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Longitudinal and transverse quasielastic response functions of light nuclei
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The ®He and“He longitudinal and transverse response functions are determined from an analysis of the
world data on quasielastic inclusive electron scattering. The corresponding Euclidean response functions are
derived and compared to those calculated with Green'’s function Monte Carlo methods, using realistic interac-
tions and currents. Large contributions associated with two-body currents are found, particularly*ltethe
transverse response, in agreement with data. The contributions of the two-body charge and current operators in
the *He, “He, and®Li response functions are also studied via sum-rule techniques. A semiquantitative expla-
nation for the observed systematics in the excess of transverse quasielastic strength, as function of mass
number and momentum transfer, is provided. Finally, a number of model studies with simplified interactions,
currents, and wave functions are carried out to elucidate the role played, in the full calculation, by tensor
interactions and correlations.
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I. INTRODUCTION Refs.[9—11]). This apparent lack of longitudinal strength has
absorbed much of the theoretical effort of the past two de-
Over the past thirty years or so, much effort has gone intcades.
trying to understand quantitatively the roles that short-range On the other hand, the excess of transverse strength—
and tensor correlations, and two-body components of theresumably due to two-body currents—observed in the
nuclear electromagnetic current play in the quasielastic requasielastic region appears to be a genuine problem. In this
sponse of nuclei at intermediate momentum transfers. Yetespect, the experimental situation has been put in sharp fo-
despite the considerable attention that has been devoted ¢@s by the work on superscaling by Donnelly and Sitk],
this topic, many open questions remain. Complications ariseyhich allowed us to systematically compare the longitudinal
in particular, as a consequence of the neecaofl technical  and transverse response functions. This work showed in the
difficulties associated withproviding an accurate descrip- most clear way that the transverse strength for nuclei with
tion of the initial bound- and the final scattering-state Wavemass numbeA=12, . . .,56 exceeds the longitudinal one al-

functions, based on realistic Hamiltonians. ready in the main quasielastic peak by 20—40 %, in addition

n part, the _slow progress 1s also due_to the confusmqo the excess of strength occurring in the “dip” between the
experimental picture, particularly for medium- and heaVy'quasielastic and peaks. This excess of strength in the re-

weight nuclei, which, for some time, obfuscated the interpre-_. . . . . ; .
tatign of the data. Early dafd] had shown that, in comparri)- gion of the quasielastic peak is the main subject of this paper.

son with an impulse-approximatioh ) calculation using a The region of the dip, which has attracted the attention in the

simple(Fermi gas model, the inclusive cross section showedpas,t’ W'" be largely !gnored as .the und.erstandmg.of this
an excess of transverse strength, mainly in the region of thEF9ion is clouded by issues relating to pion production and
“dip”between the quasielastic and the peaks. This excess €A tail. _ o
was attributed to two-body currents amdproduction, but it Theoretlcal calc;ulathns of two-body contributions in the
could not be quantitatively understood. region of the quasielastic peak have been performed by many
The longitudinal and transverse response functions, obdroups[13—2§ using different approaches. Some of these
tained during 1980s from a Rosenbluth separation of expericalculations find appreciable contributions, 20—40 % of the
mental cross sections, seemed to indicate that, in additiofffansverse response, due to the dominant two-body terms
there was a grogsip to 40% lack oflongitudinalstrength in  (pion contact and in-flight, and-excitation diagrams other
the main quasielastic peak, and a correspondingly too lowealculations find smalk<10%, effects. It is not always clear
Coulomb sum rulg2,3]. While this state of affairs is yet to why calculations with similar starting assumptions give very
be resolved satisfactorily, particularly for very heavy nuclei,different results.
such as lead, where Coulomb corrections are diffigt#t7], In general, calculations based on an independent-particle
there are nevertheless clear indications As=56 from the initial state (shell model, Fermi gas model, possibly with
work of Jourdar{8], who carefully analyzed theorld data ~ RPA correlations addedjive very small two-body contribu-
on quasielastic scattering including all the known correc-ions in the quasielastic pedk3—20,23,2% the pion andA
tions, that there is no missing strength in the longitudinalterms tend to cancel, producing of a small overall effect. The
response of mediurA-nuclei (for very heavy nuclei, there origin of bigger (20-50% contributions to the transverse
are still controversial issues on the Coulomb corrections, segsponse as obtained in Refg2,25 is not entirely under-
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stood: the different treatment of thiein matter in Ref[22] The layout of this paper is as follows. In Sec. Il we dis-
may be partly responsible7]. cuss the determination of the longitudinal and transverse re-
The model study of Leidemann and Orland[i7], in  sponse functions starting from the world data on inclusive
which the nuclear response was expressed in terms of ttglectron scattering, while in Sec. lll we perform a scaling
response of deuteronlike pairs of nuclear density, firsenalysis in order to investigate the global properties of the
pointed out that it is important to account in the initial state€xperimental response. In Sec. IV we describe the theory of
for thetensorcorrelations betweenp pairs. Only when these the Euclidean responses that link the nuclear ground-state
(rather short-rangetensor correlations were included would properties to integral properties of the electromagnetic re-
the two-body terms give appreciable contributions to thesponse as measured ie,€’), and in Sec. V present the
quasielastic response. This insight was quantitatively conmodel adopted for the nuclear electromagnetic current. Be-
firmed by Fabrocin{24], who calculated the transverse re- fore comparing theory with the experimetgec. VII), we
sponse of infinite nuclear matter using correlated basis fungcarry out in Sec. VI a model study of the relation between
tion theory including one-particle—one-hole intermediatethe inclusive cross section and the Euclidean response in
states. This calculation is based on a realistic nucleonorder to understand better the characteristics of the latter. An
nucleon (N-N) interaction and two-body terms derived con- €xtension of the study to heavier nuclei via sum rules is
sistently from theN-N interaction, and accounts for the in- given in Sec. VIII, in which the dependence of the excess
teractions in both the initial and final states. It also found thatransverse strength upon mass number is examined. In Sec.
substantial two-body contributions in the quasielastic peakX we further analyze the calculated results by introducing
are obtained only if the tensor correlations, predominantlyvarious simplifications, so as to identify the most important
induced by pion exchange, are retained. aspects of the calculations. Finally, in Sec. X we summarize
The calculation of Carlson and Schiavillal] was per- our conclusions.
formed for*He using Green’s function Monte CanlGFMC)
techniques, a realisti€Argonne vg) N-N interaction and
again consistently constructed two-body terms. The inelastic
response could be accurately calculated in terms of the Eu- In order to determine the longitudinkland transvers@
clidean responséan integral over the response function, seeresponses, we have analyzed tleege() world data on®He
below). These “exact” calculations found that the charge- and“He. A determination of the response functions in inclu-
exchange character of thé-N interaction leads to shifts of sive quasielastic scattering from the world cross section data
both the longitudinal and transverse strength to higher excihas many advantages over the traditional approach of using
tation energies, thus producing a quenching of the responstata from a single experiment only. Particularly for
in the region of the quasielastic peak. This mechanism, howmediumA nuclei, the limitations of the traditional approach
ever, is more than offset in the transverse channel by twowere partly responsible for the misleading conclusions men-
body currents, in particular those associated with pion extioned in the Introduction and discussed[8].
change (required by gauge invariangeand hence the For the extraction of the response functions, the difference
response is enhanced over the entire quasielastic spectruof. cross sections at high energy/forward angle and at low
This enhancement was found to be substantial and in agreenergy/backward angle is used. Kinematics-dependent sys-
ment with that observed experimentally. The study of Reftematic errors do not cancel in this difference even for mea-
[21], while providing a qualitative understanding of tfide  surements performed at a single facility, except perhaps for
guasielastic response, did not identify quantitatively, how-the errors in the overall normalization of the cross sections.
ever, those aspects of the calculation responsible for the su@he dominant systematic errors, i.e. uncertainties in the spec-
cessful prediction. trometer acceptance, detector efficiencies, background con-
In the present paper we study the longitudinal and transtributions, rescattering, and radiative corrections are strongly
verse response functions of light nuclBe and*He, using  dependent on the specific kinematics.
GFMC theory. Accurate data for these responses in the re- To improve the determination of the response functions
gion of the quasielastic peak are determined via an analysiie difference of the. and T contributions to the cross sec-
of the world data. A simultaneous study #fle and*He is  tions has to be maximized by including the data over the
particularly interesting as the predicted two-body contribu-largest possible angular range. This can only be achieved by
tions in the transverse channel increase very rapidly betweencluding all available world cross section data. Pdie and
A=3 andA=4, a feature that can give us a further handle*He the use of the world data not only expands the range of
for the understanding of two-body effects. The studytéé,  available data in scattering angle but also increases the range
including the higher momentum transfers now available, isof momentum transfeg where a separation can be done,
especially promising, since the available df8 seem to thus leading to new information on the response functions.
indicate that the relative excess of transverse strength in the At low g the extensive sets of data fée 28,29 and for
quasielastic peak is largest for this nucleus. In order to in*He [30,31] with good angular coverage have been used in
clude heavier nuclei and hence examine the evolution witlthe present analysis. FdHe at highq the data by Marchand
mass number of this excess transverse strength, we alst al. [28] and by Dowet al. [29], which both cover the
study via sum-rules the two-body contributions feshell  angular region from 90° to 144°, are combined with comple-
nuclei, for which variational Monte Carlg/MC) wave func- mentary cross sections by Dast al. [32], which provide
tions are available. high-energy/forward-angle data with energies up to 7.2 GeV

