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Gluonic contributions in a four-fermion interaction model
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The gap equation for the fermion in nuclear medium is obtained in a two-flavor gauged Nambu–Jona-Lasino
~NJL! model using the Schwinger-Dyson~SD! equations. The gap equation is solved with a quenched trunca-
tion. Compared to the four-fermion interaction, the one-gluon-exchange interaction accounts for considerable
contributions~about 15250 %) to dynamically generated fermion mass. With incorporation of gluonic contri-
butions into a scheme where there is only four-fermion interaction, the four-fermion coupling constant is made
density dependent. Impacts of the density-dependent four-fermion~DDFF! coupling constants on quantities,
such as the fermion mass and the chiral order parameter as well as masses of mesons (s,p), are estimated. The
DDFF coupling constants lead to less density dependence of hadron masses and the larger critical density of
chiral symmetry restoration than those from the pure four-fermion interaction. The calculated quantities are
somehow dependent on the confinement scaleLQCD. However, the range ofLQCD in the present parametri-
zation can be determined by the saturation property of the gluonic contribution in the medium and it turns out
quite small.
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I. INTRODUCTION

Though the Nambu–Jona-Lasinio~NJL! model@1# cannot
provide the mechanism of confinement and is nonrenorm
izable, it is still a interesting and significant tool to inves
gate the nonperturbative low-energy physics of QCD@2#
since the NJL model has properties of chiral symmetry a
its spontaneous symmetry breaking as possessed in Q
The NJL model is applied to particle physics in a wide ran
such asp12p0 mass difference@3#, decay constants, sca
tering lengths@4#, chiral soliton picture for baryons@5#, etc.

The NJL model was originally proposed to describe
spontaneous symmetry breaking since the pion, as the G
stone boson, can be derived dynamically in this model@1#.
The chiral symmetry is expected to restore under exte
fields, such as the density or the temperature. Dynam
properties of the baryon and mesons are self-consiste
constructed in the NJL model. In the past years, there w
many works@6–11# to obtain the properties of the fermio
and meson dynamics in the medium and thermal envir
ment. The chiral symmetry restoration was investigated
the critical density or temperature was obtained in th
works. In Ref.@12#, the chiral symmetry breaking is studie
under the external field, the gravitational field.

A convenient way to study the chiral symmetry breaki
in the NJL model is through Schwinger-Dyson~SD! equa-
tions. Alternatively, the chiral symmetry breaking can be
vestigated by the standard renormalization group equat
for coupling constants@13–15#. In this paper, we study the
property of chiral symmetry breaking in nuclear medium v
the SD equations.

One can show that the NJL model has some possible
nections~such as symmetries! to QCD and may believe tha
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the gluonic degree of freedom is integrated out@2# at the
low-energy regime. However, the NJL model cannot
renormalized. In the past, some authors@16–18# took a rea-
sonable step to extend the NJL model to the gauged
where the one-gluon-exchange interaction is included. Pr
erties of chiral symmetry of QCD can be well simulated
the gauged NJL model. The gap equation of the gauged
model in the free space is obtained by using the SD eq
tions in the Euclidean space, the phase structure is stu
@19#, and the renormalizability is discussed@20#. The solu-
tion to the gap equation indicates that there exists a la
anomalous dimension@19–22# which implies that the situa-
tion of renormalization for the gauged NJL model can
improved. In Ref.@15#, the guaged NJL model has been us
to study the chiral symmetry property in the curved spa
time via the renormalization group equations. The top qu
condensate, which relates directly to the large top quark m
in the composite Higgs model, has been investigated in
gauged NJL model, and it has been found that the prese
of the gauged coupling is quite significant for the top qua
mass@23,24#. Triggered by the gauged coupling contributio
in the heavy-quark~high-energy scale! physics, one of objec-
tives of this paper is to investigate the gluon-exchange c
tribution in the light flavor physics.

As to the point of the confinement of the model, simula
ing some behaviors of the confinement is possible becaus
the existence of gauge field in the gauged NJL model. G
erally, the confinement is not really treated due to the co
plication in the gauged NJL model, whereas many of
low-energy static properties can be understood fairly w
without the introduction of confinement. Hence we will n
discuss deeply the details of the confinement.

