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Longitudinal and transverse quasielastic response functions of light nuclei
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The 3He and4He longitudinal and transverse response functions are determined from an analysis of the
world data on quasielastic inclusive electron scattering. The corresponding Euclidean response functions are
derived and compared to those calculated with Green’s function Monte Carlo methods, using realistic interac-
tions and currents. Large contributions associated with two-body currents are found, particularly in the4He
transverse response, in agreement with data. The contributions of the two-body charge and current operators in
the 3He, 4He, and6Li response functions are also studied via sum-rule techniques. A semiquantitative expla-
nation for the observed systematics in the excess of transverse quasielastic strength, as function of mass
number and momentum transfer, is provided. Finally, a number of model studies with simplified interactions,
currents, and wave functions are carried out to elucidate the role played, in the full calculation, by tensor
interactions and correlations.
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I. INTRODUCTION

Over the past thirty years or so, much effort has gone i
trying to understand quantitatively the roles that short-ra
and tensor correlations, and two-body components of
nuclear electromagnetic current play in the quasielastic
sponse of nuclei at intermediate momentum transfers.
despite the considerable attention that has been devote
this topic, many open questions remain. Complications ar
in particular, as a consequence of the need of~and technical
difficulties associated with! providing an accurate descrip
tion of the initial bound- and the final scattering-state wa
functions, based on realistic Hamiltonians.

In part, the slow progress is also due to the confus
experimental picture, particularly for medium- and heav
weight nuclei, which, for some time, obfuscated the interp
tation of the data. Early data@1# had shown that, in compari
son with an impulse-approximation~IA ! calculation using a
simple~Fermi gas! model, the inclusive cross section show
an excess of transverse strength, mainly in the region of
‘‘dip’’between the quasielastic and theD peaks. This exces
was attributed to two-body currents andp production, but it
could not be quantitatively understood.

The longitudinal and transverse response functions,
tained during 1980s from a Rosenbluth separation of exp
mental cross sections, seemed to indicate that, in addi
there was a gross~up to 40%! lack of longitudinalstrength in
the main quasielastic peak, and a correspondingly too
Coulomb sum rule@2,3#. While this state of affairs is yet to
be resolved satisfactorily, particularly for very heavy nucl
such as lead, where Coulomb corrections are difficult@4–7#,
there are nevertheless clear indications forA<56 from the
work of Jourdan@8#, who carefully analyzed theworld data
on quasielastic scattering including all the known corr
tions, that there is no missing strength in the longitudi
response of medium-A nuclei ~for very heavy nuclei, there
are still controversial issues on the Coulomb corrections,
0556-2813/2002/65~2!/024002~22!/$20.00 65 0240
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Refs.@9–11#!. This apparent lack of longitudinal strength h
absorbed much of the theoretical effort of the past two
cades.

On the other hand, the excess of transverse streng
presumably due to two-body currents—observed in
quasielastic region appears to be a genuine problem. In
respect, the experimental situation has been put in sharp
cus by the work on superscaling by Donnelly and Sick@12#,
which allowed us to systematically compare the longitudi
and transverse response functions. This work showed in
most clear way that the transverse strength for nuclei w
mass numberA512, . . . ,56 exceeds the longitudinal one a
ready in the main quasielastic peak by 20–40 %, in addit
to the excess of strength occurring in the ‘‘dip’’ between t
quasielastic andD peaks. This excess of strength in the r
gion of the quasielastic peak is the main subject of this pa
The region of the dip, which has attracted the attention in
past, will be largely ignored as the understanding of t
region is clouded by issues relating to pion production a
the D tail.

Theoretical calculations of two-body contributions in th
region of the quasielastic peak have been performed by m
groups @13–26# using different approaches. Some of the
calculations find appreciable contributions, 20–40 % of
transverse response, due to the dominant two-body te
~pion contact and in-flight, andD-excitation diagrams!, other
calculations find small,,10%, effects. It is not always clea
why calculations with similar starting assumptions give ve
different results.

In general, calculations based on an independent-par
initial state ~shell model, Fermi gas model, possibly wi
RPA correlations added! give very small two-body contribu-
tions in the quasielastic peak@13–20,23,26#: the pion andD
terms tend to cancel, producing of a small overall effect. T
origin of bigger ~20–50 %! contributions to the transvers
response as obtained in Refs.@22,25# is not entirely under-
©2002 The American Physical Society02-1
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stood: the different treatment of theD in matter in Ref.@22#
may be partly responsible@27#.

The model study of Leidemann and Orlandini@17#, in
which the nuclear response was expressed in terms of
response of deuteronlike pairs of nuclear density, fi
pointed out that it is important to account in the initial sta
for thetensorcorrelations betweennppairs. Only when these
~rather short-range! tensor correlations were included wou
the two-body terms give appreciable contributions to
quasielastic response. This insight was quantitatively c
firmed by Fabrocini@24#, who calculated the transverse r
sponse of infinite nuclear matter using correlated basis fu
tion theory including one-particle–one-hole intermedia
states. This calculation is based on a realistic nucle
nucleon (N-N) interaction and two-body terms derived co
sistently from theN-N interaction, and accounts for the in
teractions in both the initial and final states. It also found t
substantial two-body contributions in the quasielastic p
are obtained only if the tensor correlations, predominan
induced by pion exchange, are retained.

The calculation of Carlson and Schiavilla@21# was per-
formed for4He using Green’s function Monte Carlo~GFMC!
techniques, a realistic~Argonne v88! N-N interaction and
again consistently constructed two-body terms. The inela
response could be accurately calculated in terms of the
clidean response~an integral over the response function, s
below!. These ‘‘exact’’ calculations found that the charg
exchange character of theN-N interaction leads to shifts o
both the longitudinal and transverse strength to higher e
tation energies, thus producing a quenching of the respo
in the region of the quasielastic peak. This mechanism, h
ever, is more than offset in the transverse channel by t
body currents, in particular those associated with pion
change ~required by gauge invariance!, and hence the
response is enhanced over the entire quasielastic spec
This enhancement was found to be substantial and in ag
ment with that observed experimentally. The study of R
@21#, while providing a qualitative understanding of the4He
quasielastic response, did not identify quantitatively, ho
ever, those aspects of the calculation responsible for the
cessful prediction.

In the present paper we study the longitudinal and tra
verse response functions of light nuclei,3He and4He, using
GFMC theory. Accurate data for these responses in the
gion of the quasielastic peak are determined via an ana
of the world data. A simultaneous study of3He and4He is
particularly interesting as the predicted two-body contrib
tions in the transverse channel increase very rapidly betw
A53 andA54, a feature that can give us a further hand
for the understanding of two-body effects. The study of4He,
including the higher momentum transfers now available
especially promising, since the available data@8# seem to
indicate that the relative excess of transverse strength in
quasielastic peak is largest for this nucleus. In order to
clude heavier nuclei and hence examine the evolution w
mass number of this excess transverse strength, we
study via sum-rules the two-body contributions forp-shell
nuclei, for which variational Monte Carlo~VMC! wave func-
tions are available.
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The layout of this paper is as follows. In Sec. II we di
cuss the determination of the longitudinal and transverse
sponse functions starting from the world data on inclus
electron scattering, while in Sec. III we perform a scali
analysis in order to investigate the global properties of
experimental response. In Sec. IV we describe the theor
the Euclidean responses that link the nuclear ground-s
properties to integral properties of the electromagnetic
sponse as measured in (e,e8), and in Sec. V present th
model adopted for the nuclear electromagnetic current.
fore comparing theory with the experiment~Sec. VII!, we
carry out in Sec. VI a model study of the relation betwe
the inclusive cross section and the Euclidean respons
order to understand better the characteristics of the latter
extension of the study to heavier nuclei via sum rules
given in Sec. VIII, in which the dependence of the exce
transverse strength upon mass number is examined. In
IX we further analyze the calculated results by introduci
various simplifications, so as to identify the most importa
aspects of the calculations. Finally, in Sec. X we summar
our conclusions.

II. EXPERIMENTAL RESPONSE FUNCTIONS

In order to determine the longitudinalL and transverseT
responses, we have analyzed the (e,e8) world data on3He
and 4He. A determination of the response functions in inc
sive quasielastic scattering from the world cross section d
has many advantages over the traditional approach of u
data from a single experiment only. Particularly f
medium-A nuclei, the limitations of the traditional approac
were partly responsible for the misleading conclusions m
tioned in the Introduction and discussed in@8#.

For the extraction of the response functions, the differe
of cross sections at high energy/forward angle and at
energy/backward angle is used. Kinematics-dependent
tematic errors do not cancel in this difference even for m
surements performed at a single facility, except perhaps
the errors in the overall normalization of the cross sectio
The dominant systematic errors, i.e. uncertainties in the sp
trometer acceptance, detector efficiencies, background
tributions, rescattering, and radiative corrections are stron
dependent on the specific kinematics.