II. EXPERIMENTAL RESPONSE FUNCTIONS
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at scattering angles of 8°. Similarly fdiHe the data by neglecting small contributions from the binding energy, the
Zghicheet al.[30], which cover the angular region from 75° perpendicular component of the nucleon momentum, and the
to 145°, and by vanRedegt al. [31], which contribute data recoil energy of the residual nucleus. In the next phase of the
at 60°, are complemented with the forward-angleanalysis, the extracteli(y,q) are then used to determine
cross sections by Roac#t al. [33], Day et al. [34], Sealock F(y,q,) at the desired valug, by interpolating F(y,q)
et al.[35], and Mezianket al.[36] covering the angular range along lines of constant.
from 8° to 37°. Fory<O0, F(y,q) is known to be nearly independent gf

In contrast with the analysis performed for medidmmu-  over a large range. This makes the present interpolation as
clei [8], Coulomb distortions play a negligible role fHe  reliable as the conventional interpolation scheme even if the
and *He and no corrections need to be applied. The follow-gata are separated by large valuesjoFory=>0, the depen-
ing expression, valid in the plane wave Born approximationgence ofF (y,q) on q is relatively more severe, since inelas-

is used for the Rosenbluth &r'T separation: tic processes contribute to the cross section. Thus,qthe
) 4 value of theL./T separation has been chosen to minimize the
d°e 1 q correction due to the interpolation at lar
2(q7 wl E) rr- e — 6 ~ . . p ge H
dQdw oyerr |\ Q The interpolation procedure and the separation has been

2 tested with the data of the Saclay experimdB;,2§ alone.
ﬂ) Ri(q, o), (1)  Provided the same interpolation scheme is used, the pub-
Q lished values oR| (g,w) and R{(q,w) are reproduced ex-
o i L actly. The improved interpolation scheme, usingcaling,
where the longitudinal virtual photon polarizatianis de-  gives results that also are identical within the statistical

B 1
—eRL(q,w)—}—E

fined as errors.
22 1 With the interpolated cross section data, the response
E:(1+ iztanz— 2) functions are extracted fay=300-700 MeV¢ in steps of
Q 2 100 MeV/c for both nuclei. The combined world data cover

_ ) _ almost the fulle range, with typical values ranging from 0.05
and it varies between 0 to 1 as the electron scattering ahgle tg 0.95 for mostq sets. At highq this has to be compared
ranges from 180° to 0°. Herel’o/d0dw are the experi- ith the results of the low-energy data alone, which only
mental cross sections), g, andQ are the energy transfer, cover the region from 0.05 to 0.55. In addition, with a global

three- and four-momentum transfers, respectively, @igi:  analysis it is possible to determine for the first time the re-
is the Mott cross section. The structure of Et). shows that  sponse functions aj= 700 MeV/c.

measurements of the cross section at fixedndq but dif- If the interpolated responses of data are plotted as a func-
ferente allow for a separation of the two response functionstion of ¢, a linear dependence is expected. In contrast to the
RL(d,w) andR+(q,w). analysis of mediun nuclei, in which important deviations

In practice, the experimental spectra of the various experigere observed for higly and , no significant deviations
ments were measured for a given incident energy and scajgere observed in the present analysis once the quoted
tering angle as a function of the energy loss of the scatteregystematic errors of the individual data sets are included.
electron, varied by changing the magnetic field of the spec-" The |ongitudinal and transverse response functions result-

trometer. To determine the cross section at given valuep of jng from this analysis of thevorld data are shown in Figs. 1
andw, the data have to be interpolated. This traditionally wasgng 2.

done by dividing ouiry,,; from the measured cross sections
and interpolating the responses alan(E.

In an analysis of the world data_, where the various experi- 1. SCALING ANALYSIS
ments were not planned for an ideal coverage of dhe
plane, the usual scheme is unreliable due to occasionally In order to show the excess strengthRsf(q, ), in this
large spacings between various spectra. Thus, in the presesgction we study the scaling properties of the present re-
analysis an improved scheme is employed by first dividingsponse functions. Barbaret al. [37] have discussed the
out an appropriate sum of elementary electron-nucleon crosdose connection between the Coulomb sum rule and the
sections, i.e.g¢, for the proton andr,,, for the neutron, and notion ofy scaling. More recently the notion af’ scaling
removing kinematical dependencies. Essentially whatvas introduced by Alberict al. [38] while studying the
is calculated from the data is the scaling functiBty,q) properties of the relativistic Fermi gas model. The applica-

defined by tion of this notion to finite nuclear systems, requiring the
inclusion of binding effects, has been discussed by Cenni

_ d%o 1 do et al. [39]. Guided by these results, Sick and Donnelly have

Fly.a)= dwdQ Zoey(q)+Noey(q) d_y 3 appliedy’ scaling to a large body of inclusive scattering data

[12]. Scaling iny' has the merit to allow the study of the
The scaling variabley is fixed by energy and momentum scaling properties for a combined setdifferentnuclei. The

conservation via only relevant scale parameter in the quasifree scattering re-
gime is the Fermi momentum of the nucleus that is taken into
y=—0+ Jo’+2om (4) account in the definition of the dimensionless scaling vari-
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FIG. 1. (Colon Longitudinal (CJ) and transversé<) response functions ofHe at momentum transfers of 300, 400, 500, 600, and
700 MeV/c. Indicated with a+ are the upper integration limits used for the Euclidean respt®se. VII).

abley’ (approximately given by/kg), and the scaling func-

tion f(y').

As discussed if12], ¢’ scaling can also be studied for

1
| durmre =1 gt ™

separated response functions. The dimensionless scaling |, Fig. 3 we compare the scaling functiofig(s#') and

functionsf_  are defined if12] as

Rt
fLr= kFE- ®)

with the factorsG, 1 given in[12]. For the relativistic Fermi
gas model and in IA, the universal relation

fL:fT:f (6)

is predicted. Neglecting powers higher than 2 i
=kg/m, a relation betweef, and the Coulomb sum rule is
obtained as

f+(y") obtained for all response functions extracted from the
global analysis of théHe and*He data. Within the error bars

of the separated data, the longitudinal response functions
scale to a universal curve over the entire quasielastic peak.
Scaling of R (q,w) is expected and provides a consistency
check for the Coulomb sum rule. The results ®¥(q,)
confirm that the basic problem in quasielastic electron-
nucleus scattering is thexcess strength in the transverse
response This excess is much larger féHe than for®He.
Scaling is also observed fdR(q,w) at negative values of
', thus suggesting that processes other than quasifree
knockout can also lead to scaling.
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FIG. 2. (Colon Longitudinal (CJ) and transversé<) response functions dfHe at momentum transfers of 300, 400, 500, 600, and
700 MeV/c. Indicated with a+ are the upper integration limits used for the Euclidean respt®se. VII).

The excess of transverse strength is particularly large foverse to longitudinal integrated strength is shown in Fig. 4.
“He. It exceeds the longitudinal strength at all momentum Figure 4 makes it clear thati) the excess of transverse
transfers, and does not seem to be limited to the “dip” re-strength rises very rapidly betweéHe and*He, and is in-
gion, but affects the whole quasielastic peak region, extenddeed largest forHe; (i) the ratio is already large at the
ing below the m-production threshold. The transverse lowestq, the increase at the larggrfor the heavier nuclei is
strength in the dip, which increases with increasiopgis  mainly due to the fact that the tail of thie peak contributes
related to the growing overlap between the high-energy sidappreciably despite the restricted range of integratioit’in
of the quasielastic peak and the tail of thepeak.

In order to study thé\ dependence of this excess, we can IV. CALCULATIONS OF EUCLIDEAN RESPONSE
look at the longitudinal and transverse responses integrated o ]
over ' —those for2C, “Ca, and*Fe have been deter-  Since we are primarily concemned with the overall
mined in Ref[12]. We have integrated these responses oveptrength of the longitudinal and transverse response, we con-
the region ofy’ that essentially covers the quasielastic peaksider the Euclidean response functions, definef2agiq
(ly¥'|<1.2). When limiting the integration range fa/’| .
<'O.E'3 much of the contribut.ion from _the tail o_f thé is ET,L(q'T):j exd —(w—Ep) 7]Rr (0, ), (8)
eliminated, at least for the light nuclei. The ratio of trans- @th
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FIG. 3. (Color The scaling functiong, and
f are shown for allg values on the top fofHe
and on the bottom fofHe. The upper bands of
points correspond té and the lower bands cor-
respond tof .

