bands and compound
nuclear reactions to write the intensity as the sum of average
and fluctuation contributions. However we use an energy av-
erage in place of the ensemble average used in Refsl3.
The energy average approach allows the inclusion of the fol-
lowing features, which are more difficult to incorporate into
an ensemble average.

(i) A hierarchy of complexity in the ND spectrum may be
introduced.

(ii) A statistical model different from the GOE may be
used to simulate the ND states, as was proposed in Refs.
[14,15.

Energy

Spin

*Present address: Institute of Physics, University of Tsukuba, Ten- FIG. 1. Schematic diagram illustrating the decay out of a super-
noudai 1-1-1, Tsukuba, Ibaraki 305-8571, Japan. deformed band.
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27w '}, , the intensity when there is no mixing with the ND E, Vi, i (T} 0
states and thus no flux loss from the SD band. Note that in H—>(V Es )— 5( 0 TVs
Eqg. (1) we ignore the widths of the initial and final states for Jn =nn’n N@n’n
the purpose of calculating the relative intensity. ©
The transition amplitude is given by

) , n=1,..N,

whereE,, denotes the energies of theND states with which
(3= 2|T(E)|3+2)= 7,. 2(J|G(E)|3)., . ) |J) mixes due to the real tunneling interactiv,. HereI'},
% is an electromagnetic width, which we assume to be common

Here v,., is the electromagnetic decay amplitude |df to the ND states. With these definitiolg; ;(E) becomes

+2) defined such thaf?, ,= 3, ,: y; and'}=+3 are the N 5

corresponding decay amplitude and width|®f whilst the W, (E)= E [Vanl . (10)

Green'’s function is given by n=1 E—E,+i(I'}+1)/2
G(E)=(E-H)™" 3 The energiesE, are constructed using the deformed

o ) . Gaussian orthogonal ensemil@GOE) [20]. The DGOE al-
The total nuclear Hamiltonian, which takes the coupling toj5,ys 3 smooth interpolation from Poisson to GOE statistics
the electromagnetic field into account, is denoted-by by varying a mixing parametex from 0 to 1. Thus theE,,
The projected Green's functiofy|G(E)|J) may be ex- e the eigenvalues of a random Hamiltoniamvhich is real
pressed in terms of its Lorentzian energy averageymmetric and whose matrix elements are taken to be Gauss-
(JIG™(E)[3)=(J|G(E+il/2)|J) (energy averaging interval ja gistributed random numbers with zero mean and vari-

I) plus a fluctuation parft18,19 ances
(IC1H= (G + lam), @ ) v
h2y=—, (h% )=—, n'#n. 11
where by definition the energy average(dfG"J) is zero. (= (M= @

Thus Eq.(2) for the relative intensity may be written
The random tunneling interaction is taken to have zero mean

Fy=F%+Ffuc, (5)  and variance
where (V3 )y=v3. (12
1“’}/ o0 . . .
F§V=—Jf dE|(J|G™|3)|2 ©6) We asiume tha, lies in the middle of thé&\ ND states, that
27 ) is, E;=0. Following Refs.[8,9], [12,13 we introduce a

spreading widtH™} through the golden rule,
and
- Iy=2mv3. (13)
flue_ ~J [~ fluc| 7y|2\av
F3 _EJ',wdE(K‘]'G DD @) We maintain doubts about the meaningfulness of (E§).
regarding its interpretation as a width7]. For practical pur-
In this paper we focus our discussion &3'. It can be poses, however, it is a change of variable fropto Fﬁ. All
shown that quantities of dimensions energy are to be understood to have
units of D;, whereD; denotes the mean spacing of the ND
1 ) states aroundE;. Thus theE, [and theE, and Vyq in Eq.
E—E;+il'J/2—W,,4(E) (15)] that are generated from the DGOE are to be understood
to have been unfolded such that tBg and E, have mean
The derivation of Eq(8) for (J]G®J) and an expression for spacing equal to unity. Thus we may writé;;(E) as
(J3)G™J) using projection operator techniques will be re-
ported in a subsequent paper. rj X g2
The form of W;,(E) depends on the specific model for WolB)=5_-2 £-¢ STy (14
the Hamiltonian that is employed. It is our aim to study =t . N
whether or not the chaotic natufas classified by random
matrix theory(RMT)] of the ND states is decisive in explain-
ing the observed attenuation. In order to isolate the statistic
aspects of the calculation we use two different models dis-
tinguished by whether the tunneling interaction mix@s