To improve the determination of the response functio
the difference of theL andT contributions to the cross sec
tions has to be maximized by including the data over
largest possible angular range. This can only be achieve
including all available world cross section data. For3He and
4He the use of the world data not only expands the range
available data in scattering angle but also increases the r
of momentum transferq where a separation can be don
thus leading to new information on the response function

At low q the extensive sets of data for3He @28,29# and for
4He @30,31# with good angular coverage have been used
the present analysis. For3He at highq the data by Marchand
et al. @28# and by Dow et al. @29#, which both cover the
angular region from 90° to 144°, are combined with comp
mentary cross sections by Dayet al. @32#, which provide
high-energy/forward-angle data with energies up to 7.2 G
2-2
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LONGITUDINAL AND TRANSVERSE QUASIELASTIC . . . PHYSICAL REVIEW C 65 024002
at scattering angles of 8°. Similarly for4He the data by
Zghicheet al. @30#, which cover the angular region from 75
to 145°, and by vanRedenet al. @31#, which contribute data
at 60°, are complemented with the forward-ang
cross sections by Rocket al. @33#, Day et al. @34#, Sealock
et al. @35#, and Mezianiet al. @36# covering the angular rang
from 8° to 37°.

In contrast with the analysis performed for medium-A nu-
clei @8#, Coulomb distortions play a negligible role for3He
and 4He and no corrections need to be applied. The follo
ing expression, valid in the plane wave Born approximati
is used for the Rosenbluth orL/T separation:

S~q,v,e!5
d2s

dVdv

1

sMott
eS q

QD 4

5eRL~q,v!1
1

2 S q

QD 2

RT~q,v!, ~1!

where the longitudinal virtual photon polarizatione is de-
fined as

e5S 11
2q2

Q2 tan2
q

2 D 21

, ~2!

and it varies between 0 to 1 as the electron scattering angq
ranges from 180° to 0°. Here,d2s/dVdv are the experi-
mental cross sections;v, q, and Q are the energy transfe
three- and four-momentum transfers, respectively, andsMott
is the Mott cross section. The structure of Eq.~1! shows that
measurements of the cross section at fixedv andq but dif-
ferente allow for a separation of the two response functio
RL(q,v) andRT(q,v).

In practice, the experimental spectra of the various exp
ments were measured for a given incident energy and s
tering angle as a function of the energy loss of the scatte
electron, varied by changing the magnetic field of the sp
trometer. To determine the cross section at given valuesq
andv, the data have to be interpolated. This traditionally w
done by dividing outsMott from the measured cross sectio
and interpolating the responses alongv/E.

In an analysis of the world data, where the various exp
ments were not planned for an ideal coverage of theq-v
plane, the usual scheme is unreliable due to occasion
large spacings between various spectra. Thus, in the pre
analysis an improved scheme is employed by first divid
out an appropriate sum of elementary electron-nucleon c
sections, i.e.,sep for the proton andsen for the neutron, and
removing kinematical dependencies. Essentially w
is calculated from the data is the scaling functionF(y,q)
defined by

F~y,q!5
d2s

dvdV

1

Zsep~q!1Nsen~q!

dv

dy
. ~3!

The scaling variabley is fixed by energy and momentum
conservation via

y52q1Av212vm ~4!
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neglecting small contributions from the binding energy, t
perpendicular component of the nucleon momentum, and
recoil energy of the residual nucleus. In the next phase of
analysis, the extractedF(y,q) are then used to determin
F(y,qo) at the desired valueqo by interpolatingF(y,q)
along lines of constanty.

For y,0, F(y,q) is known to be nearly independent ofq
over a large range. This makes the present interpolation
reliable as the conventional interpolation scheme even if
data are separated by large values ofq. For y.0, the depen-
dence ofF(y,q) on q is relatively more severe, since inela
tic processes contribute to the cross section. Thus, thq
value of theL/T separation has been chosen to minimize
correction due to the interpolation at largev.

The interpolation procedure and the separation has b
tested with the data of the Saclay experiments@30,28# alone.
Provided the same interpolation scheme is used, the p
lished values ofRL(q,v) and RT(q,v) are reproduced ex
actly. The improved interpolation scheme, usingy scaling,
gives results that also are identical within the statisti
errors.

With the interpolated cross section data, the respo
functions are extracted forq5300– 700 MeV/c in steps of
100 MeV/c for both nuclei. The combined world data cov
almost the fulle range, with typical values ranging from 0.0
to 0.95 for mostq sets. At highq this has to be compare
with the results of the low-energy data alone, which on
cover the region from 0.05 to 0.55. In addition, with a glob
analysis it is possible to determine for the first time the
sponse functions atq5700 MeV/c.

If the interpolated responses of data are plotted as a fu
tion of e, a linear dependence is expected. In contrast to
analysis of medium-A nuclei, in which important deviations
were observed for highq and v, no significant deviations
were observed in the present analysis once the qu
systematic errors of the individual data sets are included

The longitudinal and transverse response functions res
ing from this analysis of theworld data are shown in Figs. 1
and 2.

III. SCALING ANALYSIS

In order to show the excess strength ofRT(q,v), in this
section we study the scaling properties of the present
sponse functions. Barbaroet al. @37# have discussed the
close connection between the Coulomb sum rule and
notion of y scaling. More recently the notion ofc8 scaling
was introduced by Albericoet al. @38# while studying the
properties of the relativistic Fermi gas model. The applic
tion of this notion to finite nuclear systems, requiring t
inclusion of binding effects, has been discussed by Ce
et al. @39#. Guided by these results, Sick and Donnelly ha
appliedc8 scaling to a large body of inclusive scattering da
@12#. Scaling inc8 has the merit to allow the study of th
scaling properties for a combined set ofdifferentnuclei. The
only relevant scale parameter in the quasifree scattering
gime is the Fermi momentum of the nucleus that is taken i
account in the definition of the dimensionless scaling va
2-3
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FIG. 1. ~Color! Longitudinal ~h! and transverse~L! response functions of3He at momentum transfers of 300, 400, 500, 600, a
700 MeV/c. Indicated with a1 are the upper integration limits used for the Euclidean response~Sec. VII!.
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ablec8 ~approximately given byy/kF!, and the scaling func-
tion f (c8).

As discussed in@12#, c8 scaling can also be studied fo
separated response functions. The dimensionless sc
functions f L,T are defined in@12# as

f L,T[kF

RL,T

GL,T
, ~5!

with the factorsGL,T given in @12#. For the relativistic Fermi
gas model and in IA, the universal relation

f L5 f T5 f ~6!

is predicted. Neglecting powers higher than 2 inhF
5kF /m, a relation betweenf L and the Coulomb sum rule i
obtained as
02400
ing

E dc f RFG~c!511
1

20
hF

21¯ . ~7!

In Fig. 3 we compare the scaling functionsf L(c8) and
f T(c8) obtained for all response functions extracted from
global analysis of the3He and4He data. Within the error bars
of the separated data, the longitudinal response funct
scale to a universal curve over the entire quasielastic p
Scaling ofRL(q,v) is expected and provides a consisten
check for the Coulomb sum rule. The results forRT(q,v)
confirm that the basic problem in quasielastic electro
nucleus scattering is theexcess strength in the transvers
response. This excess is much larger for4He than for3He.
Scaling is also observed forRT(q,v) at negative values o
c8, thus suggesting that processes other than quas
knockout can also lead to scaling.
2-4
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FIG. 2. ~Color! Longitudinal ~h! and transverse~L! response functions of4He at momentum transfers of 300, 400, 500, 600, a
700 MeV/c. Indicated with a1 are the upper integration limits used for the Euclidean response~Sec. VII!.
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The excess of transverse strength is particularly large
4He. It exceeds the longitudinal strength at all moment
transfers, and does not seem to be limited to the ‘‘dip’’
gion, but affects the whole quasielastic peak region, exte
ing below the p-production threshold. The transvers
strength in the dip, which increases with increasingq, is
related to the growing overlap between the high-energy s
of the quasielastic peak and the tail of theD peak.

In order to study theA dependence of this excess, we c
look at the longitudinal and transverse responses integr
over c8—those for 12C, 40Ca, and56Fe have been deter
mined in Ref.@12#. We have integrated these responses o
the region ofc8 that essentially covers the quasielastic pe
(uc8u,1.2). When limiting the integration range touc8u
,0.5 much of the contribution from the tail of theD is
eliminated, at least for the light nuclei. The ratio of tran
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verse to longitudinal integrated strength is shown in Fig.
Figure 4 makes it clear that:~i! the excess of transvers

strength rises very rapidly between3He and4He, and is in-
deed largest for4He; ~ii ! the ratio is already large at th
lowestq, the increase at the largerq for the heavier nuclei is
mainly due to the fact that the tail of theD peak contributes
appreciably despite the restricted range of integration inc8.

IV. CALCULATIONS OF EUCLIDEAN RESPONSE

Since we are primarily concerned with the over
strength of the longitudinal and transverse response, we
sider the Euclidean response functions, defined as@21,40#

ẼT,L~q,t!5E
v th

`

exp@2~v2E0!t#RT,L~q,v!, ~8!
2-5
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FIG. 3. ~Color! The scaling functionsf L and
f T are shown for allq values on the top for3He
and on the bottom for4He. The upper bands o
points correspond tof T and the lower bands cor
respond tof L .

