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High density symmetric nuclear matter in the Bethe-Brueckner-Goldstone approach
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Previous calculations of the equation of state of symmetric nuclear matter, with the inclusion of the three-
hole-line contribution, are extended to densities up to about six times the saturation value. The calculations are
performed for the Argone 14 and the Argonne ;g two-nucleon potentials, and a larger set of partial waves is
included. Evidence for the convergence of the Bethe-Brueckner-Goldstone expansion, even at relatively high
density, is presented. The contribution to the equation of state of the three-hole-line diagrams, within the
continuous choice of the single-particle potential, turns out to be almost negligible, except at the highest
densities.

DOI: 10.1103/PhysRevC.65.017303 PACS nuner21.65+f, 21.30.Fe, 21.60.Gx

[. INTRODUCTION an auxiliary potential that is introduced only to improve the
convergence of the expansion, and it is therefore, to a certain
The equation of statéEOS of nuclear matter at high extent, arbitrary. The “potential insertion” diagrams take
density is one of the relevant issues in the theory of neutrointo account the corresponding modifications of the expan-
star structure, and it is the object of intensive studies in thaion for a given choice of the auxiliary potential.
physics of heavy-ion collisions at intermediate energies. The Since the early works on BBG theory of nuclear matter,
theoretical calculations of the EOS needs a full many-bodynany papers have been devoted to the effects produced by
treatment, since a major role is played by the strong nucleonthe possible choices of the single-particle potent[&i$].
nucleon short range Correlations, which is a distinct featurq'hey were main'y based on the resummation of diagrams
of nuclear matter. corresponding to insertions, both in hole and particle lines,
Recently[1,2], we have shown that the Bethe-Brueckner-hich produce energy shifts in the denominators of simpler
Goldstone(BBG) expansion in nuclear matter converges atdiagrams[G]. A choice that had become quite popular is

the three-hole level of approximation for neutron and Symy,,qeq on the self-consistent definition the single-particle po-

metric nuclear matter. The results turned out to be largel - ; : ;
: . . . ntial U(k) in terms of th rinG matrix Eq(2
independent of the choice of the self-consistent smgIeB—fe tial U(k) in terms of the scattering matrix, see Eq(2)

. . e . below, with the restriction thdt (k) was set equal to zero for
particle potential, which is indeed a clear sign of conver- article states. i.e. for momenkdaraer than the Fermi mo-
gence. The calculations were performed for densities up t8 S 9

about six times the saturation value for pure neutron mattelr,“entumkF' Since then the single-particle energy has a gap

while the analysis for symmetric nuclear matter was re-2t the Fermi momentum, this choice is referred to as “gap

stricted to densities not greater than 0.4 finIn this Brief choice.” T_he presence of a gap appears unphysical, and
Report we will extend the analysis for symmetric nucleartherefore in more modern calculatiohi(k) is taken to be
matter to higher densities and we will also study the rel-continuous through the Fermi surface, by extending the same
evance of including a larger set of partial waves. self-consistent procedure also abdye This second choice
The BBG expansion can be ordered according to the numis usually called “continuous choice.” The final result of a
ber of independent hole lines appearing in the diagrams, regiypothetically exact BBG calculation is independent of the
resenting the different terms of the expansion. This groupinguxiliary potential chosen, but the rate of convergence can of
of diagrams generates the so-called hole-line expansiocourse depend on the particular choice adopted. Among the
[3,4]. At the two-hole-line level of approximation the corre- different possible choices &f (k) we shall restrict the analy-
sponding summation of diagrams produces the Bruecknesis to these two choices, since they represent somehow two
Hartree-FocKBHF) approximation, which is expected to in- opposite extreme cases.
corporate the main contribution from the two-particle The three-hole-line diagrams can be summed up by solv-
correlations. The BHF approximation includes the self-ing the Bethe-Fadeev equations for the three-body scattering
consistent procedure of determining the single-particle auxmatrix inside nuclear matter. As shown by Rajaraman and
iliary potential, which is an essential ingredient of the Bethe[7], the summation is essential, since individual three-
method. The choice of the single-particle potential is, how-hole-line diagrams can be quite large, but substantial cancel-
ever, not unique. In principle the single-particle potential islation occurs once the whole set of three-hole diagrams is
considered.
The two-hole and three-hole diagrams are depicted in Fig.
*Corresponding author. Email address: baldo@ct.infn.it 1, where a wavy line represents a Brueck@anatrix. In the
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where® (k) =1 for k<kr and is zero otherwise. The prod-
uct Q(k,k")=[1-0Og(k)][1—0¢(k')], appearing in the
kernel of Eq.(1), enforces the scattered momenta to lie out-

