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Return of the EMC effect
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The relationship between the properties of nuclear matter and structure functions measured in lepton-nucleus
deep inelastic scattering is investigated using light front dynamics. We find that relativistic mean field models
such as the Walecka, Zimanyi-Moszkowski~and point-coupling versions of the same!, and Rusnak-Furnstahl
models contain essentially no binding effect, in accord with an earlier calculation by Birse. These models are
found to obey the Hugenholtz–van Hove theorem, which is applicable if nucleons are the only degrees of
freedom. Any model in which the entire Fock space wave function can be represented in terms of free nucleons
must obey this theorem, which implies that all of the plus momentum is carried by nucleons, and therefore that
there will be essentially no binding effect. The explicit presence of nuclear mesons allows one to obtain a
modified form of the Hugenholtz–van Hove theorem, which is equivalent to the often-used momentum sum
rule. These results argue in favor of a conclusion that the depletion of the deep inelastic structure function
observed in the valence quark regime is due to some interesting effect involving dynamics beyond the con-
ventional nucleon-meson treatment of nuclear physics.
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I. INTRODUCTION

The European Muon Collaboration~EMC! effect in which
the structure function of a nucleus, measured in deep ine
tic scattering at values of Bjorkenx>0.4 corresponding to
the valence quark regime, was found to be reduced comp
with that of a free nucleon was discovered almost twe
years ago@1#. Despite much experimental and theoretic
progress@2,3#, no unique and universally accepted explan
tion of the depletion has emerged. The immediate par
model interpretation that the nucleon bound in a nucleus
ries less momentum than in free space seems unconte
but determining the underlying origin remains an elus
goal.

One popular explanation is that conventional nucl
binding effects are responsible. The conventional lore is
the nuclear structure functionF2A(x) ~which gives the mo-
mentum distribution of a quark in a nucleus as a function
the fractional momentum carried! can be obtained from the
light front distribution functionf (y) ~which gives the prob-
ability that a nucleon carries a fractional momentumy) and
the nucleon structure function of a free nucleonF2N using
the relation@4#

F2A
lore~x!

A
5E dy f~y!F2N~x/y!. ~1!

This formula has a simple interpretation as an express
which gives a probability as a sum of products of probab
ties. The variablex is the Bjorken variablex5Q2/2Mn, and
y is A times the fraction of the nuclear plus-momentum c
ried by the nucleon. The plus component of a four-vecto
the sum of the time and third spatial component, so ifkm is
the momentum of a nucleon andPm is the momentum of the
target nucleus y5(k01k3)A/P15(k01k3)A/MA5(k0

1k3)/M̄ , in which the nucleus is taken to be at rest w
P15MA . One can easily use conventional nuclear phys
0556-2813/2001/65~1!/015211~13!/$20.00 65 0152
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to obtain the probability that a nucleon carries a three m
mentumk, but, if one uses only naive considerations, o
faces a puzzle when deciding how to choose the value ofk0.
Should one use the average separation energy, or the ave

nucleon massM̄ , or possibly the effective mass in the chos
many-body theory?

The essence of the binding explanation is thatk0 is given
by the free nucleon massM minus the average separatio
energye. Then f (y) is narrowly peaked aty512e/M (e
;70 MeV for infinite nuclear matter@5#!. In this case, the
structure function of a bound nucleon is approximately o
tained by replacingF2N(x) by F2N(x/(12e/M )). The in-
crease in the argument leads to a significant reduction in
value of the nuclear structure function The theoretical und
standing of the binding effect~as of 1996! is reviewed nicely
in the book@6#, which summarizes the various treatments
‘‘not completely satisfactory.’’ This kind of explanation
seems very natural because nuclear binding is known to
cur, so such an effect must be understood thoroughly be
hoping to extract information about a possible host of m
interesting exotic effects. In any case, one needs to supp
derivation to avoid the need to arbitrarily choose a presc
tion for k0.

This need drove one of us on to the light front@7,8#. That
is, to attempt to use light front dynamics to derive t
nuclear wave function. The reason for this is that, in t
parton modelx is the ratio of the plus component of th
momentum of the struck quark to that of the target, and i
the plus component of the momentum which was observe
be depleted by the EMC. In the view of Ref.@9#, using light
front dynamics is the most effective way to assess the in
ence of binding effects. However, one must pay the price
computing nuclear wave functions using these dynamics

The first attempts@7,8# in this direction employed the
popular and successful Walecka model@10# which has many
effective descendants@11–13#. The salient result was tha
vector mesons carried 35% of the nuclear plus momen
©2001 The American Physical Society11-1
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and nucleons only 65% (PN
1/P150.65), far smaller than the

value (12e/M );0.95 needed to reproduce the observatio
for the iron nucleus. However, the connection between
nucleon momentum distribution computed using light fro
dynamics and that used in computing the deep inela
structure function was not made. Recently, the authors
Ref. @14# have claimed that quark distribution functions a
not parton probabilities. Their message to us is that, in
situation, one needs to derive the connection between
constituent distribution function and the observed data. T
work stimulated us to undertake the present investigatio
which we derive the connection between the nucleon m
mentum distribution and the structure function measured
deep inelastic scattering.

First we outline our procedure. We start in Sec. II
considering relativistic models of infinite nuclear matt
computed using the mean field approximation. We derive
apply the nucleon distribution functionf N(y) appropriate for
use in computing deep inelastic scattering structure fu
tions. The functionf N(y) is shown to be the one whic
maintains the covariance of the formalism, and in which
nucleons carry the entire plus-momentumP1 of the nucleus
@15#. This result is obtained independently of the spec
relativistic mean field theory used, so no such theory c
tains the binding effect discussed above. The only bind
effect arises from the average binding energy of the nuc
~16 MeV for infinite nuclear matter!, and is far too small to
explain the observed depletion of the structure function. T
is in accord with an earlier similar finding by Birse@16#. The
generality of this result encourages us to seek a broader
text. This is found in the Hugenholtz–van Hove theore
@17# which states that the binding energy of the level at
Fermi surface is equal to the average binding energy, or
energy of the level at the Fermi surfaceEF is equal to the
nuclear mass divided byA:

EF5MA /A[M̄ . ~2!

This theorem is the consequence of using the condition
the total pressure of the nucleus vanishes at equilibrium,
the assumption that nucleons are the only degrees of free
contributing to the nuclear energy. Thus this theorem i
signal thatP15PN

1 or that nucleons account for the enti
plus momentum of the nucleus. This generally is underst
to imply that there will be no EMC binding effect@3#, thus
any model which obeys Eq.~2! can be expected not to hav
one.