FIG. 4. ~Color! Ratio of trans-
verse to longitudinal integrated
strength for 3He, 4He, 12C,
40Ca, and 56Fe: 300 MeV/c: 3
and 1, 400 MeV/c: L and h,
600 MeV/c: * and s. Points at
the sameq are joined by lines.
The integrations are over the ind
cated ranges ofc8.
024002-6
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LONGITUDINAL AND TRANSVERSE QUASIELASTIC . . . PHYSICAL REVIEW C 65 024002
where theRT,L(q,v) are the standard responses,E0 is the
ground-state energy of the nucleus, andv th is the threshold
for the response of the system excluding the elastic con
bution. The longitudinal and transverse Euclidean respo
functions represent weighted sums of the correspond
RL(q,v) andRT(q,v): at t50 they correspond to the Cou
lomb and transverse sum rules, respectively, while their
rivatives with respect tot evaluated att50 correspond to
the energy-weighted sum rules. Larger values oft corre-
spond to integrals over progressively lower-energy region
the response.

In a nonrelativistic picture, theET,L can be simply ob-
tained from

ẼL~q,t!5^0ur†~q!exp@2~H2E0!t#r~q!u0&

2expS 2
q2t

2AmD u^0~q!ur~q!u0&u2, ~9!

ẼT~q,t!5^0u jT
†~q!exp@2~H2E0!t# jT~q!u0&

2expS 2
q2t

2AmD u^0~q!u jT~q!u0&u2, ~10!

where the elastic contributions have been explicitly s
tracted, u0(q)& represents the ground-state recoiling w
momentumq, and the sums over spin projections are und
stood.

In this paper we present results for the scaled Euclid
responses

EL,T~q,t!5
exp@q2t/~2m!#

@GE,p~Q̃2!#2
ẼL,T~q,t!, ~11!

whereQ̃2 is the squared four-momentum transfer evalua
at the quasielastic peak. This removes the trivial energy
pendence obtained from scattering off an isolated~nonrela-
tivistic! nucleon, and theq dependence associated with t
nucleon form factors. The longitudinal responseEL(q,t) is
unity for an isolated proton, and the transverse respo
ET(q,t) is simply the square of its magnetic moment.

The chief advantage of formulating the Euclidean
sponse is that it can be calculated exactly using Green’s fu
tion or path integral Monte Carlo techniques, including bo
final state interactions and two-nucleon currents. While
present calculations consider onlyA up to 4, they can be very
simply extended to a mass up toA510 in direct analogy
with ground-state calculations@41#. In the future it may be
possible to use the auxiliary-field diffusion Monte Car
technique developed by Schmidt and Fantoni@42# to calcu-
late the response for much heavier systems.

Other techniques have also been used to calculate th
sponse in few-nucleon systems, including Faddeev meth
@43,44# and Lorentz integral transform techniques@45,46#.
Faddeev methods sum explicitly over the final states in
system, and hence are directly applicable to the inclusive
exclusive responses for all possible final states. This es
tially corresponds to a complete real-time calculation of
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propagation of the system. Lorentz integral techniques in
duce a small imaginary-time component in the propagat
of the response, directly summing over a limited region ofv.
For systems in which a precise calculation is possible,
full response can be calculated@46#. The Euclidean respons
is the full imaginary-time response, and hence is a m
integrated quantity. While detailed dynamical information
more limited, it is possible to perform calculations in mu
heavier systems@47#.

The ground-state wave functions used in this study
obtained with variational Monte Carlo. They are of the ge
eral form @41#

uCT&5 )
i , j ,k

@12Ũ0~ i jk !#

3S)
i , j

H F12 (
kÞ i , j

Ū2p~ i j ;k!GFi j J uF&, ~12!

where for three- and four-nucleon systemsuF& is simply an
anti-symmetrized product of spins and isospins. The cen
three-nucleon correlationŨ0( i jk ) is a scaled version of the
repulsive central component of the Urbana-IX~UIX ! three-
nucleon interaction. The magnitude of the correlation and
range are scaled via variational parameters. The pair corr
tions Fi j depend upon the pair separationr i j and the spins
and isospins of the pair;

Fi j 5 f c~r !@11us~r !s i•s j

1ut~r !Si j 1ust~r !s i•s jt i•t j1utt~r !Si j t i•t j #.

~13!

The correlationŨ2p( i j ;k) is similarly scaled from the anti-
commutator part of the two-pion exchange three-nucleon
teraction. The anti-commutator depends upon the spins
isospins of only the two nucleonsi and j, but the spatial
positions of all three. Similarly the magnitude of the spi
isospin-dependent correlationsu for pair ij are quenched by
the presence of other nucleons. Both the two-nucleon co
lation Fi j and theŨ2p correlation arising from the three
nucleon interaction contain tensorlike terms correlating
spins and orientations of the nucleons. The contributions
these correlations to the response are discussed below.

While these wave functions are not exact, they offe
rather precise characterization of the Euclidean response
evidenced by comparisons with calculations using
correlated-hyperspherical-harmonics wave functions@48# in
A53. These comparisons are presented in Sec. IX.
Hamiltonian used in these studies is the Argonne modelv88
@41# N-N interaction plus the UIX three-nucleon interactio
This interaction reproduces many known properties of tha
particle, including its binding energy and charge form fact

Calculation of the Euclidean response is a straightforw
extension of the ground-state techniques employed
Green’s function Monte Carlo. We wish to calculate mat
elements of the following type:
2-7
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M̃ ~t!5
^0uO2 exp@2~H2E0!t#O1u0&

^0uexp@2~H2E0!t#u0&
. ~14!

For a ground-state calculation of the energy (O151, O2
5H) the matrix element is evaluated by a Monte Carlo sa
pling of the coordinate-space paths. The denominator is
actly 1 for an exact ground-state wave function, otherw
there is a correction for finitet. For each path a complete s
of 2AA!/(N!Z!) amplitudes is kept corresponding to all po
sible spin-isospin components of the ground-state wave fu
tion. Since the operators do not, in general, conserve isos
we cannot use the most compact isospin basis use
ground-state calculations.

For a more general matrix elementM̃ , we simply keep
another complete set of amplitudes for each operatorO1 ,
each set of amplitudes corresponding to the full operator
ing on the ground state. The paths are sampled precisely
the ground-state calculation@49#, and hence unaffected b
the operatorsO1 ,O2 . This allows us to calculate the re
sponse to a variety of operators~charge, current, differen
momenta, etc.! simultaneously.

We have found it computationally advantageous to cal
late the response simultaneously for several different di
tions of momentum transfer. A randomly picked set of thr
orthogonal axes is chosen, withq̂ directions along both the
positive and negative directions of each axis. This meth
yields much lower statistical errors in calculating the
sponse, and along with the more efficient methods for s
pling path integrals recently applied to ground-state calcu
tions @49#, allows for much more precise results tha
obtained previously. It is also possible to calculate the
sponse at several different momentum transfers simu
neously.

It is certainly possible to extract more detailed inform
tion from the Euclidean response. Most efforts in this dire
tion proceed under maximum entropy techniques employ
Bayesian statistics@50#. These techniques make use of t
correlated error estimates inR̃(t) for different t. Given the
enhanced precision of the present calculations we are ex
ing these possibilities. These considerations are beyond
scope of the present investigations, though, where we
primarily concerned with the total strength in the longitud
nal and transverse channels.

V. ELECTROMAGNETIC CURRENT OPERATOR

The model for the nuclear electromagnetic curre
adopted in the present study is briefly reviewed in this s
tion for completeness, for a more complete description
Ref. @51#. The charge and current operators consist of o
and two-body terms;

r~q!5(
i

r i
~1!~q!1(

i , j
r i j

~2!~q!, ~15!

j ~q!5(
i

j i
~1!~q!1(

i , j
j i j
~2!~q!, ~16!
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whereq is the momentum transfer. The one-body operat
r i

(1) and j i
(1) have the standard expressions obtained from

relativistic reduction of the covariant single-nucleon curre
and are listed below for convenience. The charge operato
written as

r i
~1!~q!5r i ,NR

~1! ~q!1r i ,RC
~1! ~q!, ~17!

with

r i ,NR
~1! ~q!5e ie

iq•r i, ~18!

r i ,RC
~1! ~q!5S 1

A11Q2/4m2
21D e ie

iq•r i

2
1

4m2 ~2m i2e i !q•~s i3pi !e
iq•r i, ~19!

whereQ25q22v2 is the four-momentum transfer andv is
the energy transfer. The current operator is expressed as

j i
~1!~q!5

1

2m
e i@pi ,eiq•r i#12

i

2m
m iq3s ie

iq•r i, ~20!

where@¯ ,¯#1 denotes the anticommutator. The followin
definitions have been introduced:

e i5GE,p~Q2!
1

2
~11tz,i !1GE,n~Q2!

1

2
~12tz,i !, ~21!

m i[GM ,p~Q2!
1

2
~11tz,i !1GM ,n~Q2!

