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High density symmetric nuclear matter in the Bethe-Brueckner-Goldstone approach
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Previous calculations of the equation of state of symmetric nuclear matter, with the inclusion of the three-
hole-line contribution, are extended to densities up to about six times the saturation value. The calculations are
performed for the Argonev14 and the Argonnev18 two-nucleon potentials, and a larger set of partial waves is
included. Evidence for the convergence of the Bethe-Brueckner-Goldstone expansion, even at relatively high
density, is presented. The contribution to the equation of state of the three-hole-line diagrams, within the
continuous choice of the single-particle potential, turns out to be almost negligible, except at the highest
densities.
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I. INTRODUCTION

The equation of state~EOS! of nuclear matter at high
density is one of the relevant issues in the theory of neu
star structure, and it is the object of intensive studies in
physics of heavy-ion collisions at intermediate energies. T
theoretical calculations of the EOS needs a full many-bo
treatment, since a major role is played by the strong nucle
nucleon short range correlations, which is a distinct feat
of nuclear matter.

Recently@1,2#, we have shown that the Bethe-Brueckn
Goldstone~BBG! expansion in nuclear matter converges
the three-hole level of approximation for neutron and sy
metric nuclear matter. The results turned out to be larg
independent of the choice of the self-consistent sing
particle potential, which is indeed a clear sign of conv
gence. The calculations were performed for densities up
about six times the saturation value for pure neutron ma
while the analysis for symmetric nuclear matter was
stricted to densities not greater than 0.4 fm23. In this Brief
Report we will extend the analysis for symmetric nucle
matter to higher densities and we will also study the r
evance of including a larger set of partial waves.

The BBG expansion can be ordered according to the n
ber of independent hole lines appearing in the diagrams,
resenting the different terms of the expansion. This group
of diagrams generates the so-called hole-line expan
@3,4#. At the two-hole-line level of approximation the corre
sponding summation of diagrams produces the Brueck
Hartree-Fock~BHF! approximation, which is expected to in
corporate the main contribution from the two-partic
correlations. The BHF approximation includes the se
consistent procedure of determining the single-particle a
iliary potential, which is an essential ingredient of th
method. The choice of the single-particle potential is, ho
ever, not unique. In principle the single-particle potential
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an auxiliary potential that is introduced only to improve t
convergence of the expansion, and it is therefore, to a cer
extent, arbitrary. The ‘‘potential insertion’’ diagrams tak
into account the corresponding modifications of the exp
sion for a given choice of the auxiliary potential.

Since the early works on BBG theory of nuclear matt
many papers have been devoted to the effects produce
the possible choices of the single-particle potentials@5,6#.
They were mainly based on the resummation of diagra
corresponding to insertions, both in hole and particle lin
which produce energy shifts in the denominators of simp
diagrams@6#. A choice that had become quite popular
based on the self-consistent definition the single-particle
tential U(k) in terms of the scatteringG matrix, see Eq.~2!
below, with the restriction thatU(k) was set equal to zero fo
particle states, i.e., for momentak larger than the Fermi mo
mentumkF . Since then the single-particle energy has a g
at the Fermi momentum, this choice is referred to as ‘‘g
choice.’’ The presence of a gap appears unphysical,
therefore in more modern calculationsU(k) is taken to be
continuous through the Fermi surface, by extending the sa
self-consistent procedure also abovekF . This second choice
is usually called ‘‘continuous choice.’’ The final result of
hypothetically exact BBG calculation is independent of t
auxiliary potential chosen, but the rate of convergence ca
course depend on the particular choice adopted. Among
different possible choices ofU(k) we shall restrict the analy
sis to these two choices, since they represent somehow
opposite extreme cases.

The three-hole-line diagrams can be summed up by s
ing the Bethe-Fadeev equations for the three-body scatte
matrix inside nuclear matter. As shown by Rajaraman a
Bethe@7#, the summation is essential, since individual thre
hole-line diagrams can be quite large, but substantial can
lation occurs once the whole set of three-hole diagram
considered.

The two-hole and three-hole diagrams are depicted in F
1, where a wavy line represents a BruecknerG matrix. In the
©2001 The American Physical Society03-1
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schematic diagram of Fig. 1~f!, the box T(3) indicates the
irreducible three-body scattering matrix, namely, it does
include the first-order~oneG matrix! contributions. The lat-
ter, if formally inserted in the diagram in place of theT(3)

box, give rise to the so called ‘‘bubble’’ and ‘‘ring’’ dia-
grams, depicted separately in Figs. 1~c! and 1~e!, respec-
tively. They are singled out from the whole set of three-ho
line diagrams for computational convenience only. In t
case of the continuous choice, the additional ‘‘potential
sertion’’ diagram of Fig. 1~d! has to be included, since in thi
caseU(k) is different from zero also for single-particle mo
mentak.kF . In principle, the expansion includes also t
two diagrams in which the bubble and the potential ins
tions are attached to a hole line. However, they cancel
each other exactly, because of the Bethe-Brandow-Pets
theorem@8#, for both choices of the auxiliary potentialU(k).

