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The gap equation for the fermion in nuclear medium is obtained in a two-flavor gauged Nambu—Jona-Lasino
(NJL) model using the Schwinger-Dys@8D) equations. The gap equation is solved with a quenched trunca-
tion. Compared to the four-fermion interaction, the one-gluon-exchange interaction accounts for considerable
contributions(about 15-50 %) to dynamically generated fermion mass. With incorporation of gluonic contri-
butions into a scheme where there is only four-fermion interaction, the four-fermion coupling constant is made
density dependent. Impacts of the density-dependent four-fer@iBfF) coupling constants on quantities,
such as the fermion mass and the chiral order parameter as well as masses of mespreré estimated. The
DDFF coupling constants lead to less density dependence of hadron masses and the larger critical density of
chiral symmetry restoration than those from the pure four-fermion interaction. The calculated quantities are
somehow dependent on the confinement sdalg,. However, the range ok op in the present parametri-
zation can be determined by the saturation property of the gluonic contribution in the medium and it turns out
quite small.
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I. INTRODUCTION the gluonic degree of freedom is integrated g2 at the
low-energy regime. However, the NJL model cannot be

Though the Nambu—Jona-Lasin(idJL) model[1] cannot  renormalized. In the past, some authpt6-1§ took a rea-
provide the mechanism of confinement and is nonrenormalsonable step to extend the NJL model to the gauged one
izable, it is still a interesting and significant tool to investi- where the one-gluon-exchange interaction is included. Prop-
gate the nonperturbative low-energy physics of QCI)  erties of chiral symmetry of QCD can be well simulated by
since the NJL model has properties of chiral symmetry andhe gauged NJL model. The gap equation of the gauged NJL
its spontaneous symmetry breaking as possessed in QChhodel in the free space is obtained by using the SD equa-
The NJL model is applied to particle physics in a wide rangetions in the Euclidean space, the phase structure is studied
such asr™ —7° mass differencé3], decay constants, scat- [19], and the renormalizability is discussg20]. The solu-
tering lengthq 4], chiral soliton picture for baryon$], etc.  tion to the gap equation indicates that there exists a large

The NJL model was originally proposed to describe theanomalous dimensiof19-223 which implies that the situa-
spontaneous symmetry breaking since the pion, as the Goldion of renormalization for the gauged NJL model can be
stone boson, can be derived dynamically in this mdd¢l  improved. In Ref[15], the guaged NJL model has been used
The chiral symmetry is expected to restore under externab study the chiral symmetry property in the curved space-
fields, such as the density or the temperature. Dynamicalme via the renormalization group equations. The top quark
properties of the baryon and mesons are self-consistentiyondensate, which relates directly to the large top quark mass
constructed in the NJL model. In the past years, there wergn the composite Higgs model, has been investigated in the
many works[6—11] to obtain the properties of the fermion gauged NJL model, and it has been found that the presence
and meson dynamics in the medium and thermal environef the gauged coupling is quite significant for the top quark
ment. The chiral symmetry restoration was investigated anehass[23,24]. Triggered by the gauged coupling contribution
the critical density or temperature was obtained in thesén the heavy-quarkhigh-energy sca)ephysics, one of objec-
works. In Ref[12], the chiral symmetry breaking is studied tives of this paper is to investigate the gluon-exchange con-
under the external field, the gravitational field. tribution in the light flavor physics.

A convenient way to study the chiral symmetry breaking As to the point of the confinement of the model, simulat-
in the NJL model is through Schwinger-Dys¢8D) equa- ing some behaviors of the confinement is possible because of
tions. Alternatively, the chiral symmetry breaking can be in-the existence of gauge field in the gauged NJL model. Gen-
vestigated by the standard renormalization group equationerally, the confinement is not really treated due to the com-
for coupling constant§13—15. In this paper, we study the plication in the gauged NJL model, whereas many of the
property of chiral symmetry breaking in nuclear medium vialow-energy static properties can be understood fairly well
the SD equations. without the introduction of confinement. Hence we will not