1

2
~12tz,i !,

~22!

andp, s, andt are the nucleon’s momentum, Pauli spin, a
isospin operators, respectively. The two terms proportiona
1/m2 in r i ,RC

(1) are the well known Darwin-Foldy and spin
orbit relativistic corrections@52,53#, respectively.

The calculations of the response functions discussed
the preceding section have been carried out using the di
parametrization of the nucleon form factors

GE,p~Q2!5GD~Q2!, ~23!

GE,n~Q2!52mn

Q2

4m2

GD~Q2!

11Q2/m2 , ~24!

GM ,p~Q2!5mpGD~Q2!, ~25!

GM ,n~Q2!5mnGD~Q2!, ~26!

where

GD~Q2!5
1

~11Q2/L2!2 , ~27!

with L50.834 GeV/c, and wheremp andmn are the proton
(mp52.793mN) and neutron (mn521.913mN) magnetic
moments, respectively. It is worth emphasizing that the av
able semiempirical parametrizations of the proton elec
2-8
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and magnetic, and neutron magnetic form factors do not
fer significantly—less than a couple of percent—in the lo
momentum transfer range of interest here,Q2

<0.4 (GeV/c)2, and that uncertainties in the neutron elect
form factor have a negligible impact on the present resu
Finally, we should note that in the actual calculations of
Euclidean responses the value of the four-momentum tr
fer occurring in the nucleon form factors~as well as in the
electromagneticND transition form factor, see below! is kept
fixed at the quasielastic peak, as already mentioned in
IV.

The most important features of the two-body parts of
electromagnetic current operator are summarized below.
reader is referred to Refs.@51,54# for a derivation and listing
of their explicit expressions.

A. Two-body current operators

The two-body current operator consists of ‘‘mode
independent’’ and ‘‘model-dependent’’ components, in t
classification scheme of Riska@55#. The model-independen
terms are obtained@56# from the nucleon-nucleon interactio
~the charge-independent part of the Argonnev18 in the
present study! and by construction satisfy current conserv
tion with it. The leading operator is the isovector ‘‘p-like’’
current derived from the isospin-dependent spin-spin~st!
and tensor (tt) interactions. The latter also generate an
ovector ‘‘r-like’’ current, while additional model-
independent isoscalar and isovector currents arise from
isospin-independent and isospin-dependent central
momentum-dependent interactions. These currents are
ranged and numerically far less important than thep-like
current. For the purpose of later discussions, we list be
the explicit expression for the latter

j i j
~2!~q;p!5GE

V~Q2!~t i3t j !z@eiq•r i f PS~t!s i~s j• r̂ !

1eiq•r j f PS~r !s j~s i• r̂ !

2~s i•“ i !~s j•“ j !~“ i2“ j !gPS~q;R,r !#,

~28!

whereGE
V(Q2)5GE,p(Q2)2GE,n(Q2) is the isovector com-

bination of the nucleon electric form factors, andR andr are
the center-of-mass and relative positions of nucleonsi and j,
R5(r i1r j )/2 andr5r i2r j , respectively. The functionsf PS
andgPS are defined as

f PS~r !5
d

dr E dk

~2p!3 eik•rvPS~k!, ~29!

gPS~q;R,r !5E dk i

~2p!3

dk j

~2p!3 eiki•r ieik j •r j~2p!3

3~2p!3d~q2k i2k j !
vPS~ki !2vPS~kj !

ki
22kj

2 , ~30!

wherevPS(k) is obtained from thest andtt components of
the interaction
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vPS~k!5vst~k!22v tt~k!, ~31!

with

vst~k!5
4p

k2 E
0

`

r 2dr@ j 0~kr !21#vst~r !, ~32!

v tt~k!5
4p

k2 E
0

`

r 2dr j 2~kr !v tt~r !. ~33!

The factor j 0(kr)21 in the expression forvst(k) ensures
that its volume integral vanishes@56#.

In a one-boson-exchange model, in which the isosp
dependent spin-spin and tensor interactions are due
p-meson~andr-meson! exchanges, the functionvPS(k) sim-
ply reduces to

vPS~k!→vp~k![2
f p

2

mp
2

f p
2 ~k!

k21mp
2 , ~34!

where mp , f p , and f p(k) denote, respectively, the pio
mass,pNN coupling constant and form factor. In this limi
the functionsf PS andgPS read

f PS~r !→ f p~r !5
f p

2

4p

e2mpr

~mpr !2 ~11mpr ! ~35!

gPS~q;R,r !→gp~q;R,r !5
eiq•R

8p E
21/2

11/2

dxe2 ixq•r
e2Lp~x!r

Lp~x!
,

~36!

with

Lp~x!5Amp
2 1q2~124x2!/4, ~37!

where for simplicity thepNN form factor has been set equ
to one. The resulting current is then identical to that co
monly used in the literature.

The model-dependent currents are purely transverse
therefore, cannot be directly linked to the underlying tw
nucleon interaction. The present calculation includes
isoscalarrpg and isovectorvpg transition currents as wel
as the isovector current associated with the excitation of
termediateD-isobar resonances. Therpg andvpg couplings
are known from the measured widths of the radiative dec
r→pg @57# and v→pg @58,59#, respectively, while their
momentum-transfer dependence is modeled using vec
meson dominance. Monopole form factors are introduced
the meson-baryon vertices with cutoff values ofLp

53.8 fm21 and Lr5Lv56.3 fm21 at thepNN, rNN, and
vNN vertices, respectively.

Among the model-dependent currents, however, those
sociated with theD isobar are the most important ones. In t
present calculation, these currents are treated in the staD
approximation rather than in the more accurate transiti
correlation-operator scheme, developed in Ref.@60# and ap-
plied to the calculation of the trinucleon form factors@61#, nd
and pd radiative capture cross sections at low energ
@54,62#, andS factor of the proton weak capture on3He @63#.
2-9
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Again for later convenience, it is useful to list explicitly th
two-bodyD-excitation current used in the present work,

j i j
~2!~q;D!5 j i~q;D→N!

vNN→DN,i j

m2mD
1

vDN→NN,i j

m2mD
j i~q;N→D!

1 i
 j , ~38!

where theN
D electromagnetic current is modeled as

j i~qi ;N→D!52
i

2m
GgND~Q2!eiq•r iq3SiTz,i , ~39!

and the expression forj i(q;D→N) is obtained from that for
j i(q;N→D) by replacing the transition spin and isospin o
eratorsS and T with their Hermitian conjugates. The elec
tromagnetic form factorGgND(Q2) is parametrized as

GgND~Q2!5
m*

~11Q2/LND,1
2 !2A11Q2/LND,2

2
, ~40!

where theN→D transition magnetic momentm* is taken
here to be equal to 3mN , as obtained in an analysis ofgN
data in theD-resonance region@64#. This analysis also gives
LND,150.84 GeV/c and LND,251.2 GeV/c. It is important
to point out, however, that the quark-model value form* ,
m* 5(3&/5)mN

V53.993mN ~mN
V is the nucleon isovecto

magnetic moment!, is often used in the literature. This valu
is significantly larger than that adopted above. Finally,
transition interactionvNN→DN,i j is given by

vNN→DN,i j 5@vstII~r !Si•s j1v ttII~r !Si j
II #T i•t j , ~41!

and vDN→NN,i j is the Hermitian conjugate of the above e
pression. TheSi j

II is the tensor operator where the Pauli sp
s i has been replaced by the transition spinSi , and the func-
tions vstII(r ) andv ttII(r ) are defined as

vstII~r !5
f p f p*

4p

mp

3

e2x

x
C~x!, ~42!

v tra~r !5
f p f p*

4p

mp

3 S 11
3

x
1

3

x2D e2x

x
C2~x!, ~43!

wherex[mpr , f p* 5(6&/5) f p is the quark-model value fo
the pND coupling constant~adopted in the present work!,
and the cutoff functionC(x)512e2lx2

, with l54.09.
Standard manipulations of the product of spin and isos

transition operators@60# lead to the following expression fo
the D-excitation current:

j i j
~2!~q;D!5 i

GgND~Q2!

]m
eiq•r i

3$4tz, j@ f D~r !s j1gD~r ! r̂ ~s j• r̂ !#

2~t i3t j !z@ f D~r !~s i3s j !1gD~r !~s i3 r̂ !

3~s j• r̂ !#%3q1 i
 j , ~44!
02400
e
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where

f D~r ![
vstII~r !2v tII~r !

m2mD
, ~45!

gD~r ![3
vtII~r !

m2mD
. ~46!

The expression above reduces to that commonly used in
literature, if the quark-model values for thepND andgND
coupling constants are adopted.