The next step is to recall in Sec. III how light front dy
namics is applied to computing the properties of infin
nuclear matter using the Walecka model~as a specific ex-
ample! in mean field approximation~MFA!. The purpose is
to illustrate the general formalism needed to go beyond
mean field approximation, provide an explicit example of t
general results presented in Sec. II, study the nuclear s
ture origins of the nuclear momentum content, and sh
explicitly that the Hugenholtz–van Hove theorem is sa
fied.

In Sec. IV we introduce four other model Lagrangians
which the values of the effective mass and vector meson fi
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vary widely. Again our specific calculations are limited to th
MFA. However, in Sec. V, the application of th
Hugenholtz–van Hove theorem@17# allows us to make some
general statements about models which include nucle
nucleon correlations. In particular, we use this theorem
explain why no binding effect is contained in any mod
such as that of Ref.@18#, in which nucleons are responsib
for the entire plus momentum of the nucleus. This is in a
cord with early observations of Ref.@3#, but now there is an
additional ability to compute all of the relevant nuclear pro
erties using light front dynamics. We also use our findings
assess existing treatments of the binding effect. Section V
a summary of our results and their implications. In the A
pendix we use light front dynamics to compute nuclear pr
erties of the four models of Sec. IV.

II. DEEP INELASTIC SCATTERING FROM NUCLEI

We are testing the hypothesis that conventional nuc
dynamics can explain the EMC effect. This means that
need to include possible binding energy and Fermi mot
effects, but not dynamics related to true modifications of
nucleon structure or off-shell effects caused by the nuc
medium. In this case the use of a manifestly covariant f
mulation to derive the expression for the structure funct
leads to a convolution formula. The key assumption is t
the system formed by the absorption of the photon is no
bound nucleon and therefore does not have the same i
action. The relevant lifetime of the struck system is 1/xM
<0.5 fm ~for x>0.5) which corresponds to a very sho
nuclear time, too short for interactions. If one uses the f
nucleon structure function~neglecting off-shell effects! and
F2N for free nucleons one finds@19#

F2A~xA!

A
5E

xA

`

dy fN~y!F2N~xA /y!, ~3!

f N~y!5E d4k

~2p!4 dS y2
k01k3

M̄
D TrF g1

2P1A
x~k,P!G ,

~4!

whereP is the total four-momentum of the nucleus, and

FIG. 1. Diagram for computing the nuclear structure function
nucleus of momentumP emits a nucleon of momentumk, which
emits a quark of momentump, which absorbs the virtual photon o
momentumq.
1-2
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xA[Q2A/2P•q5xAM/MA5xM/M̄ ~5!

with M as the free nucleon mass andM̄[MA /A. The func-
tion x(k,P) is ~proportional to! the connected part of th
nuclear expectation value of the nucleon Green’s funct
@20#, and the trace is over the Dirac and isospin indices. T
f N(y) is a Lorentz scalar is manifest from the structure
Eq. ~4!. We note the appearance ofM̄ instead of the free
value of the nucleon massM. This arises here from the defi
nition ~5! and the feature that, in the Bjorken limit, th
nuclear structure function depends on the ratiop1/P1
e
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5(p1/k1)(k1/P1), wherepm is the quark momentum, with

P15MA5AM̄. The basis of the formula~4! is that both the
quark and nucleon distributions are directly related to ma
festly covariant Green’s functions@19,21#. This is a standard
result using nothing more than the stated assumptions
the Feynman diagram in Fig. 1; it will be shown to fail t
explain the EMC binding effect and implies that the origin
hypothesis is false.

The manifestly covariant form of the single nucleo
Green’s function has been known for a long time@22#, and
its use~in the nucleus rest frame! leads to the result
x~k,P!52 i2P1V@g •~k2gvV!1M* # F 1

~k2V!22M* 21 i e
1

ip

E* ~k!
d~k02E* ~k!2gvV0!Gu~kF2uku!, ~6!
can
where

E* ~k![AM* 21k2. ~7!

The general form of the Green’s function depends on a v
tor potentialV5(V0,0) for a nucleus at rest, and the effe
tive massM* which includes the effects of interactions o
the nucleon mass. The values ofV and M* depend on the
specific Lagrangian employed, but the form of the Gree
function is general. Recall also thatV25V15V0 for the
expectation values of vector meson fields in the nucleus
frame.

The result~6! was first obtained using the convention
equal time approach, but the very same can also be obta
from the light front formalism. In that case it is necessary
include the effects of the instantaneous part of the nucl
Green’s function and those of the instantaneous meson
change.

The next step is to insert the connected part~second term!
of ~6! into Eq.~4! for f N(y). This gives, after taking the trac
and using the delta function to integrate overk0, the result
c-

’s

st

ed

n
x-

f N~y!5
4

~2p!3rB
E d2k'dk3

E* ~k!1k3

E* ~k!

3dS y2
E* ~k!1gvV11k3

M̄
D u~kF2uku!. ~8!

The integration is simplified by using the transformation

k1[E* ~k!1k3, ~9!

which makes a connection with light front variables@23#. It
is an exercise in geometry to show that the Fermi volume
be reexpressed in terms ofk1 using

k'
2 1~k12EF* !2<kF

2 , EF* [AkF
21M* 2, ~10!

so that Eq.~8! becomes
f N~y!5
4

~2p!3rB
E d2k'E dk1u~kF

22k'
2 2~k12EF* !2!dS y2

k11gvV1

M̄
D . ~11!

The use of the definition of the energy of a nucleon at the Fermi surface

EF5EF* 1gvV15EF* 1gvV0, ~12!

allows one to achieve a simple expression forf N(y):
1-3
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f N~y!5
3

4

M̄3

kF
3

u@~EF1kF!/M̄2y#u~y2~EF2kF!/M̄ ! F kF
2

M̄2
2S EF

M̄
2yD 2G . ~13!

The result Eq.~13! can be further simplified by using the Hugenholtz–van Hove theorem displayed in Eq.~2!. Section III
contains an explicit demonstration of Eq.~2! for the Walecka model and the Appendix contains a similar demonstration fo
other relativistic models evaluated using the mean field approximation. Using Eq.~2! in Eq. ~13! therefore leads to the gener
result

f N~y!5
3

4

M̄3

kF
3

u~11kF /M̄2y!u~y2~12kF /M̄ !!F kF
2

M̄2
2~12y!2G , ~14!
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correct for any relativistic mean field theory of infinit
nuclear matter. Different theories with the same binding
ergy and Fermi momentum may have very different sca
and vector potentials, but must have the samef N(y).