----X side the Fermi sphere, and it is commonly referred as the

“Pauli operator.” ThisG matrix can be viewed as the in-
medium scattering matrix between two nucleons. Ghma-
trix depends parametrically on the entry enesgynamely it

is defined in general also off-shell, as the usual scattering
(e) (1) matrix in vacuum. The self-consistent single-particle poten-
tial U(K) is determined by the equation

U= X (kK'|G(ec+e)|kk )a, (2)

k" <kg

where|kk')a=|kk’)—|k’k) ande,=%2k?/2m+ U (k) is the

single-particle energy. This definition &, together with

Egs.(1) and(2), implies the above-mentioned self-consistent
FIG. 1. Two-hole-line diagram&),(b) and three-hole-line dia- prO(_:edure_fOIU(k). In the gap choic_e the defi_nition of E.q'

grams(c)—(f) in the Bethe-Brueckner-Goldstone expansion.Awavy(Z) is restricted td(<,kF' Once the single-particle plotentlal

line indicates a Brueckne® matrix. Diagram(f) indicates sche- U (K) and theG matrix are calculated, the two-hole-line con-

matically the whole set of three-hole-line diagrams in terms of theffibution E; to the energy is then given by

three-body scattering matriX®®. The “bubble” diagram(c) and 1

the “ring” diagram (e) are the lowest-order ones in the numbeof _-

matrix, i.e., they are obtained from diagraif) by replacingT(®) E. 2 kl,k§23<kF <klk2|G(ek1+ek2)|klk2>A' @

with a single G matrix (direct and exchange terpmsFinally, the

potential insertion diagranid) is present only for the continuous Similarly, the summation of the three-hole-line diagrams can

choice. See the text for further details. be performed by solving the integral equation for the three-

body scattering matrix, the Bethe-Fadeev equaf@]. It

schematic diagram of Fig.(f), the boxT® indicates the reads schematically

irreducible three-body scattering matrix, namely, it does not

include the first-ordefone G matrix) contributions. The lat- T(3):G+GX%T(3)

ter, if formally inserted in the diagram in place of tié® e

box, give rise to the so called “bubble” and “ring” dia-

grams, depicted separately in Figgc)land Xe), respec-  (Kikoks| T®)|kikyks) = (kiko| G|k kp) S (ks —k3)

tively. They are singled out from the whole set of three-hole-

line diagrams for computational convenience only. In the +<k Kok GX%T“) k’k’k’>.
case of the continuous choice, the additional “potential in- 1h2ms e 17273
sertion” diagram of Fig. {d) has to be included, since in this 4)

caseU (k) is different from zero also for single-particle mo-

mentak>Kkeg . In principle, the expansion includes also the The factorQs/e is the analogous of the similar factor ap-
two diagrams in which the bubble and the potential inserpearing in the integral equation for the two-body scattering
tions are attached to a hole line. However, they cancel ouhatrix G; see Eq.(1). Therefore, the projection operat@y,
each other exactly, because of the Bethe-Brandow-Petsch@kiposes that all the three-particle states lie above the Fermi
theorem8], for both choices of the auxiliary potentidi(k).  energy, and the denominateris the appropriate energy de-
nominator, namely, the energy of the three-particle interme-
Il FORMALISM diate state minus the entry energy in close analogy with
the equation for the two-body scattering mai@of Eq. (1).
The summation of the two-hole diagrams can be perThe real novelty with respect to the two-body case is the
formed by solving the integral equation for the Brueck@er operatorX, which imposes that th& matrices must alternate
matrix from one pair of particle lines to another, in all possible
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ways, to avoid double counting of the ladder series defining 0 | (a)‘
the G matrix. It is important to realize that the three-hole-line argome &8
diagrams describe thiereducible part of the three-nucleon 20} O Dy+Ds continvous BHF-C)
correlations, i.e., the ones that cannot be reduced to products . 7 D2+D3 gap
of two-body correlations. Indeed, the many-body wave func- 3 107
tion at the Brueckner level contains already many-body cor- = ol
relations to all orders, which can be written as independent E
products of two-body correlatiorid]. -10 t
Finally, in terms of the three-body scattering matfi$¢)
the contributionE; of the three-hole-line diagrams to the 20 e 1 12 14 16 18 2 22 24
energy is given by K ()
1 e 30 1 (b)
Eszzk S <k EH <k1k2|G|klk2>A Argonne v, o
1:%2:K3=Kr [k} {K"}=kg 20 O Dy, +Dy continuous
. D D2+D3 g2p BHF-C
1 i, (3) avi 1 avi %J 10 |
><E<k1k2k3|XT X|k1k2k3>§<k1 5|Glkiko)a - = .
= I
(5) “ ol
An exchange term has to be added, which is obtained by 20 P i ——
multiplying with an extra operatorial factot the expression 08 1 12 14 16 18 2 22 24
of Eq. (5). ke (fm ™)
FIG. 2. (a) The equation of state of symmetric nuclear matter for
Il RESULTS AND CONCLUSIONS the Argonnev ;g potential. The full lines indicate the result at the

