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Return of the EMC effect
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The relationship between the properties of nuclear matter and structure functions measured in lepton-nucleus
deep inelastic scattering is investigated using light front dynamics. We find that relativistic mean field models
such as the Walecka, Zimanyi-Moszkowsand point-coupling versions of the saand Rusnak-Furnstahl
models contain essentially no binding effect, in accord with an earlier calculation by Birse. These models are
found to obey the Hugenholtz—van Hove theorem, which is applicable if nucleons are the only degrees of
freedom. Any model in which the entire Fock space wave function can be represented in terms of free nucleons
must obey this theorem, which implies that all of the plus momentum is carried by nucleons, and therefore that
there will be essentially no binding effect. The explicit presence of nuclear mesons allows one to obtain a
modified form of the Hugenholtz—van Hove theorem, which is equivalent to the often-used momentum sum
rule. These results argue in favor of a conclusion that the depletion of the deep inelastic structure function
observed in the valence quark regime is due to some interesting effect involving dynamics beyond the con-
ventional nucleon-meson treatment of nuclear physics.
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[. INTRODUCTION to obtain the probability that a nucleon carries a three mo-
mentumk, but, if one uses only naive considerations, one
The European Muon Collaborati¢BMC) effect in which  faces a puzzle when deciding how to choose the valué€ of

the structure function of a nucleus, measured in deep inelasshould one use the average separation energy, or the average
tic scattering at values of Bjorkex=0.4 corresponding 10 cleon mas#l, or possibly the effective mass in the chosen
the valence quark regime, was found to be reduced Compar?ﬂany-body theory?
with that of a free nucleon was discovered almost twenty The essence of the binding explanation is #fis given
years ago[1]. Despite much experimental and theoreticalby the free nucleon masdl minus the average separation
progresg 2,3], no unique and universally accepted explana- Then f . | ked at=1— e/M
tion of the depletion has emerged. The immediate partoﬁnergye' enf(y) is narrowly peaked ay €IM (e

model interpretation that the nucleon bound in a nucleus car~ /0 MeV for infinite nuclear mattefS)). In this case, the

; ; ructure function of a bound nucleon is approximately ob-
ries less momentum than in free space seems uncontested’ PP y

but determining the underlying origin remains an elusivet@ined by replacing=zy(x) by Fan(x/(1—€/M)). The in-
goal. crease in the argument leads to a significant reduction in the

One popular explanation is that conventional nuclearalue of the nuclear structure function The theoretical under-
binding effects are responsible. The conventional lore is thagtanding of the binding effecas of 1996 is reviewed nicely
the nuclear structure functiofi,o(x) (which gives the mo- in the book[6], which summarizes the various treatments as
mentum distribution of a quark in a nucleus as a function of‘not completely satisfactory.” This kind of explanation
the fractional momentum carrip¢an be obtained from the seems very natural because nuclear binding is known to oc-
light front distribution functionf(y) (which gives the prob- cur, so such an effect must be understood thoroughly before
ability that a nucleon carries a fractional momentyjnand  hoping to extract information about a possible host of more
the nucleon structure function of a free nucldesy using interesting exotic effects. In any case, one needs to supply a

the relation[4] derivation to avoid the need to arbitrarily choose a prescrip-
tion for k°.
FIo%(x) This need drove one of us on to the light fr¢it8]. That
A =f dyf(y)Faon(X/y). (1) is, to attempt to use light front dynamics to derive the

nuclear wave function. The reason for this is that, in the

) ) ) ) _ parton modelx is the ratio of the plus component of the
This formula has a simple interpretation as an expressiofomentum of the struck quark to that of the target, and it is
which gives a probability as a sum of products of probabili-the plus component of the momentum which was observed to
tigs. The variable is Fhe Bjorken variablec= Q?%/2M v, and be depleted by the EMC. In the view of R§8], using light
yis Atimes the fraction of the nuclear plus-momentum car-ront dynamics is the most effective way to assess the influ-
ried by the nucleon. The plus component of a four-vector issnce of binding effects. However, one must pay the price of
the sum of the time and third spatial component, sk*ifis  computing nuclear wave functions using these dynamics.
the momentum of a nucleon aft is the momentum of the The first attemptg7,8] in this direction employed the
target nucleus y=(k%+k%)A/P"=(k%+k*A/Ma=(k’  popular and successful Walecka moFE8] which has many
+k3)/M, in which the nucleus is taken to be at rest with effective descendantsl1-13. The salient result was that
P*=M,. One can easily use conventional nuclear physicvector mesons carried 35% of the nuclear plus momentum
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and nucleons only 65%R;/P* =0.65), far smaller than the vary widely. Again our specific calculations are limited to the
value (1— /M)~ 0.95 needed to reproduce the observationdFA. However, in Sec. V, the application of the
for the iron nucleus. However, the connection between thélugenholtz—van Hove theoreft7] allows us to make some
nucleon momentum distribution computed using light frontgeneral statements about models which include nucleon-
dynamics and that used in computing the deep inelastiducleon correlations. In particular, we use this theorem to
structure function was not made. Recently, the authors o¢xplain why no binding effect is contained in any model,
Ref.[14] have claimed that quark distribution functions aresuch as that of Ref18], in which nucleons are responsible
not parton probabilities. Their message to us is that, in anjor the entire plus momentum of the nucleus. This is in ac-
situation, one needs to derive the connection between theord with early observations of R€f3], but now there is an
constituent distribution function and the observed data. Thaadditional ability to compute all of the relevant nuclear prop-
work stimulated us to undertake the present investigation irties using light front dynamics. We also use our findings to
which we derive the connection between the nucleon moassess existing treatments of the binding effect. Section VI is
mentum distribution and the structure function measured i@ summary of our results and their implications. In the Ap-
deep inelastic scattering. pendix we use light front dynamics to compute nuclear prop-
First we outline our procedure. We start in Sec. Il byerties of the four models of Sec. IV.
considering relativistic models of infinite nuclear matter
computed using the mean field approximation. We derive and
apply the nucleon distribution functidiy(y) appropriate for Il. DEEP INELASTIC SCATTERING FROM NUCLEI