B. Two-body charge operators

While the main parts of the two-body currents are link
to the form of the two-nucleon interaction through the co
tinuity equation, the most important two-body charge ope
tors are model-dependent, and should be considered as
tivistic corrections. Indeed, a consistent calculation of tw
body charge effects in nuclei would require the inclusion
relativistic effects in both the interaction models and nucl
wave functions. Such a program is yet to be carried out
systems withA>3. There are nevertheless rather clear in
cations for the relevance of two-body charge operators fr
the failure of the IA in predicting the deuteron tensor pola
ization observable@65#, and charge form factors of the three
and four-nucleon systems@61,66#. The model commonly
used@67# includes thep-, r-, andv-meson exchange charg
operators with both isoscalar and isovector components
well as the~isoscalar! rpg and~isovector! vpg charge tran-
sition couplings, in addition to the single-nucleon Darwi
Foldy and spin-orbit relativistic corrections. Thep- and
r-meson exchange charge operators are constructed from
isospin-dependent spin-spin and tensor components of
two-nucleon interaction~again, the Argonnev18 model!, us-
ing the same prescription adopted for the corresponding
rent operators. Explicit expressions for these operators
be found in Ref.@67#. Here, we only emphasize that forQ
<1 GeV/c the contribution due to thep-exchange charge
operator is typically an order of magnitude larger than tha
any of the remaining two-body mechanisms and one-b
relativistic corrections.

VI. MODEL STUDIES

The Euclidean response is an excellent tool to test
understanding of inclusive quasielastic scattering, since it
corporates an exact treatment of the states in the continu
The Euclidean response does have the disadvantage,
ever, that it corresponds to a weighted integral over the
ergy lossv and, as a consequence, the interpretation of
tential differences between calculated results a
experimental data is not so straightforward.

In order to develop a better feeling for the properties
the Euclidean response, in this section we discuss a sim
minded model calculation. We use a parametrized cr
section—de factoa fit to the longitudinalRL(v) at one mo-
mentum transfer—and study the change in the Euclidean
2-10
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FIG. 5. ~Color! Top: model response~solid
line! changed by various modifications~see text!.
Bottom: corresponding ratio of modified and un
modified Euclidean responses.
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sponse upon various changes of the cross section as a
tion of the energy loss.

In the top panel of Fig. 5 we show the model quasielas
peak as a function of the energy loss~solid curve! and a
selection of modifications. The changes have, in gene
been made by adding a Gaussian with arbitrary amplit
and selected position in energy loss. Figure 5 shows
quasielastic peak~a! with a Gaussian placed at very larg
energy loss~400 MeV!, ~b! a Gaussian placed on the hig
energy loss tail of the quasielastic peak~200 MeV!, and~c! a
Gaussian placed on the low-v side of the peak~100 MeV!. It
also displays a curve where~d! the width of the quasielastic
response has been decreased by 20%~with the overall am-
plitude adjusted to conserve the area! and one for the case
where~e! the quasielastic peak is shifted by 10 MeV.

The lower panel of Fig. 5 shows the resulting changes
terms of the ratio of modified to original Euclidean r
sponses. The value att50 reflects the~arbitrary! integral
02400
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e
e
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over v of the added modification. Several features are no
worthy.

The Euclidean response at finitet very quickly suppresses
the contribution from large energy loss. The dash-dot cu
shows that already att.0.01 the contribution from the large
peak added atv5400 MeV is suppressed. For the expe
mental transverse response functionRT(v) this implies that
the contribution from pion production in theD peak~which
is not included in the theory we are going to compare to! is
only affecting the results for very smallt. We will, therefore,
ignore this region.

The region of the quasielastic cross section at lowv
comes in very prominently at the larger values oft, as indi-
cated by the curve labeled ‘‘peak at 100 MeV.’’

A shift of the quasielastic peak to largerv leads to an
Euclidean response that quickly falls with increasingt,
reaching saturation by the timet gets to values approachin
0.05.
2-11
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FIG. 6. ~Color! Longitudinal~upper half of figure! and transverse Euclidean response of3He for momentum transfers 300– 600 MeV/c.
th

n in
are
VII. RESULTS

We have used the longitudinalL and transverseT experi-
mental response functions of Figs. 1 and 2 to compute
02400
e

corresponding experimental Euclidean responses show
Figs. 6 and 7. The nucleon electromagnetic form factors
divided out using the parametrizations of Ho¨hler et al. @68#.
2-12



LONGITUDINAL AND TRANSVERSE QUASIELASTIC . . . PHYSICAL REVIEW C 65 024002
FIG. 7. ~Color! Longitudinal~upper half of figure! and transverse Euclidean response of4He for momentum transfers 300– 600 MeV/c.
er
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y
e

In order not to include too much of the tail of theD reso-
nance, the integration has been performed up to the en
loss v where theT response starts to increase significan
02400
gy
with v ~the corresponding value ofv is indicated in Figs. 1
and 2 by a1!. Since for theT-Euclidean response at ver
small t the tail of theD peak nevertheless plays a role, th
2-13
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experimental response in this region is indicated by a das
line only, and should not be compared to the theoretical
culations discussed below.

The statistical errors of the experimental Euclidean
sponse are obtained via the usual error propagation w
integrating. The additional overall systematic uncertainty,
timated from theL/T separation, amounts to typically 3% fo
3He for both theL and T cross sections. For4He a similar
uncertainty in the scale factor applies at the low
momentum transfers and for bothL andT; at 600 MeV/c the
uncertainty inRL(v) increases to 6%. These scale erro
which then apply also to the corresponding Euclidean
sponses, have not been included in the error bars show
Figs. 6 and 7.

In Figs. 6 and 7 we also show the calculated Euclide
responses, obtained in IA and with inclusion, in addition,
the contributions associated with the two-body charge
current operators, discussed in Sec. V. It is immediately
parent that two-body contributions reduce by a small amo
the L responses, while increasing theT responses very sub
stantially at all momentum transfers. The enhancement in
T channel occurs already at lowv, as is seen from the Eu
clidean response at larget. Two-body effects thus are impor
tant over the entire quasielastic peak, and not only—as
often expected—in the ‘‘dip region’’ on the large-v side of
the quasielastic peak. These conclusions are in agree
with those of an earlier study@21#, as well as with those
inferred from the superscaling analysis of Ref.@12# for nuclei
with mass numberA512– 56.

When considering the effect of two-body currents as
function of momentum transfer—in particular, when stud
ing Fig. 7—one notes that at lowq the effect of two-body
currents at largev ~low t! is bigger than at lowv ~larget!.
At large q, this situation becomes the reverse. Figures 6
7 also show that the theory explains well the rapid incre
of two-body contributions between3He and4He. In contrast
to most published calculations~for a discussion see Sec. I!,
the present calculation does give the sizeable two-body c
tribution required by the data.

Figure 7 shows that theT-Euclidean response at lowq
rises very rapidly towards very smallt, reaching almost
twice the IA value att50, thus suggesting that part of th
two-body strength is located at very largev, basically under
the D peak ~compare to Fig. 5!. It also implies that this
strength is very spread out inv, and presumably best dis
cussed in terms of the sum rule~see Sec. VIII!.

At lower values of momentum transfer, the calculated4He
T-Euclidean response is a bit high at larget, implying that
the corresponding calculated cross section would be so
what too high at lowv. As emphasized by the sensitivit
studies in Sec. VI, the low-v region gets great weight fo
large t, so a small increase in the absolute value ofs~v!
leads to a large increase inE(t).

Overall, the agreement between theory and experimen
4He, the nucleus that allows us best to study the relative
of one- and two-body contributions, is excellent for theL
response, thus implying that an accurate treatment of
nuclear spectrum has been achieved, since two-body op
tors give small corrections in theL channel. For the4He
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T-Euclidean response, the large two-body effects predic
by theory are confirmed by experiment, although the ass
ated contributions are a bit too large in theq range
400– 500 MeV/c.

VIII. LONGITUDINAL AND TRANSVERSE SUM RULES

Sum rules provide a powerful tool for studying integr
properties of the response of the nuclear many-body sys
to an external electromagnetic probe. Of particular inter
are those for the longitudinal and transverse response f
tions at constant three-momentum transfers, since they
be expressed as ground-state expectation values of the ch
and current operators and, therefore, do not require
knowledge of the complicated structure of the nuclear ex
tation spectrum. However, direct comparison between
theoretically calculated and experimentally extracted s
rules cannot be made unambiguously for two reasons. F
the experimental determination of the longitudinal and tra
verse sum rules requires measuring the associated resp
functions in the whole energy-transfer range, from thresh
up to`. Inclusive electron scattering experiments only allo
access to the spacelike region of the four-momentum tran
(v,q). While the response in the timelike region (v.q)
could, in principle, be measured viae1e2 annihilation, no
such experiments have been carried out to date, to the be
our knowledge. Therefore, for a meaningful comparison
tween the theory and experiment, one needs to estimate
strength outside the region covered by the experiment. In
past, this has been accomplished, in the case of the lon
dinal response, either by extrapolating the data@69# or by
parametrizing the high-energy tail and using energ
weighted sum rules to constrain it@70,71#. For theA52 – 4
nuclei, the unobserved strength amounts to 5–10 % at
most for three-momentum transfers in the rangeq
,1 GeV/c @71#, and both procedures lead to similar resul
Indeed, the calculated~non-energy-weighted! longitudinal
sum rule—also known as the Coulomb sum rule—appear
be well satisfied by the data@71,72#.