In this paper, we investigate the gluonic contribution
the dynamically generated hadron masses and the c
symmetry property in the gauged NJL model with flav
Nf52 by virtue of the fermion gap equation. The fermio
©2001 The American Physical Society10-1
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gap equation in nuclear medium will be derived by solvi
the SD equation for the fermion propagator where the fo
fermion and one-gluon-exchange interactions are taken
account. The gluonic contribution in the gauged NJL mo
will be displayed by comparing to results without inclusio
of gluonic interactions. At first, the gluonic contribution
the fermion mass will be estimated. The gluonic impacts
the quark condensate^c̄c&0 and meson dynamics are then
be investigated. We will see that the gluonic effects
nuclear medium cannot be absorbed thoroughly in a fo
fermion interaction theory by a constant coupling after in
grating out the gluonic degree of freedom.

For clarity, we give three notations for models or fram
work used in the context. The model with the pure fo
fermion interactions is mainly mentioned as the pure N
the model with both the four-fermion and gauge interactio
is mainly called as the gauged NJL, and the framework w
gauge interaction incorporated into four-fermion interactio
is denoted as the density-dependent NJL~or, r-dependent
NJL!. We now give the arrangement for the paper. The g
equation in the nuclear medium for the fermion obtain
from the SD equation is briefly investigated in Sec. II a
other essential formulas are given. In Sec. III, numerical c
culations are given and numerical results are discussed
the final section, the summary and some discussions
given.

II. FERMION GAP EQUATION

Since the confinement is not specially considered for
static dynamical properties, it is more accurate to reg
nuclear medium as quark matter. With the increasing den
nuclear medium will go closely to quark matter. The bary
is simply considered as a collective of three constitu
quarks. Quarks are taken in the sense of constituent qu
here.

The NJL model on the quark level describes hadrons
terms of constituent quarks where the interactions
through the exchange of the quark-antiquark pairs. The o
boson-exchange interactions can find a dynamical origin
the NJL model. With introduction of the gluonic degree
freedom, the NJL model is modified to be the gauged o
The gauged NJL model can be expressed in terms of
following Lagrangian:

L5c̄~D” 1m0!c1G@~ c̄c!21~ c̄ ig5tc!2#1 (
mna

Ga
mnGmna .

~1!

Here c is the quark field,Gmna is the gluon field strength
with a the index of generator in the color space, andG is the
bare four-fermion coupling constant.

The fermion gap equation in the free space@19# is ob-
tained from the fermion propagator using SD equations
also illustrated in Fig. 1. An analogous gap equation
nuclear medium is obtained. In order to derive the ferm
gap equation in nuclear medium, some approximations
made. First, since the gap equation in nuclear matter is
covariant, the three-dimensional integral needs to be
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proximately transformed to the four-dimensional one us
the Cauchy theorem for the analytic and numerical feasi
ity. Second, the gap quantity in the three-dimensional sp
is assumed to be only dependent on the three-dimensi
momentum squared, similar to the four-dimensional c
where the gap quantity is assumed to be dependent on
four-dimensional momentum squared. The reasonable
for the introduction of these approximations can be sho
numerically in the following section. Since the gauged N
model used here is nonrenormalizable, a quenched ultra
let ~uv! cutoff L is introduced to regularize the divergenc
The detailed procedure for the deduction of the gap equa
is presented in the Appendix. The gap equation in nucl
medium is written as

B~x!5m01
g

L2ELF
2

L2

dy
yB~y!

y1B2~y!

1E
LF

2

L2

dy
yB~y!

y1B2~y!
Fl~x!

x
u~x2y!1

l~y!

y
u~y2x!G

1E
0

LF
2

dy
yB~y!

y1B2~y!
Fl~y!

y
2

l~x!

x Gu~y2x!. ~2!

Here x5q2 is a four-dimensional momentum covariant
the Euclidean space,g5NcNfGL2/4p2, andLF , related to
the fermi momentum, is determined as follows:

2E
0

kF
2

dy
y1/2B̃

~y1B̃2!1/2
5E

0

LF
2

dy
yB~y!

y1B2~y!
, ~3!

where two approximations, made above, have been u
Since the integral limits for both integrals are the same
pologically, B̃ is determined topologically by

B̃5BS y
LF

2

kF
2 D . ~4!

