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Coherent Compton scattering on light nuclei in theA-resonance region

L. Van Daele! A. Yu. Korchin?* D. Van Neck! O. Scholterf, and M. Waroquier
!Department of Subatomic and Radiation Physics, University of Gent, B-9000 Gent, Belgium
2Kernfysisch Versneller Instituut, University of Groningen, 9747 AA Groningen, The Netherlands

(Received 29 August 2001; published 20 December 2001

Coherent Compton scattering on light nuclei in theesonance region is studied in the impulse approxi-
mation and is shown to be a sensitive probe of the in-medium properties af theonance. The elementary
amplitude on a single nucleon is calculated from the unit&matrix approach developed previously. Modi-
fications of the properties of thA resonance due to the nuclear medium are accounted for through the
self-energy operator of th&, calculated from the one-pion loop. The dominant medium effects such as the
Pauli blocking, mean-field modification of the nucleon @ndnasses, and particle-hole excitations in the pion
propagator are consistently included in nuclear matter.
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I. INTRODUCTION of A, while the self-energy is calculated from the pion-loop
mechanism embedded in nuclear matter, as described in de-
Coherent Compton scattering on nuclei in the region oftail in Sec. Il. In particular, Pauli blocking effects, mean-field
the A resonance is of considerable interest. The reaction aimodifications of the nucleon ankl masses, and particle-hole
lows one to study the propagation and decay ofAhie the  contributions to the pion propagator are consistently calcu-
nuclear medium. In particular, the shift of the pole positionlated. Thus we avoid arbitrariness associated with introduc-
and a change of the width of the peak reflect sensitively in ing a parametrized self-energy.
the cross section and polarization observables. The amplitude on a nucleus is calculated in the impulse
For a comprehensive review on Compton scattering wepproximation. A form factor is introduced to account for
refer to the recent paper, Rdfl]. Here we only mention finite size effects. The specific density dependence of the
several models relevant for the present study. The so-callegiedium effects is accounted for through a local density ap-
“schematic and extended” modefg,3] made use of the op- proximation. Fermi motion is treated in the so-called factor-
tical theorem and dispersion relations to relate the Comptonization approximation, in which the elementary Compton-
scattering amplitude with the total photoabsorption cross secscattering amplitude is calculated on a nucleon with an
tion. Important contributions to the amplitude, such aseffective momentunj10—13. The latter is taken in such a
nuclear kinetic and meson seagull terms a@ncdexcitation, ~way that the energy-momentum conservation for this
were added explicitly3]. The data for Compton scattering scattering holds, thus ensuring gauge invariance at the one-
were described quite well at forward scattering angles. body level. Differential cross sections and photon asymme-
Compton scattering was extensively studied indhbole  tries are calculated for light nuclefile and *°C) in the
model [3-5], which was originally developed by Koch, energy region 150-250 MeV.
Moniz, and Ohtsuka in Ref$6,7]. The A excitation is in- The structure of the paper is as follows. In Sec. Il we
cluded through theM1 transition, and the background is describe the calculation of medium effects in thepropaga-
represented by the Kroll-Ruderman part of the virtual-piontor. Section Il presents the basic formalism for calculating
photoproduction amplitude, while in Refg3,5] the proton the Compton-scattering amplitude on nuclei in the impulse
Thomson term(with E1 multipolarity) is also added. approximation. Results for the cross section and photon
The starting point of the present model is the full asymmetry are presented in Sec. IV. Conclusions and pros-
Compton-scattering amplitudg, on a free nucleon that in- pects are further outlined. In Appendix A formulas for the
cludes all dominant mechanisms at energies up to, at leagpjon self-energy are collected. Details of the kinematics in-
the A resonance. This amplitude has been obtained in th&olved in the reaction on a nucleus are contained in Appen-
unitary K-matrix approach, similar to the calculations pre-dix B.
sented in Refd.8,9] for pion-nucleon scattering, pion photo-
production, and Compton scattering on the proton. Param-;, MEDIUM MODIEICATIONS OF THE A RESONANCE
eters of the model are fixed from a detailed fit to observables
for the elementary reactions above. The Thomson limit dic- The properties of thé in the nuclear medium are calcu-
tated by the low-energy theorem on the nucleon and théated in a relativistic framework for symmetrical nuclear
Kroll-Ruderman term of the photoproduction amplitude arematter, along the lines of Refgl4—16. The medium modi-
automatically included. fications, which are expressed through the dressing olAthe
Medium effects are taken into account via the self-energyropagator, are investigated using different levels of approxi-
mation. The imaginary part of th& self-energy(or the A
decay width is calculated in different models for the nuclear
*Permanent address: National Science Center ‘Kharkov Institutgnedium. Dispersion relations are used to determine the real
of Physics and Technology,’ 61108 Kharkov, Ukraine. part (mass modificationof the A self-energy.
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In the first subsection the Rarita-Schwinger formalism isNote that in vacuunC,(p,) andD,(p,) are functions of
introduced to describe th& resonance. The next three sub- the invariantW, only, while in the medium these functions
sections deal with the\ decay width. In a first step the acquire additional dependencies on the three-momentum
nuclear medium is presented as a noninteracting Fermi sea ff, | and the nuclear densify. We keepp, as an argument
nucleons leading to the calculation of the Pauli-corrected dem Eq. (4) for the general situation.
cay width and the spreading width. Subsequently mean-field