One can show that the NJL model has some possible cortliscuss deeply the details of the confinement.
nections(such as symmetriggo QCD and may believe that In this paper, we investigate the gluonic contribution to

the dynamically generated hadron masses and the chiral
symmetry property in the gauged NJL model with flavor
*Corresponding author. N;=2 by virtue of the fermion gap equation. The fermion
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gap equation in nuclear medium will be derived by solving O g“rm%g
the SD equation for the fermion propagator where the four- = = + +
fermion and one-gluon-exchange interactions are taken into Gy 7

account. The gluonic contribution in the gauged NJL model _ _

will be displayed by comparing to results without inclusion _ FIG- 1. Fermion propagator represented by the solution of the

of gluonic interactions. At first, the gluonic contribution to SChwinger-Dyson equation. Three parts on the right-hand side are

the fermion mass will be estimated. The gluonic impacts o he bare fermion propagator, the self-energy from the four-fermion,
— . and one-gluon-exchange interactions, respectively.

the quark condensate/ /), and meson dynamics are then to

be investigated. We will see that the gluonic effects inpoximately transformed to the four-dimensional one using
nuclear medium cannot be absorbed thoroughly in a fourge cauchy theorem for the analytic and numerical feasibil-
ferrmon interaction theory by a constant coupling after '”te'ity. Second, the gap quantity in the three-dimensional space
grating out the gluonic degree of freedom. is assumed to be only dependent on the three-dimensional
For clarity, we give three notations for models or frame- o mentum squared, similar to the four-dimensional case
work used in the context. The model with the pure four-\here the gap quantity is assumed to be dependent on the
fermion interactions is mainly mentioned as the pure NJL o dimensional momentum squared. The reasonableness
the model with both the four-fermion and gauge interactiong,, the introduction of these approximations can be shown
is mainly called as the gauged NJL, and the framework with,merically in the following section. Since the gauged NJL
gauge interaction incorporated into four-fermion interactionsyogel used here is nonrenormalizable, a quenched ultravio-
is denoted as the density-dependent NOL p-dependent et (yy) cutoff A is introduced to regularize the divergence.
NJL). We now give the arrangement for the paper. The 9aprhe detailed procedure for the deduction of the gap equation

equation in the nuclear medium for the fermion obtainedg presented in the Appendix. The gap equation in nuclear
from the SD equation is briefly investigated in Sec. Il andedium is written as

other essential formulas are given. In Sec. lll, numerical cal-
culations are given and numerical results are discussed. In

, _ : \ g (a2, YB(Yy)
the final section, the summary and some discussions ar@(x)=mo+ — 2dy—2
given. AcJag Ty+B(y)
2 B A(X A
Il. FERMION GAP EQUATION + fA dyy—(y) QG(X—y)%— (—y)ﬁ(y—x)
AR TY+BAy)L X y
Since the confinement is not specially considered for the
static dynamical properties, it is more accurate to regard A2 yB(y) [N(y) A(X)
nuclear medium as quark matter. With the increasing density, JO yy+ B2(y)| ¥ T oy —X). @)

nuclear medium will go closely to quark matter. The baryon

is simply considered as a collective of three constituenherex:qz is a four-dimensional momentum covariant in
quarks. Quarks are taken in the sense of constituent quarkge gyclidean spacg=N,N;GA/4x2, andAr, related to
h C 1 )

here. , _the fermi momentum, is determined as follows:
The NJL model on the quark level describes hadrons in
terms of constituent quarks where the interactions are 2 yllz‘B' A2 yB(Y)
through the exchange of the quark-antiquark pairs. The one- f F T:f Fdy——, 3
boson-exchange interactions can find a dynamical origin in 0 (y+B?)¥ Jo y+BA(y)

the NJL model. With introduction of the gluonic degree of h ; imati de ab h b d
freedom, the NJL model is modified to be the gauged oneVNere Wo approximations, made above, have been used.

The gauged NJL model can be expressed in terms of tm§ince the integral limits for both integrals are the same to-

following Lagrangian: pologically, B is determined topologically by
_ _ _ - AZ
L=y(D+mo) Y+ GL(J)*+ (4 ys7)?]+ 2 GL'Gp B=8B k—2> : @
wva F
(N

For the gluonic interaction, it is renormalizable in principle.