A result very similar to Eq.~14! was previously obtained
by Birse@16#. The difference between his formula and ours
the appearance ofM̄ in the functionf N(y), whereas he use
M. This difference is a small effect numerically, and the
fore our conclusions will be the sam e as his.

The baryon sum rule and momentum sum rules are
rived by taking the first two moments off N(y). This gives

E dy fN~y!51, ~15!

E dy y fN~y!51. ~16!

The latter equation is remarkable; it states that in deep
elastic scattering the nucleons act as if they carry all of
P1 of the nucleus even though the mesonic fields are v
prominent.

This is clearer if we reinterpret these sum rules in terms
a probability f N(k1) that a nucleon has a plus momentu
k1[yM̄, with f N(k1)[A fN(yM̄)/M̄ , so that

FIG. 2. R(x) vs x for W, NVW, ZM, NVZM ~solid line!, and RF
~dashed line!. The data shown here are from the extrapolation
Ref. @25#.
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E dk1 f N~k1!5A, ~17!

E dk1k1 f N~k1!5AM̄5MA . ~18!

The momentum sum rule~18! shows the total plus momen
tum carried by the nucleons~as seen in deep inelastic sca
tering! is also the total momentum carried by the nucleus

The main result of this is that the nuclear structure fun
tion is given by Eq.~4! with the functionf N(y) obtained in
Eq. ~14!. This tells us that, despite the fact that there is co
siderable binding energy, there is no EMC binding effe
Indeed,F2A depends on the Fermi momentum but does
depend on the effective massM* .

The quantity measured in deep inelastic scattering is
ratio defined by

R~x!5
F2A~xA!

AF2N~x!
. ~19!

A numerical study of this expression using, five differe
relativistic models is presented below. First, we emphas
the qualitative features. Since the width off N is given by the
small quantitykF /M̄ it is a very narrow function. In this
case, one may evaluate the integrand of Eq.~4! by expanding
F2N(x/y) in a Taylor series abouty51 @24# to find that

TABLE I. Summary of the models—taking the sum ofgvV1/M̄

and EF* /M̄ shows that each model satisfies the Hugenholtz–
Hove theorem, Eq.~2!.

Model gvV1
gvV1/M̄ EF* /M̄ M* /M kF(fm21) PN

1/PA
1

W gv
2rB /mv

2 0.355 0.645 0.56 1.42 0.65
NVW 2GrB 0.355 0.645 0.56 1.42 1
ZM gv

2rB /mv
2 0.079 0.921 0.85 1.42 0.92

NVZM 2GrB 0.079 0.921 0.85 1.42 1
RF 2GRFrB 0.194 0.806 0.73 1.31 1f
1-4
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R~x!5
F2N~xA!

F2N~x!
1

kF
2

10M̄2F2N~x!
@2xAF2N8 ~xA!

1xA
2F2N9 ~xA!#, ~20!

which shows that the only effect of the binding energy o
curs in the small difference betweenxA andx which depends
only on the small average binding energy. Note that a te
proportional toF2N8 (x) ~but not proportional to the sma

parameterkF
2/M̄2) vanishes because one is expanding ab

y51 and using the baryon and momentum sum rules E
~17!,~18!. We may further approximateR(x) by expanding
the first term about the valuexA5x (xA51.02x for nuclear
matter, andxA<1.01x for finite nuclei!. Thus

R~x!511
^e&

M̄

F2N8 ~x!

F2N~x!
1

kF
2

10M̄2F2N~x!
@2xAF2N8 ~xA!

1xA
2F2N9 ~xA!#, ~21!

where ^e& is the binding energy per nucleon~16 MeV for
infinite nuclear matter and<8 MeV for finite nuclei!. This
shows that, as long as the Hugenholtz–van Hove theore
applicable, the only binding effect is due to the binding e
ergy per nucleon. One is not allowed to use the separa
energy which is much larger. The use of Eq.~21! cannot lead
to a large enough depletion ofR(x) @16# to resemble the
extrapolated data for nuclear matter@25#.

The qualitative features discussed above are prominen
the numerical calculations displayed in Fig. 2 in which t
ratio R(x) of Eq. ~19! is presented for five different relativ
istic models. The relevant parameters of these models
displayed in Table I. We note that four of the models ha
identical results, with only the Rusnak-Furnstahl model~with
its chosen different value ofkF) differing only very slightly.
These results are obtained using a simple early paramet
tion @26# of the free nucleon structure function

F2N~x!50.58Ax~12x!2.810.33Ax~12x!3.810.49~12x!8,
~22!

but the essential features of the curves are independent o
free nucleon structure function.

III. THE CANONICAL FORMALISM—WALECKA MODEL

We illustrate the canonical light front formalism using th
Walecka model as our first example. Some of this has b
published previously@8#, but our purposes here are to set
and illustrate the formalism necessary to go beyond the m
field approximation, provide an explicit example of the ge
eral results presented in Sec. II, study the nuclear struc
origins of the nuclear momentum content, and show exp
itly that the Hugenholtz–van Hove theorem is satisfied.

The Walecka model employs a Lagrangian contain
fields for nucleons (c8), scalar mesonsf and vector mesons
Vm:
01521
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1

2
~]mf]mf2ms

2f2!2
1

4
VmnVmn1

1

2
mv

2VmVm

1c̄8@gm~ i ]m2gvVm!2M2gsf#c8, ~23!

with the field equations

~]m]m1ms
2!f52gsc 8̄c8, ~24!

]mVmn1mv
2Vn5gvc̄8gnc8, ~25!

gm~ i ]m2Vm!c85~M1gsf!c8. ~26!

The symmetric canonical energy-momentum tensor is gi
by @27–29#

Tmn52gmnL1VamVbngba1]mf]nf

1
1

2
c 8̄@gm~ i ]n2gvVn!1gn~ i ]m2gvVm!#c8.

~27!

A. Mean field approximation for infinite nuclear matter

We follow the MFA@10# in assuming that the sources a
sufficiently strong so that the resulting large numbers of m
sons can be treated in a classical manner in which so
operators are replaced by their expectation values in
nuclear ground state. Furthermore, for a system of infin
volume, all positions and directions~in the nuclear rest
frame! are equivalent. In this casef and V0 are constants
and V50. The approximate mesonic equations of moti
become

f52
gs

ms
2 ^c 8̄c8&52

gs

ms
2
rs , ~28!