For the gluonic interaction, it is renormalizable in principl
The reason to introduce the same uv cutoff to the gluo
interaction as to the four-fermion interaction is mainly due
the difficulty of the numerical treatment. Equation~2! is an
integral equation, which is only capable of being solved n
merically for the finite-momentum range. On the other ha
it is difficult to define the bare and renormalized quantit
consistently in the nonrenormalizable Lagrangian. One m
expect that the contribution from the high-momentum ran
can be approximately folded into the parameters~for in-
stance, the four-fermion couplingG) describing the low-

FIG. 1. Fermion propagator represented by the solution of
Schwinger-Dyson equation. Three parts on the right-hand side
the bare fermion propagator, the self-energy from the four-ferm
and one-gluon-exchange interactions, respectively.
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energy physics. Considering these factors, the gluonic in
action is approximately parametrized by the followin
simplistic running coupling constantl(q2) @19#, which may
greatly suppress the integration beyond the uv cutoff:

l~q2!5lm~q2!u~q22m2!1lmu~m22q2!, ~5!

where

lm~q2!5
lm

11~lm /a!ln~q2/m2!

5
a

~a/lL!1 ln~q2/L2!
5

a

ln~q2/LQCD
2 !

~6!

with a59(nc
221)/2nc(11nc22nf), lL5l(L2)

5a/ ln(L2/LQCD
2 ), and LQCD the confinement scale whos

value is specified in the following section.m @equal to
LQCDexp(a/2lm)# plays the role of the infrared cutoff. Th
SD equation has the spontaneous-symmetry-breaking s
tion for lm. 1

4 @25#. Theoretically, it is better to have a larg
value of lm to count more confinement effect, while th
calculated physical quantities seem almost independen
lm at the region of large values, as will be specified in t
following section. In the calculation,lm is taken as 2.5.

In order to make the integral Eq.~2! solvable, we convert
it to the differential equation

B9~x!5

S l~x!

x D 9

S l~x!

x D 8
B8~x!1S l~x!

x D 8 xB~x!

x1B2~x!
~7!

with the uv and infrared~ir! boundary conditions, respec
tively, as

B~zL!1
zL

11zL
S 11

g

a
zLDB8~zL!5m0 ,

B8~zLF
!50,

wherez5 ln(q2/LQCD
2 ). For the zero density,LF50. The fer-

mion mass is defined by the normalization condition

B~q25M2!5M . ~8!

The effective fermion massM* in nuclear medium is calcu
lated atq25M2.

With an increase in nuclear density, the contribution of
last integral to the fermion mass in Eq.~2! may exceed those
of all other terms. Supposing an extreme case in which
nuclear medium is so dense that all terms except the
integral are negligible, the gap equation is, therefore, in
following simple form:

B~x!5m01E
0

LF
2

dy
yB~y!

y1B2~y!
Fl~y!

y
2

l~x!

x Gu~y2x!. ~9!
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Equation~9! has the same differential form as Eq.~7! and we
are able to see that there is only a trivial void solution.
nuclear density exceeds the critical value, the chiral symm
try is restored completely. On the other hand, Eq.~9! ex-
plains the fact that even though the four-fermion contribut
to the fermion mass vanishes, the gluonic interaction
nonvanishing contribution to the fermionic mass and rela
dynamical meson masses.

In order to investigate the fermion mass dependence
parameters (g,L), we will first give the numerical results a
zero density as will be discussed in the following sectio
After this is done, the suitableg and L are determined to
give the detailed numerical result for the dynamical fermi
mass at various densities.L is determined by the fermion
and meson~such as the pion! mass conditions in the cas
where the one-gluon-exchange interaction is not taken
account. We use an approximate relationL5A2L3 where
L3 is the three-dimensional uv cutoff.L3 can be determined
via a four-fermion interacting model without gluonic term

The fermion and pion masses with only four-fermion i
teractions are determined in the following two formulas:

12
m0

M*
5

2G0NcNf

p2 E
kF

L3p2dp

E*
~10!

and

m0

M*
2mp*

2 2G0NcNf

p2 E
kF

L3 p2dp

E* ~4E* 22mp*
2!

50, ~11!

wherekF is the Fermi momentum,M* and mp* are the ef-
fective fermion and pion masses in nuclear medium, resp
tively. E* 5AM* 21p2. G0 is the four-fermion coupling
when there is only the four-fermion interaction in the calc
lation. In the free space, the constituent massM andmp are
set to be 313 and 138 MeV, respectively. With these t
mass conditionsG0 and L3 are uniquely determined. Fo
completeness, we give the formula fors mass in the follow-
ing:

m0

M*
2~ms*

224M* 2!
2G0NcNf

p2 E
kF

L3 p2dp

E* ~4E* 22ms*
2!

50.

~12!

Formulas for meson dynamics can also be found, for
stance, in Refs.@7,8#.

The chiral order parameterx in gauged NJL is defined by
the quark condensate

x5~^c̄c&0!1/35NcE d4p

~2p!4
trS~p!