FIG. 4. (Color) Ratio of trans-
verse to longitudinal integrated
strength for °He, “He, °C,
40Ca, and®®Fe: 300MeVE: X
and +, 400MeVic: ¢ and [,
600 MeV/c: * and O. Points at
the sameq are joined by lines.
The integrations are over the indi-
cated ranges of’.
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where theRt | (g,w) are the standard responsés, is the  propagation of the system. Lorentz integral techniques intro-
ground-state energy of the nucleus, ang is the threshold duce a small imaginary-time component in the propagation
for the response of the system excluding the elastic contrief the response, directly summing over a limited regiomof
bution. The longitudinal and transverse Euclidean responsgor systems in which a precise calculation is possible, the
functions represent weighted sums of the correspondinéull response can be calculat$b]. The Euclidean response
R.(q,») andR(qg,w): at 7=0 they correspond to the Cou- is the full imaginary-time response, and hence is a more
lomb and transverse sum rules, respectively, while their deintegrated quantity. While detailed dynamical information is
rivatives with respect ta- evaluated at-=0 correspond to more limited, it is possible to perform calculations in much
the energy-weighted sum rules. Larger valuesroforre-  heavier systempa7].

spond to integrals over progressively lower-energy regions of The ground-state wave functions used in this study are

the response. obtained with variational Monte Carlo. They are of the gen-
In a nonrelativistic picture, th&y; can be simply ob- eral form[41]
tained from
EL(q,7)=(0lp"(q)exif — (H—Eq) 7]p(a)[0) o= 11, [1-0a(ijk]
9’7
_ — 2 — ..
eXp( 2Am)|<0(q>|”(°')|O>| O ><$i1;[j Hl—k;j Uzw(ll;k)}Fij}M)% (12)

pd _ .T _ _ .
Er(a,7)=(0ljr(a)exd —(H—Eo)7lir(a)|0) where for three- and four-nucleon systef® is simply an

q’r _ , anti-symmetrized product of spins and isospins. The central
—exp( - 2Am) [{O(@j+(@[0})|%, (100 three-nucleon correlatiolo(ijk) is a scaled version of the
repulsive central component of the Urbana{XIX) three-
where the elastic contributions have been explicitly sub-hucleon interaction. The magnitude of the correlation and its
tracted, |0(q)) represents the ground-state recoiling with range are scaled via variational parameters. The pair correla-
momentumg, and the sums over spin projections are undertions Fj; depend upon the pair separatiop and the spins

stood. and isospins of the pair;
In this paper we present results for the scaled Euclidean
responses Fij=fr[1+u’(r)oi- o
exn:qZT/(zm)]~ +Ut(r)$j +UUT(r)Ui COTi Tj +Ut7(r)sij T TJ]
E (0, 7)=————E_1(q,7), (11 (13)
[Ge p(Q)]?

whereQ? is the squared four-momentum transfer evaluated N€ correlationJ,,(ij;k) is similarly scaled from the anti-
at the quasielastic peak. This removes the trivial energy decommutator part of the two-pion exchange three-nucleon in-
pendence obtained from scattering off an isolateahrela- ~ téraction. The anti-commutator depends upon the spins and
tivistic) nucleon, and the| dependence associated with the ISOSPINS of only the two nucleonisandj, but the spatial
nucleon form factors. The longitudinal resporige(q,7) is  Positions of all three. Similarly the magnitude of the spin-
unity for an isolated proton, and the transverse responsE0SPin-dependent correlationsfor pair ij are quenched by
E-(q,7) is simply the square of its magnetic moment. the presence of otber nucleons. Both the two-nucleon corre-

The chief advantage of formulating the Euclidean re-lation F;; and theU,, correlation arising from the three-
sponse is that it can be calculated exactly using Green’s fundgwcleon interaction contain tensorlike terms correlating the
tion or path integral Monte Carlo techniques, including bothspins and orientations of the nucleons. The contributions of
final state interactions and two-nucleon currents. While théhese correlations to the response are discussed below.
present calculations consider omyup to 4, they can be very ~ While these wave functions are not exact, they offer a
simply extended to a mass up =10 in direct analogy rather precise characterization of the Euclidean response, as
with ground-state calculatior{g1]. In the future it may be evidenced by comparisons with calculations using the
possible to use the auxiliary-field diffusion Monte Carlo correlated-hyperspherical-harmonics wave functiptg in
technique developed by Schmidt and Fantetd] to calcu- A=3. These comparisons are presented in Sec. IX. The
late the response for much heavier systems. Hamiltonian used in these studies is the Argonne model

Other techniques have also been used to calculate the re41] N-N interaction plus the UIX three-nucleon interaction.
sponse in few-nucleon systems, including Faddeev methodEhis interaction reproduces many known properties ofdhe
[43,44] and Lorentz integral transform techniquiets,46.  particle, including its binding energy and charge form factor.
Faddeev methods sum explicitly over the final states in the Calculation of the Euclidean response is a straightforward
system, and hence are directly applicable to the inclusive aneixtension of the ground-state techniques employed in
exclusive responses for all possible final states. This essefsreen’s function Monte Carlo. We wish to calculate matrix
tially corresponds to a complete real-time calculation of theelements of the following type:
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- (0|0, exd — (H—Eg) 7]04/0) whereq is the momentum transfer. The one-body operators
M(7)= (Olexd —(H—Eg)7][0) (14 p® andj™ have the standard expressions obtained from a
relativistic reduction of the covariant single-nucleon current,

For a ground-state calculation of the energ®,€ 1,0, \?Vr:gt:;ealésted below for convenience. The charge operator is

=H) the matrix element is evaluated by a Monte Carlo sam-
ling of the coordinate-space paths. The denominator is ex- D)= oL (1)

gctlg 1 for an exact groEnd—st%te wave function, otherwise P (@) =PiNe(@) pir @), a7

there is a correction for finite. For each path a complete set with

of 2AAl/(N!Z!) amplitudes is kept corresponding to all pos- .

sible spin-isospin components of the ground-state wave func- pi(,l,\),R(q) =¢e'd", (18

tion. Since the operators do not, in general, conserve isospin,

we cannot use the most compact isospin basis used in @

ground-state calculations. piRd @)=

For a more general matrix elemekt, we simply keep
another complete set of amplitudes for each oper@tpr g,
each set of amplitudes corresponding to the full operator act- ~amz (2Hi—€)q- (o X pier, (19
ing on the ground state. The paths are sampled precisely as in
the ground-state calculatiga9], and hence unaffected by whereQ?=q?— w? is the four-momentum transfer analis
the operator€D,,0,. This allows us to calculate the re- the energy transfer. The current operator is expressed as
sponse to a variety of operato(sharge, current, different
momenta, et¢.simultaneously.

We have found it computationally advantageous to calcu-
late the response simultaneously for several different direc-
tions of momentum transfer. A randomly picked set of threewhere[---,---], denotes the anticommutator. The following
orthogonal axes is chosen, withdirections along both the definitions have been introduced:
positive and negative directions of each axis. This method
yields much lower statistical errors in calculating the re- €=Gg (Q2)1(1+r )+ Ge (Qz)z(l_T D, (2D
sponse, and along with the more efficient methods for sam- ' 2 o mE 2 “in
pling path integrals recently applied to ground-state calcula- 1 1
tions [49], allows for much more precise results than _ 2 2
obtained previously. It is also possiblpe to calculate the re- 41~ Cmp(QY) 5 (1+ 7))+ Cua(QY) 5 (1= 72,
sponse at several different momentum transfers simulta- (22

neously.