Brueckner two-hole-line level of approximation, for the gap

. . (BHF-G) and the continuou$BHF-C) choices. The full EOS, in-
for both the continuous and gap choices for the Argonpe cluding the three-hole-line contribution, is labeled by the open

[9] andv 15 [10] potentials. The set of two-body partial waves sqguares and the open circles for the gap and continuous choices,

was extendeq until convergence was reach.ed also for ﬂ}pd‘;\spectivelyx(b) The same as i), but for the Argonney 1, poten-
highest density. The potentiél(k) was numerically evalu- .,

ated up to a certain cutoff, and kept constant then after
(k>k.). The value ofk, was increased until the results ap- choices, respectively. The two EOS are now in much closer
peared insensitive to a further increase. The vakye agreement for the whole range of densities, which is a strong
~7.5 fm™ ! was found appropriate. Once the single-particleindication that convergence has been reached to a good ac-
potentialU (k) has been obtained, the corresponding singlecuracy. As it is apparent from the figure, the three-hole-line
particle spectrum was used in solving the Bethe-Fadeewontribution turns out to be much smaller in the continuous
equations. Also in this case we checked the convergence witihan in the gap choice. The smallness of the three hole-line
respect to the number of two-body and three-body channelsontributions is a further indication of convergence. Similar
included in the calculations of the three-hole-line diagramsresults hold for the;, potential[see Fig. 20)].
More details on the numerical procedure will be given else- The three-hole-line contribution in the continuous choice
where. is indeed almost negligible, except at the highest density, and
In Fig. 2(a) the symmetric nuclear matter equation of stateoscillates around zero with a maximum absolute value of
is reported for the Argonne;g potential. The full lines indi- about 2 MeV. Despite the smallness of the contribution, the
cate the energy per particle as a function of the Fermi motrend of the three-hole-line contribution shows some differ-
mentumkg at the Brueckner two-hole-line level of approxi- ence with respect to the results reported in R&f. This is
mation, for the gap(BHF-G) and continuous(BHF-C)  due to the larger single-particle momentum cutoff and the
choices. The main difference between the results obtaineldrger number of partial waves used in the present calcula-
with the two possible choices is the stronger stiffness of theions. It has to be stressed, anyway, that the final EOS are
EOS in the continuous choice. The reason for this behaviovery close to the previous ones of REE], where the calcu-
can be due to the effect of the single-particle poteri8ake lations were performed for the Argonng, potential and
Fig. 3, which becomes repulsive at large momenta. Thigestricted to Fermi momentg-<1.8 fm 1. This shows that
effect is obviously absent in the gap choice, since in this casthe calculations have reached a satisfactory numerical stabil-
the potential is set equal to zero above the Fermi momentunity. One can also notice that the discrepancy in the EOS
The sizable difference between the two EOS at the Brueckbetween the two considered potentials, which is sizable at
ner level indicates that the convergence cannot be yet conkhe Brueckner two-hole-line level of approximation, is sub-
sidered satisfactory. If the contribution of the three-hole-linestantially reduced when the three-hole-line contribution is
diagrams is added, one obtains the EOS marked by the openided. Therefore, the final EOS are quantitatively quite simi-
squares and the open circles in the gap and continuodar for the two nucleon-nucleon potentials.

The self-consisterB-matrix equation(1) has been solved
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Comparison with the variational calculations of Reif2 “exact” calculations. Three-body forces are most likely the
p y y

in the case of the two-body Argonngg potential shows a main term missing in the nuclear Hamiltonian. Also relativ-
fair agreement. However, the variational EOS is systematiistic effects introduced by the Dirac-Brueckner model can be
cally below the BBG saturation curve, in particular at higherinterpreted as due to a particular three-body fof&&].
densities, where the discrepancy reaches few MeV. The disFherefore, the inclusion of three-body forces is mandatory.
crepancy needs further studies to be clarified. Within the BBG expansion this has been done only at the
In conclusion, we have shown that the BBG expansion intwo-hole-line level[14]. At the three-hole-line level, one
symmetric nuclear matter is convergent to good accuracy uphould solve the Bethe-Fadeev equations with three-body
to about six times the saturation density, for both the Ar-forces included. The value of the wound paraméfrand
gonnev 1, and Argonnev 15 potentials. The resulting EOS do early estimates within the Bethe-Fadeev equatjds$ seem
not reproduce the empirical saturation point, since, as it i¢0o indicate a minor correction to the EOS due to the three-
well known, realistic two-body forces are not able to repro-body forces at the three-hole-line level. However, this should
duce the correct saturation point, in line with the results obbe checked again with modern two- and three-body interac-
tained in light nuclei; see Refl11] for recent Monte Carlo tions. This is left to future work.
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