V05V65
gv

mv
2 ^c8†c8&5

gv

mv
2

rB , ~29!

in which the brackets are used as an abbreviation for tak
the ground state matrix element, and

rB52kF
3/3p2. ~30!

The nucleon, though described in terms of four-compon
spinors, consists of only two independent fields. The in
pendent and dependent degrees of freedom are defined b

projection operatorsL6[
1
2

g0g6,c68 [L6c8, with c18

chosen as the independent field. One more step is nece
because the resulting equation forc28 depends onV1 in a
complicated manner.

It is traditional in light front dynamics of mass-less vect
bosons to remove the effects of the termV1, by working in
a gauge withV150. Here we use the Soper-Yan transfo
mation @27,29#

c8[e2 igvLc, ]1L5V1, ~31!
1-5
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which allows a simple equation forc28 in terms ofc18 to
proceed in a satisfactory manner, but which also causes
loss of manifest covariance. With this transformation the
nal version of the nucleon field equation becomes

~ i ]22gvV2!c15@a'•p'1b~M1gsf!#c2 ,

i ]1c25@a'•p'1b~M1gsf!#c1 ~32!

within the mean field approximation~in which ]2L50) for
infinite nuclear matter. The nucleon mode functions are pl
waves soc;eik•x and

~ i ]22gvV2!c15
k'

2 1M* 2

k1
c1 , ~33!

whereM* [M1gsf.
The relevant components of the energy-momentum ten

in the mean field approximation MFA are obtained by us
the constant meson fields of Eqs.~28! and~29! in Eq. ~27! to
obtain

TMFA
11 5mv

2V0
212c1

† i ]1c1 , ~34!

TMFA
12 5ms

2f212c1
† ~ i ]22gvV2!c1 ~35!

and soP1 andP2 are given by

P65^TMFA
16 &V, ~36!

whereV is the volume of the system, taken as infinite at t
end of the calculation (A,V→` with A/V finite!. The
evaluation of these expectation values yields

P2

V
5ms

2f21
4

~2p!3EF
d2k'dk1

k'
2 1~M* !2

k1
, ~37!

P1

V
5mv

2V0
21

4

~2p!3EF
d2k'dk1k1. ~38!

It is necessary to define the Fermi sea within the pres
context. Although we do not have manifest rotational inva
ance here, this invariance is restored in the results if
define the componentk3 implicitly through Eq.~9!. Then

E
F
d3k•••[E d3ku~kF2k!•••, ~39!

and geometry leads to

E
F
d2k'dk1

•••[E d2k'dk1u~kF
22k'

2 2~k12EF* !2!•••.

~40!

Using Eqs.~37!–~39! leads to the results that the value of t
energy of the system in the rest frame

EA[
1

2
~P11P2! ~41!
01521
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is the same as in the usual treatment of the Walecka mo
as shown below. The only remaining task is to determine
Fermi momentumkF . This is done by using the minimiza
tion

S ]~EA /A!

]kF
D

V

50, ~42!

EA~kF!5MA . ~43!

Carrying out the differentiation leads to an equation which
equivalent to settingP15P2, which must occur for a sys
tem in its rest frame withP350. Since rotational invariance
is maintained in the solutionP1,2,350, and therefore the
pressureP51/3( i 51,3P

i vanishes. Thus the equationP1

5P2 is also the light front equivalent of setting the pressu
P to 0. Note also that one may explicitly carry out the d
ferentiation to find that

EA /A5MA /A5EF* 1gvV05EF ~44!

which is the Hugenholtz–van Hove theorem@17#.
The above paragraph is serves as an outline of the d

vation of the Hugenholtz–van Hove theorem, but we a
provide an explicit proof. First, use the transformation~9! to
obtain the results

P2

V
5ms

2f21
4

~2p!3EF
d3kS E* ~k!2

1

3
k•kD , ~45!

P1

V
5mv

2V0
21

4

~2p!3EF
d3kS E* ~k!1

1

3E* ~k!
k•kD ,

~46!

EA

V
5

1

2
ms

2f21
1

2
mv

2V0
21

4

~2p!3E
F
d3kE* ~k!. ~47!

Next carry out the differentiation in Eq.~42!, using A
5rBV to obtain

]EA

]kF
53

EA

kF
. ~48!

The term]EA /]kF is obtained by first eliminating all deriva
tives with respect tof using the feature that setting]EA /]f
to zero reproduces the field equation forf. Then one uses
the field equation for the vector meson~29!. The result is

4

~2p!3

4p

3
kf

3EF* 5
ms

2

2
f22

mv
2

2
V0

21
4

~2p!3E
F
d3kE* ~k!.

~49!

This is a transcendental equation which determineskF , so
that the calculation ofEA is complete. With the self-
consistent Eqs.~28!,~29!,~47! one obtains an average bindin
energy of 15.75 MeV with a Fermi momentum ofkF

51.42 fm21 using the parameters. (gv
2/mv

2)M2

5195.9, (gs
2/ms

2)M25267.1, which corresponds togvV2
1-6
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5323 MeV, andM* /M50.56. These parameters are t
same as in the original Walecka model.

The relationP15P2 ~which must hold for a system in it
rest frame! also emerges as a result of this minimization.
see this, rewrite the left-hand side of Eq.~49! as

4

~2p!3

4p

3
kf

3EF* 5
4

~2p!3E
F
d3kS E* ~k!1

k•k

3E* ~k!
D .

~50!

Using this in Eq.~49! leads to

ms
2

2
f22

mv
2

2
V0

25
4

~2p!3E
F
d3k

k•k

3E* ~k!
, ~51!

which is what one obtains by settingP15P2 using Eqs.
~45! and ~46!.

We now have the tools at hand to prove the Hugenho
van Hove theorem. Simply use Eq.~49! to remove the inte-
gral appearing in Eq.~47! and obtain

EA

V
5mv

2V0
21rBEF* . ~52!

Then the use of the field equation~29! yields

EA

rBV
5

EA

A
5gvV01EF* 5EF , ~53!

which is the desired result. This is a remarkable result. T
original version of the theorem was proved using only
assumption that nucleons are the only degrees of freed
Here, the mesons are important, yet the theorem still ho
@30#.

B. Nuclear plus-momentum content

Now we relate the role of the plus component of the m
mentum seen here with that of Sec. II. The nucleonic con
bution to the nuclear plus momentum from Eq.~38! is

PN
1

A
5

4

rB~2p!3E
F
d2k'dk1k1, ~54!

which is also obtainable directly from taking the nuclear e
pectation value of nucleon plus momentum operator.