It is certainly possible to extract more detailed informa-andp, o, andr are the nucleon’s momentum, Pauli spin, and
tion from the Euclidean response. Most efforts in this direc!S9SP" op(cl-:-)rators, respectively. The two terms proportional to
tion proceed under maximum entropy techniques employind/M in pi’rc are the well known Darwin-Foldy and spin-

Bayesian statistics50]. These techniques make use of theOrbit relativistic correction$52,53, respectively.

correlated error estimates R(7) for different 7. Given the The caIt_:uIations of the response _functions _discusse_d in
enhanced precision of the present calculations we are explo?lje pre?[e_dlnt_g secftlt(;]n havelz beefn carfrle(;l out using the dipole
ing these possibilities. These considerations are beyond garametrization ot the nucieon form factors

;_1 PCHE
1rQaam? )

i 1 . [ .
(=5 —elp €9~ - pigX o, (20)

scope of the present investigations, though, where we are G PANN 2 23
primarily concerned with the total strength in the longitudi- ep( Q) o(Q%), @3
nal and transverse channels. Q% Gp(Q?)
GE,n(QZ):_ﬂnW 1+ 0%me’ (24)
V. ELECTROMAGNETIC CURRENT OPERATOR
2\ — 2
The model for the nuclear electromagnetic current G p(Q%) = 1pGo(Q%), (25
adopted in the present study is briefly reviewed in this sec- N 2
tion for completeness, for a more complete description see Gumn(Q%)=1nGo(Q7), (26)
Ref. [51]. The charge and current operators consist of oneypere
and two-body terms;
1
2 D e
GD(Q ) (1_|_ QZ/AZ)ZI (27)

pla)=2 pi"(@)+ 2 pif(a), (15)
' ! with A =0.834 GeVt, and whereu, and u, are the proton
(mp=2.793uy) and neutron f,=—1.913uy) magnetic

j(q)= 2 ji(l)(q)+ 2 ji('z)(Q), (16) moments, respectively. It is worth emphasizing that the avail-

i =Y able semiempirical parametrizations of the proton electric
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and magnetic, and neutron magnetic form factors do not dif- vps(K)=v77(k)—2v'"(k), (31)
fer significantly—less than a couple of percent—in the low-

momentum transfer range of interest hereQ?  with

<0.4 (GeVk)?, and that uncertainties in the neutron electric Ao (o

form factor have a negligible impact on the present results. OT(le) — 24T or

Finally, we should notg t%at in thpe actual calfulations of the vk = k? f rrdrliotkr) = 1Jo™(r), (32
Euclidean responses the value of the four-momentum trans-

fer occurring in the nucleon form factofas well as in the < P .
electromagnetitA transition form factor, see beldvs kept vk =1z fo redrja(krv(r). (33
fixed at the quasielastic peak, as already mentioned in Sec.

IV. The factorjy(kr)—1 in the expression for“7(k) ensures

The most important features of the two-body parts of thethat its volume integral vanish¢s6.
electromagnetic current operator are summarized below. The In a one-boson-exchange model, in which the isospin-
reader is referred to Refg51,54 for a derivation and listing  dependent spin-spin and tensor interactions are due to
of their explicit expressions. m-meson(and p-meson exchanges, the functian.g(k) sim-
ply reduces to
A. Two-body current operators

2 f2(k)
The two-body current operator consists of “model- vps(k)—wﬁ(k)z——zkz%—, (34)
independent” and “model-dependent” components, in the My Ko+ my

classification scheme of Risk&5]. The model-independent
terms are obtaine[d6] from the nucleon-nucleon interaction
(the charge-independent part of the Argonng in the
present studyand by construction satisfy current conserva-

wherem_, f_, and f_ (k) denote, respectively, the pion
mass, 7NN coupling constant and form factor. In this limit,
the functionsf 5 andgpg read

tion with it. The leading operator is the isovectorr-like” f2 oMt
current derived from the isospin-dependent spin-Sjpin) fpgr)—f_(r)= 4—”W(1+ m_r) (35
™ ko

and tensor {(7) interactions. The latter also generate an is-
ovector “p-like” current, while additional model-
?ndep.en'dent isoscalar and i_sovec_:tor currents arise from th§ps(q;R,r)—>gw(q;R,r)= dxe ixa-r ,
isospin-independent and isospin-dependent central an 8m J_12 L (X)
momentum-dependent interactions. These currents are short (36
ranged and numerically far less important than thdike )
current. For the purpose of later discussions, we list belowVith
the explicit expression for the latter

J(?(a;m) =G Q) (1 X 7)) [ €9 fpg T)0i( ;- F)

glaR f+1/2 g Lat0r

L.(x)=m2+q3(1—4x?)/4, (37)

where for simplicity therNN form factor has been set equal

+e‘q'f1fps(r)oj(ai~f) to one. The resulting current is then identical to that com-
_ monly used in the literature.
—(0i-Vi)(a;- V) (Vi=Vj)gpsq;R,1) ], The model-dependent currents are purely transverse and,

(28)  therefore, cannot be directly linked to the underlying two-
nucleon interaction. The present calculation includes the

WhereG\E’(Qz)zGE,p(Qz)—GE,n(QZ) is the isovector com- isoscalgrpwy and isovectorwm{ transiti_on currents as weII_
bination of the nucleon electric form factors, aRdandr are as the isovector current associated with the excitation of in-

the center-of-mass and relative positions of nucldomsdj,  termediatel-isobar resonances. Thery andwmy couplings
andgps are defined as p—my [57] and w— 7y [58,59, respectively, while their

momentum-transfer dependence is modeled using vector-
d dk . meson dominance. Monopole form factors are introduced at
fpgr)= WJ We‘“v ps(K), (299 the meson-baryon vertices with cutoff values of,,
=3.8fm*andA,=A,=6.3fm ' at thewNN, pNN, and
oNN vertices, respectively.
grs(q:R r):f dki3 dk; Seiki~rieikj-rj(27T)3 Among the model-dependent currents, however, those as-
v (2m)° (27m) sociated with the\ isobar are the most important ones. In the
present calculation, these currents are treated in the atatic
vestki) ~vestk) (30)  approximation rather than in the more accurate transition-
kiz—ka ’ correlation-operator scheme, developed in R&®] and ap-
plied to the calculation of the trinucleon form factdé], nd
wherev pg(K) is obtained from therr andt~ components of and pd radiative capture cross sections at low energies
the interaction [54,62, andSfactor of the proton weak capture SHe[63].

X(27T)35(q_ki_kj)
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Again for later convenience, it is useful to list explicitly the where
two-body A-excitation current used in the present work,

v(rTII(r)_vtll(r)

(2 AN UNN—AN,ij | UANSNNij . , . falr)=———-—"7—, (45)
Jii (@;4)=]i(g;A—N) m—m, + m—m, Ji(g;N—A) m—mjy
+i=j, (39 vt
gA(r)=3m—mA' (46)

where theN—=A electromagnetic current is modeled as

i N The expression above reduces to that commonly used in the
om Cma(QIETTaXST,i (39 iterature, if the quark-model values for theNA and yNA
coupling constants are adopted.

jitdi ;N—A)=—

and the expression fgr(q;A—N) is obtained from that for
ji(a;N—A) by replacing the transition spin and isospin op-

- . . ) B. Two-body charge operators
eratorsS and T with their Hermitian conjugates. The elec-

tromagnetic form faCtOGyNA(QZ) iS parametrized as Wh||e the main partS of the two-body currents are I|nked
to the form of the two-nucleon interaction through the con-
u* tinuity equation, the most important two-body charge opera-

GYNA(Q2)= TICERY —, (40)  tors are model-dependent, and should be considered as rela-
(1+ Q¥ AR )3 V1+ QY AR 2 tivistic corrections. Indeed, a consistent calculation of two-

- ) ) body charge effects in nuclei would require the inclusion of
where theN— A transition magnetic moment* is taken  rg|aiivistic effects in both the interaction models and nuclear
here to be equal to Ay, as obtained in an analysis N \yave functions. Such a program is yet to be carried out for
data in theA-resonance regiof4]. This analysis also gives gystems withA=3. There are nevertheless rather clear indi-
Ana,1=0.84GeVE and Ay, p=1.2 GeVk. Itis important  cations for the relevance of two-body charge operators from
to point out, hVOWGVGE that thve quark-model value fof,  the failure of the IA in predicting the deuteron tensor polar-
p*=(3v2/5)uy=3.993uy (uy is the nucleon isovector zation observablg6s], and charge form factors of the three-
magnetic moment is often used in the literature. This value gnd four-nucleon systemg61,66. The model commonly
is significantly larger than that adopted above. Finally, theysed[67] includes ther-, p-, andw-meson exchange charge
transition interaction yy_ an,ij is given by operators with both isoscalar and isovector components, as

- . | well as the(isoscalay p7y and (isovectoy wmry charge tran-
UNN- AN =070 S oo T (DS Ti 7, (4D sition couplings, in addition to the single-nucleon Darwin-
) . i Foldy and spin-orbit relativistic corrections. The- and
and v an—nn,jj Ills.the Hermitian conjugate of the above ex- ,_meson exchange charge operators are constructed from the
pression. Theg; is the tensor operator where the Pauli spinjsospin-dependent spin-spin and tensor components of the
o; has been replaced by the transition sgin and the func-  two-nucleon interactiorfagain, the Argonne ;53 mode), us-

tionsv?™'(r) andv'™(r) are defined as ing the same prescription adopted for the corresponding cur-
. L rent operators. Explicit expressions for these operators can
ol () = ffn m e—C(x) 42) be found in Ref[67]. Here, we only emphasize that fQ
v 47 3 X ' =<1 GeV/c the contribution due to ther-exchange charge
operator is typically an order of magnitude larger than that of
o f.f*m,_ 3 3\e X ) any of the remaining two-body mechanisms and one-body
v =73 T2 > €, (43 relativistic corrections.
wherex=m,_r, f* =(6v2/5)f . is the quark-model value for VI. MODEL STUDIES

the 7NA coupling constantadopted In the present work The Euclidean response is an excellent tool to test our

and the cutoff functiorC(x)=1—e™, with A\ =4.09. understanding of inclusive quasielastic scattering, since it in-
Standard manipulations of the product of spin and isospirtorporates an exact treatment of the states in the continuum.

transition operatorf50] lead to the following expression for The Euclidean response does have the disadvantage, how-

the A-excitation current: ever, that it corresponds to a weighted integral over the en-
5 ergy lossw and, as a consequence, the interpretation of po-

j-(-z)(q'A)=i G,na(Q )eiq"i tential differences between calculated results and

A am experimental data is not so straightforward.