5
Nc

4p2EL2

dy
yB~y!

y1B2~y!
5

L2Nc

4p2

B~zL!2m0

g1lL
. ~13!

Without inclusion of gluonic interactions, the quark conde
sate is presented in the three-dimensional space as follo
0-3
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^c̄c&05NcE d4p

~2p!4
trS~p!5

Nc

p2EkF

L3
p2dp

M*

E*
. ~14!

III. NUMERICAL CALCULATION AND ANALYSIS

In this section, we do numerical calculations and g
numerical analysis. After parameters are determined, qua
ties, such as the dynamically generated hadron masses
calculated. At the same time, the gluonic contributions
discussed in detail and the property of chiral symmetry
investigated.

A. Parameter determination

Equation~7! can be solved by virtue of any two of thre
conditions: ir, uv, and normalization conditions. The relati
of parametersg andL is worked out as ir and normalizatio
conditions are used for solving the gap equation, and it tu
out that the fermion mass is dependent on parameters (g,L).
Figure 2 illustrates the constituent quark massM
5313 MeV with different„g,lL(L)…’s. The given fermion
mass in the free space corresponds to infinite numbe
(g,L) pairs, displaying various four-fermion and gluon
contributions to the fermion mass at zero density. The cur
fermion massm0 is set to be 5 MeV. The confinement sca
LQCD is an important quantity in the parametrization for t
running gauge coupling and the numerical results are usu
of confinement scale dependence. We will give the phys
interpretation based on the numerical results worked out w
the confinement scaleLQCD5120, 160, and 200 MeV, while
the dependence of physical quantities onLQCD will be dis-
cussed at the end of the following subsection.

In models for four-fermion interactions, the cutoffL is
needed to regularize the divergent integrations. Here the
off is determined by the constituent quark mass and the p
mass (mp5138 MeV) conditions in pure NJL. The dete
mined L is 973 MeV(L35688 MeV). The same cutoff is
used when the gluonic interaction is included, and the fo

FIG. 2. Phase diagram of the fermion mass with parame
(g,lL),M5313, m055 MeV. The different confinement scale
LQCD5120, 160, and 200 MeV are for curves from bottom to to
respectively.
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fermion coupling is thus decided by the relation ofg andL.
Only if the same cutoff is used for obtaining the same fe
mion mass, one can be aware of the quantitative gluo
contribution to the fermion mass in gauged NJL.

Before doing numerical calculations for physical obser
ables, we need specify the parameterlm . In the free space,
the gap quantitiesB(q2) for differentlm’s are plotted in Fig.
3, where we take the caseLQCD5200 MeV as an example
As seen in the figure, the infrared value of the gauge c
pling has a very small influence on the evolution of the g
quantity beyond the infrared-momentum range. Since
physical observables are actually specified or defined by
normalization condition which is used to solve the gap eq
tion, the confining effect incorporated through the parame
lm is negligible to the calculated physical quantities. F
instance, the chiral order parameterx, which can be evalu-
ated by Eq.~13! at L, has the distinction much less than 1%
for different lm’s. As long as the spontaneous-symmetr
breaking solution of the SD equation is generated (lm. 1

4 ),
the calculated physical quantities are almost independen
lm for a large range. In nuclear matter, numerical calcu
tions indicates that calculated physical quantities are a
almost independent oflm , and that is not specially illus-
trated below.

B. Fermion mass and four-fermion coupling in medium

The definition for the nuclear density is given asr
5NcNfkF

3/3p2 with the normal densityr050.16 fm23. The
fermion mass decreases with increasing density as show
Fig. 4 andM* →m0 at high densities. The results with var
ousLQCD’s indicate that the smallerLQCD corresponds to the
larger critical density while this can be seen in Fig. 4 whe
three curves correspond, respectively, toLQCD5120, 160,
and 200 MeV. To obtain the same fermion mass under sa
uv cutoff in the free space, one can use different combinat
of the four-fermion couplingg and theLQCD that scales the
gluonic contribution. The effective mass is dependent
LQCD. Here g50.892, 0.983, and 1.049 determined in th