The large vector potential and small value ofM* are
associated with the startling result that only 65% of the p
momentum of the nucleus is carried by nucleons, and
35% is carried by vector mesons. It was previously argu
@7,8# that this would produce a disastrously large decreas
the nuclear deep inelastic structure function. As sho
above, that does not occur, because the functionf N(y) peaks
at y51.

We therefore need to understand how it is that the nu
ons can carry 65% of the momentum here all of the mom
tum as stated in Sec. II. To do this, use Eq.~54! to define a
probability f (k1) that a nucleon carries a plus momentu
k1:
01521
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e
e
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-
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PN
1/A5E dk1k1 f ~k1!, ~55!

with

f ~k1!5
4

rB~2p!3E
F
d2k'

5
4

rB~2p!3E
F
d2k'dp1d~k12p1!. ~56!

It is useful to again obtain a dimensionless distribution fun
tion f (y) by replacingk1 by the dimensionless variabley
usingy[k1/M̄ , f (y)[M̄ f (k1). Then one finds

f ~y!5
3

4

M̄3

kF
3

u~y12y!u~y2y2!F kF
2

M̄2
2S EF*

M̄
2yD 2G ,

~57!

wherey6[(EF* 6kF)/M̄ . This function peaks aty5EF* /M̄
50.65 for the Walecka model, and the average value ofy is
also 0.65. Its use in Eq.~3! would indeed lead to a disaste
Indeed, our previous work assumed that Eq.~1! was appro-
priate. In that case, the computed ratioF2A(x)/A was dra-
matically smaller thanF2N . This disastrous result can b
understood from the following logic. A reasonable first a
proximation to the integral Eq.~1! can be obtained by using
f (y)'d(y2EF* /M̄ ) which satisfies the baryon sum rule an
corresponds to an average value ofy50.65. ThenF2A(x)/A
vanishes forx.0.65 and the ratio to the free structure fun
tion goes to zero in huge contradiction with experime
which shows depletions no larger than 20% for the heav
nuclear targets. This result is illustrated with the numeri
calculation shown in Fig. 3.

However, the correct quantity to use in deep inelastic sc
tering is f N(y), which emerges from a manifestly covaria
treatment. To see the connection betweenf (y) and f N(y), it
is first helpful to compare directly Eqs.~14! and ~57!. This
comparison yields

FIG. 3. R(x) vs x for the Walecka model usingf N(y) ~solid
line! and f (y) in Eq. ~3! ~dashed line!. The data shown here ar
from the extrapolation of Ref.@25#
1-7



he
is

c

s

lu
o
fte
a
rm
o

t.

to
ili

tte
th

al
t

o
at
T
a
th

io
en
ca
e
a
a

nt

h

la

-
de

rry
tor

v-
ac-
e

ons
ers
in

nu-

ally

s a

sion

at
el,

it
For
dom
in-
ave

the

o-
qs.

he

e
t
one

e

GERALD A. MILLER AND JASON R. SMITH PHYSICAL REVIEW C65 015211
f ~y!5 f N~y1gvV1/M̄ !, ~58!

using the Hugenholtz–van Hove theorem Eq.~2!. The cor-
rect nucleon distribution function is one that is shifted by t
vector potential. This simple relation suggests that there
simple interpretation of the difference betweenf N(y) and
f (y) in terms of a phase difference. Indeed, the differen
arises from the Soper-Yan transformation~31! which relates
the fieldsc and c8. Thus we have two forms of the plu
momentum densityTMFA

11 :

TMFA
11 5mv

2V0
212c1

† i ]1c152c8†
1~ i ]12gvV1!c18 .

~59!

In the second form, a nucleon operator carries all of the p
momentum, the correct single nucleon plus momentum
erator is the canonical conjugate momentum which is shi
by the termgvV1. The second form is the appropriate one
it is related to the original covariant Lagrangian. The te
y fN(y) is obtained from the expectation value of the nucle
plus-momentum operatorc81

† ( i ]12gvV1)c18 , while
y f(y) is obtained fromc1

† i ]1c1 with f N(y) as the distri-
bution function which emerges from a covariant treatmen

IV. FOUR MORE MODELS IN MEAN FIELD
APPROXIMATION

The Walecka model, evaluated in MFA, was known
have some phenomenological troubles. The compressib
is too large, and the very small effective mass~shown here to
be irrelevant for deep inelastic scattering! does enter into
quasielastic scattering, in which it is a straightforward ma
to show that the cross section is given by an integral over
distribution f (y) and notf N(y). The reason for this is that in
the MFA the struck nucleon feels the same vector and sc
potentials as a bound nucleon. Hence it was of interes
improve the Lagrangian. This has been done in a variety
ways. We consider four other models here, mainly to sh
that the same functionf N(y) emerges from each one and th
each one satisfies the Hugenholtz–van Hove theorem.
validity of this theorem is a signal that the nucleons carry
of the plus-momentum, just as for the Walecka model, so
there can be no significant binding effect.

All of the models have essentially the same saturat
properties, but each is distinguished by using a differ
mechanism to reduce the putative amount of momentum
ried by the vector mesons. Here we simply define the mod
and summarize the results. The details of the solution
presented in the Appendix. The important parameters of e
model are displayed in Table I.

The No Vector Walecka~NVW! model is defined by the
elimination of the vector meson field in favor of a poi
coupling interaction of the formG jm j m with j m[c 8̄gmc8. In
this case the nucleons carry all of the momentum. T
Zimanyi-Moszkowski~ZM! model@31# is defined by using a
rescaled derivative coupling interaction in which the sca
coupling in the Lagrangian is given by the term2c̄8M /(1
2gsf/M )c8. This model is known to involve a larger effec
tive mass and smaller vector field than the Walecka mo
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The Appendix shows that, in this model, the nucleons ca
about 92% of the total plus momentum. The No Vec
Zimanyi-Moszkowski~NVZM ! model is defined by starting
with the Zimanyi-Moszkowski Lagrangian and then remo
ing the vector mesons in favor of a current-current inter
tion as in the NVW model. Again nucleons carry all of th
plus-momentum. The Rusnak-Furnstahl~RF! point coupling
model contains no explicit meson fields, and the interacti
included via a variety of nonlinear couplings. The paramet
are given in Ref.@12#, and arguments for their naturalness
terms of effective field theory have also been presented@13#.
The nucleons carry all of the plus-momentum and the
merical value of the effective mass isM* 50.73M , signifi-
cantly higher than that of the Walecka model.