II. FORMALISM

The summation of the two-hole diagrams can be p
formed by solving the integral equation for the BruecknerG
matrix

FIG. 1. Two-hole-line diagrams~a!,~b! and three-hole-line dia-
grams~c!–~f! in the Bethe-Brueckner-Goldstone expansion. A wa
line indicates a BruecknerG matrix. Diagram~f! indicates sche-
matically the whole set of three-hole-line diagrams in terms of
three-body scattering matrixT(3). The ‘‘bubble’’ diagram~c! and
the ‘‘ring’’ diagram ~e! are the lowest-order ones in the number ofG
matrix, i.e., they are obtained from diagram~f! by replacingT(3)

with a singleG matrix ~direct and exchange terms!. Finally, the
potential insertion diagram~d! is present only for the continuou
choice. See the text for further details.
01730
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5^k1k2uvuk3k4&1 (
k38k48

^k1k2uvuk38k48&

3
@12QF~k38!#@12QF~k48!#

v2ek
38
2ek

48
^k38k48uG~v!uk3k4&, ~1!

whereQF(k)51 for k,kF and is zero otherwise. The prod
uct Q(k,k8)5@12QF(k)#@12QF(k8)#, appearing in the
kernel of Eq.~1!, enforces the scattered momenta to lie o
side the Fermi sphere, and it is commonly referred as
‘‘Pauli operator.’’ This G matrix can be viewed as the in
medium scattering matrix between two nucleons. TheG ma-
trix depends parametrically on the entry energyv, namely it
is defined in general also off-shell, as the usual scatte
matrix in vacuum. The self-consistent single-particle pote
tial U(k) is determined by the equation

U~k!5 (
k8,kF

^kk8uG~ek1ek8!ukk8&A , ~2!

whereukk8&A5ukk8&2uk8k& andek5\2k2/2m1U(k) is the
single-particle energy. This definition ofek , together with
Eqs.~1! and~2!, implies the above-mentioned self-consiste
procedure forU(k). In the gap choice the definition of Eq
~2! is restricted tok,kF . Once the single-particle potentia
U(k) and theG matrix are calculated, the two-hole-line con
tribution E2 to the energy is then given by

E25
1

2 (
k1 ,k2,kF

^k1k2uG~ek1
1ek2

!uk1k2&A . ~3!

Similarly, the summation of the three-hole-line diagrams c
be performed by solving the integral equation for the thr
body scattering matrix, the Bethe-Fadeev equation@3,7#. It
reads schematically

T(3)5G1GX
Q3

e
T(3),

^k1k2k3uT(3)uk18k28k38&5^k1k2uGuk18k28&dK~k32k38!

1 K k1k2k3UGX
Q3

e
T(3)Uk18k28k38L .

~4!

The factorQ3 /e is the analogous of the similar factor ap
pearing in the integral equation for the two-body scatter
matrix G; see Eq.~1!. Therefore, the projection operatorQ3
imposes that all the three-particle states lie above the Fe
energy, and the denominatore is the appropriate energy de
nominator, namely, the energy of the three-particle interm
diate state minus the entry energyv, in close analogy with
the equation for the two-body scattering matrixG of Eq. ~1!.
The real novelty with respect to the two-body case is
operatorX, which imposes that theG matrices must alternate
from one pair of particle lines to another, in all possib

e

3-2



in
e

u
nc
o
e

e

b

s
t

r
p-

cle
le
ee
w
ne

s
se

te

o
i-

in
th
vi

hi
a
u
c

co
in
p
o

ser
ong

ac-
ine
us
line
lar

ice
and
of

the
er-

the
ula-
are

abil-
OS

at
b-
is

mi-

for
e
p

en
ices,

BRIEF REPORTS PHYSICAL REVIEW C 65 017303
ways, to avoid double counting of the ladder series defin
theG matrix. It is important to realize that the three-hole-lin
diagrams describe theirreducible part of the three-nucleon
correlations, i.e., the ones that cannot be reduced to prod
of two-body correlations. Indeed, the many-body wave fu
tion at the Brueckner level contains already many-body c
relations to all orders, which can be written as independ
products of two-body correlations@4#.

Finally, in terms of the three-body scattering matrixT(3)

the contributionE3 of the three-hole-line diagrams to th
energy is given by

E35
1

2 (
k1 ,k2 ,k3<kF

(
$k8%,$k9%>kF

^k1k2uGuk18k28&A

3
1

e
^k18k28k3uXT(3)Xuk19k29k3&

1

e8
^k19k29uGuk1k2&A .

~5!

An exchange term has to be added, which is obtained
multiplying with an extra operatorial factorX the expression
of Eq. ~5!.