effects are included within thew model of Waleckd 17].
Throughout, the conventions of Bjorken and DielB] are

B. Width of the A resonance and Pauli blocking

used, and all expressions are derived in the nuclear matter The imaginary part of tha self-energy is calculated from

rest frame.

A. Formalism for the A self-energy
The freeA propagator in the Rarita-Schwinger formalism
has the following forn{19]:
1
pA -M A+ | €

2pipa
3M3

GR(py)*'=

v 1 v
g# _57#7 —

~ (Mpi—"pA

M, D

with the massM ,=1232 MeV andp,=(p%,p,). The in-
variant mass of the\ resonance will be denoted by,

=(p3)*™

The propagator has to be dressed due to the interaction of

the A with the nuclear medium. This is taken into account by

an effective interaction Lagrangian. We focus on the pion-
nucleon decay channel in a nuclear environment. Fh\
interaction Lagrangian is taken in the fofi20—22

_ fﬂ'NA
£7TNA - m

g“"A, T (9,m) +H.c., (6)

w

whereW¥ (A ) is the nucleon 4) field operator,r the pion
field, andT; is the isosping < 3 transition operator with the
normalization conditionTiTjT= Sij— i 7(i,j=1,2,3). In
the above Lagrangian we dropped the off-shell coupling of
the A described by the parametey [20—22, since it affects
only the spin-1/2 components that are not considered in the
present work.

The width of the resonance is defined by the imaginary
part of the self-energy as

introducing the self-energy in the equation for the inverseThis can more formally be written as a trace,

propagator,
(G H*"=[(GY) 1" =34"
=(Pa— M) (PIF"=2(py— M) (PID*

+VBMAL(PI)#+ (P2D*]-34", ()

where the inverse free propagator is written in terms of the

projection operators on the spin-3/2 and spin-1/2 se¢&ifs
(P32,Pl2ij=11,22,12,21). In this paper we concentrate
on the dominant spin-3/2 component of thepropagator,
and therefore the self-energy is taken as
Egvzgi/Z(rP?,/Z);w' (3)

where we discarded terms proportional to the spin-1/2 pro
jection operators. The spin-3/2 component of the self-energ
has the structure

3/2_
A

3 (4)

Ca(pa) +Dy(pa)pa s

and the dressed propagator becomes

Ga(pa)#'= (P32)ry

pa—M,—332
={pPa[1—ReD,(pa)]-[Ma+ReC,(py)]