use in computing deep inelastic scattering structure func- we are testing the hypothesis that conventional nuclear
tions. The functionfy(y) is shown to be the one which dynamics can explain the EMC effect. This means that we
maintains the covariance of the formalism, and in which theneed to include possible binding energy and Fermi motion
nucleons carry the entire plus-momentén of the nucleus effects, but not dynamics related to true modifications of the
[15]. This result is obtained independently of the specificnucleon structure or off-shell effects caused by the nuclear
relativistic mean field theory used, so no such theory conmedium. In this case the use of a manifestly covariant for-
tains the binding effect discussed above. The only bindingnulation to derive the expression for the structure function
effect arises from the average binding energy of the nucleugads to a convolution formula. The key assumption is that
(16 MeV for infinite nuclear matter and is far too small to  the system formed by the absorption of the photon is not a
explain the observed depletion of the structure function. Thi$ound nucleon and therefore does not have the same inter-
is in accord with an earlier similar finding by Bir§#6]. The  action. The relevant lifetime of the struck system igN/
generality of this result encourages us to seek a broader cor:0.5 fm (for x=0.5) which corresponds to a very short
text. This is found in the Hugenholtz—van Hove theoremnyclear time, too short for interactions. If one uses the free
[17] which states that the binding energy of the level at thenycleon structure functiomeglecting off-shell effecjsand
Fermi surface is equal to the average binding energy, or the, | for free nucleons one find4.9]

energy of the level at the Fermi surfaBg is equal to the

nuclear mass divided b

Faa(Xa) f“
_ = | dyfy(Y)Fon(Xaly), &)
Ec=M,JA=M. @ A " Yfn(Y)Fan(Xaly
This theorem is the consequence of using the condition that 4 0. 13 .
the total pressure of the nucleus vanishes at equilibrium, and (y)= d’k 5 Ktk el Y (k.P)
the assumption that nucleons are the only degrees of freedom 'NY/ = (2m)* y 2P AX T
contributing to the nuclear energy. Thus this theorem is a (%)

signal thatP* =Py, or that nucleons account for the entire
plus momentum of the nucleus. This generally is understood .
to imply that there will be no EMC binding effe8], thus whereP is the total four-momentum of the nucleus, and
any model which obeys E@2) can be expected not to have
one.

The next step is to recall in Sec. Ill how light front dy-
namics is applied to computing the properties of infinite
nuclear matter using the Walecka modat a specific ex-
ample in mean field approximatioMFA). The purpose is
to illustrate the general formalism needed to go beyond the
mean field approximation, provide an explicit example of the
general results presented in Sec. Il, study the nuclear struc-
ture origins of the nuclear momentum content, and show
explicitly that the Hugenholtz—van Hove theorem is satis- F|G. 1. Diagram for computing the nuclear structure function. A
fied. nucleus of momentun® emits a nucleon of momentuig which

In Sec. IV we introduce four other model Lagrangians inemits a quark of momentum, which absorbs the virtual photon of
which the values of the effective mass and vector meson fielthomentum.
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Xp=Q?A/2P - q=XAM/M 4= xXM/M (5) =(p*/k*)(k*/E*), where p# is the quark momentum, with
- P*=M,=AM. The basis of the formul&) is that both the

with M as the free nucleon mass akb=M 4 /A. The func- quark and nucleon distributions are directly related to mani-
tion x(k,P) is (proportional t9 the connected part of the festly covariant Green’s functio49,21. This is a standard
nuclear expectation value of the nucleon Green’'s functiorresult using nothing more than the stated assumptions and
[20], and the trace is over the Dirac and isospin indices. Thathe Feynman diagram in Fig. 1; it will be shown to fail to
fn(y) is a Lorentz scalar is manifest from the structure ofexplain the EMC binding effect and implies that the original
Eqg. (4). We note the appearance bf instead of the free hypothesis is false.
value of the nucleon madd. This arises here from the defi- The manifestly covariant form of the single nucleon
nition (5) and the feature that, in the Bjorken limit, the Green’s function has been known for a long tifi22], and
nuclear structure function depends on the rato/P* its use(in the nucleus rest framéeads to the result

1 N i
(k—V)2=M*2+je E*(K)

x(k,P)=—i2P"Q[y-(k=g,V)+M*] S(KO—E*(k)—g,V%) |o(ke—K)),  (8)

where

fn(y) —r4 fdzk dk3—E*(k)+k3
NY)= L
2 *
E* (k)= M* 7+ 12, @) (2mpe (0
E*(k)+g,V'+k3
The general form of the Green’s function depends on a vec- X6\ y— = O(ke—[k[). (8)

tor potentialV=(V°,0) for a nucleus at rest, and the effec-
tive massM* which includes the effects of interactions on
the nucleon mass. The values \éfand M* depend on the The integration is simplified by using the transformation
specific Lagrangian employed, but the form of the Green's
function is general. Recall also that =V *=V0 for the
expectation values of vector meson fields in the nucleus rest
frame.

The result(6) was first obtained using the conventional \ynich makes a connection with light front variabgs]. It

equal time approach, but the very same can also be obtaingg sy exercise in geometry to show that the Fermi volume can
from the light front formalism. In that case it is necessary topg reexpressed in terms ki using

include the effects of the instantaneous part of the nucleon
Green'’s function and those of the instantaneous meson ex-
change. 2 +_ER\2 2 *— 2o \*2
. . +(k*— < =ke+
The next step is to insert the connected gsecond term kit (kT —Bp)"<ke, Bp=vket M™% (10
of (6) into Eq.(4) for f(y). This gives, after taking the trace
and using the delta function to integrate okér the result so that Eq(8) becomes

k*=E* (k) +k?, 9

4 k*+g,V*
fN(y)=—rf dszdk+a(k§—ki—(k+—E;§)2)5 y—Tg : (1)
(2m)°pe
The use of the definition of the energy of a nucleon at the Fermi surface
EF:EE +gvv+:E§+gUVO' (12)

allows one to achieve a simple expression figty):
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3 '\73 o o 2 2
faly) = 1 k_ga[(EF“‘kF)/M —y]O(y—(Eg—kg)/M)
F