Each of the models summarized in Table I has essenti
the same saturation properties even though the values ofM*
andEF* display huge variations. Note that each model ha
nucleon mode equation~33!, ~A9!, ~A16!, ~A29!, and~A36!,
and these are summarized by the single unifying expres

~ i ]22gvV1!c15
k'

2 1~M* !2

k1
c1 . ~60!

The numerical values ofgvV1 are listed along with other
relevant information regarding the five models in Table I.

V. BEYOND THE MEAN FIELD APPROXIMATION

It is worthwhile to discuss the generality of the result th
there is no significant binding effect. Consider any mod
such that of Ref.@18# in which mesonic fields are not explic
components of the nuclear Fock state wave function.
example, one may eliminate the mesonic degrees of free
in favor of two- and three-nucleon interactions without ma
taining the mesonic presence in the nuclear Fock state w
function. Such models, correctly evaluated, obey
Hugenholtz–van Hove theorem, Eq.~2!. The validity of this
theorem is a signal that nucleons carry all of the plus m
mentum, so that the baryon and momentum sum rules E
~15!–~18! are satisfied. This means that for equilibrium t
following conditions hold:

P65PN
6 , ~61!

P15P2. ~62!

These two equations~the first is defined by the model, th
second by stability! may be thought of as the light fron
version of the Hugenholtz–van Hove theorem. Therefore
may again apply the analysis of Refs.@3,24# and expand
f N(y), appearing in the integral of Eq.~4! about its peak
value of unity. It is generally sufficient to keep only thre
terms. Thus one finds

F2A~x!5F2N~xA!1g@2xAF2N8 ~xA!1xA
2F2N9 ~xA!#,

~63!

g[E dy ~y21!2f N~y!. ~64!
1-8
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The coefficientg is larger than the term proportion tokF
2 of

Eq. ~21! because the effects of correlations extend the wi
of the distributionf N(y), but it multiplies a term which is
positive in the valence quark region. Thus, once again we
that the only binding effect appears in the presence of
variablexA which is only slightly larger thanx, see Eq.~5!.
This effect is too small to reproduce the data; there is es
tially no EMC binding effect. The result~63! is very similar
to Eq.~21! in that the term, usually associated with the bin
ing effect, proportional to (]/]y)F2N(xA /y)uy51 vanishes
because of the second sum rule of Eq.~2!. We stress that any
model in which nucleons are the only degrees of freed
must obey the momentum sum rule, as expressed in e
Eq. ~16! or ~18!. Thus Eq.~63! will emerge and the mode
will not have a sufficiently large binding effect to explain th
nuclear deep inelastic scattering data at large values ofx.

Can the conventional meson-nucleon picture of nucl
structure~which ignores off-shell effects! be used to repro-
duce the nuclear deep inelastic scattering data in the val
quark region of Bjorkenx? The only way to get a binding
effect is to compute the nuclear ground state wave func
in such a manner as to obtain the mesonicPm

6 and nucleonic
contributions:

P15PN
11Pm

1 , ~65!

P25PN
21Pm

2 , ~66!

in which the meson contentPm
6 is treated explicitly. In gen-

eral,Pm
6 consists of terms arising from any of the exchang

mesons which are responsible for the nuclear force

Pm
65Pp

61Pv
61Ps

61•••. ~67!

The equation forP1 was used long ago@32#, in which nucle-
ons and pions contributed to the total, and with moment
conservation presented as the justification for the equatio
is useful to realize that the use of the energy-momen
tensor provides a general basis for this sum rule. For
ample, in the work of Refs.@8,37# the use of a chiral La-
grangian, containing isoscalar vector mesonsVm,Vmn

5]mVn2]nVm, scalar mesonsf and pionsp, and standard
manipulations give

T115VikVik1mv
2V1V11c̄g1i ]1c1]1f]1f

1]1p•]1p1p•]1p
p•]1p

p2 S 12
f 2

p2sin2
p

f D ,

~68!

with P1 given by

P15^T11&V, ~69!

with the brackets denoting a ground state matrix elem
The point is that each separate term corresponds to a ter
eitherPN

1 or Pm
1 , and therefore identifiable as a term in th

sum rule~65!. However, the field equations provide relatio
01521
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between all of the fields. Thus, one can not get a reason
result for P1 by considering only one of the terms whic
contribute.

The pressure balance conditionP15P25AM̄, must hold
for a stable solution so that one finds

PN
12PN

25Pm
22Pm

1 . ~70!

Thus the condition needed to prove the the Hugenholtz–
Hove theorem~that PN

15PN
25AM̄) is not obtained. We

know thatPN
1,MA because all of the contributions toPm

1

are positive definite. One may therefore define a posit
quantitye via the deviation

e[
Pm

1

MA
, ~71!

so that

E dyy fN~y!512e. ~72!

Thus Eqs.~70!,~71! can be thought of a generalization of th
Hugenholtz–van Hove theorem which is equivalent to
momentum sum rule. With this new feature, the applicat
of the expansion procedure to the integral of Eq.~3! yields a
term proportional toe:

F2A~x!5F2N~xA!1exAF2N8 ~xA!

1g@2xAF2N8 ~xA!1xA
2F2N9 ~xA!#. ~73!

Equation~73! corresponds to the usual binding effect whi
now is present. However, one needs fairly large valuee
;0.05 to reproduce the deep inelastic data for iron@3#, and
e;0.07 to reproduce the nuclear matter extrapolation sho
in Fig. 2. Early calculations@33,32# in which pions are al-
lowed to carry such a momentum fraction have another c
sequence@34#: an enhanced nuclear antiquark content wh
turned out to be in contrast with the results of the nucl
Drell-Yan experiment@35#. A more recent light-front calcu-
lation @36,37#, which included the effects of nucleon-nucleo
correlations as well as those of an explicit meson Fock sp
finds that pions carry about 2% of the nuclear plus mom
tum. While this value is consistent with the Drell-Yan expe
ment @38#, usinge50.02 would provide too small a reduc
tion in the nuclear structure function. It is possible that oth
mesons could supply significant contributions toe, and it is
necessary to investigate this possibility. However, con
tency with the Drell-Yan experiment must be maintaine
While it seems unlikely that a careful calculation will b
consistent with both the deep inelastic and Drell-Yan da
we cannot rule that out now.