~ . In order to develop a better feeling for the properties of
X{47y,i[fa(r)oj+ga(r)i(oy-F)] the Euclidean response, in this section we discuss a simple-

— (X 1)L A(1) (01X ) +ga(r) (o X ) minc_ied model caI(_:uIation. We_ use a parametrized cross

section—de factoa fit to the longitudinaR (w) at one mo-
X(oj- D)} Xq+i=], (44) mentum transfer—and study the change in the Euclidean re-
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sponse upon various changes of the cross section as a furmver o of the added modification. Several features are note-

tion of the energy loss.

worthy.

In the top panel of Fig. 5 we show the model quasielastic The Euclidean response at finiteery quickly suppresses

peak as a function of the energy lo&®lid curve and a

the contribution from large energy loss. The dash-dot curve

selection of modifications. The changes have, in generakhows that already at>0.01 the contribution from the large
been made by adding a Gaussian with arbitrary amplitud@eak added at»=400MeV is suppressed. For the experi-
and selected position in energy loss. Figure 5 shows thenental transverse response functRf(w) this implies that
quasielastic peaka) with a Gaussian placed at very large the contribution from pion production in th® peak(which

energy los4400 MeV), (b) a Gaussian placed on the high-
energy loss tail of the quasielastic pgak0 MeV), and(c) a
Gaussian placed on the lowrside of the peakl00 MeV). It
also displays a curve whefd) the width of the quasielastic
response has been decreased by Z@th the overall am-
plitude adjusted to conserve the aread one for the case
where(e) the quasielastic peak is shifted by 10 MeV.

is not included in the theory we are going to compareigo
only affecting the results for very smatl We will, therefore,
ignore this region.

The region of the quasielastic cross section at lew
comes in very prominently at the larger valuesmas indi-
cated by the curve labeled “peak at 100 MeV.”

A shift of the quasielastic peak to larger leads to an

The lower panel of Fig. 5 shows the resulting changes irEuclidean response that quickly falls with increasing

terms of the ratio of modified to original Euclidean re-
sponses. The value at=0 reflects the(arbitrary) integral

reaching saturation by the timegets to values approaching
0.05.
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FIG. 6. (Color) Longitudinal (upper half of figurg and transverse Euclidean responsétid for momentum transfers 300—600 Me&V/

VII. RESULTS corresponding experimental Euclidean responses shown in
We have used the longitudinbland transvers& experi-  Figs. 6 and 7. The nucleon electromagnetic form factors are
mental response functions of Figs. 1 and 2 to compute thdivided out using the parametrizations of hier et al. [68].
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FIG. 7. (Color) Longitudinal(upper half of figurg and transverse Euclidean responséré for momentum transfers 300—600 MeV/

In order not to include too much of the tail of thereso-  with w (the corresponding value @ is indicated in Figs. 1
nance, the integration has been performed up to the ener@nd 2 by a+). Since for theT-Euclidean response at very
loss w where theT response starts to increase significantlysmall 7 the tail of theA peak nevertheless plays a role, the
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experimental response in this region is indicated by a dashef-Euclidean response, the large two-body effects predicted
line only, and should not be compared to the theoretical calby theory are confirmed by experiment, although the associ-
culations discussed below. ated contributions are a bit too large in thee range
The statistical errors of the experimental Euclidean re400—-500 MeVE.
sponse are obtained via the usual error propagation while
integrating. The additional overall systematic uncertainty, es-
timated from the./T separation, amounts to typically 3% for
3He for both theL and T cross sections. FotHe a similar Sum rules provide a powerful tool for studying integral
uncertainty in the scale factor applies at the lower-properties of the response of the nuclear many-body system
momentum transfers and for bathandT; at 600 MeVkt the  to an external electromagnetic probe. Of particular interest
uncertainty inR () increases to 6%. These scale errors,are those for the longitudinal and transverse response func-
which then apply also to the corresponding Euclidean retions at constant three-momentum transfers, since they can
sponses, have not been included in the error bars shown lpe expressed as ground-state expectation values of the charge
Figs. 6 and 7. and current operators and, therefore, do not require any
In Figs. 6 and 7 we also show the calculated Euclidearknowledge of the complicated structure of the nuclear exci-
responses, obtained in IA and with inclusion, in addition, oftation spectrum. However, direct comparison between the
the contributions associated with the two-body charge antheoretically calculated and experimentally extracted sum
current operators, discussed in Sec. V. It is immediately aprules cannot be made unambiguously for two reasons. First,
parent that two-body contributions reduce by a small amounthe experimental determination of the longitudinal and trans-
the L responses, while increasing tlieresponses very sub- verse sum rules requires measuring the associated response
stantially at all momentum transfers. The enhancement in thiinctions in the whole energy-transfer range, from threshold
T channel occurs already at low, as is seen from the Eu- up toce. Inclusive electron scattering experiments only allow
clidean response at large Two-body effects thus are impor- access to the spacelike region of the four-momentum transfer
tant over the entire quasielastic peak, and not only—as wagw<q). While the response in the timelike regiom¥ q)
often expected—in the “dip region” on the large-side of  could, in principle, be measured vel e~ annihilation, no
the quasielastic peak. These conclusions are in agreemeguich experiments have been carried out to date, to the best of
with those of an earlier studj21], as well as with those our knowledge. Therefore, for a meaningful comparison be-
inferred from the superscaling analysis of R&R] for nuclei  tween the theory and experiment, one needs to estimate the
with mass numbeA=12-56. strength outside the region covered by the experiment. In the
When considering the effect of two-body currents as &past, this has been accomplished, in the case of the longitu-
function of momentum transfer—in particular, when study-dinal response, either by extrapolating the da&8] or by
ing Fig. 7—one notes that at logy the effect of two-body parametrizing the high-energy tail and using energy-
currents at large (low 7) is bigger than at loww (large7).  weighted sum rules to constrain[it0,71]. For theA=2-4
At large g, this situation becomes the reverse. Figures 6 anduclei, the unobserved strength amounts to 5-10% at the
7 also show that the theory explains well the rapid increasgnost for three-momentum transfers in the range
of two-body contributions betweetde and*He. In contrast <1 GeV/c [71], and both procedures lead to similar results.

VIIl. LONGITUDINAL AND TRANSVERSE SUM RULES

to most published calculatiorifor a discussion see Se9, | Indeed, the calculatednon-energy-weightedlongitudinal
the present calculation does give the sizeable two-body corsum rule—also known as the Coulomb sum rule—appears to
tribution required by the data. be well satisfied by the dafa1,72.

Figure 7 shows that th&-Euclidean response at logy The second reason that makes the direct comparison be-

rises very rapidly towards very smafl reaching almost tween theoretical and “experimental” sum rules difficult lies
twice the IA value atr=0, thus suggesting that part of the in the inherent inadequacy of the present theoretical model
two-body strength is located at very large basically under for the nuclear electromagnetic current, in particular, its lack
the A peak (compare to Fig. b It also implies that this of explicit pion production mechanisms. The latter mostly
strength is very spread out i@, and presumably best dis- affect the transverse response and makelifgeak region
cussed in terms of the sum rulsee Sec. VII). outside the boundary of applicability of the present theory.
At lower values of momentum transfer, the calculateé  The charge and current operators discussed in Sec. V, how-
T-Euclidean response is a bit high at largeimplying that  ever, should provide a realistic and quantitative description
the corresponding calculated cross section would be somef both longitudinal and transverse response functions in the
what too high at loww. As emphasized by the sensitivity quasielastic peak region, where nucleon #wvidtual) pion
studies in Sec. VI, the lows region gets great weight for degrees of freedom are expected to be dominant. In light
large 7, so a small increase in the absolute valueo6b)  nuclei and at the momentum transfer values of interest here,
leads to a large increase (7). the quasielastic and-production peaks are well separated,
Overall, the agreement between theory and experiment fasind it is, therefore, reasonable to study sum rules of the
“He, the nucleus that allows us best to study the relative roléransverse response.
of one- and two-body contributions, is excellent for the While non-energy- and energy-weighted longitudinal sum
response, thus implying that an accurate treatment of theules have been extensively studied in the pase Refs.
nuclear spectrum has been achieved, since two-body operggl,73 for a review, the number of studies dealing with
tors give small corrections in the channel. For theHe  sum rules of the transverse response is much more limited
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[74]. The present section focuses on the latter, in particular, TABLE I. Longitudinal sum rule obtained with one body only
on the enhancement of transverse strength due to many-bodyd with both one- and two-body charge operators.
components of the electromagnetic current, within the limi

tations discussed above. It also addresses, within the sum- *He “He oL

rule context, the ?ssu_e of the enhancement_ in the rati_o oa (MeV/c) 1 142 1 142 1 142
transverse to longitudinal strength, observed in the quasielas-

tic response functions of nuclei. Finally, it attempts to pro- 300 0.787 0.763 0.670 0.649 0.977 0.933
vide a semiquantitative explanation for the observed system- 400 0.921 0875 0.859 0.815 0.995 0.932
atics in the excess of transverse strength, both as function of 500 0.964 0901 0.941 0.881 0.990 0.921
mass number and momentum transfer. All the calculations 600 0.982 0908 0.973 0.910 0990 0.924
are based on théArgonne Vg and Urbana-IX interactions 700 0.994 0914 0994 0.942 0994 0.938