Ee

ﬁ_y

(13

The result Eq(13) can be further simplified by using the Hugenholtz—van Hove theorem displayed ifR)=&ection 1lI
contains an explicit demonstration of Eg) for the Walecka model and the Appendix contains a similar demonstration for the
other relativistic models evaluated using the mean field approximation. Usin@)gq.Eq. (13) therefore leads to the general
result

— 2

3 M
fN(y):——0(1+kF/M y)e(y—(1- kF/M))

—(1 y) ] (14

correct for any relativistic mean field theory of infinite
nuclear matter. Different theories with the same binding en- f dk"f(kT)=A, 17
ergy and Fermi momentum may have very different scalar
and vector potentials, but must have the sdmg).
A result very similar to Eq(14) was previously obtained _
by Birse[16]. The difference between his formula and ours is f dk k" (k) =AM=M,. (18

the appearance dfl in the functionfy(y), whereas he uses
M. This difference is a small effect numerically, and there-
fore our conclusions will be the sam e as his. The momentum sum rul€l8) shows the total plus momen-
The baryon sum rule and momentum sum rules are detum carried by the nucleongs seen in deep inelastic scat-
rived by taking the first two moments &f,(y). This gives tering is also the total momentum carried by the nucleus.
The main result of this is that the nuclear structure func-
tion is given by Eq(4) with the functionfy(y) obtained in
J dyfu(y)=1, (15)  Eq.(14). This tells us that, despite the fact that there is con-
siderable binding energy, there is no EMC binding effect.
Indeed,F,, depends on the Fermi momentum but does not
depend on the effective mabt* .
f dyy fu(y)=1. (16) The quantity measured in deep inelastic scattering is the
ratio defined by

The latter equation is remarkable; it states that in deep in-

elastic scattering the nucleons act as if they carry all of the R(x) = Faa(Xa) (19
P* of the nucleus even though the mesonic fields are very AFN(X)
prominent.

This is clearer if we reinterpret these sum rules in terms of
a probablhtny(k*) that a nucleon has a plus momentumA numerical study of this expression using, five different
yM with fy(k*)= AfN(yM)/M so that relativistic models is presented below. First, we emphasize
the qualitative features. Since the widthfgfis given by the
small quantityke/M it is a very narrow function. In this
case, one may evaluate the integrand of @by expanding
Fon(X/y) in a Taylor series about=1 [24] to find that

11

TABLE I. Summary of the models—taking the sumg)JtV*/I\W

R and EE/I\W shows that each model satisfies the Hugenholtz—van
0.9 Hove theorem, Eq(2).
08 Model  g,V*™ g V*'/M Ef/M M*/M ke(fm™') PJ/PA
07 W glpg/m2 0.355 0.645 0.56 1.42 0.65
0 02 0.4 < 0.8 08 NVW 2Gpg 0.355 0.645 0.56 1.42 1
ZM gZpg/m? 0.079 0.921 0.85 1.42 0.92
FIG. 2. R(x) vsx for W, NVW, ZM, NVZM (solid line), and RF NVZM  2Gpg 0.079 0.921 0.85 1.42 1
(dashed ling The data shown here are from the extrapolation ofRF 2Grepg 0.194 0.806 0.73 1.31 1
Ref.[25].
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Fan(Xa) k|2: 1 2,00 Lo, 1,
R(X)= +— 2XAFhn (X Lw=75 (0 Ppd,p—mgdp®) — VIV, + S miVEV
CO= 000 T 1O g e 2ntw) 20 T TET S 4n 2 .
+X3F5n(%a)], (20) H Ly, — 9,V —M—gsh]y’, (23)

. o with the field equations
which shows that the only effect of the binding energy oc-

curs in the small difference betwegp andx which depends (,0"+ m2)p=—gsb' ¥, (24)
only on the small average binding energy. Note that a term

proportional 'QFQN(X) (but not proportional to the small 9 V,LVJFmgVV:gUE, N (25)
parametek%/Mz) vanishes because one is expanding about g

y=1 and using the baryon and momentum sum rules Egs. YH(id,—V ) =(M+gsd) . (26)

(17),(18). We may further approximatR(x) by expanding ) ) o

matter, andk,=<1.01x for finite nucle). Thus by [27-29
THY=—gr LAV VPG, + 0 dd"

R(x)=1+@ Fan(x) i [ 2XAF by (Xa) 1
M Fan(X)  10M2%F(x) MR ST =g V) + =g,V 1
+XAFoN(X)], (2D (27

where () is the binding energy per nucleqi6 MeV for
infinite nuclear matter anek8 MeV for finite nucle). This ) )
shows that, as long as the Hugenholtz—van Hove theorem is We follow the MFA[10] in assuming that the sources are
applicable, the only binding effect is due to the binding en-Sufficiently strong so that the resulting large numbers of me-
ergy per nucleon. One is not allowed to use the separatiofoNs can be treated in a class_lcal manner in which source
energy which is much larger. The use of E2{l) cannot lead OPerators are replaced by their expectation values. in Fhe
to a large enough depletion &(x) [16] to resemble the nuclear ground state. Furthe_rmorg, f_or a system of infinite
extrapolated data for nuclear matfes). volume, all positions and _dlrectlonen the nuclear rest
The qualitative features discussed above are prominent ifiame are equivalent. In this cas¢ andV° are constants
the numerical calculations displayed in Fig. 2 in which the@nd V=0. The approximate mesonic equations of motion
ratio R(x) of Eq. (19) is presented for five different relativ- Pecome
istic models. The relevant parameters of these models are

A. Mean field approximation for infinite nuclear matter

displayed in Table I. We note that four of the models have b=— &w,w,): _ &p (28)
identical results, with only the Rusnak-Furnstahl mdgeth g g s

its chosen different value &) differing only very slightly.

These results are obtained using a simple early parametriza- g, g,

tion [26] of the free nucleon structure function V°=Vi=ﬁ(¢”r¢’>= ?pB, (29

- 28 38 8
Fon(x)=0.58/X(1-%)*%+0.33yX(1-x)>*+0.441-%)°, iy which the brackets are used as an abbreviation for taking
) the ground state matrix element, and

but the essential features of the curves are independent of the pe=2k3/372. (30)

free nucleon structure function.

