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Attenuation of the intensity within a superdeformed band
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The attenuation of the intraband intensity of a superdeformed band, which results from mixing with nor-
mally deformed configurations, is calculated using reaction theory. It is found that the sharp increase of the
attenuation is mostly due to the tunneling through a spin dependent barrier and not to the chaotic nature of the
normally deformed states.
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It is now well established that the intensities ofE2
gamma transitions within a superdeformed~SD! rotational
band show cascades down to low angular momentum@1–7#.
These cascades exhibit the distinct feature that the inten
remains constant until a certain spin is reached wherea
the intensity drops to zero within a few transitions. The sh
drop in intensity is commonly referred to as the decay ou
a superdeformed band and is believed to arise from mix
of the SD states with normally deformed~ND! states of iden-
tical spin.

The earliest theoretical work to implement such an int
pretation@8–11# used a statistical model of the coupling b
tween the SD and ND states. More recently, Refs.@12,13#
used a framework originally developed for the study of co
pound nuclear reactions to derive formulas for the inten
in a more rigorous fashion~the expressions for the intensit
in Refs. @8–11# are deduced from probability arguments!.
Reference@13# concluded that Refs.@8–11# are valid in the
nonoverlapping resonance region. References@8–11# further
calculate the spin dependence of the relevant parameters~the
electromagnetic widths of the SD and ND states, the le
density of the ND states, and spin dependence of the ba
separating the SD and ND wells!, which Refs.@12,13# do
not. Two features common to Refs.@8–13# are~i! the use of
the Gaussian orthogonal ensemble~GOE! to simulate the ND
states,~ii ! the use of the ‘‘golden rule’’ to extract a width fo
the SD states due to mixing with the ND states.

Here, as in Refs.@12,13# we exploit the similarity between
the decay out of superdeformed bands and compo
nuclear reactions to write the intensity as the sum of aver
and fluctuation contributions. However we use an energy
erage in place of the ensemble average used in Refs.@12,13#.
The energy average approach allows the inclusion of the
lowing features, which are more difficult to incorporate in
an ensemble average.

~i! A hierarchy of complexity in the ND spectrum may b
introduced.

~ii ! A statistical model different from the GOE may b
used to simulate the ND states, as was proposed in R
@14,15#.

*Present address: Institute of Physics, University of Tsukuba, T
noudai 1-1-1, Tsukuba, Ibaraki 305-8571, Japan.
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~iii ! A width for the SD states due to mixing with the ND
states arises naturally without appealing to the ‘‘golden ru
whose range of validity has been found to be restric
@16,17#.

In Fig. 1 we show a schematic plot of the energy of N
and SD bands as a function of spin. The observable in wh
attenuation is seen is the total intensity of two consecu
E2 photons in the cascade down the SD band. LetuJ& denote
an SD configuration with spinJ. The relative intensity of the

two-step transitionuJ12&→
g1

uJ&→
g2

uJ22& ~relative to the in-
tensity of the same two-step transition in the absence of m
ing with other configurations! is given by

FJ5
1

2pGJ12
g E

2`

`

dEg1
E

2`

`

dEg2
u^J22uT~EJ221Eg2

!

3uJ12&u2d~E2EJ222Eg2
!

5
1

2pGJ12
g E

2`

`

dEu^J22uT~E!uJ12&u2, ~1!

whereE[EJ122Eg1
5EJ takes account of the Hamiltonia

of the electromagnetic field,EJ being the energy ofuJ& and
Eg1

and Eg2
the energies of the two consecutive photon

The electromagnetic width ofuJ12& is GJ12
g making

n- FIG. 1. Schematic diagram illustrating the decay out of a sup
deformed band.
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2pGJ12
g the intensity when there is no mixing with the N

states and thus no flux loss from the SD band. Note tha
Eq. ~1! we ignore the widths of the initial and final states f
the purpose of calculating the relative intensity.

The transition amplitude is given by

^J22uT~E!uJ12&5gJ12^JuG~E!uJ&g j
. ~2!

Here gJ12 is the electromagnetic decay amplitude ofuJ
12& defined such thatGJ12

g 5gJ12
2 : gJ andGJ

g5gJ
2 are the

corresponding decay amplitude and width ofuJ& whilst the
Green’s function is given by

G~E!5~E2H !21. ~3!

The total nuclear Hamiltonian, which takes the coupling
the electromagnetic field into account, is denoted byH.

The projected Green’s function̂JuG(E)uJ& may be ex-
pressed in terms of its Lorentzian energy avera
^JuGav(E)uJ&5^JuG(E1 i I /2)uJ& ~energy averaging interva
I! plus a fluctuation part@18,19#

^JuGuJ&5^JuGavuJ&1^JuGflucuJ&, ~4!

where by definition the energy average of^JuGflucuJ& is zero.
Thus Eq.~1! for the relative intensity may be written

FJ5FJ
av1FJ

fluc , ~5!

where

FJ
av5

GJ
g

2p E
2`

`

dEu^JuGavuJ&u2 ~6!

and

FJ
fluc5

GJ
g

2p E
2`

`

dE~ u^JuGflucuJ&u2!av. ~7!