(IGMEB)[I)=

where theg,, n=1,..N are Gaussian distributed random
r]umbers with zero mean and unit variance.
al Model Bis represented by the matrix

: : ry o 0
randomly with the ND state@nodel A or whether it couples By Vad 0 il
more strongly to certain ND states than oth@r®del B. In H—=| Vaa Ba Vag |—5| O Yy o,
the latter we shall make the most extreme assumptior{that 0 Vig Eqdyq 0 0 T}dqyq
couples to only one ND state.
Model Ais represented by the matrix g=1,.,N—1. (15
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We assume here thal) couples to only one state of normal 1 - '
deformation|d), which has energyey with strengthV,q. ) — EJjg-gl (Q)
This special state is subsequently mixed with other ND con- e b 0.1 (f,\))
figurations with energie&, by a residual interactionVy,,. 0.8 / ....... . bj=0.1 ®) ]
Now W;;(E) becomes -———b=1 (A
- ----b=1 (B)
N 2 a ——- b=10 (A)
[cq(n)] 3 06 F s |
W, 5(E)=[V,q]? . ., (18 5 o bs10 B
‘]"]( ) [ Jd] nzl E—En+l(rﬁ+|)/2 ( ) 'é P et |
< Ao I
£ e
wherecgy(n) denotes componertof the nth eigenvector of 2 04 - s T
the submatrix of the first term of Eq15) obtained by ex- % at
cluding the first row and the first column. Now tikg, are /
eigenvalues of a random Hamiltonién which is real sym- 02 [, 1
metric and whose matrix elements are taken to be Gaussia ’,/’ __________________________
distributed random numbers with zero mean and variances, T T T TTTTTTTTTTTTTTT
2 A2 % 02 0.4 06 08 1
<h§q>: N <h§,q>: N q’ #q. (17) A (dimensionless)

FIG. 2. Calculated attenuation factBf’ as a function ofx for
The residual interaction is also taken to have zero mean angbme values ob,=T'}/T'}. The thin lines were calculated using

variance, model Aand the thick lines were calculated usinpdel B
A2 LE)=
<V§q>: N (18) A3(E)=ReW;,(E) (22)
and
We putE,=E;=0. Introducing Fﬁ(E)=—2ImWJJ(E). (23
2
rﬁzzwm, (19) Ignoring the shiftAﬁ(E) altogether and assuming that the
width I'}(E) has the energy independent valli¢ one ob-
ins the principal It of Ref12] th
we can write Eq(16) as tains the principal result of Ref12] that
LN 2 Fav t (24)
r N[cg4(n ~ T
Wiy (E)= =2 > leam]” (20) YT+
2w a1 E-E+i(D+1)/12

We now present numerical calculations Bf' with N
Thus comparing Eq(14) with Eq. (20) we see that, although =50, I'}=0.01D,. An ensemble average was performed
the meaning of'} is different for the two models, the differ- over 100 realizations in Fig. 2 and over 1000 realizations in
ence betweemodel Aand model Bboils down how much