AV g/UIX Hamiltonian model, and use correlated-
hyperspherical-harmonicévariational Monte Carlp wave

functions forA=3-4 (A=6) nuclei. _ creases, for fixed\, asq increases. Both these features are
The (non-energy-weightedsum rules are defined as summarized in Figs. 8 and 9, in which the ratios
St(g)/S.(qg), obtained by including one body only and both
S -C dwS, (q,w)=C.[(0|0T(q)O 0 one- and two-body contributions, are plotted as functioA of
2(@) ”Lg ©54(0,®)=Cal(0]04(0)04(®)]0) for fixed g and as function ofj for fixed A. The former figure

5 is reminiscent of Fig. 4, in which the ratio of transverse to
— (0[O 4(@)[0)[7]. (47 longitudinal strength in the quasielastic region is obtained
from the measured response functions. Obviously, the trun-

where Sa:(q""z is the point-nucleon longitudinala(=L) 5164 integrals in Fig. 4 do not include the strength at ligh
or transverse ¢=T) response functiorQ,(q) is either the The purpose of the present section is to offer an explana-

chargep(q) or curren(q) operator divided by the square of {jpy of the features mentioned above. To this end, three
the proton form factotGR(Q?)|? (again,Q? is evaluated at points are worth emphasizing. First, among the two-body
the energy transfer corresponding to the quasielastic)peakcurrent contributions, the most important are those associ-
|0) denotes the ground state, and the elastic contribution tated with thePS (pionlike) and A-excitation currents. This
the sum rule has been removed. An average over the nuclefict has been explicitly verified by direct calculation, as
spin orientations is tacitly implied in the evaluation of the shown in Table Il for*He, as an example. Note that the
expectation values. The constay, for a=L or T, is given  results in the second and third columns are slightly different

by from those reported above in Table Il, since they are based
on a random walk consisting only of 1000 configurations,
C :E (48) much shorter than that used in the calculations of Table II.
L=z These calculations, though, are based upon the same random

walk and, therefore, allow a better determination of the indi-

2m? 1 vidual contributions.
CT:Z_z—Z,LLp-I- N2 aﬁ (49) Second, consider expanding the current into one- and

two-body componentg andj,,

whereZ (N) and u, (1) are the protor(neutron number

and magnetic moment, respectively. It has been introduced in ) ) ]

Eq. (47) so that, in the limitg— < and under the approxima- J:Z JI+|;m Jim- (51)
tion that the nuclear charge and current operators originate,

respectively, from the charge and spin magnetization of the ) . _ )
individual nucleons onlyS,(q—=)=1. Note that the Eu- | N€n, ignoring the very smallnd, with increasingj, rap-

clidean response functions calculated in Sec. VIl and the surfglly vanishing elastic contribution tdSr(q), one finds that
rules defined here are related via the first term in Eq(47)

S,(q)=C,E.(q,7=0). (50) TABLE Il. Transverse sum rule obtained with one body only
and with both one- and two-body current operators.

The expectation values in E7) are calculated with Monte :
Carlo methods, without any approximations. *He *He oL
The calculated sum rules féHe, “He, andSLi are listed

in Tables | and Il. The longitudinal sum rukg (q) is rela- q (Mevic) ! 1+2 ! 1+2 ! 1+2

tively uninfluenced by two-body charge operators, in agree- 300 0929 1.31 0.893 1.67 0912 157
ment with the results of an earlier stuf§2]. The transverse 400 0987 130 0970 1.62 0974 152
sum ruleS;(q) is substantially increased by two-body cur- 500 1.01 128 100 155 0999 1.46
rent contributions. The resulting enhancement has two inter- o0 1.01 1.25 1.01 1.49 1.01 141
esting features(i) it increases, for fixed, in going fromA 700 1.01 1.23 1.01 1.44 1011 1.37

=(21to) 3 to 4, and decreases froAn=4 to 6; (ii) it de-
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3 ; TABLE Ill. “He transverse sum rule.
1+2bady " = 300 MeVic
+ +2-7+2-
o . 400 MaVie q (MeV/c) 1 1+2 1+2-7+2-A
; k a——a 500 MeV/c 300 0.915 1.65 1.58
400 0.980 1.59 1.50
= B y . - 500 1.01 1.53 1.44
o P N, 600 1.01 1.47 1.38
= e —— 700 1.01 1.41 1.33
ml— 1 ) :/f
S 1body

W IV. Thus the transverse sum rule appears to be saturated by

e ; the one- and two-body terms in the expansionjfgrabove.
Third, the transverse strength associated with two-body

currents is almost entirely due fon pairs. To make this

0.5 > A G observation more precise, consider the “reduced” two-body

A current

FIG. 8. (Colon Ratios S;(q)/S.(q), obtained with one-body Jim= Iim(P1Pm+NNp), (53
currents only and with both one- and two-body currents, as function
of mass numbeA. where P, and N, are the proton and neutron projection op-
erators for a particlé Thus the “reduced” two-body current
only acts onpp or nn pairs, and the transverse sum rule
=20+ 2 ilim calculated with it should be given almost entirely by the
! I#m one-body part of. This fact is again confirmed by the direct
calculation, as it is evident from Table V. Thiat pairs are
+ 2 [G+iDim+Hel+ 2 iliim responsible for the strength due to two-body currents can
I<m I=m also be understood by the following considerations. The pi-
+(terms involving 3 or 4 different nucleons onlike and A-excitation currents have the isospin structure
52 (see Sec. Y, again in a schematic notation,

At large momentum transfers, one would expect terms in- Jim(7) = (71X T0) Opm(7), (54)

volving three or four nucleons to be small, particularly in .

light nuclei where Pauli correlations are not important. Drop- Jim(A) =1 Oim(A,a) + 7, ,Omi(A,a)

ping the last term corresponds to considering only incoherent (X

scattering from pairs of nucleons. (71X 7m) Oim( A0, (59
This simple expectation is indeed borne out by a direc

calculation, the results of which are listed fide in Table Wwhile the leading part of the one-body current is given by

D et i =720, (56)
- == 1body ' whereO,"V) denotes the isovector part pf. Now the term
o5 | . 4 (1+2lbody | il jim (with j,, including pionlike and\-excitation currents
' . 'He j will produce, as far as isospin is concerned, terms, such as
T 2| o | (71X T) = 2(1= 71 27m 2, (57)
m_ | et s |
= e i )
= 1.5 | . _'-___—-l——-:_"_} : (712 OF T ) ()X Tip) ;= *i(7 Ty = 7y ;T 2),  (58)
o ' & "
3 ik
i "He { TABLE IV. “He transverse sum rule: effect of three- or four-
1| . e | nucleon terms.
| g (MeV/c) 1 1+2 1+ 2 reduced
05 AN U= S U U L e
200 300 400 500 600 TFOO 8OO 300 0.915 1.65 1.70
alMeV/c) 400 0.980 1.59 1.59
500 1.01 1.53 1.51
FIG. 9. (Color) Ratios St(q)/S.(q), obtained with one-body 600 1.01 1.47 1.45
currents only and with both one- and two-body currents, as function 700 1.01 1.41 1.39

of momentum transfeq.
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TABLE V. “He transverse sum rule: contribution mp and nn TABLE VI. Excess strengthh S;(q) calculated irfHe, *He, and
pairs. 6Li.
q (MeV/c) 1 1+2 1+2 pp ornn only q (MeV/c) *He “He OLi
300 0.915 1.65 0.919 300 0.38 0.78 0.66
400 0.980 1.59 0.987 500 0.27 0.55 0.46
500 1.01 1.53 1.02 700 0.21 0.43 0.36
600 1.01 1.47 1.03
700 1.01 1.41 1.03

where superscriptgb andd mean quasibound and deuteron,
respectively. The scaling factoR®, and R, have been cal-

Timt 71 Tm culated in Ref[75], with R,=R, andR,=2.0, 4.7, 6.3, 18.8
M2Tmz= " 3 (59 for 3He, *He, bLi, and 10, respectively, and so one would
expectAS;(q) to scale with

whereT), is the isotensor tert|, =37 ;7 ,— 7| Tn.
In addition, there will also be isospin-independent terms Ra
t
Oim(4,2)0im(A, ). (60) where the factor in the denominator on the right-hand side is
from the normalization adopted f&(q).