rs

,
FIG. 3. B(q2) for differentlm’s. The calculation is performed in

the free space withLQCD5200, M5313, andm055 MeV.
0-4
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free space correspond, respectively, toLQCD5200, 160, and
120 MeV, and that shows the largerLQCD gives the larger
gluonic contribution to the fermion mass in the free space
a framework of the four-fermion interaction plus the on
gluon-exchange interaction, the pure four-fermion interact
can be obtained as the running gauge coupling vanishe
seen in Fig. 2. Meanwhile, it is found in Fig. 2 that th
gauged NJL interaction can go without much change of
four-fermion coupling to the pure four-fermion interactio
from some largeL ~small lL) by simply integrating out the
gluonic interaction up to very high uv cutoff. However,
the practical calculation, the uv cutoff, which is usually b
low 1 GeV determined by physical quantities, is used
regularizing the divergent integrals. Therefore, it is possi
but not absolutely right that reasonably large gluonic con
bution in gauged NJL can make some results approac
those in pure NJL. These explain why the effective ferm
mass with largerLQCD is closer to that in pure NJL. Mean
while, the consistency between the numerical results
tained here and the two approximations made at the be
ning to derive the gap equation indicate that t
approximations are reasonable. However, this is not to
that the results of gauged NJL can be reproduced by the
NJL, as we will see in Sec. III C that a better chiral ord
parameter can be obtained only if the gauge interactio
included.

Gluonic contribution to the fermion mass is scal
through comparison of the four-fermion couplings with a
without gluonic interactions under the same uv cutoff con
tion. After parameters are decided, the effective ferm
mass in gauged NJL is obtained by solving the gap equa
in nuclear medium. For the NJL model, the four-fermi
coupling is re-adjusted to get the same effective ferm
mass as in gauged NJL at different densities. In the f
space, gluonic interaction accounts for the dynamical ori
of the fermion mass by a factor from about 15% to 30

FIG. 4. Effective fermion masses in nuclear medium.r0

50.16 fm23.
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depending on the confinement scale. Figure 5 illustrates
four-fermion coupling with inclusion of gluonic interaction
with different LQCD’s. At zero density, the value ofG on
curves~not on straight lines! is for the pure NJL. It shows
that by incorporation of gluonic interactions the four-fermio
couplingG0(r) is strongly density dependent.

More explicitly, we plot the extracted gluonic contributio
in Fig. 6. The extracted gluonic contribution factorSg is
defined by

Sg5
G0~r!2G

G0
. ~15!

The gluonic contribution to the effective fermion mass cou
increase from about 20% to as high 50% in medium at h
densities. As seen in Figs. 5 or 6,G0(r) increases monoto

FIG. 5. Density dependence of the four-fermion coupling. T
short dot-dashed line is forG0 in pure NJL. Other straight lines
stand for density-independent four-fermion couplings in gaug
NJL, while curves are for four-fermion couplings inr-dependent
NJL with LQCD denoted in the figure.

FIG. 6. Extracted gluonic contribution in nuclear medium.
0-5
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nously with increasing density for smallLQCD’s. Increasing
LQCD, G0(r) may have the maximum along the dens
axis. By incorporation of the gluonic contribution, th
density-dependent four-fermion~DDFF! coupling is induced
naturally, and that leads to a density-dependent NJL.

By now, we need to make a discussion for the depende
of relevant quantities onLQCD. LQCD has a big error includ-
ing theoretical uncertainties, say, roughly from 100 to 5
MeV, depending on parametrization scheme of the runn
gauge coupling constant@26,27#. For integrals of the four-
fermion interaction in nuclear medium, the Fermi mome
tum plays the role as an ir cutoff, whereas it is not a pur
cutoff as shown in Eq.~2!. At densities not very high, the
four-fermion contribution can decrease faster than the g
onic one in the gap equation for someLQCD’s with the in-
creasing density. The gluonic contribution must reduce fa
than the four-fermion one at high densities where the runn
gauge coupling at short range plays the role. Therefore, t
must be a turning point from increase to decrease on
curve forG0(r). This provides a constraint on the uncerta
ties of LQCD. Using this constraint, we see from Fig. 6 th
theLQCD cannot be very small, say, it cannot be much low
than 200 MeV. On the other hand, the gluonic contribut
decreases with the increasing density for largerLQCD ~for
instance, LQCD>240 MeV). The gluonic contribution
should reach its maximum in medium, which is actually
saturation property of the gluonic contribution. So the re
sonable range forLQCD should be between the places whe
the gluonic contribution decreases or increases mon
nously with the increasing density. From present parame
numerical calculations indicate thatLQCD ranges roughly
from 190 to 240 MeV, which is a rather small range.

C. Chiral order parameter with gluonic contribution

For differentLQCD’s, we have calculated the correspon
ing chiral order parameters at zero density as given in Ta

TABLE I. Chiral order parameterx for different confinement
scaleLQCD.