The nucleon, though described in terms of four-component

1. THE CANONICAL FORMALISM—WALECKA MODEL spinors, consists of only two independent fields. T_he inde-

pendent and dependent degrees of freedom are defined by the
We illustrate the canonical light front formalism using the

Walecka model as our first example. Some of this has bee

published previously8], but our purposes here are to set upchosen as the independent field. One more step is necessary

and illustrate the formalism necessary to go beyond the meagecause the resulting equation f¢t depends orV' in a

field approximation, provide an explicit example of the gen-complicated manner.

eral results presented in Sec. Il, study the nuclear structure |t s traditional in light front dynamics of mass-less vector

origins of the nuclear momentum content, and show explichosons to remove the effects of the tevi, by working in

itly that the Hugenholtz—van Hove theorem is satisfied. 3 gauge withv* =0. Here we use the Soper-Yan transfor-
The Walecka model employs a Lagrangian containingmation[27,29

fields for nucleons '), scalar mesong and vector mesons .
Vi y=e 0Ny, gtA=VT, (3D)

1
projection operatorsA . = > Yy  i=ALy’, with o,
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which allows a simple equation fap” in terms of ), to  is the same as in the usual treatment of the Walecka model,
proceed in a satisfactory manner, but which also causes th&s shown below. The only remaining task is to determine the
loss of manifest covariance. With this transformation the fi-Fermi momentunkg. This is done by using the minimiza-

nal version of the nucleon field equation becomes tion
(0" =g,V =la -p,+BM+gsd) |4, (t%iﬁ/A) o, 42
; F
i0"y_=[a -p,+BM+gsd) b, (32 o
Ea(ke) =My . (43

within the mean field approximatiofin which 9~ A=0) for

infinite nuclear matter. The nucleon mode functions are pla”%arrying out the differentiation leads to an equation which is

— aik-x . : .
waves soy~e™"" and equivalent to settind®” =P, which must occur for a sys-
K2 4 M*2 tem in its rest frame wittP3= O Since rotational invariance
- _ L 1,2,3_
(0 =gV )p=—— o, (33) is maintained in the solutiorP 0, and therefore the

k* pressureP=1/3%,_, P' vanishes. Thus the equatidP®

=P~ is also the light front equivalent of setting the pressure

whereM* =M +gsé. P to 0. Note also that one may explicitly carry out the dif-
The relevant components of the energy-momentum tensgerentiation to find that

in the mean field approximation MFA are obtained by using

the constant meson fields of Eq&8) and(29) in Eq. (27) to Ea/A=Mp/A=Ef +9,V°=E¢ (44)
obtain
which is the Hugenholtz—van Hove theorg¥].
T,T,lF*A:meSJr 2:,//1i(9+ Uy, (34 The above paragraph is serves as an outline of the deri-
vation of the Hugenholtz—van Hove theorem, but we also
Tara= m§¢2+2w1(i =g,V )y, (35 provide an explicit proof. First, use the transformati@hto

obtain the results
and soP* andP~ are given by

P‘ 2, 4 3 1
P =(Tuin 2, (36 Mo )3Jd E 0 5kk|, @9
aw
where(} is the volume of the system, taken as infinite at the
end of the calculation A,QQ—c with A/Q finite). The P* o2 .
evaluation of these expectation values yields ﬁ:vaO’L(Zw)g Kl E* (K + 3500 3E* (k) K-k,
P~ ,, 4 ) KZ +(M*)? 40
—=mi¢ +—f d?k, dk* ———, (37
Q (2m)3JF k™ Ea 1 55,1 50 3y *
6=5m3¢ +§mUVO+ (277)3 Fd KE*(k). (47
P+_ 2\ 72 4 2 +1,t . .. . .
ﬁ—mvvo+(2 € Fd k dk™k™. (38)  Next carry out the differentiation in Eq(42), using A
& = pg() to obtain
It is necessary to define the Fermi sea within the present JE E
context. Although we do not have manifest rotational invari- A_3 A (48)
ance here, this invariance is restored in the results if we K Ke

define the componerk® implicitly through Eq.(9). Then
P Pty gh Ea.(9 The termdE/ dkg is obtained by first eliminating all deriva-

5 5 tives with respect t@ using the feature that settintdg, /¢
JFd K- Ef dko(ke—Kk)- - -, (39 to zero reproduces the field equation fr Then one uses
the field equation for the vector mes@0). The result is
and geometry leads to 4 4 2
o

mg
kSE* __¢2_ _VO

3 *
27 2n >3f KE(

fdszdk+"'Efdszdk+9(k§—kf—(k+—E§)2)--~.
F
(40)

(49

This is a transcendental equation which determikes so
Using Egs{(37)—(39) leads to the results that the value of the that the calculation ofE, is complete. With the self-
energy of the system in the rest frame consistent Eq928),(29),(47) one obtains an average binding
energy of 15.75 MeV with a Fermi momentum &g
=142 fm' using the parameters. g{/m?)M?

Ea= =195.9, @%m2)M?=267.1, which corresponds @,V "

(P*+P7) 47

N[ -
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=323 MeV, andM*/M =0.56. These parameters are the
same as in the original Walecka model.
The relationP™ =P~ (which must hold for a system in its 12}
rest frame also emerges as a result of this minimization. To " L u
see this, rewrite the left-hand side of E49) as . - u
R OB N I gn
4 4—7Tk3E*=_4 Ef d3k| E* (k) + Kk 08 ¢ N ~
(2m)® 3 TF T (2m)% )¢ 3E*(k)/ oul ~
(50 ' DN
02 ~
Using this in Eq.(49) leads to T~ _
2 2 0 0.2 0.4 0.6 0.8
m52m02_4fgk~k X
_¢ __VO_ 3 d-k ' (51)
2 27 (2m)°)e" 3E*(K) FIG. 3. R(x) vs x for the Walecka model usingy(y) (solid

) line) and f(y) in Eq. (3) (dashed ling The data shown here are
using EQs.  from the extrapolation of Ref25]

which is what one obtains by settirg" =P
(45) and (46).