The analysis of the previous paragraph is similar to
early one of Refs.@3# and@32#. The main difference occurs in
the present ability@9# to compute the nuclear binding energ
in terms ofPN

6 andPm
6 .

It is also worthwhile commenting on the modern calcu
tions @6# which use the nucleon spectral functionS(p) to
compute the quantityf N(y). It is necessary to obtain Eq.~72!
1-9
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with a significantly large value ofe to achieve agreemen
with data. However, a complete calculation should also
tain the very same value ofe from Eq. ~71!. But models in
which the mesons are eliminated in favor of two and th
nucleon potentials, forfeit the ability to compute the value
e directly. It is possible to make a completely accurate c
culation of f N(y) which would reproduce the correct valu
of e, but a computational error which is only a few percent
f N(y) corresponds to a huge percentage error in the sm
quantity e. Hence, such calculations must be regarded
inconclusive. Even if we take the calculations at face val
the models ‘‘are not completely satisfactory.’’ If mean fie
models are used, nuclear binding accounts for only 20%
the observed effect@39#. Very large separation energies~val-
ues ofe), inconsistent with the mean field calculations, a
required @24,40# to reproduce the data. Calculations ha
been made including correlations, but the summary of R
@41,42# made in Ref.@6# is ‘‘But for all nuclei considered the
predicted deviation of the ratioR(x) ~is! much smaller than
the experimental one.’’ This statement applies also to
work of Ref. @43#, if the ‘‘off-shell nature of the nucleon’’ is
ignored. The inclusion of off-shell effects by allowing th
nucleon structure function to depend on the momentum
the nucleon in the nucleus~as well as onx/y) can lead to a
significantly improved description of the data@44,43#. This
agreement is consistent with the results of the present w
Here we consistently ignore off-shell effects, categoriz
these, along with a host of others, as interesting effects
any case, one would need to understand the implication
analogous off-shell variations in operators used in impu
approximation calculations for many nuclear reactions. F
thermore, it is not clear to us that these formulations@44,43#
provide nuclear structure functions which are consistent w
the baryon sum rule.

VI. SUMMARY AND DISCUSSION

The principal result is that relativistic mean field mode
of nuclei, successful for many observables, do not con
the binding effect needed to reproduce the depletion
served by the EMC. The generality of this conclusion is
lated to the use of the mean field approximation, consis
with the Hugenholtz–van Hove theorem@17#, which se-
verely constrains the nucleon distribution functionf N(y).
This theorem has the further implication that any model
which the entire plus momentum is carried by the nucleo
in the sense of Eq.~2!, also contains no binding effect. Thu
including nucleon-nucleon correlations~within a model con-
taining only nucleons in the Hamiltonian! cannot reproduce
of the data. A minimum feature necessary to describe
data using conventional meson-nucleon dynamics is that
mesonic components must comprise an explicit part of
nuclear Fock state wave function, and the mesons must c
a significant fraction of the nuclearP1. But there are severe
constraints on the nuclear antiquark content@34,35# and
these limit the flexibility of mesonic models. Therefore,
of our present considerations are consistent with the no
that some effect not contained within the conventio
framework is responsible for the EMC effect.
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APPENDIX: FOUR MORE MODELS

Four other relativistic models are solved using light fro
dynamics in this section. The techniques are the same a
Sec. III, so our treatment will be briefer than what appe
above.

1. The No Vector Walecka model

To reduce the effects of vector mesons it is natural
employ a Lagrangian that has only one meson field, a sc
field f. The repulsion is supplied by a repulsive vector po
coupling. The Lagrangian is

LWNV5
1

2
~]mf]mf2ms

2f2!

1c̄8~ i ]/ 2M2gsf!c82G jm j m , ~A1!

where

j m[c̄8gmc8. ~A2!

The resulting equation of motion for the Dirac field is

gm~ i ]m22G jm!c85~M1gsf!c8, ~A3!

and the equation for the scalar field is again Eq.~24! The
canonical energy-momentum tensor is given by

Tmn52gmnL1]mf]nf1
i

2
c̄8~gm]n1gn]m!c8.

~A4!

In the mean field approximation~MFA! the equations of
motion are given by Eq.~28! for the scalar field and

gm~ i ]m22G^ j m&!c85~M1gsf!c8, ~A5!

for the Dirac field. The components of the energ
momentum tensor are given by

TMFA
11 5 i c̄8g1]1c8, ~A6!

TMFA
12 5ms

2f222c̄8~gm~ i ]m2G^ j m&!2M2gsf!c8

1
i

2
c̄8~g1]21g2]1!c8. ~A7!

We solve the Dirac equation as in Sec. III using the tra
formation

c85e22iGL(x)c, ]1L5^ j 1&, ~A8!
1-10
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RETURN OF THE EMC EFFECT PHYSICAL REVIEW C65 015211
and definej̃ m5^ j m&2]mL ~note thatj̃ 150 by construction
and j i50 in the rest frame so that the only nonvanishi
component in the MFA isj̃ 25rB). The Dirac equations for
c1 andc2 become

~ i ]222G j̃2!c15@a'•p'1b~M1gsf!#c2 ,

i ]1c25@a'•p'1b~M1gsf!#c1 .

If we assumec;eik•x, then we obtain

~ i ]222G j̃2!c15
k'

2 1~M1gsf!2

k1
c1 . ~A9!

Returning to the energy momentum tensor, which has a
changed under the transformation Eq.~A8!, we find

TMFA
11 52c1

† ~ i ]112G^ j 1&!c1 , ~A10!

TMFA
12 5ms

2f212c1
† ~ i ]222G j̃2!c1 . ~A11!

Using Eq. ~A9! in Eq. ~A11! and the light front four-
momentum definition Eq.~36! we obtain

P2

V
5ms

2f21
4

~2p!3EF
d2k'dk1

k'
2 1~M* !2

k1
, ~A12!

P1

V
5

4

~2p!3EF
d2k'dk1~k112GrB!. ~A13!

The second term in Eq.~A13! can be rewritten

4

~2p!3EF
d2k'dk12GrB5

8GrB

~2p!3EF
d2k'dk152GrB

2

and the resulting equations are exactly those of the Wale
model and we draw the correspondence~with kF
51.42 fm21)

2GM2→
gv

2

mv
2 M2, ~A14!

which means that the saturation properties of this model
the same as those of the Walecka model.

An important difference between this model and the W
lecka model is that the extra term isnot due to vector me-
sons, but part of the nucleon contribution toP1. All of the
plus momentum is due to the nucleons and not the ve
mesons. It is apparent that this model is consistent with
Hugenholtz-van Hove theorem. The values ofP6 are the
same as those of the Walecka model for all values ofkF .