The second reason that makes the direct comparison
tween theoretical and ‘‘experimental’’ sum rules difficult lie
in the inherent inadequacy of the present theoretical mo
for the nuclear electromagnetic current, in particular, its la
of explicit pion production mechanisms. The latter mos
affect the transverse response and make itsD-peak region
outside the boundary of applicability of the present theo
The charge and current operators discussed in Sec. V, h
ever, should provide a realistic and quantitative descript
of both longitudinal and transverse response functions in
quasielastic peak region, where nucleon and~virtual! pion
degrees of freedom are expected to be dominant. In l
nuclei and at the momentum transfer values of interest h
the quasielastic andD-production peaks are well separate
and it is, therefore, reasonable to study sum rules of
transverse response.

While non-energy- and energy-weighted longitudinal su
rules have been extensively studied in the past~see Refs.
@51,73# for a review!, the number of studies dealing wit
sum rules of the transverse response is much more lim
2-14
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@74#. The present section focuses on the latter, in particu
on the enhancement of transverse strength due to many-
components of the electromagnetic current, within the lim
tations discussed above. It also addresses, within the s
rule context, the issue of the enhancement in the ratio
transverse to longitudinal strength, observed in the quasie
tic response functions of nuclei. Finally, it attempts to p
vide a semiquantitative explanation for the observed syst
atics in the excess of transverse strength, both as functio
mass number and momentum transfer. All the calculati
are based on the~Argonne V18 and Urbana-IX interactions!
AV18 /UIX Hamiltonian model, and use correlated
hyperspherical-harmonics~variational Monte Carlo! wave
functions forA53 – 4 (A56) nuclei.

The ~non-energy-weighted! sum rules are defined as

Sa~q!5CaE
v th

1

`

dvSa~q,v!5Ca@^0uOa
†~q!Oa~q!u0&

2u^0uOa~q!u0&u2#. ~47!

whereSa5(q,v) is the point-nucleon longitudinal (a5L)
or transverse (a5T) response function,Oa(q) is either the
charger(q) or currentj (q) operator divided by the square o
the proton form factoruGE

p(Q̃2)u2 ~again,Q̃2 is evaluated at
the energy transfer corresponding to the quasielastic pe!,
u0& denotes the ground state, and the elastic contributio
the sum rule has been removed. An average over the nu
spin orientations is tacitly implied in the evaluation of th
expectation values. The constantCa , for a5L or T, is given
by

CL5
1

Z
, ~48!

CT5
2m2

Zmp
21Nmn

2

1

q2 , ~49!

whereZ (N) andmp (mn) are the proton~neutron! number
and magnetic moment, respectively. It has been introduce
Eq. ~47! so that, in the limitq→` and under the approxima
tion that the nuclear charge and current operators origin
respectively, from the charge and spin magnetization of
individual nucleons only,Sa(q→`)51. Note that the Eu-
clidean response functions calculated in Sec. VII and the s
rules defined here are related via

Sa~q!5CaEa~q,t50!. ~50!

The expectation values in Eq.~47! are calculated with Monte
Carlo methods, without any approximations.

The calculated sum rules for3He, 4He, and6Li are listed
in Tables I and II. The longitudinal sum ruleSL(q) is rela-
tively uninfluenced by two-body charge operators, in agr
ment with the results of an earlier study@72#. The transverse
sum ruleST(q) is substantially increased by two-body cu
rent contributions. The resulting enhancement has two in
esting features:~i! it increases, for fixedq, in going fromA
5(2 to) 3 to 4, and decreases fromA54 to 6; ~ii ! it de-
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creases, for fixedA, asq increases. Both these features a
summarized in Figs. 8 and 9, in which the rati
ST(q)/SL(q), obtained by including one body only and bo
one- and two-body contributions, are plotted as function oA
for fixed q and as function ofq for fixed A. The former figure
is reminiscent of Fig. 4, in which the ratio of transverse
longitudinal strength in the quasielastic region is obtain
from the measured response functions. Obviously, the tr
cated integrals in Fig. 4 do not include the strength at highv.

The purpose of the present section is to offer an expla
tion of the features mentioned above. To this end, th
points are worth emphasizing. First, among the two-bo
current contributions, the most important are those ass
ated with thePS ~pionlike! and D-excitation currents. This
fact has been explicitly verified by direct calculation,
shown in Table III for 4He, as an example. Note that th
results in the second and third columns are slightly differ
from those reported above in Table II, since they are ba
on a random walk consisting only of 1000 configuration
much shorter than that used in the calculations of Table
These calculations, though, are based upon the same ran
walk and, therefore, allow a better determination of the in
vidual contributions.

Second, consider expanding the current into one-
two-body componentsj l and j lm ,

j 5(
l

j l1 (
l ,m

j lm . ~51!

Then, ignoring the very small~and, with increasingq, rap-
idly vanishing! elastic contribution toST(q), one finds that
the first term in Eq.~47!

TABLE I. Longitudinal sum rule obtained with one body onl
and with both one- and two-body charge operators.

q ~MeV/c!

3He 4He 6Li

1 112 1 112 1 112

300 0.787 0.763 0.670 0.649 0.977 0.93
400 0.921 0.875 0.859 0.815 0.995 0.93
500 0.964 0.901 0.941 0.881 0.990 0.92
600 0.982 0.908 0.973 0.910 0.990 0.92
700 0.994 0.914 0.994 0.942 0.994 0.93

TABLE II. Transverse sum rule obtained with one body on
and with both one- and two-body current operators.

q ~MeV/c!

3He 4He 6Li

1 112 1 112 1 112

300 0.929 1.31 0.893 1.67 0.912 1.57
400 0.987 1.30 0.970 1.62 0.974 1.52
500 1.01 1.28 1.00 1.55 0.999 1.46
600 1.01 1.25 1.01 1.49 1.01 1.41
700 1.01 1.23 1.01 1.44 1.011 1.37
2-15
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j † j 5(
l

j l
† j l1 (

lÞm
j l
† j m

1 (
l ,m

@~ j l
†1 j m

† ! j lm1H.c.#1 (
l ,m

j lm
† j lm

1~ terms involving 3 or 4 different nucleons!.

~52!

At large momentum transfers, one would expect terms
volving three or four nucleons to be small, particularly
light nuclei where Pauli correlations are not important. Dro
ping the last term corresponds to considering only incohe
scattering from pairs of nucleons.

This simple expectation is indeed borne out by a dir
calculation, the results of which are listed for4He in Table

FIG. 8. ~Color! Ratios ST(q)/SL(q), obtained with one-body
currents only and with both one- and two-body currents, as func
of mass numberA.

FIG. 9. ~Color! Ratios ST(q)/SL(q), obtained with one-body
currents only and with both one- and two-body currents, as func
of momentum transferq.
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IV. Thus the transverse sum rule appears to be saturate
the one- and two-body terms in the expansion forj † j above.

Third, the transverse strength associated with two-bo
currents is almost entirely due topn pairs. To make this
observation more precise, consider the ‘‘reduced’’ two-bo
current

j lm→ j lm~Pl Pm1NlNm!, ~53!

wherePl and Nl are the proton and neutron projection o
erators for a particlel. Thus the ‘‘reduced’’ two-body curren
only acts onpp or nn pairs, and the transverse sum ru
calculated with it should be given almost entirely by t
one-body part ofj. This fact is again confirmed by the direc
calculation, as it is evident from Table V. Thatpn pairs are
responsible for the strength due to two-body currents
also be understood by the following considerations. The
onlike andD-excitation currents have the isospin structu
~see Sec. V!, again in a schematic notation,

j lm~p!5~t l3tm!zOlm~p!, ~54!

j lm~D!5t l ,zOlm~D,a!1tm,zOml~D,a!

1~t l3tm!zOlm~D,b!, ~55!

while the leading part of the one-body current is given by

j l5t l ,zOl
~ IV !, ~56!

whereOl
(IV) denotes the isovector part ofj l . Now the term

j lm
† j lm ~with j lm including pionlike andD-excitation currents!

will produce, as far as isospin is concerned, terms, such

~t l3tm!z
252~12t l ,ztm,z!, ~57!

~t l ,z or tm,z!~t l3tm!z56 i ~t l•tm2t l ,ztm,z!, ~58!

n

n

TABLE III. 4He transverse sum rule.

q ~MeV/c! 1 112 112-p12-D

300 0.915 1.65 1.58
400 0.980 1.59 1.50
500 1.01 1.53 1.44
600 1.01 1.47 1.38
700 1.01 1.41 1.33

TABLE IV. 4He transverse sum rule: effect of three- or fou
nucleon terms.

q ~MeV/c! 1 112 112 reduced

300 0.915 1.65 1.70
400 0.980 1.59 1.59
500 1.01 1.53 1.51
600 1.01 1.47 1.45
700 1.01 1.41 1.39
2-16
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t l ,ztm,z5
Tlm1t l•tm

3
, ~59!

whereTlm is the isotensor termTlm53t l ,ztm,z2t l•tm .
In addition, there will also be isospin-independent ter

of the type

Olm
† ~D,a!Olm~D,a!. ~60!