We now have the tools at hand to prove the Hugenholtz-
van Hove theorem. Simply use E@9) to remove the inte- P,j/Azj dktk*f(k"), (55)
gral appearing in Eq47) and obtain

En with

9° m2V3+ pgEf . (52)

f(k™)= —54 J d?k
Then the use of the field equati@®9) yields pe(2m)3 ) Tt

Ea _Ea

A 04 E* = 2, dpt skt —p*).
0 A ~OVEE-Er, (53 d%,dp* (k" —p*). (50

4
:pB(szL

which is the desired result. This is a remarkable result. The; js yseful to again obtain a dimensionless distribution func-

original version of the theorem was proved using only the;jgp, f(y) by replacingk™ by the dimensionless variable

assumption that nucleons are the only degrees of freedom. . -~ " = — P i
Here, the mesons are important, yet the theorem still holdgsmgy—k IM,f(y)=Mf(k"). Then one finds

[30]. VE 2 e 2
f - - 6 e 0 -V | = — ’
B. Nuclear plus-momentum content ) 4 kf; Y =9oly=y) M2 M y
Now we relate the role of the plus component of the mo- (57
mentum seen here with that of Sec. Il. The nucleonic contri- . _ . _
bution to the nuclear plus momentum from Eg9) is wherey™=(Ef +kg)/M. This function peaks ay=E¢/M

=0.65 for the Walecka model, and the average valug isf
also 0.65. Its use in Eq3) would indeed lead to a disaster.
Indeed, our previous work assumed that E.was appro-
priate. In that case, the computed rafig,(x)/A was dra-

which is also obtainable directly from taking the nuclear ex-matically smaller tharF,y. This disastrous result can be
pectation value of nucleon plus momentum operator. understood from the following logic. A reasonable first ap-

The large vector potential and small value Mf* are  Proximation to the integral Eq1) can be obtained by using
associated with the startling result that only 65% of the plusf(y)~ 8(y — EE/M) which satisfies the baryon sum rule and
momentum of the nucleus is carried by nucleons, and thatorresponds to an average valueyef0.65. ThenF,,(x)/A
35% is carried by vector mesons. It was previously arguedanishes foix>0.65 and the ratio to the free structure func-
[7,8] that this would produce a disastrously large decrease ition goes to zero in huge contradiction with experiment,
the nuclear deep inelastic structure function. As showrwhich shows depletions no larger than 20% for the heaviest
above, that does not occur, because the fundtigy) peaks nuclear targets. This result is illustrated with the numerical
aty=1. calculation shown in Fig. 3.

We therefore need to understand how it is that the nucle- However, the correct quantity to use in deep inelastic scat-
ons can carry 65% of the momentum here all of the momentering is fy(y), which emerges from a manifestly covariant
tum as stated in Sec. Il. To do this, use Esg) to define a  treatment. To see the connection betwégy) andfy(y), it
probability f(k™) that a nucleon carries a plus momentumis first helpful to compare directly Eq$14) and (57). This
k*: comparison yields

P,J\]_ 4

T— mJFdszkorkJr, (54)
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f(y)=fN(y+gvV+/l\W). (58) The Appendix shows that, in this model, the nucleons carry
about 92% of the total plus momentum. The No Vector

using the Hugenholtz—van Hove theorem E2). The cor-  Zimanyi-Moszkowski(NVZM) model is defined by starting
rect nucleon distribution function is one that is shifted by thewith the Zimanyi-Moszkowski Lagrangian and then remov-
vector potential. This simple relation suggests that there is &g the vector mesons in favor of a current-current interac-
simple interpretation of the difference betwegg(y) and tion as in the NVW model. Again nucleons carry all of the
f(y) in terms of a phase difference. Indeed, the differencelus-momentum. The Rusnak-FurnstéRF) point coupling
arises from the Soper-Yan transformatic®1) which relates model contains no explicit meson fields, and the interactions
the fields and ¢’. Thus we have two forms of the plus included via a variety of nonlinear couplings. The parameters

momentum densityf,\j;A: are given in Ref[12], and arguments for their naturalness in
terms of effective field theory have also been presef8t
Thra=m2Vi+ 2ytioty, =2y T, (10" —g,VHy' . The nucleons carry all of the plus-momentum and the nu-

(590  merical value of the effective mass id* =0.73\, signifi-
) cantly higher than that of the Walecka model.
In the second form, a nucleon operator carries all of the plus  Each of the models summarized in Table | has essentially
momentum, the correct single nucleon plus momentum opthe same saturation properties even though the valubk*of
erator is the ca?omcal conjugate momentum whlgh is shiftegyq E* display huge variations. Note that each model has a
by the termg, V™. The second form is the appropriate one asycleon mode equatiof33), (A9), (A16), (A29), and(A36),

it is relgted to_ the original covarian'F Lagrangian. The termgng these are summarized by the single unifying expression
yfn(y) is obtained from the expectation value of the nucleon

plus-momentum operator '’ (it —g,V*) ¢, while K2 +(M*)2
yf(y) is obtained fromy!io" ¢, with f(y) as the distri- (0" —gV)gp=—"—
bution function which emerges from a covariant treatment. k

b (60)

The numerical values of,V* are listed along with other

IV. FOUR MORE MODELS IN MEAN FIELD relevant information regarding the five models in Table .
APPROXIMATION

The Walecka model, evaluated in MFA, was known to V. BEYOND THE MEAN FIELD APPROXIMATION
have some phenomenological troubles. The compressibility

is too large, and the very small effective masisown here to there is no significant binding effect. Consider any model,

e o o e s e UCT ha f Re16] 1 whch mesonic fs re ot exict
q g, In which 1t | gn components of the nuclear Fock state wave function. For
to show that the cross section is given by an integral over thé

o . .~ eéxample, one may eliminate the mesonic degrees of freedom
distributionf(y) and notfy(y). The reason for this is that in in favor of two- and three-nucleon interactions without main-

the MFA the struck nucleon feels the same vector and SCaI"’Haining the mesonic presence in the nuclear Fock state wave