2. The Zimanyi-Moszkowski model

The rescaled derivative coupling Lagrangian given by
manyi and Moszkowski@31# is known to have a smalle
vector potential than the Walecka model. This model is
fined by the Lagrangian
01521
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LZM5
1

2
~]mf]mf2ms

2f2!2
1

4
VmnVmn1

1

2
mv

2VmVm

1c̄S gm~ i ]m2gvVm!2
M

12
gsf

M
D c. ~A15!

Using the methods described in Sec. III, one finds that
eigenvalue equation corresponding to Eq.~33! is given by

~ i ]22gvV2!c15
k'

2 1~M* !2

k1
c1 , ~A16!

where

M* 5
M

12
gsf

M

, ~A17!

V25V05
gvrB

mv
2

. ~A18!

The fieldV2 is transformed according to Eq.~31!. The rel-
evant components of the energy-momentum tensor are

TMFA
11 5mv

2V0
212c1

† i ]1c1 , ~A19!

TMFA
12 5ms

2f212c1
† ~ i ]22gvV2!c1 , ~A20!

and soP1 andP2 are given by

P2

V
5ms

2f21
4

~2p!3EF
d2k'dk1

k'
2 1~M* !2

k1
, ~A21!

P1

V
5mv

2V0
21

4

~2p!3EF
d2k'dk1k1, ~A22!

which are superficially the same as the Walecka model,
differ in that nowM* is given by Eq.~A17!. The parameters
of the model are obtained by minimizing the total energy
kF51.42 fm21, using the values

gv
2

mv
2

M2543.2, ~A23!

gs
2

ms
2

M25140.4, ~A24!

which corresponds to

M* 50.85M . ~A25!

The plus momentum may be decomposed usingP15Pm
1

1PN
1 ~meson part and a nucleon part!
1-11
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Pm
1

A
5

mv
2V0

2

rB
573 MeV, ~A26!

PN
1

A
5

1

rB

4

~2p!3EF
d2k'dk1k15850 MeV. ~A27!

The nucleons carry about 92% of the total plus momentum
this model. Despite this, the Hugenholtz–van Hove theor
is satisfied because the expressions forP6 in terms ofV0

and M* are the same as those of the Walecka model.
only difference is the relation betweenM* andf. However,
that relation does not enter in the derivation of t
Hugenholtz–van Hove theorem presented in Sec. III.

3. A No Vector Zimanyi-Moszkowski model

The next step is to modify the Zimanyi-Moszkowski L
grangian by removing the vector mesons in favor of
current-current interaction as in Appendix 1. This Lagrang
is

LNVZM5
1

2
~]mf]mf2ms

2f2!1c̄S gmi ]m2
M

12
gsf

M
D c

2Gc̄gmcc̄gmc. ~A28!

The results follow exactly as those of Appendix 1. Spec
cally, changing from a ‘‘vector’’ to ‘‘no vector’’ model does
not affect the minimization of the energy density and the
fore leaves the coupling constants~A23! and ~A24! un-
changed if we make the identification 2GM2→(gv

2/mv
2)M2.

The operator corresponding to Eq.~A9! is

~ i ]222G j̃2!c15
k'

2 1~M* !2

k1
c1 . ~A29!

For this modelP2 is exactly Eq.~A21! and we have plus
momentum

P1

V
5

4

~2p!3EF
d2k'dk1~k112GrB!. ~A30!

This model obeys the Hugenholtz–van Hove theorem
cause the values ofP6 are the same as those of the Ziman
Moszkowski model for all values ofkF .

4. Rusnak-Furnstahl point coupling model

The point coupling Lagrangian of Ref.@12# is the modern
version of the original Walecka which is connected to QC
through symmetry and naturalness. This model is define
terms of the following densities:j m5c̄8gmc8, rs5c̄8c8,
andsmn5c̄8smnc8, so that
01521
in
m

e

n

-

-

-

in

LRF5c̄8~ i ]2M !c82rs
2~k21k3rs1k4rs

2!

2 j m j m~z21h1rs1h2rs
21z2 j m j m!

2]mrs]
mrs~kd1a1rs!2]m j n]m j n~zd1a2rs!

2 f v~]m j n!smn .

The parameters are given in Ref.@12#, and arguments for
their naturalness in terms of effective field theory have a
been presented@13#.

The relevant components of the symmetric energy m
mentum tensor in the MFA are given by

TMFA
11 5 i c̄8g1]1c8, ~A31!

TMFA
12 522c̄8~ i ]/ 2M !c812rs

2~k21k3rs1k4rs
2!

12 j m j m~z21h1rs1h2rs
21z4 j n j n!

1
i

2
c̄8~g1]21g2]1!c8, ~A32!

and the Dirac equation is

~ i ]/ 2M !c85@rs~2k213k3rs14k4rs
2!

1gm j m~2z212h1rs12h2rs
214z4 j n j n!

1 j m j m~h112h2rs!#c8. ~A33!

Note that the various densities are constants within the M
we may define

M* [M1rs~2k213k3rs14k4rs
2!1 j m j m~h112h2rs!,

~A34!

GRF5z21h1rs1h2rs
212z4 j m j m, ~A35!

and follow Sec. III to obtain the equation

~ i ]222GRFj̃ 2!c15
k'

2 1~M* !2

k1
c1 , ~A36!

and the momenta

P2

V
522k2rs

224k3rs
326k4rs

422h1rsrB
224h2rs

2rB
2

24z4rB
41

4

~2p!3EF
d2k'dk1

k'
2 1~M* !2

k1
, ~A37!

P1

V
52GRFrB

21
4

~2p!3EF
d2k'dk1k1. ~A38!

The derivation of Eq.~A37!, involves adding and subtractin
M2M* in order to use the Dirac operator~A36! in obtain-
ing the last term. The numerical value of the effective ma
is computed to beM* 50.73M for kF51.31 fm21.

The proof of the Hugenholtz–van Hove theorem is o
1-12
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tained by going through the steps analogous to those of
~41!–~53! for this updated model. One can see numerica
in Table I that the model obeys the theorem. Additionally,
u

th
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s.

in

to
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th
nc
in

ig

.

01521
s.
y
e

total energy, given by substituting Eqs.~A37! and~A38! into
Eq. ~41!, is due entirely to nucleons, and therefore the mo
must obey the Hugenholtz–van Hove theorem.
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