However, it is important to note that the operators in E
~57! and~58! vanish when acting onpp or nn pairs. It should
also be noted that the isotensor term in Eq.~59! vanishes in
T50 andT51/2 ground states, namely, in3He, 4He, and
6Li. A similar analysis can be carried out for the interferen
terms between one- and two-body currents

(
l ,m

~ j l
†1 j m

† ! j lm1H.c., ~61!

for which one obtains isospin-independent, and type~58! or
type ~59! operators. In any case, the direct calculation in
cates~see Table V! that pp and nn pairs do not contribute
appreciably toST(q).

On the basis of the above observations and ignoring
convection term in the one-body~1B! j l , one concludes tha
the excess transverse strength, defined as

DST~q![ST~q!2ST
1B~q!, ~62!

where superscript 1B denotes one-body terms, must be pr
portional to

DST~q!5E
0

`

dx tr@F~x;q!r~x;pn!#, ~63!

whereF(x;q) is a complicated matrix in the spin space
the two nucleons depending upon the current opera
alone, and theA dependence is included in thepn density
matrix r2(x;pn,sl ,sm ,sl8 ,sm8 ). Here sl , sm , etc., are spin
projections~up or down! of particlesl, m, etc. In fact, one
can express these densities in terms of total spin-iso
S,T50,1 or 1,0 pairlm. The crucial point is that, in nuclei
thesepn densities scale, see@75#, namely

r2~x;T50;A!5RArd~x;T50!, ~64!

r2~x;T51;A!5RA8rqb~x;T51!, ~65!

TABLE V. 4He transverse sum rule: contribution ofpp and nn
pairs.

q ~MeV/c! 1 112 112 pp or nn only

300 0.915 1.65 0.919
400 0.980 1.59 0.987
500 1.01 1.53 1.02
600 1.01 1.47 1.03
700 1.01 1.41 1.03
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where superscriptsqb andd mean quasibound and deutero
respectively. The scaling factorsRA and RA8 have been cal-
culated in Ref.@75#, with RA8.RA andRA52.0, 4.7, 6.3, 18.8
for 3He, 4He, 6Li, and 16O, respectively, and so one woul
expectDST(q) to scale with

DST~q!}
RA

Zmp
21Nmn

2 , ~66!

where the factor in the denominator on the right-hand sid
from the normalization adopted forST(q).

The calculated values for the excess strengthDST(q) are
listed in Table VI. On the basis of the scaling law above, o
would deduce

DST

4He~q!

DST

3He~q!
.0.840

R4

R3
51.97, ~67!

DST

6Li~q!

DST

4He~q!
.0.667

R6

R4
50.894, ~68!

and these values are reasonably close to those of Table
They are also close to those that can be inferred from d
see Fig. 4. Finally, in Fig. 10 the integrands in Eq.~63! are
displayed for3He, 4He, and6Li, properly scaled according
to the factor in Eq.~66!. Note that also shown are the con
tributions due topn pairs inT50 states only. The behavio
of the integrands, as illustrated in Fig. 10, is to be expec
since it is a consequence of the ‘‘scaling’’ behavior mo
generally observed for the calculatedT, S50,1 and 1,0 pair-
distribution functions in nuclei@75#.

Note that the dominant contributions to the exce
strength occur for pair separations around or slightly l
than 1 fm. One would naturally associate this strength wit
significant contribution to two-nucleon final states of re
tively large relative momenta. Detailed microscopic calcu
tions in A54 with full final-state interactions and two-bod
currents will be necessary to make precise predictions.

It should be emphasized that the scaling law forDST(q)
can be used to estimate the excess transverse streng
nuclei, once the factorsRA are known. In nuclear matter, fo
example, the authors of Ref.@76# obtainR`51.59, the latter
being defined asRA /A in the limit A→`, and, therefore,
one would expect a very substantial enhancement of
transverse sum rule~and, consequently, transverse respon
function! due to two-body currents, namely

DST
`(q)/DST

4He(q).1.35.

TABLE VI. Excess strengthDST(q) calculated in3He, 4He, and
6Li.

q ~MeV/c! 3He 4He 6Li

300 0.38 0.78 0.66
500 0.27 0.55 0.46
700 0.21 0.43 0.36
2-17
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The nuclear matter transverse response has been c
lated in Ref.@77# by using correlated-basis-function pertu
bation theory and including, in addition to the single-nucle
spin-magnetization current, the pionlike andD-excitation
two-body currents. The explicit integration of the respon
functions@77,78# indicates that the transverse strength is
creased by the two-body contributions by roughly 15% in
momentum transfer range 300–700 MeV/c. This enhance-
ment is significantly smaller than that inferred from the sc
ing law above. The underestimate is presumably due to
inherent limitations in the calculations carried out so f
which only retained one-particle–one-hole (1p-1h) interme-
diate states and estimated the contribution of two-partic
two-hole states by folding the 1p-1h response with a width
derived from the imaginary part of the optical potential.
should be possible to calculate the transverse sum rule
direct evaluation of the ground-state expectation value. W
along these lines is in progress@78#.

The longitudinal and transverse sum rules in matter
be estimated in a Fermi gas model in a similar simple m
ner. As in calculations of4He ~see Sec. IX!, this is useful to
help understand the role of initial-state correlations in
transverse response of the nucleus. We again ignore co
butions of three- and four-nucleon terms as in Eq.~52!. In
matter this approximation should be valid at high-moment
transferq, but becomes more questionable asq is decreased
A significant enhancement of the transverse sum rule is
pected due to the short-range part of the two-body curren
these necessarily involve large momenta between the pa
nucleons, thus broadening the range of validity of this sim
approximation.

The Fermi-gas sum rules are decomposed into parts
pending only on the single-nucleon currents and the rem
ing terms that also involve two-nucleon currents

Sa~q!5Sa
1B~q!1DSa~q!, ~69!

FIG. 10. ~Color! Integrands in Eq.~63! for 3He, 4He, and6Li at
momentum transfers of 300 and 700 MeV/c, scaled according to
the factor in Eq.~66!. Also shown are the contributions due topn
pairs inT50 states only.
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wherea5L, T. The simplest approximation to the respon
due to one-body currents is to assume incoherent scatte
from isolated nucleons. This yieldsSa(q)51, neglecting the
neutron charge and convection current contributions to
longitudinal and transverse response functions, respectiv

The additional contributions to the sum rules involvin
two-nucleon currents can be written as a sum of interfere
terms between one- and two-nucleon operators and
square of the two-nucleon operators, in the same approxi
tion adopted above. The short-range nature of the tw
nucleon operators implies that incoherent scattering fr
pairs of nucleons should be dominant

DSa~q!5~A21!@2^Fu@Oa,l
† ~q!Oa,lm~q!1H.c.#

1Oa,lm
† ~q!Oa,lm~q!uF&#, ~70!

where the factor 2 in the interference term arises because
pair term can connect to either of the two single-nucle
operators.

To make a simple estimate of the contribution of the tw
nucleon terms of the current, we consider the two-nucle
density matrixr2(r lm)x,x8 , which depends only upon th
separation between the pair of nucleons and upon their in
and final spins and isospinsx andx8. In the Fermi-gas ap-
proximation,r2 is diagonal in the spins and isospins, and t
spatial dependence is given by simple Slater functions.
then obtain

DSa~q!5r (
x,x8

E dr i j E dV q̂

4p
r2~r i j !x,x8^xu@2Oa,l

† ~q!

1Oa,lm
† ~q!#Oa,lm~q!ux8&. ~71!

where momentum-dependent pieces in the current have a
been dropped. The excess contributions involving tw
nucleon currents are given in Table VII for the Fermi-g
model. The longitudinal contributions are positive but sma
ranging up to.0.02. The transverse contributions, rangi
from .0.06 at 700 MeV/c to .0.11 at 300 MeV/c, are much
smaller than for correlated wave functions.

Finally, as far as theq dependence is concerned, from th
explicit expressions of the current operators in Sec. V, i
evident that the excess transverse strength should beha

DST~q!.~a1bq1gq2!/q2, ~72!

where theq2 factor in the denominator is due to the norma
ization adopted forST(q), and so will approach a constant i
the limit of largeq.

IX. MODEL STUDIES WITH SIMPLIFIED
INTERACTIONS, WAVE FUNCTIONS, AND CURRENTS

As a guide to better understanding these results and c
paring with other calculations, it is useful to compare t
complete calculations described above with various trun
tions of the initial ground state wave function, the curre
operators, and the Hamiltonian. Of course, only the comp
calculations can be meaningfully compared to the data
2-18
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they include both initial-state wave functions and current
erators that are consistent with the Hamiltonian used to
termine thet ~or energy! dependence of the response.

The transverse channel is most interesting in this reg
as it shows a large enhancement from the two-nucleon
rent operators. Results for4He at 400 MeV/c with various
truncations are shown in Fig. 11. The truncations include
~FW! and simple~SW! wave functions, full~FC! and im-
pulse~IC! currents, and full~FI! and simple~SI! interactions.
The simple wave functions and interactions are descri
below. The differences in the longitudinal channel are mu
less dramatic.