the distribution] c4(n)]? differs from that ofgﬁ. This differ- | = ' '
ence is not trivial agcy(n)]? has a dramatia dependence | N\ --A:f~\\\\
[see Fig.(1) in Ref.[15]]. The inclusion of the factor ¥ in NN N — tgg; ES;
Eqg. (199 makes clear thamodel Aand model Bare only 08 \\ \ e 2202 ® |
comparable wheW3, is of the ordemu3. LAY ——-2=1 (B)
Model Ais precisely equivalent to that of Refgl2,13 g A
when A=1. The real part of Eq(15) used inmodel Bis 206 ]
equivalent to what is used in Refgl4,15, however, we %
calculate the average intensity integrated over the energ)@
F3', whereas Refd.14,15 calculate a tunneling probability 2 041 1
that is more closely related ¥/;;(E). w
Note thatF5" can be written as 0z
Iy (=
pav—_21 f dE ! ) .
2m ) Iy (. THE)\? 0 ‘ \
[E—E;—AYE) >+ — 1+—> 10° 107 107" 10° 10' 10° 10°
4 l"} b (dimensionless)
(21)
FIG. 3. Attenuation factoF3" as a function ofb,=T"}/T'] for
where some values of, calculated usingnodel B
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Fig. 3. The effect of increasingy; , identical to that obtained
by increasing the energy averaging interlals to broaden
I'}(E) [Eq. (23)] and thus puslF3" closer to the approxima-
tion given by Eq(24). This is in line with what it is reported
in [21], in which Eq.(24) is obtained in the limitl"{/I'%

to move the value db; (and hencd) at which the decay out

occurs. Thus from Fig. 3 we conclude that the decay out is
slightly hindered by increasiny.

Regarding Refs[14,15, which report an increase in the
tunneling probability of several orders of magnitude with
—oo for their two-level model. increasing\, we do not consider ourselves at odds with this

In our calculations we puf+1=3D,. With this choice  work since, as already mentioned above, we do not calculate
one may describe what RefL3] calls the overlapping reso- the same quantity. A further difference betweendel Bof
nance region. Referend@3] gives the impression that the this paper and Ref§14,15 is that their author places) at
relative intensity is independent bf} . Whilst we agree with e positionN/4 thus making the distributiong(n) asym-
[13] that the ratiosh,=T"j/T'} and I'}/D are of principal  metric. This would correspond in our calculation to making
importance in understanding the decay out it can be seefhe differenceE,;— E,4 nonzero(we see no reason not to set
from Eq. (21) that F5" is only independent of } if A}(E) E,=E,).
andT'j(E) are constant, We postpone an investigation of the roledgf and| to a

Figure 2 shows the dependencefGf on \, the strength g psequent paper. The results of R&8] indicate thafF ¢,

?f tge trr?ixiné; ?r'zongst tr:je lNBDFstates,dfolr Ast?]veral yatt!uelsJ?f Eq.(7), is important wherd '} is a small fraction oD ; (non-
or both model Aandmode or mode e variation o overlapping resonance regjon

av H H . . .
Fy" with A is rather slight compared.tmodeI'B Th|s IS It was already found from phenomenological analysis
because the. dependence ofmodel Ais contained in the some years agf8.9.3 that F% falls exponentially with de-
eigenvalueg,,, which are unfolded to have unit mean spac- Y  agib, =, J P Y
ing. Model B has a further and more significakt depen- creasing spin. We c_o_nclude here that the chaotic nature of the
dence contained in the eigenvectoggn). For model B F2" _ND states, as cIa§3|fled kAy cannqt account _for su_ch behav-
decreases with decreasingo a value tﬁat is limited bthhe ior. The exponennal drop in the mtraband_mtensny must be
value of 7 +1. Note that=2 can change at most by a factor due to the_spm dependence_ of the tl_mnellng maitrix element
N : J y contained inb;. The calculation ob; is not trivial and we
of about 5 by varying. , refer the reader tfi22,23, which continue the work of Refs.
Figure 3 shows=3" as function ofb; for some values ok [8—11] for some recent calculations.
calculated usingnodel B The calculations fomodel Aare
not shown as they can barely be distinguished from the cal- A.J.S. thanks J. A. Tostevin for his comments on an early
culation forA =1 usingmodel B The effect of changing is  version of this paper. This work was supported by FAPESP.
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