Here ¢ is the quark fieldG,,,, is the gluon field strength The reason to introduce the same uv cutoff to the gluonic
with « the index of generator in the color space, &b the  interaction as to the four-fermion interaction is mainly due to
bare four-fermion coupling constant. the difficulty of the numerical treatment. Equati@@®) is an

The fermion gap equation in the free spdd®] is ob-  integral equation, which is only capable of being solved nu-
tained from the fermion propagator using SD equations, americally for the finite-momentum range. On the other hand,
also illustrated in Fig. 1. An analogous gap equation init is difficult to define the bare and renormalized quantities
nuclear medium is obtained. In order to derive the fermionconsistently in the nonrenormalizable Lagrangian. One may
gap equation in nuclear medium, some approximations arexpect that the contribution from the high-momentum range
made. First, since the gap equation in nuclear matter is natan be approximately folded into the parametéi@m in-
covariant, the three-dimensional integral needs to be apstance, the four-fermion couplinG) describing the low-
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energy physics. Considering these factors, the gluonic intef=quation(9) has the same differential form as Ed@) and we
action is approximately parametrized by the following are able to see that there is only a trivial void solution. As
simplistic running coupling constant(q?) [19], which may  nuclear density exceeds the critical value, the chiral symme-

greatly suppress the integration beyond the uv cutoff: try is restored completely. On the other hand, E®). ex-
plains the fact that even though the four-fermion contribution
MA%) =N ,(0%) 0(9°— u?) + N, 0(u?— ), (5)  to the fermion mass vanishes, the gluonic interaction has
nonvanishing contribution to the fermionic mass and related
where dynamical meson masses.
In order to investigate the fermion mass dependence on
o A, parametersd,A), we will first give the numerical results at
Nu(07)= 1+ (N, /a)In(g?/ u?) zero density as will be discussed in the following section.
K After this is done, the suitablg and A are determined to
a a give the detailed numerical result for the dynamical fermion

(6) mass at various densitied. is determined by the fermion
and meson(such as the pionmass conditions in the case
where the one-gluon-exchange interaction is not taken into
account. We use an approximate relatibi- \/§A3 where

A5 is the three-dimensional uv cutoff.; can be determined

(a/ny)+ (@AY (AR

with a=9(n?—1)/2n,(11n,—2ny), A =A(A?)
=a/|n(A2/AéCD), and Agcp the confinement scale whose

value is specified in the following sectionu [equal 10 i3 3 four-fermion interacting model without gluonic terms.
Aqcoexp@?2\,)] plays the role of the infrared cutoff. The g fermion and pion masses with only four-fermion in-

SD equation has the spontaneous-symmetry-breaking Solysyactions are determined in the following two formulas:
tion for )\M>% [25]. Theoretically, it is better to have a large

value of A, to count more confinement effe'ct, while the me  2GoNcN; (Asp?dp
calculated physical quantities seem almost independent of 1-—= 5 f " (10
A, at the region of large values, as will be specified in the M ™ ke E
following section. In the calculation , is taken as 2.5.
In order to make the integral E(R) solvable, we convert and
it to the differential equation )
mg 2 2GoNcNy (As p“dp
X)) Tx Mz 2 ez 2 -0 (1)
M T ke EX(4E*“—mL?)
. X , AX)\" xB(x)
B"(x)= NI )+ = X+ B2(x) (7 wherek is the Fermi momentunM* andm® are the ef-
(T fective fermion and pion masses in nuclear medium, respec-

tively. E*=\M*%+p?. G, is the four-fermion coupling

with the uv and infraredir) boundary conditions, respec- when there is only the four-fermion interaction in the calcu-
tively, as lation. In the free space, the constituent milsandm,. are