In this paper we focus our discussion onFJ
av. It can be

shown that

^JuGav~E!uJ&5
1

E2EJ1 iGJ
g/22WJJ~E!

. ~8!

The derivation of Eq.~8! for ^JuGavuJ& and an expression fo
^JuGflucuJ& using projection operator techniques will be r
ported in a subsequent paper.

The form of WJJ(E) depends on the specific model fo
the Hamiltonian that is employed. It is our aim to stu
whether or not the chaotic nature@as classified by random
matrix theory~RMT!# of the ND states is decisive in explain
ing the observed attenuation. In order to isolate the statis
aspects of the calculation we use two different models
tinguished by whether the tunneling interaction mixesuJ&
randomly with the ND states~model A! or whether it couples
more strongly to certain ND states than others~model B!. In
the latter we shall make the most extreme assumption thauJ&
couples to only one ND state.

Model A is represented by the matrix
02430
in

e

al
-

H→S EJ VJn

VJn Endn8n
D 2

i

2 S GJ
g 0

0 GN
g dn8n

D , n51,...,N,

~9!

whereEn denotes the energies of theN ND states with which
uJ& mixes due to the real tunneling interactionVJn . HereGN

g

is an electromagnetic width, which we assume to be comm
to the ND states. With these definitionsWJJ(E) becomes

WJJ~E!5 (
n51

N
@VJn#

2

E2En1 i ~GN
g 1I !/2

. ~10!

The energiesEn are constructed using the deforme
Gaussian orthogonal ensemble~DGOE! @20#. The DGOE al-
lows a smooth interpolation from Poisson to GOE statist
by varying a mixing parameterl from 0 to 1. Thus theEn
are the eigenvalues of a random Hamiltonianh, which is real
symmetric and whose matrix elements are taken to be Ga
ian distributed random numbers with zero mean and v
ances

^hnn
2 &5

2

N
, ^hn8n

2 &5
l2

N
, n8Þn. ~11!

The random tunneling interaction is taken to have zero m
and variance

^VJn
2 &5vJ

2. ~12!

We assume thatEJ lies in the middle of theN ND states, that
is, EJ50. Following Refs.@8,9#, @12,13# we introduce a
spreading widthGJ

↓ through the golden rule,

GJ
↓52pvJ

2. ~13!

We maintain doubts about the meaningfulness of Eq.~13!
regarding its interpretation as a width@17#. For practical pur-
poses, however, it is a change of variable fromvJ to GJ

↓ . All
quantities of dimensions energy are to be understood to h
units of DJ , whereDJ denotes the mean spacing of the N
states aroundEJ . Thus theEn @and theEq and Vdq in Eq.
~15!# that are generated from the DGOE are to be underst
to have been unfolded such that theEn and Eq have mean
spacing equal to unity. Thus we may writeWJJ(E) as

WJJ~E!5
GJ

↓

2p (
n51

N gn
2

E2En1 i ~GN
g 1I !/2

, ~14!

where thegn , n51,...,N are Gaussian distributed rando
numbers with zero mean and unit variance.

Model B is represented by the matrix

H→S EJ VJd 0

VJd Ed Vdq

0 Vdq Eqdq8q

D 2
i

2 S GJ
g 0 0

0 GN
g 0

0 0 GN
g dq8q

D ,

q51,...,N21. ~15!
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We assume here thatuJ& couples to only one state of norm
deformationud&, which has energyEd with strengthVJd .
This special state is subsequently mixed with other ND c
figurations with energiesEq by a residual interactionVdq .
Now WJJ(E) becomes

WJ,J~E!5@VJd#
2(

n51

N
@cd~n!#2

E2En1 i ~GN
g 1I !/2

, ~16!

wherecd(n) denotes componentd of the nth eigenvector of
the submatrix of the first term of Eq.~15! obtained by ex-
cluding the first row and the first column. Now theEq are
eigenvalues of a random Hamiltonianh, which is real sym-
metric and whose matrix elements are taken to be Gaus
distributed random numbers with zero mean and varianc

^hqq
2 &5

2

N
, ^hq8q

2 &5
l2

N
, q8Þq. ~17!

The residual interaction is also taken to have zero mean
variance,

^Vdq
2 &5

l2

N
. ~18!

We putEd5EJ50. Introducing

GJ
↓52p

@VJd#
2

N
, ~19!

we can write Eq.~16! as

WJJ~E!5
GJ

↓

2p (
n51

N
N@cd~n!#2

E2En1 i ~GN
g 1I !/2

. ~20!

Thus comparing Eq.~14! with Eq. ~20! we see that, although
the meaning ofGJ

↓ is different for the two models, the differ
ence betweenmodel Aand model Bboils down how much
the distribution@cd(n)#2 differs from that ofgn

2. This differ-
ence is not trivial as@cd(n)#2 has a dramaticl dependence
@see Fig.~1! in Ref. @15##. The inclusion of the factor 1/N in
Eq. ~19! makes clear thatmodel Aand model Bare only
comparable whenVJd

2 is of the orderNvJ
2.