LQCD (MeV) 120 160 200 240

x ~MeV! 247.3 243.1 236.1 219.5
01521
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I. As shown in Table I,x ’s with a large scope ofLQCD in
gauged NJL are within the error bar predicted by the QC
sum rules@28# (225635 MeV) or in @29# (225625 MeV).
This is a good indication that the gauged NJL can simul
the low-energy physics of QCD quite well through choosi
the suitable confinement scales. The chiral order paramet
much less sensitive toLQCD than the effective fermion mass
Compared to the chiral order parameters in@28,29#, it im-
plies that a reasonably largerLQCD is preferred to obtain a
reasonably smallerx. In general, the chiral symmetry prop
erty can be well simulated in gauged NJL. It is necessary
note thatx is 260.1 MeV for the pure NJL. The gauged NJ
model gives a better chiral order parameter.

Besides the four-fermion coupling, the chiral order p
rameter is also effectively modified through incorporation
gluonic contribution. Figure 7 plots the chiral order para
eter with respect to the density. The two curves that are
culated with density-independent and DDFF coupling co
stants indicate that gluonic interactions play their import
roles in the chiral order parameter. With inclusion of t
effective gluonic contribution, the chiral order parameter a
proaches to that of the gauged NJL. The gluonic interacti
can effectively modify the behavior of chiral symmetry re
toration, represented by the chiral order parameter.

D. Meson „s,p… masses with gluonic contribution

The s and p masses inr-dependent NJL can be calcu
lated by Eqs.~11! and ~12! but with DDFF coupling con-
stants. As an example of application for these DDFF c
pling constants in the density-dependent NJL, meson ma
are calculated from the case ofLQCD5200 MeV. Here we
investigate the influence of DDFF coupling constants on m
son masses and the property of chiral symmetry.

The DDFF coupling explicitly modifies the density
dependent behavior of effective meson masses. The
density-dependent meson masses are given by
r-dependent NJL than by the pure NJL, as is shown in F
8. The critical density of chiral restoration is also effective
modified by the DDFF coupling. It may have two kinds
criteria to determine the critical point. One is thatmp* →ms*
is used for criterion, the other is that the shift point where
FIG. 7. Chiral order parameterx in nuclear
medium.
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GLUONIC CONTRIBUTIONS IN A FOUR-FERMION . . . PHYSICAL REVIEW C65 015210
sigma mass goes from decrease to increase with increa
density is regarded as the critical point. No matter wh
criterion is used, the larger critical density is given by t
r-dependent NJL and the difference of the critical dens
between ther-dependent NJL and pure NJL has about m
than 1r0, as shown in Fig. 8. Though this difference is d
ferent numerically for differentLQCD, either the critical den-
sity or dynamical masses of mesons are effectively modi
without exception by the gluonic contribution. Compared
ther-dependent NJL, the pure NJL model may overestim
the density-dependent behavior of effective meson mas
In short, the gluonic contribution has non-negligible infl
ence on meson dynamics and chiral symmetry property
medium.

IV. SUMMARIES

Based on the derived gap equation in nuclear medium,
have investigated a variety of quantities: fermion ma
DDFF coupling constants, chiral order parameter, and
forth. The gluonic impacts are displayed through compar
to results in pure NJL. Due to inclusion of gluonic intera
tion, the chiral order parameter is improved and theoret
predictions of the fermion and meson masses are effecti
modified. The chiral order parameterx predicted here is con
sistent with the one by the QCD sum rules. The gluo
contribution is essentially important to explain the dynami
origin of the fermion mass in the four-fermion interactio
models either in vacuum or in medium. The gluonic intera
tion can explain the dynamic origin of fermion mass by
factor of about 15–30 % in the free space, and the maxim
of the gluonic contribution reaches in medium. The DD
coupling is obtained as the gluonic contribution is mapp
into the four-fermion interaction framework. One implicatio
from the DDFF coupling is that the gluonic contribution ca
not be simply integrated out with its contribution absorb
by the constant four-fermion coupling in pure NJL.

The significance of the DDFF coupling is shown in o
taining the effective fermion mass, the chiral order para
eter, and the meson masses. With inclusion of gluonic c

FIG. 8. Masses of chiral partner (s,p) in nuclear medium.
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tribution, it has less density dependence for the fermion
meson masses and the chiral order parameter, meanwhil
critical density of chiral symmetry restoration becom
larger. Due to the importance of gluonic contribution, w
may expect more applications for ther-dependent NJL in a
wide range of hadronic physics later on.