set to be 313 and 138 MeV, respectively. With these two

Z\ g mass conditions5, and A; are uniquely determined. For
B(zA)+ 75| 1+ 524 |B/(20) =m0, completeness, we give the formula fermass in the follow-
A ing:
B'(z, )=0,
(Zp.) Mo (m*2 4M*2)ZGoNcNfJA3 p%dp 0
——(mi = =0.
wherez=In(q%/Adcp). For the zero density\=0. The fer- ~ M* 72 Jke E*(4E*2—m%?)
mion mass is defined by the normalization condition (12)
B(g?=M?) =M. (89  Formulas for meson dynamics can also be found, for in-
stance, in Refd.7,8].
The effective fermion massl* in nuclear medium is calcu-  The chiral order parametarin gauged NJL is defined by
lated atg?=M2. the quark condensate
With an increase in nuclear density, the contribution of the
last integral to the fermion mass in EQ) may exceed those — ((F)e) =N d*p rS(p)
of all other terms. Supposing an extreme case in which the x=(h)o)"=Ne (2m)* P
nuclear medium is so dense that all terms except the last
integrgl are negligible, the gap equation is, therefore, in the N. (A2 yB(y) A®N, B(z,y)—my
following simple form: =— Yy (13
41 y+B%(y) 4m® 9TA,

o(y—x). (9  Withoutinclusion of gluonic interactions, the quark conden-
sate is presented in the three-dimensional space as follows:

Af gy YBOY) IAMY) A9
y X

B(x)=mgy+ jo yy+ Bz(y)
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FIG. 2. Phase diagram of the fermion mass with parameter:
(9,A4),M=313, my=5 MeV. The different confinement scales ""(PZ/Aocoz)
Aqcp=120, 160, and 200 MeV are for curves from bottom to top,
respectively. FIG. 3. B(q?) for different\ ,’s. The calculation is performed in

the free space withh ocp=200, M =313, andmy=5 MeV.

— d*p Nc (As M* fermion coupling is thus decided by the relationgofnd A
= —] = — 2 . . . . !
<'J"/’>0_N°f (277)4"8(‘))_ Trsz P dpE* - (14 Only if the same cutoff is used for obtaining the same fer-
F mion mass, one can be aware of the quantitative gluonic
contribution to the fermion mass in gauged NJL.
Il. NUMERICAL CALCULATION AND ANALYSIS Before doing numerical calculations for physical observ-
) ) . ) _ables, we need specify the parameter. In the free space,

In thls section, we do numerical caIcuIatlon_s and 9iVethe gap quantitieB(qg?) for different\ ,’s are plotted in Fig.
numerical analysis. After parameters are determined, quantg \here we take the ca cp=200 MeV as an example.
ties, such as the dynamically generated hadron masses, at§ seen in the figure, the infrared value of the gauge cou-
calculated._At the_same time, the gluonic (_:ontrlbutlons argyling has a very small influence on the evolution of the gap
discussed in detail and the property of chiral symmetry isyyantity beyond the infrared-momentum range. Since the
investigated. physical observables are actually specified or defined by the

normalization condition which is used to solve the gap equa-
A. Parameter determination tion, the confining effect incorporated through the parameter

. . N\, is negligible to the calculated physical quantities. For
“
quaﬂon_(?) can be solveq by_thue Of. any two of thr(_ee instance, the chiral order paramejerwhich can be evalu-
conditions: ir, uv, and normalization conditions. The relation

. . o Eq(1 A, has the distinction much | han 1%
of parameterg) and A is worked out as ir and normalization ated by Eq(13) at A, has the distinction much less tha X

" ) : i for different A ,’'s. As long as the spontaneous-symmetry-
conditions are used for solving the gap equation, and it turn K g P Y Y

X . Breaking solution of the SD equation is generategi%),
oyt that the fermlon mass 1S depen_dent on paramefgrs)( the calculated physical quantities are almost independent of
Figure 2 illustrates the constituent quark ma$d

. . . . N\, for a large range. In nuclear matter, numerical calcula-
= K .M . . . ! .y
313 MeV with different(g,x,(A))'s. The given fermion tjons indicates that calculated physical quantities are also

mass in Fhe frge space Co.rresponds to i_nfinite ””mbef Aimost independent of ,, and that is not specially illus-
(g,A) pairs, displaying various four-fermion and gluomcnt{ated below.