ﬁgt?gs:l?hzsl_: ?;ﬁni(;nnu%eis?{a?%g?n I(tjg;llzsir?falczzgft ;Emction. Such models, correctly evaluated, obey the
P grangian. Y ugenholtz—van Hove theorem, E®). The validity of this

maﬁ‘h We conflde:. four other modefls here, rr;namly tod.:,Llot heorem is a signal that nucleons carry all of the plus mo-
at the same functiofi,(y) emerges from each one and tha mentum, so that the baryon and momentum sum rules Egs.

each one satisfies the Hugenholtz—van Hove theorem. Thgg) 19 o6 satisfied. This means that for equilibrium the
validity of this theorem is a signal that the nucleons carry a”following conditions hold:

of the plus-momentum, just as for the Walecka model, so that

It is worthwhile to discuss the generality of the result that

there can be no significant binding effect. +_p=*
. . P==Py. (61
All of the models have essentially the same saturation
properties, but each is distinguished by using a different pt—p- 62)

mechanism to reduce the putative amount of momentum car-

ried by the vector mesons. Here we simply define the modelﬁrhese two equationghe first is defined by the model, the

and summarize the results. The details of the solution ar econd by stability may be thought of as the light front

pre(sj,elnted ig. thle Apge_ndix.b'll'he important parameters of eaqfsjon of the Hugenholtz—van Hove theorem. Therefore one

model are displayed in Table I. may again apply the analysis of Ref&,24] and expand
l_T_he NO Vefct(r)]r WaleckdNVW) r?_olc:jel_ IS fdefmeo:c by th? fn(y), appearing in the integral of Ed4) about its peak

elimination of the vector meson field In favor of a point 51,6 of unity. It is generally sufficient to keep only three

COUpling interaction of the fOI’rGJ’U“JM with j,u.E l//’ ’y#lﬁ', .In terms. Thus one finds

this case the nucleons carry all of the momentum. The

Zimanyi-Moszkowski(ZM) model[31] is defined by using a Foa(X) = Fon(Xa) + Y 2XaF o (Xa) + XaF an(Xa) 1,

rescaled derivative coupling interaction in which the scalar (63)

coupling in the Lagrangian is given by the termy'M/(1
—gs¢/M) ¢’ . This model is known to involve a larger effec- _ Y

tive mass and smaller vector field than the Walecka model. y=| dy (y=Dfn(y). (64)
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The coefficienty is larger than the term proportion k¢ of ~ between all of the fields. Thus, one can not get a reasonable
Eq. (21) because the effects of correlations extend the widthresult for P* by considering only one of the terms which
of the distributionfy(y), but it multiplies a term which is contribute.
positive in the valence quark region. Thus, once again we see The pressure balance conditiBri =P~ =AM, must hold
that the only binding effect appears in the presence of theor a stable solution so that one finds
variablex, which is only slightly larger thawx, see Eq(5).
This effect is too small to reproduce the data; there is essen- PN—Pn=Pn—Pm. (70
tially no EMC binding effect. The resul(63) is very similar .
to Eq.(21) in that the term, usually associated with the bind- Thus the condition needed to prove the the Hugenholtz—van
ing effect, proportional to d/ay)Fon(xa/y)|y—1 vanishes Hove theorem(that Py =Py=AM) is not obtained. We
because of the second sum rule of E2). We stress that any know thatPy <M, because all of the contributions @,
model in which nucleons are the only degrees of freedonare positive definite. One may therefore define a positive
must obey the momentum sum rule, as expressed in eithguantity e via the deviation
Eq. (16) or (18). Thus Eq.(63) will emerge and the model
will not have a sufficiently large binding effect to explain the
nuclear deep inelastic scattering data at large values of

Can the conventional meson-nucleon picture of nuclear
structure(which ignores off-shell effecisbe used to repro- S0 that
duce the nuclear deep inelastic scattering data in the valence
quark region of Bjorkerx? The only way to get a binding f dyyfy(y)=1—e. (72)
effect is to compute the nuclear ground state wave function
in such a manner as to obtain the mesdicand nucleonic
contributions:

P
E=M—A, (7D

Thus Egs(70),(71) can be thought of a generalization of the
Hugenholtz—van Hove theorem which is equivalent to the
momentum sum rule. With this new feature, the application
of the expansion procedure to the integral of E3).yields a
term proportional tce:

PY=Py+P., (65)

P =Py +P,, (66)
. . .. . F2a(X) =Fan(Xa) + €XaF on(Xa)
in which the meson conterR,, is treated explicitly. In gen- , .
eral, P, consists of terms arising from any of the exchanged + Y[2XaF on(Xa) +XaFon(Xa) ]- (73

mesons which are responsible for the nuclear force . - .
P Equation(73) corresponds to the usual binding effect which

Pr=PI+P.+P 4. ... (67) now is present. However, one need§ fairly Iarge valees
~0.05 to reproduce the deep inelastic data for if®h and

The equation foP* was used long agi82], in which nucle- €~0.07 to reproduce the nuclear matter extrapolation shown

ons and pions contributed to the total, and with momentunjn Fig- 2. Early calculation$33,32 in which pions are al-

conservation presented as the justification for the equation. [PWed to carry such a momentum fraction have another con-
is useful to realize that the use of the energy-momentun$€duencé34]: an enhanced nuclear antiquark content which
tensor provides a general basis for this sum rule. For exturned out to be in contrast with the results of the nuclear

ample, in the work of Refs(8,37] the use of a chiral La- DrfeII-Yan experimeq(SS]. A more recent light-front calcu-
grangian, containing isoscalar vector mesoN&,V~” lation [3.6,31 which included the effects pf nucleon-nucleon
= 9“\/'— g"V*, scalar mesong and pionsm, and standard qorrelatlon§ as well as those of an explicit meson Fock space,
manipulations give finds tha_t pions carry about _2% of t_he nuclear plus momen-
tum. While this value is consistent with the Drell-Yan experi-
ment[38], using e=0.02 would provide too small a reduc-
tion in the nuclear structure function. It is possible that other
a9t §2 - mesons could supply significant contributionsetoand it is
+9 w9t mt wﬂ*w—z(l——zsinz—), necessary to investigate this possibility. However, consis-
™ m f tency with the Drell-Yan experiment must be maintained.
(68)  While it seems unlikely that a careful calculation will be
consistent with both the deep inelastic and Drell-Yan data,
with P* given by we cannot rule that out now.
The analysis of the previous paragraph is similar to the
P T=(T"")Q, (69  early one of Refd.3] and[32]. The main difference occurs in
the present ability9] to compute the nuclear binding energy
with the brackets denoting a ground state matrix elementn terms ofPy andP,, .
The point is that each separate term corresponds to a term in It is also worthwhile commenting on the modern calcula-
either Py, or P\, and therefore identifiable as a term in the tions [6] which use the nucleon spectral functi®ip) to
sum rule(65). However, the field equations provide relations compute the quantitfy(y). It is necessary to obtain E(/2)