Model A is precisely equivalent to that of Refs.@12,13#
when l51. The real part of Eq.~15! used inmodel B is
equivalent to what is used in Refs.@14,15#, however, we
calculate the average intensity integrated over the ene
FJ

av, whereas Refs.@14,15# calculate a tunneling probability
that is more closely related toWJJ(E).

Note thatFJ
av can be written as

PJ
av5

GJ
g

2p E
2`

`

dE
1

@E2EJ2DJ
↓~E!#21

GJ
g2

4 S 11
GJ

↓~E!

GJ
g D 2

.

~21!

where
02430
-

an
,

nd

gy

DJ
↓~E!5ReWJJ~E! ~22!

and

GJ
↓~E!522 ImWJJ~E!. ~23!

Ignoring the shiftDJ
↓(E) altogether and assuming that th

width GJ
↓(E) has the energy independent valueGJ

↓ one ob-
tains the principal result of Ref.@12# that

FJ
av'

GJ
g

GJ
g1GJ

↓ . ~24!

We now present numerical calculations ofFJ
av with N

550, GJ
g50.01DJ . An ensemble average was perform

over 100 realizations in Fig. 2 and over 1000 realizations

FIG. 2. Calculated attenuation factorFJ
av as a function ofl for

some values ofbJ5GJ
↓/GJ

g . The thin lines were calculated usin
model Aand the thick lines were calculated usingmodel B.

FIG. 3. Attenuation factorFJ
av as a function ofbJ5GJ

↓/GJ
g for

some values ofl, calculated usingmodel B.
2-3
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Fig. 3. The effect of increasingGN
g , identical to that obtained

by increasing the energy averaging intervalI, is to broaden
GJ

↓(E) @Eq. ~23!# and thus pushFJ
av closer to the approxima

tion given by Eq.~24!. This is in line with what it is reported
in @21#, in which Eq. ~24! is obtained in the limitGN

g /GS
g

→` for their two-level model.
In our calculations we putGN

g 1I 53DJ . With this choice
one may describe what Ref.@13# calls the overlapping reso
nance region. Reference@13# gives the impression that th
relative intensity is independent ofGJ

g . Whilst we agree with
@13# that the ratiosbJ5GJ

↓/GJ
g and GN

g /D are of principal
importance in understanding the decay out it can be s
from Eq. ~21! that FJ

av is only independent ofGJ
g if DJ

↓(E)
andGJ

↓(E) are constant.
Figure 2 shows the dependence ofFJ

av on l, the strength
of the mixing amongst the ND states, for several values obJ
for both model Aandmodel B. For model Athe variation of
FJ

av with l is rather slight compared tomodel B. This is
because thel dependence ofmodel A is contained in the
eigenvaluesEn , which are unfolded to have unit mean spa
ing. Model B has a further and more significantl depen-
dence contained in the eigenvectorscd(n). For model B, FJ

av

decreases with decreasingl to a value that is limited by the
value ofGN

g 1I . Note thatFJ
av can change at most by a facto

of about 5 by varyingl.
Figure 3 showsFJ

av as function ofbJ for some values ofl
calculated usingmodel B. The calculations formodel Aare
not shown as they can barely be distinguished from the
culation forl51 usingmodel B. The effect of changingl is
cl.

s.

02430
en

-

l-

to move the value ofbJ ~and henceJ! at which the decay ou
occurs. Thus from Fig. 3 we conclude that the decay ou
slightly hindered by increasingl.

Regarding Refs.@14,15#, which report an increase in th
tunneling probability of several orders of magnitude w
increasingl, we do not consider ourselves at odds with th
work since, as already mentioned above, we do not calcu
the same quantity. A further difference betweenmodel Bof
this paper and Refs.@14,15# is that their author placesud& at
the positionN/4 thus making the distributioncd(n) asym-
metric. This would correspond in our calculation to maki
the differenceEJ2Ed nonzero~we see no reason not to s
EJ5Ed!.

We postpone an investigation of the roles ofGN
g andI to a

subsequent paper. The results of Ref.@13# indicate thatFJ
fluc ,

Eq. ~7!, is important whenGN
g is a small fraction ofDJ ~non-

overlapping resonance region!.
It was already found from phenomenological analy

some years ago@8,9,3# that FJ
av falls exponentially with de-

creasing spin. We conclude here that the chaotic nature o
ND states, as classified byl, cannot account for such behav
ior. The exponential drop in the intraband intensity must
due to the spin dependence of the tunneling matrix elem
contained inbJ . The calculation ofbJ is not trivial and we
refer the reader to@22,23#, which continue the work of Refs
@8–11# for some recent calculations.

A.J.S. thanks J. A. Tostevin for his comments on an ea
version of this paper. This work was supported by FAPE
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