—i[Im Ca(py)+Im Da(pa)palt H(PPH~.
5)

Fa(pa)=—2 IM[C(pa) FW,D(pa)]. )
1 +W
Fa(pa)=—2 Im ZTr<2KV(P3/2)w(pA2TA)) ®

The contribution to the self-energy for tledecaying into a
nucleon and a pion is

d*k
(2m*
X Gn(K)(—d,)TaD #(q), (€)

whereq=p,—Kk, andGy(k) andD .(q) are the nucleon and
pion propagators, the structure of which depends on the
model used for the nuclear medium. We will now discuss
different approximations and their implications for thede-

cay width.

Y In vacuum the nucleon and pion propagators in £.
reduce to the free nucleon propagator

fﬂ'NA

N

m7T

+
Uu.'a

(28 w=

1 M A*(k A (—K
Sly= =t 2 2
k—Myt+ie Eg\kg—Eg+ie kyt+Eg—ie
(10)
and the free pion propagator
DW=, (1D
g°—m:+tie

whereEg=\|k|?+ M2 andA* are the projection operators
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. yEi—y-K+My =VkZ+M§ and E. = (pREy *|palk,)/W, we obtain the
AT(£k)= 2M : (12 pauli-correcteds decay width
Applying the Cutcosky rules for the discontinuity of the ffTNA(Ek + |\/|N)|<fT
loop integral in Eq(9), and usingS ,_; , 3T T,=1 one gets I'R(py)= T
the conventional expression for the width in vacuum 24mmZ|p,|

Ei— E_.E E,—Ef). (16
_firNA(EkW"'MN) . X[E4—max F)]0(EL—Eg). (16

vac
127m2W, > (13 T_his result can be separated into three different energy re-

gions:

where (1) E_>Eg: The Pauli-corrected decay Wjdth reduces to
the vacuum expressigii3), making the width p,| indepen-
dent.

kZ= Y [WA— (My+m,)?[W3— (My—m,)?] (2 E.>Er>E_:
’ 14
5 ferA(Ekﬁ_}'MN) 2 0 415 Ik
andEy_= \/k2W+ MZN. SettingW, =M, in Eq.(13) and using Talpa)= 247TmfrWA|I5A| W(EkﬂpA+|pA| =~ WaEp).
the experimental valuE\**=115 MeV one obtains the cou- (17

pling constantf .y, =2.15.
The effect of Pauli blocking is in_cluded b_y_ replacing the The width become$§A| and density dependent. Taking the

free nucleon propagator by a medium-modified one. If ong;mit |5A|_>0 reduces the width to its vacuum valuesi

models the nuclear environment as a noninteracting Fermi ™

sea of nucleons the propagator becoise®, e.g., Ref23])  — EF» and to zero ifE, <Ee.
(3) Eg>E. : The width becomes zerpI'}(p,)=0].

0(||2| —ke) 0(kF_|E|) 0(—K°) This means the Fermi sphere engulfs the decay sphere com-
GﬁG(k): — + — 1 0(kK%) + ———— pletely, making the Pauli blocking complete.
k=My+ie k—My—ie K—My+ie In Fig. 1@ the full dependence on the denisfy
My| ( (K —ke)  O(ke—|K]) =2k3/37? and o_n_|5| is shown forW,=1232 MeV. The
=— A7 (k) —+ - results at densities 1.2, 0.8, 0.4, and 0.05 times normal
Ex ko—Extie ko—Eg—ie nuclear matter density, (k2=1.333 fm'%) are plotted