T =VRKVKEm2V IV + gyt iat g+ ot pot
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culation of f\(y) which would reproduce the correct value

of €, but a computational error which is only a few percent in APPENDIX: FOUR MORE MODELS

fn(y) corresponds to a huge percentage error in the small gqyr other relativistic models are solved using light front

quantity e. Hence, such calculations must be regarded agynamics in this section. The techniques are the same as in
inconclusive. Even if we take the calculations at face valuegegc. |11 so our treatment will be briefer than what appears

the models “are not completely satisfactory.” If mean field gpgye.
models are used, nuclear binding accounts for only 20% of

the observed effe¢B9]. Very large separation energiesl-

ues ofe), inconsistent with the mean field calculations, are
required [24,4Q to reproduce the data. Calculations have To reduce the effects of vector mesons it is natural to
been made including correlations, but the summary of Refsemploy a Lagrangian that has only one meson field, a scalar
[41,42 made in Ref[6] is “But for all nuclei considered the field ¢. The repulsion is supplied by a repulsive vector point
predicted deviation of the ratiB(x) (is) much smaller than coupling. The Lagrangian is

the experimental one.” This statement applies also to the 1

work of Ref.[43], if the “off-shell nature of the nucleon” is T 2 42

ignored. The inclusion of off-shell effects by allowing the Luny=7 ("¢, d—msé7)

nucleon structure function to depend on the momentum of _

the nucleon in the nucleuss well as orx/y) can lead to a TP (I0-M—gsp) ' =Gj*j,, (AL
significantly improved description of the daftd4,43. This

agreement is consistent with the results of the present workvhere

Here we consistently ignore off-shell effects, categorizing _

these, along with a host of others, as interesting effects. In ju=¢" vy (A2)
any case, one would need to understand the implications of

analogous off-shell variations in operators used in impulsd he resulting equation of motion for the Dirac field is
approximation calculations for many nuclear reactions. Fur- ) )

thermore, it is not clear to us that these formulatiphs,43 Y19, =2Gj )¢ =(M+gsh) ¢, (A3)

provide nuclear structure functions which are consistent with . o _
the baryon sum rule. and the equation for the scalar field is again Ef) The

canonical energy-momentum tensor is given by

1. The No Vector Walecka model

VI. SUMMARY AND DISCUSSION i —

TH'=— gL+ " 3"+ i (yHd +y ")
The principal result is that relativistic mean field models 2
of nuclei, successful for many observables, do not contain (A4)
the binding effect needed to reproduce the depletion ob-
served by the EMC. The generality of this conclusion is re-
lated to the use of the mean field approximation, consisterl!
with the Hugenholtz—van Hove theorefi7], which se- . . , ,
verely constrains the nucleon distribution functiég(y). YH(i9,—2G(j N =(M+gsd) ¢,
This theorem has the further implication that any model in . )

which the entire plus momentum is carried by the nucleons:i::r the Dirac field. T.he components of the energy-
in the sense of E(2), also contains no binding effect. Thus omentum tensor are given by
including nucleon-nucleon correlatiofsithin a model con- e,
taining only nucleons in the Hamiltoniaicannot reproduce Tura=14"y a7 4, (A6)

of the data. A minimum feature necessary to describe the o

data using conventional meson-nucleon dynamics is that the T},-,= m§¢2—2¢’('y“(ic9ﬂ— G(j)—M—gsd) ¢’
mesonic components must comprise an explicit part of the .

nuclear Fock state wave function, and the mesons must carry l— ok gy

a significant fraction of the nucle@™. But there are severe * El’b (yra +y on)y’. (A7)
constraints on the nuclear antiquark cont¢d#,35 and

these limit the flexibility of mesonic models. Therefore, all We solve the Dirac equation as in Sec. Il using the trans-
of our present considerations are consistent with the notioformation

that some effect not contained within the conventional

framework is responsible for the EMC effect. Y'=e 20NNy gTA=(jT), (A8)

In the mean field approximatiofMFA) the equations of
otion are given by Eq28) for the scalar field and

(A5)
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and defing#=(j*)—d"A (note that] *=0 by construction
and j'=0 in the rest frame so that the only nonvanishing
component in the MFA i§ ~ = pg). The Dirac equations for

2 1 v 1 2
Lou= 2((9#¢>a¢ M2g2) = S VIV, S MEVEY,

o M
¥+ andy. become | P(0,m0N)m— | (ALD)
(i0"=2GT )i, =[a. P+ BM+0eh)]0r-, v
0"y =[a,-p +BM+gsd) ¢, . Using the methods described in Sec. lll, one finds that the

" ) eigenvalue equation corresponding to E2B) is given by
If we assumeay~e'**, then we obtain