The full ground-state variational wave function is d
scribed above@Eq. ~12!#, it includes strong tensor correla
tions from the pair correlation operatorsFi j and from the
three-nucleon correlationŨ2p . In order to better determine
the origin of the enhancement arising from the two-bo
currents, we have also considered a simplified ground-s
wave function~SW! where the tensor correlationsut(r ) and
utt(r ) @Eq. ~13!# and theÛ2p correlations arising from the
two-pion-exchange three-nucleon interaction have been
to zero.

Similarly it is interesting to compare the effect of differe
Hamiltonians describing the final-state interactions. In
Euclidean response this corresponds to using diffe
Hamiltonians for the imaginary-time propagation of the s
tem. The Hamiltonian used in the propagation does not
rectly affect the sum rules that depend only upon the ini

TABLE VII. Excess-strength contributionsDSL andDST to the
Fermi-gas sum rules from terms involving two-nucleon currents

q ~MeV/c! DSL DST

300 0.004 0.114
400 0.007 0.081
500 0.011 0.066
600 0.017 0.060
700 0.024 0.056
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state and the current operators. We have constructed a
plified v4 interaction where the tensor terms in the fu
Hamiltonian have been set to zero. This would, of cour
yield a very underbounda-particle ground state. To compen
sate, we add a potential of two-pion exchange range to b
the spin-one channels

vS51;T50,18 ~r !5vS51;T50,1~r !21.4Tp
2 ~r !, ~73!

where

Tp~t!5@12exp~2cr2!#2F11
3

mr
1

3

~mr !2G exp~2mr !

r
~74!

is taken from the Argonne interaction models and is a fu
tion of two-pion exchange range. The constant 1.4 MeV
has been set to crudely reproduce thea-particle binding. This
allows us to concentrate on the spin dependence of the fi
state interactions as opposed to drastically altering the s
tra of the struck nucleus. In all cases the FCs are those
tained from the AV18, they have not been reconstructed to
consistent with the Hamiltonian used for the initial or fin
states. The motivation here is to examine the various con
butions to the full calculation.

From the figure it is clear that a dramatic difference
mains between FC and IC, whatever model is chosen for
wave function and Hamiltonian. Thet50 ~sum-rule! differ-
ence between full and impulse currents is largest for the
wave function, but even with a highly simplified wave fun
tion a large difference remains between the results with
currents~FC, SW! and impulse currents alone~IC, SW!.

On the basis of Fermi-gas calculations of matter, it h
been believed that the large enhancement from two-b
currents found in previous calculations of light nuclei@21#
were due to the presence of strong tensor correlations in
ground-state wave function. While these correlations
make a significant contribution, even simplified wave fun
tions show a substantial enhancement. In light nuclei,
least, this is a consequence of the complete set of final st
-
FIG. 11. ~Color! Euclidean transverse re
sponse for4He at 400 MeV/c with full current
~FC! or impulse current~IC!, full or simplified
wave~FW or SW! function, full or simplified in-
teraction~FI or SI!.
2-19
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automatically included in the sum-rule and Euclidean
sponse calculations. We have also considered more dr
simplifications for the ground-state wave function, includi
only central (f c) correlations. Even in this case there is
dramatic enhancement of the response when two-nuc
currents are included.

Of course, the Hamiltonian used for final-state intera
tions cannot affect the sum rule att50, but it can change the
energy dependence of the response. Calculations with f
tions ~SW! and the simplified interactions~SI! are shown as
diamonds in the figure. With simplified wave functions, i
teractions, and impulse currents~IC, SW, SI!, the slope att
50 is much more shallow corresponding to an ener
weighted sum rule much closer tok2/(2m) than in the full
calculation—of course, this is to be expected, since ten
components, missing in the SI model, substantially enha
the energy-weighted sum rule. This same interaction also
a larger low-energy~large-t! response than the calculation
made with the full current. This is undoubtedly related to t
choice of modified Hamiltonian, the choice made here w
be more attractive inp waves than the full Hamiltonian, an
these presumably dominate the low-energy transverse
sponse in4He.

With the FC, there is much less dependence upon
choice of final-state interactions. Indeed, the calculati
with the simple wave function and full currents~FC, SW! are
nearly identical over the range oft considered. The low-
energyp-wave continuum in the more attractive simplifie
Hamiltonian yields less overlap with the two-nucleon curre
operators, resulting in a very similar full response for the t
different final-state interactions. The full calculation~FC,
FW, FI! has a much larger contribution at a higher ener
resulting in a steep initial fall-off witht. It also a has a
somewhat smaller response at low energy~large t than the
full calculation!.

Finally, we have calculated the responses inA53 using
the correlated-hyperspherical-harmonics~CHH! wave func-
tions obtained by Vivianiet al. @48# for this same Hamil-
tonian. Calculations of the longitudinal response of3He at
various momentum transfers are compared in Fig. 12.
differences between the variational and CHH wave functi
are very small, as is apparent in the figure. This is perh
not surprising, as the drastic truncations made in the c
parisons of SW and FW variational wave functions we
themselves somewhat modest. Differences in the CHH
VMC transverse response calculations of3He are also quite
small.

These calculations demonstrate that the two-nucleon
rents play a crucial role in the transverse response. Pre
comparisons with experimental data also require calculat
with accurate initial-state wave functions and final-state
teractions. In such realistic calculations, the contributions
the two-nucleon currents are large both in the integrated
sponse and in the low-v regime.

X. CONCLUSIONS

We have determined the3He and 4He longitudinal and
transverse response functions in the momentum tran
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range 300– 700 MeV/c from an analysis of the (e,e8) world
data. The corresponding Euclidean response functions h
been derived by direct Laplace transform of the experime
data, and have been found to be in satisfactory agreem
with those calculated with Green’s function Monte Car
methods using realistic interactions and currents. Lead
terms of the two-body charge and current operators are c
structed consistently with the two-nucleon interaction
cluded in the Hamiltonian~the Argonnev18!. A number of
improvements in the algorithms employed for the Mon
Carlo evaluation of the relevant path integrals have allow
us to reduce, very significantly, the statistical errors in
Euclidean response calculations.

Two-body charge operators reduce slightly the one-bo
longitudinal strength at larget @corresponding to the thresh
old region of RL(q,v)#, while two-body currents increas
very substantially, and particularly for4He, the one-body
transverse strength over the wholet-range considered. Thus
in the quasielastic region, single-nucleon knockout proces
are dominant in the longitudinal channel, while both one-a
two-body mechanisms contribute with comparable mag
tude in the transverse channel. These qualitative conclus
are corroborated by the scaling analysis of the data descr
in Sec. III: the longitudinal and transverse scaling functio
f L and f T , which would be expected to overlap if one-bod
processes alone were to be at play, display, in fact, drastic
different trends~see Fig. 3!. The enhancement in the ratio o
transverse to longitudinal quasielastic strength can be qu
tified by considering integrals off L and f T ~of course, over
the quasielastic peak region alone!, as done in Fig. 4. Experi-
mentally, thisT/L ratio is found to increase very signifi
cantly from A53 – 4, to decrease only moderately fromA
54 – 12, and to remain rather flat asA512– 56. Of course,
the interpretation of the integral off T as reflecting exclu-
sively quasielastic strength is not entirely correct, partic
larly since, as the momentum transfer becomes larger
larger, the quasielastic andD peaks tend to merge togethe
strength from the pion-production region will then necess
ily spill over into the quasielastic region, contaminatingf T .

FIG. 12. ~Color! Comparison of the3He Euclidean longitudinal
response functions using variational~open symbols! and CHH
~solid symbols! wave functions.
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Nevertheless, the amount of ‘‘spurious’’~nonquasielastic!
strength contamination should not be too large, at least
light nuclei, for which the quasielastic andD peaks remain
well separated at all momentum transfers considered h
The observed enhancement of theT/L ratio in 3He and4He
is well reproduced by the theory, since the Euclidean
sponse functions derived from data are close to those
tained in the calculations, over the wholet range.

TheT/L ratio has also been studied in theA53, 4, and 6
nuclei via sum-rule techniques. Even within the limitatio
that such an approach necessarily entails~see Sec. VIII!,
there are rather clear indications that the present theor
able to predict its observed dependence upon both m
number and momentum transfer, see Figs. 8 and 9. The s
rule study in Sec. VIII has also allowed us to establish qu
titatively that the excess transverse strength associated
two-body currents is almost entirely due topn pairs. This
fact has then led to the scaling law for the excess transv
strengthDST(q).RA /A, which derives from the universa
scaling behavior obtained for the calculatedpn-pair distribu-
tion functions in nuclei@75#.

Finally, the role of tensor interactions and correlations h
been investigated via model studies of the4He Euclidean
transverse response function, using simplified interactio
currents, and wave functions. In contrast to earlier spec
tions@21# that the large enhancement from two-body curre
P

.

.

C

02400
or

re.

-
b-

is
ss
m-
-
ith

se

s

s,
a-
s

was due to the presence of strong tensor correlations in
ground state, it is now clear that this enhancement ar
from the concerted interplay of tensor interactions and c
relations in both ground and scattering states. A succes
prediction of the longitudinal and transverse response fu
tions in the quasielastic region demands an accurate des
tion of nuclear dynamics, based on realistic interactions
currents.
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