However, it is important to note that the op_erators in Egs. The calculated values for the excess streng8y(q) are
(57) and(58) vanish Wh_e” acting opp or nn pairs. 't_ shoul_d listed in Table VI. On the basis of the scaling law above, one
also be noted that the isotensor term in Egf) vanishes in would deduce

T=0 andT=1/2 ground states, namely, iitHe, “He, and
8Li. A similar analysis can be carried out for the interference

4
A HE( ) R
terms between one- and two-body currents SlHe q 20'840R_4:1'97’ 67)
AS™(a) 3
2 (i +im)imtHe. (61 o
AS(q) R
. o A5 6678~ 0,804, 68)
for which one obtains isospin-independent, and t{§f® or ASTHe(q) R,

type (59) operators. In any case, the direct calculation indi-

cates(see Table Y that pp and nn pairs do not contribute  and these values are reasonably close to those of Table VI.

appreciably taSr(q). They are also close to those that can be inferred from data,
On the basis of the above observations and ignoring thgee Fig. 4. Finally, in Fig. 10 the integrands in E63) are

convection term in the one-bod¢B) j,, one concludes that  displayed for®He, “He, and®Li, properly scaled according

the excess transverse strength, defined as to the factor in Eq(66). Note that also shown are the con-
B tributions due topn pairs inT=0 states only. The behavior
ASr(q)=Sr(q)—Sr(q), (62 of the integrands, as illustrated in Fig. 10, is to be expected,

. since it is a consequence of the “scaling” behavior more
whe_re superscriptB denotes one-body terms, must be Pro-generally observed for the calculat@dS=0,1 and 1,0 pair-
portional to distribution functions in nuclefi75].

. Note that the dominant contributions to the excess
AST(q):f dxtr[F(x;q)p(x;pn)], (63) strength occur for pair separations grounq or slightly .Iess
0 than 1 fm. One would naturally associate this strength with a
significant contribution to two-nucleon final states of rela-
whereF(x;q) is a complicated matrix in the spin space of tively large relative momenta. Detailed microscopic calcula-
the two nucleons depending upon the current operator§ons in A=4 with full final-state interactions and two-body
alone, and theA dependence is included in thmn density  currents will be necessary to make precise predictions.
matrix p,(X;pn,s;,sm,s ,Sy). Heres;, s, etc., are spin It should be emphasized that the scaling law A8:(q)
projections(up or down of particlesl, m, etc. In fact, one can be used to estimate the excess transverse strength in
can express these densities in terms of total spin-isospinuclei, once the factoiR, are known. In nuclear matter, for
S,T=0,1 or 1,0 paidm. The crucial point is that, in nuclei, example, the authors of R€fZ6] obtainR.,=1.59, the latter

thesepn densities scale, s¢&5], namely being defined aRR5/A in the limit A—oo, and, therefore,
one would expect a very substantial enhancement of the
p2(X;T=0;A)=Rpp(x;T=0), (64)  transverse sum ruléand, consequently, transverse response
function due to two-body currents, namely,
p2(X; T=1;A)=Rpp™(x;T=1), (65  ASZ(q)/AS!*(q)=1.35.
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1 wherea=L, T. The simplest approximation to the response
08 ¥ : due to one-body currents is to assume incoherent scattering
A0 hevic ' from isolated nucleons. This yiel®;,(q) =1, neglecting the

0.8 neutron charge and convection current contributions to the
0.7 longitudinal and transverse response functions, respectively.
The additional contributions to the sum rules involving

G two-nucleon currents can be written as a sum of interference
E s terms between one- and two-nucleon operators and the
= square of the two-nucleon operators, in the same approxima-
e 04 tion adopted above. The short-range nature of the two-

0.3 nucleon operators implies that incoherent scattering from

o5 pairs of nucleons should be dominant

0.1 700 MeVic AS,(q)=(A-1)[2(P|[O] (q)Oy m(q) +H.C]

G.:|ﬁ-| 3 .[]:h o | o |-_, o a ag 'i:HE.; +OL,Im(Q)Oa,Im(Q)|CD>]1 (70)
® (fm)

where the factor 2 in the interference term arises because the

FIG. 10. (Colon Integrands in Eq(63) for *He, “He, and®Li at pair term can connect to either of the two single-nucleon
momentum transfers of 300 and 700 MeV/scaled according to operators.
the factor in Eq.(66). Also shown are the contributions due fga To make a simple estimate of the contribution of the two-
pairs inT=0 states only. nucleon terms of the current, we consider the two-nucleon

density matrixp,(rim),,,» which depends only upon the

The nuclear matter transverse response has been calcgeparation between the pair of nucleons and upon their initial
lated in Ref.[77] by using correlated-basis-function pertur- and final spins and isospingand x’. In the Fermi-gas ap-
bation theory and including, in addition to the single-nucleonproximation,p, is diagonal in the spins and isospins, and the
spin-magnetization current, the pionlike amdexcitation spatial dependence is given by simple Slater functions. We
two-body currents. The explicit integration of the responsghen obtain
functions[77,7§ indicates that the transverse strength is in- 40
creased by the two-body contributions by roughly 15% in the q
momentur¥1 transfer rar)llge 300-700 M)é.\/Th?s }énhance- Asa(q):PE, Jdrijf sz(fij)x,xr(x|[202,|(®
ment is significantly smaller than that inferred from the scal- X
ing law above. The underestimate is presumably due to the +OZ,|m(Q)]Oa,|m(Q)|X'>- (77)
inherent limitations in the calculations carried out so far,
which only retained one-particle—one-holeptlLh) interme- ~ Where momentum-dependent pieces in the current have again
diate states and estimated the contribution of two-particle-been dropped. The excess contributions involving two-
two-hole states by folding thept1h response with a width nucleon currents are given in Table VII for the Fermi-gas
derived from the imaginary part of the 0ptica| potentiaL It model. The Iongitudinal contributions are positive but small,
should be possible to calculate the transverse sum rule byf&nging up to=0.02. The transverse contributions, ranging
direct evaluation of the ground-state expectation value. Worftrom =0.06 at 700 MeV¢ to =0.11 at 300 MeV¢, are much
along these lines is in progref&s]. smaller than for correlated wave functions.

The longitudinal and transverse sum rules in matter can Finally, as far as the dependence is concerned, from the
be estimated in a Fermi gas model in a similar simple maneXplicit expressions of the current operators in Sec. V, it is
ner. As in calculations ofHe (see Sec. IX this is useful to  evident that the excess transverse strength should behave as
help understand the role of initial-state correlations in the o2
transverse response of the nucleus. We again ignore contri- ASi(q)=(a+pa+yq9)/q7, (72)
butions of three- and four-nucleon terms as in E). In
matter this approximation should be valid at high-momentu
transferqg, but becomes more questionableggis decreased. o
A significant enhancement of the transverse sum rule is exthe limit of largeq.
pected due to the short-range part of the two-body currents—
these necessarily involve large momenta between the pair of IX. MODEL STUDIES WITH SIMPLIFIED
nucleons, thus broadening the range of validity of this simple INTERACTIONS, WAVE FUNCTIONS, AND CURRENTS
apgﬁ:?gﬁfé% sum rules are decomposed into parts de- As a guide to better understanding these results and com-

pending only on the single-nucleon currents and the remain? 2 "9 with other_calculanor_]s, It s usefu_l to compare the
ing terms that also involve two-nucleon currents complete calculations described above with various trunca-

tions of the initial ground state wave function, the current
1B operators, and the Hamiltonian. Of course, only the complete
Sa(@)=S,7(q) +AS,(q), (69 calculations can be meaningfully compared to the data, as

n.yvhere theg? factor in the denominator is due to the normal-
Ization adopted fo6;(q), and so will approach a constant in
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TABLE VII. Excess-strength contributionsS, andAS; to the  state and the current operators. We have constructed a sim-
Fermi-gas sum rules from terms involving two-nucleon currents. plified v, interaction where the tensor terms in the full
Hamiltonian have been set to zero. This would, of course,

q (Mevic) AS ASy yield a very underbound-particle ground state. To compen-
300 0.004 0.114 Sr?te, we add ahpoter?tial of two-pion exchange range to both
400 0.007 0.081 the spin-one channels
500 0.011 0.066 )
600 0.017 0.060 Vg=1r=0(N) =Vs—1;7—0a(r) —1.ATZ(r), (73
700 0.024 0.056
where
. initi [ 2y72 3 3 | exp—ur)
they include both initial-state wave functions and currentop- T_(7)=[1—exp(—cr9)]9q 1+ —+ ,
erators that are consistent with the Hamiltonian used to de- mro (ur) r 70

termine ther (or energy dependence of the response.
The transverse channel is most interesting in this regar

; qs taken from the Argonne interaction models and is a func-
as it shows a large enhancement from the two-nucleon c

uET .