K2 + (M + goch)? . v k?+(M*)?2 A6
C o ~ 0" —gV )= ——— i,
(072G Y= . (A9) A )
Returning to the energy momentum tensor, which has alswhere
changed under the transformation E48), we find M
. . M* = , (A17)
Thra=20L (10" +2G( ")y, (A10) L 9s?
_ M
Tupa=meg®+2¢1 (19 —2G] )ys.  (ALD
Using Eq. (A9) in Eq. (A11) and the light front four- V*:VO:g”pB. (A18)
momentum definition Eq36) we obtain m§
- 2 .0 k2 +(M*)? The fieldV™ is transformed according to E¢31). The rel-
o - msétt dk+k—+' (Al2)  evant components of the energy-momentum tensor are
pt 4 Tura=moVa+2yliat ., (A19)
—=—3f d?%k, dk* (k" +2Gpg). (A13) 5 -
& @2m?e Tura=Msd®+2¢L (19" =g,V )by, (A20)
The second term in EGA13) can be rewritten and soP™ andP~ are given by
8Gps - 4 K2 +(M*)2
dk2Gpg= f d2k, dk* =2Gp? P 2.2 f 2 et L
(2m)3 B (2m)3JF L B a mse°+ 27 Fd k, dk - , (A21)
and the resulting equations are exactly those of the Walecka N 4
model and we draw the correspondendith kg g2 j 2 -
—1.42 fm '} Q m”V°+(27-r)3 Fd k, dk™k™, (A22)
2GM%— gv SAVES (A14) which are superficially the same as the Walecka model, but

differ in that nowM™ is given by Eq.A17). The parameters
of the model are obtained by minimizing the total energy at
which means that the saturation properties of this model arg-=1.42 fm !, using the values

the same as those of the Walecka model.

U

An important difference between this model and the Wa- g
lecka model is that the extra term i@t due to vector me- = M2 43.2, (A23)
sons, but part of the nucleon contributionRd . All of the mv
plus momentum is due to the nucleons and not the vector
mesons. It is apparent that this model is consistent with the gs
Hugenholtz-van Hove theorem. The valuesRf are the —M?=140.4, (A24)
same as those of the Walecka model for all valuekgaf mS

) ) ) which corresponds to
2. The Zimanyi-Moszkowski model
The rescaled derivative coupling Lagrangian given by Zi- M* =0.85M. (A25)
manyi and Moszkowsk[31] is known to have a smaller
vector potential than the Walecka model. This model is deThe plus momentum may be decomposed ughg=P
fined by the Lagrangian + Py, (meson part and a nucleon part
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+ 2\ /2 — . ,
%:m;Vo:n MeV, (A26) L=y (10=M)P' = pdlro+ k3pst Kap?)
. —§ WM (Lot mapst mapl+ Lof ui*)
P,J\] B 1 4 _ﬁﬂpsﬁ#pS(Kd—FalpS)_&M]‘ W1 (Lat agps)

f d’k, dk*k* =850 MeV. (A27)
F

A _E(Zﬂ'ﬁ _fv(o—“ujv)s,uv'

h | b 0 h Lol _The parameters are given in R¢l.2], and arguments for
The nucleons carry about 92% of the total plus momentum i qjr natyralness in terms of effective field theory have also
this model. Despite this, the Hugenholtz—van Hove theoren[n)een presentefd 3],

is satisfied because the expressionsRor in terms of V© The relevant components of the symmetric energy mo-
andM* are the same as those of the Walecka model. The,antum tensor in the MFA are given by

only difference is the relation betwedm* and ¢. However,

that relation does not enter in the derivation of the TKZ;A:iW yroty, (A31)
Hugenholtz—van Hove theorem presented in Sec. IlI.

Tiea=—2¢" (16— M)y’ +2p2(kp+ kaps+ Kk4p2)

3. A No Vector Zimanyi-Moszkowski model o ) o
+2] (Lot mipst m2pst L4 i”)

The next step is to modify the Zimanyi-Moszkowski La-
grangian by removing the vector mesons in favor of a i—
current-current interaction as in Appendix 1. This Lagrangian toy(ydHy Y (A32)
is

and the Dirac equation is

1 —
Lnvzm=7 (3" $d,p—mig?) + | y*id,~

_6b | My 2kt Brapat axapd)
M . .
- + Y H(2Lo+ 2m1pst 27205+ 4L4] 0 ")
~ GV Py, (A28) 1 (220 1Y (A33)

The results follow exactly as those of Appendix 1. Specifi-Note that the various densities are constants within the MFA,
cally, changing from a “vector” to “no vector” model does we may define
not affect the minimization of the energy density and there-

fore leaves the coupling constant823) and (A24) un- M* =M+ pg(2k+3kapst4kaps) ] 0" (11+272p5),
changed if we make the identificatiorGM?— (g2/m?)M?2. (A34)
The operator corresponding to E#\9) is o
Gre= Lo+ mipst map5+244] Wi " (A35)
o ~ ki +(M*)? and follow Sec. lll to obtain the equation
(i0” —2Gj )9’/+=k—+¢/+- (A29)
- ~ ki +(M*)?
. _ (10" =2Gge) Vo= —7—— ¥+, (A36)
For this modelP ™ is exactly Eq.(A21) and we have plus k
momentum
and the momenta
P 2k dlt(kt P 2 3 : Z 20t
ﬁ:(zwﬁ Fd k dk™ (k™ +2Gpp). (A30) T = T 2K2Ps T AKaps— 6Kaps— 271pspe— A12P5PB
. e ki +(M*)?
This model obeys the Hugenholtz—van Hove theorem be- —4l,4pgt 3f dzkldk+—+, (A37)
cause the values ¢F* are the same as those of the Zimanyi- (2m)>JF k
Moszkowski model for all values df: .
' 2 4 2 1+
4. Rusnak-Furnstahl point coupling model Q (2m)°JF

The point coupling Lagrangian of R§fL2] is the modern 1 gerivation of Eq(A37), involves adding and subtracting
version of the original Walecka which is connected to QCDpM —M* in order to use the Dirac operatt436) in obtain-

through symmetry and naturalness. This model is defined ify g he |ast term. The numerical value of the effective mass
terms of the following densitiesj, = ¢ y,4', ps=¥'¢’,  is computed to bé* =0.73M for kp=1.31 fm 2.
ands,,=¢'o,,y', so that The proof of the Hugenholtz—van Hove theorem is ob-
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tained by going through the steps analogous to those of Eq#otal energy, given by substituting Eq#37) and(A38) into
(41)—(53) for this updated model. One can see numericallyEqg. (41), is due entirely to nucleons, and therefore the model
in Table | that the model obeys the theorem. Additionally, themust obey the Hugenholtz—van Hove theorem.
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