contributions to the fermion mass at zero density. The curre
fermion massan, is set to be 5 MeV. The confinement scale
Aqcp is an important quantity in the parametrization for the
running gauge coupling and the numerical results are usually The definition for the nuclear density is given @s
of confinement scale dependence. We will give the physicak NCN,(k,?;/:%q-r2 with the normal density,=0.16 fm 3. The
interpretation based on the numerical results worked out witliermion mass decreases with increasing density as shown in
the confinement scal& cp=120, 160, and 200 MeV, while Fig. 4 andM* —m, at high densities. The results with vari-
the dependence of physical quantities dgcp will be dis-  ousA ocp's indicate that the smallek ocp corresponds to the
cussed at the end of the following subsection. larger critical density while this can be seen in Fig. 4 where
In models for four-fermion interactions, the cutoff is  three curves correspond, respectively, Agcp=120, 160,
needed to regularize the divergent integrations. Here the cutitnd 200 MeV. To obtain the same fermion mass under same
off is determined by the constituent quark mass and the pioav cutoff in the free space, one can use different combination
mass (n,=138 MeV) conditions in pure NJL. The deter- of the four-fermion couplingy and theA o¢p that scales the
mined A is 973 MeV(A ;=688 MeV). The same cutoff is gluonic contribution. The effective mass is dependent on
used when the gluonic interaction is included, and the fourA cp. Hereg=0.892, 0.983, and 1.049 determined in the

mo

B. Fermion mass and four-fermion coupling in medium
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/ FIG. 5. Density dependence of the four-fermion coupling. The
P/Po short dot-dashed line is foB, in pure NJL. Other straight lines
stand for density-independent four-fermion couplings in gauged
NJL, while curves are for four-fermion couplings prdependent
NJL with Aqcp denoted in the figure.

FIG. 4. Effective fermion masses in nuclear mediup
=0.16 fm 3,

free space correspond, respectivelyAigcp=200, 160, and  depending on the confinement scale. Figure 5 illustrates the
120 MeV, and that shows the largérocp gives the larger  four-fermion coupling with inclusion of gluonic interactions
gluonic contribution to the fermion mass in the free space. Inwith different Aqcp's. At zero density, the value of on

a framework of the four-fermion interaction plus the one-curves(not on straight linesis for the pure NJL. It shows
gluon-exchange interaction, the pure four-fermion interactiorthat by incorporation of gluonic interactions the four-fermion
can be obtained as the running gauge coupling vanishes, asuplingGy(p) is strongly density dependent.

seen in Fig. 2. Meanwhile, it is found in Fig. 2 that the  More explicitly, we plot the extracted gluonic contribution
gauged NJL interaction can go without much change of then Fig. 6. The extracted gluonic contribution factd, is
four-fermion coupling to the pure four-fermion interaction defined by
from some large\ (small\ ) by simply integrating out the

gluonic interaction up to very high uv cutoff. However, in

the practical calculation, the uv cutoff, which is usually be-

low 1 GeV determined by physical quantities, is used for
regularizing the divergent integrals. Therefore, it is possiblyThe gluonic contribution to the effective fermion mass could
but not absolutely right that reasonably large gluonic contriincrease from about 20% to as high 50% in medium at high

bution in gauged NJL can make some results approach tg@ensities. As seen in Figs. 5 or 64(p) increases monoto-
those in pure NJL. These explain why the effective fermion

mass with largen ocp is closer to that in pure NJL. Mean- L5 08 ——
while, the consistency between the numerical results ob- -

tained here and the two approximations made at the beging
ning to derive the gap equation indicate that thex
approximations are reasonable. However, this is not to say I
that the results of gauged NJL can be reproduced by the pur . 120MeV e
NJL, as we will see in Sec. IlIC that a better chiral order I
parameter can be obtained only if the gauge interaction is ¢4
included.

Gluonic contribution to the fermion mass is scaled
through comparison of the four-fermion couplings with and
without gluonic interactions under the same uv cutoff condi-
tion. After parameters are decided, the effective fermion
mass in gauged NJL is obtained by solving the gap equatior |
in nuclear medium. For the NJL model, the four-fermion o T T RS P R
coupling is re-adjusted to get the same effective fermion 0 ! 2 3 4 5 6
mass as in gauged NJL at different densities. In the free 0/00
space, gluonic interaction accounts for the dynamical origin
of the fermion mass by a factor from about 15% to 30%, FIG. 6. Extracted gluonic contribution in nuclear medium.