Besides simplistic treatments of parametrization for
gluonic degree of freedom, we have used some approxi
tions to derive the gap equation in nuclear medium. W
these approximations, the three-dimensional integral
been numerically transformed to the four-dimensional one
using the Cauchy integration. At the same time, the quenc
truncation in the gap equation is used to carry out numer
results since the present four-fermion interaction mode
nonrenormalizable. The quenched uv cutoff has been
introduced to the gluonic interaction in gauged NJL and
would be necessary to take more considerations~including
renormalization! to deal with the gluonic interaction later on
These approximations and simplistic treatments could ind
some error. However, the present theoretical predictions
reasonable and consistent with the analytical analysis
empirical data as well. In addition, the present numeri
results are primitive since the exact constituent quark mas
not known though the relationMN53M is used.

In summary, we have obtained the gap equation in nuc
medium using the SD equations. The gluonic contribut
turns out very significant for the DDFF coupling constan
hadron masses and the property of chiral symmetry. The
ror including theoretical uncertainties of the confineme
scale is greatly reduced according to the saturation prop
of the gluonic contribution in nuclear medium using the S
equation-based approach. The range ofLQCD is about 50
MeV in the present parametrization of the running coupli
constants.

APPENDIX: DERIVATION OF THE GAP EQUATION

The fermion gap equation can be derived by solving
SD equations for the fermion propagator. In the Hartree
proximation, these SD equations in the free space are wri
as

SF~q!215SF
0~q!211S~q!2 iG^c̄c& ~A1!

and

SF
0~q!215gmqm2m0 , ~A2!

S~q!52 i E d4p

~2p!4
gmSF~p!GnDmn~q2p!, ~A3!

^c̄c&5NcE d4p

~2p!4
tr@SF

0~p!#, ~A4!

Dmn~p!5S 2gmn1
pmpn

p2 D d~p2!

p2
2

a

p2

pmpn

p2
, ~A5!
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whered is the coupling constant,a is the gauge paramete
andGn is the interaction kernel, which is replaced bygn in
the actual calculation. The following self-consistent intera
tion fermion propagator is assumed:

SF~q!215Agmqm2B, ~A6!

where the gap quantitiesA andB can be determined by Eq
~A1!. A can be proved to be unity by taking the Land
gauge@18#. B can be calculated from the following equatio

B5m01
trS~q!

trI
1G^c̄c& ~A7!

with I the unit matrix. Here we are not to go into details
the deduction that can be referred to@18#. Through the
straightforward calculation, we can arrive at the gap equa
in the free space@19# as follows:

B~x!5m01
g

L2E0

L2

dy
yB~y!

y1B2~y!

1E
0

L2

dy
yB~y!

y1B2~y!
Fl~x!

x
u~x2y!1

l~y!

y
u~y2x!G .

~A8!

In nuclear medium, the fermion propagator has two ter
one of which is the same as the one in the free space an
other gives the medium modification

S~p!5~gmpm1B!F 1

p22B21 i e
1

ip

E~p!

3d„p02E~p!…u~kF2upu!G ~A9!

with E(p)5Ap21B2. Thus the fermion condensate^c̄c& is

^c̄c&5NcE d4p

~2p!4
tr@S~p!#5

2Nc

~2p!2EpF
2

L3
2

dy
y1/2B̃

~y1B̃2!1/2
,

~A10!

where B̃ is defined in Eq.~4!, and the Cauchy theorem i
used for obtaining the second equality as the fo
dimensional integral is converted into three dimensional o
Using the Cauchy theorem inversly, Eq.~A10! is converted
into the four-dimensional form

^c̄c&5
Nc

~2p!2ELF
2

L2

dy
yB

y1B2
. ~A11!
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Since the formulas are actually noncovariant in nuclear m
dium, the approximation is introduced when the convers
between the covariant~four-dimensional! and three-
dimensional forms is made to obtain the above equation
the second equality of Eq.~A10!. The infrared cutoffLF is
determined by keeping the equality of two integrals at
both sides of Eq.~3!.

For the gluonic part in nuclear medium, it is divided in
two portions, in a manner similar to the four-fermion pa
One portion is the same as that in the free space, and
other medium-related portion is calculated as follows:

2E d4p

p2

pB

~p21B2!1/2
d„p02E~p!…u~kF2upu!

3Fl~q2!

q2
u~q22p2!1

l~p2!

p2
u~p22q2!G

522EkF
2

dp2~p2!1/2
B̃

~p21B̃2!1/2

3Fl~q2!

q2
u~q21B̃2!2

l~2B̃2!