III. RESULTS AND CONCLUSIONS

The self-consistentG-matrix equation~1! has been solved
for both the continuous and gap choices for the Argonnev14
@9# andv18 @10# potentials. The set of two-body partial wave
was extended until convergence was reached also for
highest density. The potentialU(k) was numerically evalu-
ated up to a certain cutoffkc and kept constant then afte
(k.kc). The value ofkc was increased until the results a
peared insensitive to a further increase. The valuekc
'7.5 fm21 was found appropriate. Once the single-parti
potentialU(k) has been obtained, the corresponding sing
particle spectrum was used in solving the Bethe-Fad
equations. Also in this case we checked the convergence
respect to the number of two-body and three-body chan
included in the calculations of the three-hole-line diagram
More details on the numerical procedure will be given el
where.

In Fig. 2~a! the symmetric nuclear matter equation of sta
is reported for the Argonnev18 potential. The full lines indi-
cate the energy per particle as a function of the Fermi m
mentumkF at the Brueckner two-hole-line level of approx
mation, for the gap~BHF-G! and continuous~BHF-C!
choices. The main difference between the results obta
with the two possible choices is the stronger stiffness of
EOS in the continuous choice. The reason for this beha
can be due to the effect of the single-particle potential~see
Fig. 3!, which becomes repulsive at large momenta. T
effect is obviously absent in the gap choice, since in this c
the potential is set equal to zero above the Fermi moment
The sizable difference between the two EOS at the Brue
ner level indicates that the convergence cannot be yet
sidered satisfactory. If the contribution of the three-hole-l
diagrams is added, one obtains the EOS marked by the o
squares and the open circles in the gap and continu
01730
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choices, respectively. The two EOS are now in much clo
agreement for the whole range of densities, which is a str
indication that convergence has been reached to a good
curacy. As it is apparent from the figure, the three-hole-l
contribution turns out to be much smaller in the continuo
than in the gap choice. The smallness of the three hole-
contributions is a further indication of convergence. Simi
results hold for thev14 potential@see Fig. 2~b!#.

The three-hole-line contribution in the continuous cho
is indeed almost negligible, except at the highest density,
oscillates around zero with a maximum absolute value
about 2 MeV. Despite the smallness of the contribution,
trend of the three-hole-line contribution shows some diff
ence with respect to the results reported in Ref.@1#. This is
due to the larger single-particle momentum cutoff and
larger number of partial waves used in the present calc
tions. It has to be stressed, anyway, that the final EOS
very close to the previous ones of Ref.@1#, where the calcu-
lations were performed for the Argonnev14 potential and
restricted to Fermi momentakF<1.8 fm21. This shows that
the calculations have reached a satisfactory numerical st
ity. One can also notice that the discrepancy in the E
between the two considered potentials, which is sizable
the Brueckner two-hole-line level of approximation, is su
stantially reduced when the three-hole-line contribution
added. Therefore, the final EOS are quantitatively quite si
lar for the two nucleon-nucleon potentials.

FIG. 2. ~a! The equation of state of symmetric nuclear matter
the Argonnev18 potential. The full lines indicate the result at th
Brueckner two-hole-line level of approximation, for the ga
~BHF-G! and the continuous~BHF-C! choices. The full EOS, in-
cluding the three-hole-line contribution, is labeled by the op
squares and the open circles for the gap and continuous cho
respectively.~b! The same as in~a!, but for the Argonnev14 poten-
tial.
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FIG. 3. The single-particle self-consistent p
tentials as a function of momentum at differe
densities and for the Argonnev18 two-nucleon
potential.
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Comparison with the variational calculations of Ref.@12#
in the case of the two-body Argonnev18 potential shows a
fair agreement. However, the variational EOS is system
cally below the BBG saturation curve, in particular at high
densities, where the discrepancy reaches few MeV. The
crepancy needs further studies to be clarified.

In conclusion, we have shown that the BBG expansion
symmetric nuclear matter is convergent to good accuracy
to about six times the saturation density, for both the
gonnev14 and Argonnev18 potentials. The resulting EOS d
not reproduce the empirical saturation point, since, as i
well known, realistic two-body forces are not able to rep
duce the correct saturation point, in line with the results
tained in light nuclei; see Ref.@11# for recent Monte Carlo
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‘‘exact’’ calculations. Three-body forces are most likely th
main term missing in the nuclear Hamiltonian. Also relati
istic effects introduced by the Dirac-Brueckner model can
interpreted as due to a particular three-body force@13#.
Therefore, the inclusion of three-body forces is mandato
Within the BBG expansion this has been done only at
two-hole-line level @14#. At the three-hole-line level, one
should solve the Bethe-Fadeev equations with three-b
forces included. The value of the wound parameter@2# and
early estimates within the Bethe-Fadeev equations@15# seem
to indicate a minor correction to the EOS due to the thr
body forces at the three-hole-line level. However, this sho
be checked again with modern two- and three-body inter
tions. This is left to future work.
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