_Golp) =G

Gy (15

2

Ngep=200MeV

06 F e 160MeV _

0.2
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TABLE I. Chiral order parametey for different confinement | As shown in Table I,y’s with a large scope of\ ocp N

scaleA qcp- gauged NJL are within the error bar predicted by the QCD
sum rules[28] (225+ 35 MeV) or in[29] (225+25 MeV).

This is a good indication that the gauged NJL can simulate
x (MeV) 247.3 243.1 236.1 2195  the low-energy physics of QCD quite well through choosing
the suitable confinement scales. The chiral order parameter is

nously with increasing density for smallocp's. Increasing much Ieszsensr;tlvethQICD tgan the effectwez;erzmloh mass.
Aocp, Go(p) may have the maximum “along the density Compared to the chiral order parameters 28,29, it im-
axis. By incorporation of the gluonic contribution, the Pliés that a reasonably largérocp is preferred to obtain a
density-dependent four-fermig®DFF) coupling is induced reasonably smalley. In general, the chiral symmetry prop-
naturally, and that leads to a density-dependent NJL. erty can be well simulated in gauged NJL. It is necessary to
By now, we need to make a discussion for the dependenaceote thaty is 260.1 MeV for the pure NJL. The gauged NJL
of relevant quantities oA ocp. Agcp has a big error includ-  model gives a better chiral order parameter.
ing theoretical uncertainties, say, roughly from 100 to 500 Besides the four-fermion coupling, the chiral order pa-
MeV, depending on parametrization scheme of the runningameter is also effectively modified through incorporation of
gauge coupling constaf6,27. For integrals of the four-  gluonic contribution. Figure 7 plots the chiral order param-
fermion interaction in nuclear medium, the Fermi momen-eter with respect to the density. The two curves that are cal-
tum plays the role as an ir cutoff, whereas it is not a pure i ated with density-independent and DDFF coupling con-
cutoff as shown in Eq(2). At densities not very high, the - giants indicate that gluonic interactions play their important
four-fermion contribution can decrease faster than the gluzy o5 in the chiral order parameter. With inclusion of the

onic one in the gap equation for SOMe,cp's with the in- oo tive gluonic contribution, the chiral order parameter ap-
creasing density. The gluonic contribution must reduce fasteé

Aocp (MeV) 120 160 200 240

than the four-fermion one at high densities where the runnin roaches to that of the gauged NJL. The gluonic interactions

gauge coupling at short range plays the role. Therefore, the an gffectwely modify the behgvmr of chiral symmetry res-
must be a turning point from increase to decrease on thipration, represented by the chiral order parameter.

curve forGgy(p). This provides a constraint on the uncertain- ) . o

ties of Agcp. Using this constraint, we see from Fig. 6 that D. Meson (o7, ) masses with gluonic contribution

the A ocp cannot be very small, say, it cannot be much lower  The o and = masses irp-dependent NJL can be calcu-
than 200 MeV. On the other hand, the gluonic contributionjated by Eqgs.(11) and (12) but with DDFF coupling con-
decreases with the increasing density for largejcp (for  stants. As an example of application for these DDFF cou-
instance, Aqcp=240 MeV). The gluonic contribution pling constants in the density-dependent NJL, meson masses
should reach its maximum in medium, which is actually agre calculated from the case Afocp=200 MeV. Here we
saturation property of the gluonic contribution. So the reainvestigate the influence of DDFF coupling constants on me-
sonable range foA ocp should be between the places whereson masses and the property of chiral symmetry.

the gluonic contribution decreases or increases monoto- The DDFF coupling explicitly modifies the density-
nously with the increasing density. From present parametergiependent behavior of effective meson masses. The less
numerical calculations indicate thatocp ranges roughly  density-dependent meson masses are given by the

from 190 to 240 MeV, which is a rather small range. p-dependent NJL than by the pure NJL, as is shown in Fig.
) ) ) o 8. The critical density of chiral restoration is also effectively
C. Chiral order parameter with gluonic contribution modified by the DDFF coupling. It may have two kinds of