A~ (=K) separately in Fig. (b). At high A-momenta and low densities
— —l (15)  the energy of the decay nucleon lies well above the Fermi
ko+Eg—ie energy, and no blocking occurs. At somewhat lower mo-
menta of theA part of the momenta of the decay nucleon are
This is written in the nuclear-matter rest frame, an explicitly Pauli blocked. With increasing density this blocking may be-
covariant form is discussed in Rdfl4]. Implementing this come complete for the lowest-momenta, making the\
propagator in Eq.9) and defining the Fermi energig unable to decay into a pion-nucleon pésee dashed and
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dotted curves in Fig.(b)]. These phase-space considerationglete calculation of theA-hole states would require self-
result in a strong energy dependence of shdecay width.  consistency between the pion add self-energies, which
falls outside the scope of the present paper.
C. Spreading width The lowest-order pion self-energy now reads

In the nuclear medium the pion will strongly interact with f 2 d*K
the surrounding baryons creating nucleon-hole antole Hoh(q):—i( ’TNN) Zf
excitations. This can be taken into account by dressing the P m (2m)*
pion propagator with the proper pion self-energy

A . 1
. XTrgys(J+ My)dys(K+My) ]———
19 Ek+gEx

0(|k+0|—kg) O(ke—|K|)
(Ko+do—Egygtie) (Kp—Eg—ie)

™

D7T = 1
@ q?-mi—TI1(q)+ie

where I1.(q) =1II,,(q) +1,n(q) is the polarization self-

energy of the pion. In our calculations we use the pion-

nucleon pseudovector coupling 6(ke—|k+q]) (|| —kg)
+

(20

f NN (kot+ 00— Eg+g—ie€) (Ko—Eitie)

Lann= ‘?3’“7’5;‘1’(5’#5’) (19

T
waN

m7T

=8

2
v 2m 12 .
with the wNN-coupling constant _yn=1.01[15]. In this ) [1al*Col|al) —Cx(lal)

work we limit ourselves to forward and backward scattered 2 2

particle-hole excitations, and omit antinucleon excitations in +2M{ya“Lo(a) ], (21)

Eq. (15), which play a role only for very large pion mo- R R . o

menta. Also intermediatd-hole states are omitted from the wherek=(Eg,k) and|=(Eg,4,k+q). The analytical ex-
pion self-energy. We expect that their contribution is morepressions for the functiors,, Cy, andC, are given in Ap-
suppressed than the estimate in R&#l] when the width of pendix A. When summing the series of particle-hole bubbles
the A resonance is taken into account. In principle, a comthe effects of short-range correlations are important. These

N: L T T | T T T T T T | T T T T T T ]
£ L i
Hﬂ - Fermi-gas calculation ., ]
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= Coocoot p=l.6po R ]
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N ! ! ! ! 1 q°=[(pa)°— E]/2 for the A ki-
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= 10 [ - |pa]|=200 MeV  within the
= B ] Fermi-gas model and atq’
C ] =[(p4)°—Ex]/2 for the A kine-
5 7 matics Wi=M} and |p,|
C 7 =200 MeV for the mean-field
o L ] models | and Il. The markers on
_ C LT the figures indicate thig| values
?; B ] for cos¢ equal to —1 (first
= B ] marke), 0 (second, and 1(third)
= 10 & 7 for the specific kinematics stated
._? C ] above that appear in the spreading
- - width calculation; see Eq23).
5 — —
0
C 1 1 | 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 ]
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gl Mevy
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short-range correlations are accounted for in the standanhereg) andg!) are the coupling constants of the scalar and

way by introducing the Landau-Migdal parametg,=0.6  vector field with massemg and m, respectively, and®)

[24], =®, (V¥)=4,0V. This self-energy can be implemented in
the modified Dirac equatiofl7]