B̃2
u~2q22B̃2!G

522EkF
2

dy
y1/2B̃

~y1B̃2!1/2

l~x!

x

52ELF
2

dy
yB

~y1B2!

l~x!

x
~A12!

with x5q2.
Adding these medium-related terms to Eq.~A8!, the gap

equation in nuclear medium is

B~x!5m01
g

L2ELF
2

L2

dy
yB~y!

y1B2~y!

1E
0

L2

dy
yB~y!

y1B2~y!
Fl~x!

x
u~x2y!1

l~y!

y
u~y2x!G

2E
0

LF
2

dy
yB~y!

y1B2~y!

l~x!

x
. ~A13!

The contraction for the last two integrals of the right-ha
side of Eq.~A13! leads to Eq.~2! directly.
@1# Y. Nambu and G. Jona-Lasinio, Phys. Rev.122, 345 ~1961!.
@2# J. Bijnens, Phys. Rep.265, 369 ~1996!.
@3# J. Bijnens and E. de Rafael, Phys. Lett. B273, 483 ~1991!.
@4# T. Hatsuda and T. Kunihiro, Phys. Rep.247, 221 ~1994!.
@5# R. Alkofer, H. Reinhardt, and H. Weigel, Phys. Rep.265, 139
~1996!.

@6# V. Bernard, Ulf-G. Meissner, and I. Zahed, Phys. Rev. D36,
818 ~1987!.
0-8



s.

hy

g.

d-
o

s.

tt.

s.

B

GLUONIC CONTRIBUTIONS IN A FOUR-FERMION . . . PHYSICAL REVIEW C65 015210
@7# V. Bernard and Ulf-G. Meissner, Nucl. Phys.A489, 647
~1988!.

@8# E.M. Henley and H. Mu¨ther, Nucl. Phys.A513, 667 ~1990!.
@9# Chr.V. Christov, E. Ruiz Arriola, and K. Goeke, Nucl. Phy

A510, 689 ~1990!.
@10# P. Zhuang, J. Hu¨fner, and S.P. Klevansky, Nucl. Phys.A576,

525 ~1994!.
@11# J. Cugnon, M. Jaminon, and B. Van den Bossche, Nucl. P

A598, 515 ~1996!.
@12# S. Leseduarte and S.D. Odintsov, Phys. Rev. D49, 5551

~1994!.
@13# W. Bardeen, C. Hill, and M. Lindner, Phys. Rev. D41, 1647

~1990!.
@14# M. Harada, Y. Kikukawa, T. Kugo, and H. Nakano, Pro

Theor. Phys.92, 1161~1994!.
@15# B. Geyer and S.D. Odintsov, Phys. Rev. D53, 7321~1996!.
@16# C.N. Leung, S.T. Love, and W.A. Bardeen, Nucl. Phys.B273,

649 ~1986!; W.A. Bardeen, C.N. Leung, and S.T. Love,ibid.
B323, 493 ~1989!.

@17# T. Appelquist, M. Soldate, T. Takeuchi, and L.C.R. Wijewar
hara, inProceedings of the 12th Johns Hopkins Workshop
01521
s.

n

Currect Problems in Particle Theory, edited by G. Domokos
and S. Kovesi-Domokos~World Scientific, Singapore, 1988!.

@18# K-I. Kondo, H. Mino, and K. Yamawaki, Phys. Rev. D39,
2430 ~1989!.

@19# K-I. Kondo, Susumu Shuto, and K. Yamawaki, Mod. Phy
Lett. A 6, 3385~1991!.

@20# K-I. Kondo, M. Tanabashi, and K. Yamawaki, Mod. Phys. Le
A 8, 2859~1993!.

@21# V.A. Miransky and K. Yamawaki, Mod. Phys. Lett. A4, 129
~1989!.

@22# V.A. Miransky, T. Nonoyama, and K. Yamawaki, Mod. Phy
Lett. A 4, 1409~1989!.

@23# V.A. Miransky, M. Tanabashi, and K. Yamawaki, Phys. Lett.
221, 177 ~1989!.

@24# F. King and S.H. Mannan, Phys. Lett. B241, 249 ~1990!.
@25# K. Higashijima, Phys. Rev. D29, 1228~1984!.
@26# W.J. Marciano, Phys. Rev. D29, 580 ~1984!.
@27# I. Hinchliffe, Phys. Rev. D54, 77 ~1996!.
@28# L.J. Reinders, H. Rubinstein, and S. Yazaki, Phys. Rep.127, 1

~1985!.
@29# G.Q. Li and C.M. Ko, Phys. Lett. B338, 118 ~1994!.
0-9