For differentA ocp's, we have calculated the correspond- criteria to determine the critical point. One is thaf —my
ing chiral order parameters at zero density as given in Tablé used for criterion, the other is that the shift point where the

300 T T L B L IR L B L B
- o Pure NJL
0] p—depend.
45 :"'\ ':i'h TTTTONJL I, |
c ~ s — Gauged NJL . (Aap=200MeV)
o R (Nap=160MeY)  NF, 1
o kY RN "'._ N |
= 200 : LN
-
)
2
o N FIG. 7. Chiral order parametey in nuclear
R - medium.
= 10 0 = T -+
< T T
5 ) )

0 | | | [ | [
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[ed]
Q
[a]

T T tribution, it has less density dependence for the fermion and
o—depend. NJL 1 meson masses and the chiral order parameter, meanwhile the
(Aoco=200MeV) - critical density of chiral symmetry restoration becomes
- larger. Due to the importance of gluonic contribution, we
may expect more applications for tipedependent NJL in a
wide range of hadronic physics later on.

Besides simplistic treatments of parametrization for the
gluonic degree of freedom, we have used some approxima-
tions to derive the gap equation in nuclear medium. With
these approximations, the three-dimensional integral has
been numerically transformed to the four-dimensional one by
using the Cauchy integration. At the same time, the quenched
truncation in the gap equation is used to carry out numerical
results since the present four-fermion interaction model is

0 — ; , é , é : :1 : é e nonrenormalizable. The quenched uv cutoff has been also

introduced to the gluonic interaction in gauged NJL and it
2/ 0o would be necessary to take more consideratignsluding
renormalizationto deal with the gluonic interaction later on.
FIG. 8. Masses of chiral partneo () in nuclear medium. These approximations and simplistic treatments could induce

. . - .some error. However, the present theoretical predictions are
sigma mass goes from decrease to increase with increasin

density is regarded as the critical point. No matter WhiChrgasonable and consistent with the analytical analysis and

criterion is used, the larger critical density is given by theemplrlcal data as well. In addition, the present numerical

) " .._results are primitive since the exact constituent quark mass is
p-dependent NJL and the difference of the critical densnynot known though the relatioh ,=3M is used.

between they-dependent NJL and pure NJL has about more In summary, we have obtained the gap equation in nuclear

than 1, as shown in Fig. 8. Though this difference is dif- medium using the SD equations. The gluonic contribution

o e o e e ahesauy e ot very sigifcant for e DOFF couping constans
y y y adron masses and the property of chiral symmetry. The er-

){/\r/:thm:jt exc%ptmt)nNt;{ t’[]he gluom’c\:UcIf)ntrl(t;uTlon. Compar?d t?ror including theoretical uncertainties of the confinement
€p-dependen » (N€ pure modetl may overestimale . q jg greatly reduced according to the saturation property

the density-dependent behavior of effective meson MAasSEgt the gluonic contribution in nuclear medium using the SD

In short, the gluonic contribution has non-negligible |anu—. equation-based approach. The rangeAqfup is about 50

ence on meson dynamics and chiral symmetry property "MeV in the present parametrization of the running coupling
medium. constants

600 N, W mmmmemm-- Pure NJL -

400

Masses of (o,7) (MeV)

200

IV. SUMMARIES
APPENDIX: DERIVATION OF THE GAP EQUATION

Based on the derived gap equation in nuclear medium, we i ) ) )
have investigated a variety of quantities: fermion mass, 'Ne fermion gap equation can be derived by solving the
DDFF coupling constants, chiral order parameter, and soP €quations for the fermion propagator. In the Hartree ap-
forth. The gluonic impacts are displayed through comparingj’rox'mat'on’ these SD equations in the free space are written
to results in pure NJL. Due to inclusion of gluonic interac- 85
tion, the chiral order parameter is improved and theoretical _
predictions of the fermion and meson masses are effectively S,:(q)‘1=82(q)‘1+2(q)—iG<¢¢) (A1)
modified. The chiral order parametepredicted here is con-
sistent with the one by the QCD sum rules. The gluonicand
contribution is essentially important to explain the dynamical
origin of _the fgrmion mass _in the _four-fermion in_teraction sg(q)*lzmqu_mo, (A2)
models either in vacuum or in medium. The gluonic interac-
tion can explain the dynamic origin of fermion mass by a dp
factor of about 15—30 % in the free space, and the maximum — i f wviy
of the gluonic contribution reaches in medium. The DDFF Ha=-i 2m)% 7uSe(P)TDEa=p). - (A3)
coupling is obtained as the gluonic contribution is mapped