15(q)
Mpr(0) = g2 ————. (22) [K—My—3y(K)]¥y(k)=0. (25)
a“+annIpn(a)
Introducing the effective nucleon four-momentukh= (k°
Using the pion self-energil y, in the pion propagator from  —gNv k) and massviy= MN gh®, the nucleon spectrum
Eq. (18) we get the spreading width of tideresonance inthe s modified to k*2=MZ2, or ko=gV+ E» where Eg

medium
= V|k|2+(MN)2-

2 Ik |2 In order to assess the sensitivity of the results to the
I'3(py)= ( 3)( ”NA) pry ’MN d|k| —— mean-field parameters we have performed calculations tak-
3W k (2m)? ing two parameter sets from R¢23], henceforth called sets

L I and Il. Set I, called QHD-I in Ref[23], results from a pure
xf d cosf(k-py+MyW,) mean-field approximation to the binding energy. The dimen-
-1 sionless ratios of coupling constants and meson masses have
values C2=(giMy/my)?=267.1, C2=(g\My/m,)?

X[Wiq —(pa- q) ]_ =195.9. The nuclear matter equilibrium density is lét

2E; =1.42 fm 1, with a binding energy of 15.75 MeV and an
effective nucleon masl /M= 0.56 atp,. The full density
Im TI,4(q) 6(—02) dependence of the effective mass is defined explicitly by the
[q —mZ—Re Tl ,(q)]2+[Im Tpn(a)]%" self-consistency equation
23 2 M *
(23 MA= My (gsz) GEE— (M2 In (k +*EF)l,
where q=p,—k. Since the pion self-energy only receives Ms Mn

contributions from the particle-hole excitations, its imaginary (26

part .is nonzero only for spgcelike pion.mor.nenta. This p“t%vhereEgz kZ+(M%)2. Set II, called the relativistic Har-
restrictions on the integration boundaries in Eg3). The tree approximation in Ref23], takes into account vacuum

two-dimensional integral was evaluated numerically. As aMuctuation corrections to the binding energy. The parameters
example we have plotted in the upper panel of Fig. 2 the Gre C2 228.2 andC2 147.8. The equilibrium density is

imaginary part of the pion self-energy in function of the p|0nt ken atko 1.30 fm %, with a binding energy of 15.75

momentum|ﬁ|, as it appears irl Eq23) for the specific MeV leading to an effective nucleon malsg,/My=0.73 at
kinematics: Wy =1232 MeV, |p,|=200 MeV, and pion equilibrium density, and the self-consistency equation reads:
energyq®=(p3 — Eg)/2.

The results for the spreading width are shown in Fig. 3. (95)2 Ke+Ef
. . . . . * 2
The spreading width is roughly proportional to the density, My=My——— kFEF (MY In "
which can be understood on the basis of the phase space ms My
available for the hole states. As can be seen from Kig). i8 M2 1 M
is only weakly dependent on the three-momentijma|. +——— —|My? In(M—N)—Mﬁ,(Mﬁ,—MN)
Also, the dependence AW, turns out to be rather weak in ms N

the region of interest. The total width of the in this non- 5 11
interacting Fermi sea of nucleons is given by the sum of this — S Mp(ME—=Mp)2— Z=(M5—My)?
spreading width and the Pauli-corrected decay width from 2 6

the previous section.

(27)

The full density dependence of the effective nucleon
_ _ masses in both cases are shown in Fig. 4. We see a strong
D. Mean-field effects in the nucleon andA self-energy reduction of the effective nucleon mass compared to the free
A refinement to the free Fermi-gas model can be madéucleon mass with increasing density in both cases, with a
using the Waleckaro model[17] in the mean-field approxi- slower decline when the influence of negative energy-states
mation. Here ther and w meson couple to the nucleon re- is considered.
sulting in the mean scalar and vector fieldss) and(V*). In the extended mean-field model of R¢t4] the A is
In the nuclear matter rest frame the spatial paf\¢f) is ~ assumed to move in the mearandw fields. The mean-field

averaged to zero, and the constant mean-field contribution teontributions to thel self-energy can be treated in an analo-

the nucleon self-energy becomes gous way as for the nucleon, i.e., they are absorbed in the
effectiveA massM; and four-momentunp} . In this paper
Sn(K)=—gi®+g)Vyo, (24 we employ the so-called universal couplingst], gY=g2