. . ion of two-pion exchange range. The constant 1.4 MeV fm
rent operators. Results fd‘He at 400 MeV¢ V.V'th various. - pas been set to crudely reproduce dhparticle binding. This
truncations are shown in Fig. 11. The truncations include full

(FW) and simple(SW) wave functions, full(FC) and im- allows us to concentrate on the spin dependence of the final-

. . . state interactions as opposed to drastically altering the spec-
pulse(!C) currents, and f.UI(FI) and _S|mple(_SI) INteractions. - of the struck nucleus. In all cases the FCs are those ob-
The simple wave functions and interactions are describe

below. The differences in the lonaitudinal channel are muc ined from the AV18, they have not been reconstructed to be
Iessvé.ramaticl ! gituad u r]:onsistent with the Hamiltonian used for the initial or final

. L states. The motivation here is to examine the various contri-
The full ground-state variational wave function is de- . . :
scribed abovdEq. (12)], it includes strong tensor correla- butions to the_ full cglgulaﬂon. S
' " ’ . From the figure it is clear that a dramatic difference re-
tions from the pair corrslatlon operatoFs; and from the mains between FC and IC, whatever model is chosen for the
three-nucleon correlatiol, .. In order to better determine \yave function and Hamiltonian. The=0 (sum-rulg differ-
the origin of the enhancement arising from the two-bodyence between full and impulse currents is largest for the full
currents, we have also considered a simplified ground-statgave function, but even with a highly simplified wave func-
wave function(SW) where the tensor correlations(r) and  tion a large difference remains between the results with full
u'"(r) [Eq. (13)] and theU,,, correlations arising from the currents(FC, SW and impulse currents alor&C, SW).
two-pion-exchange three-nucleon interaction have been set On the basis of Fermi-gas calculations of matter, it had
to zero. been believed that the large enhancement from two-body
Similarly it is interesting to compare the effect of different currents found in previous calculations of light nudai]
Hamiltonians describing the final-state interactions. In thewere due to the presence of strong tensor correlations in the
Euclidean response this corresponds to using differemgjround-state wave function. While these correlations do
Hamiltonians for the imaginary-time propagation of the sys-make a significant contribution, even simplified wave func-
tem. The Hamiltonian used in the propagation does not ditions show a substantial enhancement. In light nuclei, at
rectly affect the sum rules that depend only upon the initialleast, this is a consequence of the complete set of final states

3.0 T T — T T | — T T | — T T T T T
2.8 -
- "k -
|- g ? . =
i i
[, e, b S T kit : ] .
E Ty T M e R J FIG. 11. (Colon Euclidean transverse re-
E N e T } . sponse for*He at 400 MeV¢ with full current
B C DH'-‘“E"‘-H-_.—-_,,- See o ] (FO) or impulse curren{IC), full or simplified
EHE Lo 0w n @ EmEE . . . .
r ] wave (FW or SW function, full or simplified in-
Lo~ W, | ] teraction(FI or Sl).
- =4 I -
0.5 i Ic, FW, FI -]
d T IC, FK, Sl 1
N %k IC. SW, SI 1
Dc' i i i i | i A i i | i i A i | i i i i | i i A i ]
0.00 0.01 0.02 0.03 0.04 0.05
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automatically included in the sum-rule and Euclidean re- 3 . . : : . : .
sponse calculations. We have also considered more drastic [
simplifications for the ground-state wave function, including

only central ) correlations. Even in this case there is a 251 ;;1 o
dramatic enhancement of the response when two-nucleor CHH Wof - solid symbals EfL Y
currents are included. - Var Wyfn - open symb-::i‘gfi—

i T

.

Of course, the Hamiltonian used for final-state interac- = ,[ S5 ]
tions cannot affect the sum rule &0, but it can change the % [ 1
energy dependence of the response. Calculations with func-
tions (SW) and the simplified interaction$sl) are shown as L.
diamonds in the figure. With simplified wave functions, in-
teractions, and impulse currerll€, SW, S), the slope atr .
=0 is much more shallow corresponding to an energy- [ . . : | . .
weighted sum rule much closer k3/(2m) than in the full 0 o0 n e > i
calculation—of course, this is to be expected, since tensor T (MeV)
components, missing in the SI model, substantially enhance _ ) o
the energy-weighted sum rule. This same interaction also has FIG- 12 (Colon) Comparison of théHe Euclidean longitudinal
a larger low-energylarge-) response than the calculations "€SPonse functions using variation@pen symbols and CHH
made with the full current. This is undoubtedly related to the(SC!id symbol$ wave functions.
choice of modified Hamiltonian, the choice made here will
be more attractive ip waves than the full Hamiltonian, and range 300—700 Me\¢ from an analysis of theg(e’) world
these presumably dominate the low-energy transverse retata. The corresponding Euclidean response functions have
sponse irfHe. been derived by direct Laplace transform of the experimental

With the FC, there is much less dependence upon theata, and have been found to be in satisfactory agreement
choice of final-state interactions. Indeed, the calculationsvith those calculated with Green’s function Monte Carlo
with the simple wave function and full curreSC, SW are  methods using realistic interactions and currents. Leading
nearly identical over the range af considered. The low- terms of the two-body charge and current operators are con-
energyp-wave continuum in the more attractive simplified structed consistently with the two-nucleon interaction in-
Hamiltonian yields less overlap with the two-nucleon currentcluded in the Hamiltoniarithe Argonnev,g). A number of
operators, resulting in a very similar full response for the twoimprovements in the algorithms employed for the Monte
different final-state interactions. The full calculati¢RC,  Carlo evaluation of the relevant path integrals have allowed
FW, FI) has a much larger contribution at a higher energyus to reduce, very significantly, the statistical errors in the
resulting in a steep initial fall-off withr. It also a has a Euclidean response calculations.
somewhat smaller response at low enefigyge = than the Two-body charge operators reduce slightly the one-body
full calculation. longitudinal strength at large [corresponding to the thresh-

Finally, we have calculated the responsesAin 3 using  old region of R (q,w)], while two-body currents increase
the correlated-hyperspherical-harmoni@HH) wave func-  very substantially, and particularly fotHe, the one-body
tions obtained by Vivianiet al. [48] for this same Hamil-  transverse strength over the wheteange considered. Thus,
tonian. Calculations of the longitudinal response®de at  in the quasielastic region, single-nucleon knockout processes
various momentum transfers are compared in Fig. 12. Thare dominant in the longitudinal channel, while both one-and
differences between the variational and CHH wave functionswo-body mechanisms contribute with comparable magni-
are very small, as is apparent in the figure. This is perhapgide in the transverse channel. These qualitative conclusions
not surprising, as the drastic truncations made in the comare corroborated by the scaling analysis of the data described
parisons of SW and FW variational wave functions werein Sec. IlI: the longitudinal and transverse scaling functions
themselves somewhat modest. Differences in the CHH an¢f andf;, which would be expected to overlap if one-body
VMC transverse response calculations®ple are also quite processes alone were to be at play, display, in fact, drastically
small. different trendqsee Fig. 3 The enhancement in the ratio of

These calculations demonstrate that the two-nucleon cutransverse to longitudinal quasielastic strength can be quan-
rents play a crucial role in the transverse response. Precisfied by considering integrals df, andf; (of course, over
comparisons with experimental data also require calculationghe quasielastic peak region alonas done in Fig. 4. Experi-
with accurate initial-state wave functions and final-state in-mentally, thisT/L ratio is found to increase very signifi-
teractions. In such realistic calculations, the contributions otantly from A=3-4, to decrease only moderately frofn
the two-nucleon currents are large both in the integrated re=4—12, and to remain rather flat &s= 12—56. Of course,
sponse and in the low-regime. the interpretation of the integral df; as reflecting exclu-
sively quasielastic strength is not entirely correct, particu-
larly since, as the momentum transfer becomes larger and
larger, the quasielastic ankl peaks tend to merge together:

We have determined théHe and“He longitudinal and strength from the pion-production region will then necessar-
transverse response functions in the momentum transfely spill over into the quasielastic region, contaminatifg

X. CONCLUSIONS
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Nevertheless, the amount of “spurioughonquasielastjc  was due to the presence of strong tensor correlations in the
strength contamination should not be too large, at least foground state, it is now clear that this enhancement arises

light nuclei, for which the quasielastic ankl peaks remain

from the concerted interplay of tensor interactions and cor-

well separated at all momentum transfers considered hergelations in both ground and scattering states. A successful

The observed enhancement of fhd. ratio in *He and*He

prediction of the longitudinal and transverse response func-

is well reproduced by the theory, since the Euclidean retions in the quasielastic region demands an accurate descrip-
sponse functions derived from data are close to those oRon of nuclear dynamics, based on realistic interactions and

tained in the calculations, over the whateange.
TheT/L ratio has also been studied in the=3, 4, and 6

nuclei via sum-rule techniques. Even within the limitations

that such an approach necessarily entéslse Sec. VII),
there are rather clear indications that the present theory

currents.
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