into the four-fermion interaction framework. One implication 4t
from the DDFF coupling is that the gluonic contribution can- (p) = ch P t{S2p)], (A4)
not be simply integrated out with its contribution absorbed )4

by the constant four-fermion coupling in pure NJL.

The significance of the DDFF coupling is shown in ob-
taining the effective fermion mass, the chiral order param- D;w(p):< — Ot
eter, and the meson masses. With inclusion of gluonic con-

d 2
pﬂpv) (P _ @by o

p2 | p* p® p?
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whered is the coupling constanty is the gauge parameter, Since the formulas are actually noncovariant in nuclear me-
andT', is the interaction kernel, which is replaced py in  dium, the approximation is introduced when the conversion
the actual calculation. The following self-consistent interac-between the covariant(four-dimensional and three-

tion fermion propagator is assumed: dimensional forms is made to obtain the above equation and
. the second equality of EGA10). The infrared cutoffA¢ is
Se(q) "=Ay,09"—B, (AB)  determined by keeping the equality of two integrals at the

both sides of Eq(3).

For the gluonic part in nuclear medium, it is divided into
two portions, in a manner similar to the four-fermion part.
One portion is the same as that in the free space, and the

where the gap quantities and B can be determined by Eq.
(Al). A can be proved to be unity by taking the Landau
gaug€ 18]. B can be calculated from the following equation:

tr3(q) _ other medium-related portion is calculated as follows:
B=my+ T+G(¢¢) (A7)
4
with | the unit matrix. Here we are not to go into details of _ j d—pW—Ba(po—E(p))a(kF—|p|)
the deduction that can be referred [b8]. Through the w? (p?+B?)1?

straightforward calculation, we can arrive at the gap equation

in the free spacgl9] as follows: (qz) \(p?)
X 6(q>—p?) + o2 ——0(p*—q?)
2 B

B(x)= mo+—fA Y (zy) )

y+B (y) _ _ZJ'dePZ(pZ)lIZ

2, Rp2\1/2
[Fay RN 2 ] (P89
20y x \(g? . N-—B? -
° YHEY) Y o x{—(i ) o+ BZ)——(EZ Lg(—q-)

In nuclear medium, the fermion propagator has two terms K2 y¥B A (X)
one of which is the same as the one in the free space and the - 2[ y(y+§2)1/2 X

other gives the medium modification
i

+
—B2+ie E(p)

(A12)

fAﬁ yB  A(X)
=— d —
(y+B9 X

S(P)=(7'Pu B

Adding these medium-related terms to EA8), the gap
equation in nuclear medium is

X 8(po—E(p)) (ke —|p|)

with E(p) = \p?+ BZ. Thus the fermion condensate ) is

_ “p A2 y'B AZ
=N, — 3dv. _ , B(x)=my+ f Y———
(yh) f( tr[S(p)]= (2m )2J’pF y(y+|32)1/2 0 y~|—Bz(y)
(A10)
) v YBY) x(x) Ay
whereB is defined in Eq.(4), and the Cauchy theorem is * 0 yy+ B2(y) St y By=x)

used for obtaining the second equality as the four-

dimensional integral is converted into three dimensional one. A2 yB(y) \(X)
Using the Cauchy theorem inversly, E&@\10) is converted —f o x (A13)
into the four-dimensional form 0 y+B(y)
<l//l!/>_ Ne fAzdy yB _ (A11) T_he contraction for the last two i_ntegrals of the right-hand
(27)? y+B? side of Eq.(A13) leads to Eq(2) directly.
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