014613-5



L. VAN DAELE et al. PHYSICAL REVIEW C 65 014613
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b ] momentum |p,| at W,
e 1 =1232 MeV calculated in the
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50 \ calculation in function of theA
L 20 B three-momentunip, | for the four
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andg\=g>, and as a result tha effective massM3(p) The results in theow model for the Pauli-corrected
may be expressed &83(p)=M,—(My—MY). decay widthI'Y and the spreading width? at the on-shell

We can now investigate_the influence of thes_e mean-fielghoint Wy =M} (p) for both parameter sets are depicted in
modifications on the Pauli-corrected decay width and therigs. 5 and 6. It is seen that the structure of the decay width
spreading width of thé by replacing the Fermi-gas nucleon hardly changes when effective masses are introduced; only

propagatof Eq. (15)] in expressior(9) and in the calculation the limitin > ;
) , ) g value at largép,| now becomes density depen-
of the pion self-energysee Eq.(20)] with the mean-field dent. Because of the stronger reduction of the effective

propagator masses the Pauli blocking is more pronounced using param-
. R eter set I.
vo O(lk|—kg)  O(ke—]K|) . The mean-field effects result in an overall reduction of the
Gr“(k)= — + — 1 O(k5) . . ! _
K'—Mi+ie K'—Mj—ie spreading width as compared to the Fermi-gas calculation
(see Fig. 3 For the relevant nuclear densitipgpy<1.2,
0(—K?) this reduction is stronger at larger densities. It can be shown

that for vanishingA momentum the spreading width is

K* =My +ie roughly proportional to the integrated pion propagator di-
R . . vided by the effectivél mass. The reduction of the effective
_ N A**(K) 0(|k|— k) n O(ke—|K|) mass explains the global density dependence of the spread-
E kg— EE+ ie kj— EE_ ie ing width in this region. For larger densities the effect of the
pion propagator makes the spreading width saturate and
A*(—K) eventually decrease in the mean-field models. The mean-field
T = | (28) model | yields a maximal spreading width at around the
kO + EIZ —le

equilibrium density. In the mean-field model Il, the spreading

where A** follows from Eqg.(12) with the nucleon energy width saturates at much larger densities.

Er and the nucleon masd replaced by the effective vari-
ables EE and My,. The resulting expressions are formally
identical to the free Fermi-gas expressions if all kinematical
quantities are replaced by their effective equivalents. In par- |n the previous sections we have obtained the imaginary
ticular, we introduce the effective in-medium mass of he  part of theA self-energy due to the pion dynamics, i.e., the
W3 =(p3?)™. In what follows we will use these effective sum of the Pauli-corrected decay width and the spreading
kinematical quantities in all expressions; it is understood thavp\”dth This imaginary part generates a contribution to the
they reduce to the Original kinematical quantities for the fI'EQfeaj part of theA Se]f-energy, which can in genera| be ob-

Fermi-gas calculations. _ _ tained via a dispersion relation. Based on the general struc-
In the middle and lower panel of Fig. 2 we depict thetyre of the A self-energy in Eq.(4), one can find

imaginary part of the pion self-energy in function of the pion rq c, (p%)] and RED 4(p4)] through a dispersion relation

E. Real part of the A self-energy. Renormalization

momentum|q| for bot@ mean-field calculations at theki-  in terms of IfC,(pX)] and InfD,(p})] calculated for ar-
nematics:\Wi =M}, |ps|=200 MeV, and pion energy®  bitrary W} . The imaginary parts of ,(p}) andD (p}) are
=[(px)°—Ef]/2. retrieved from the following relations:
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500 = 7] Sec. I D.
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. 1 . We make the assumption that an unsubtracted dispersion
Im Ca(pa)=— 7 (Fx+Ty), relation holds at fixed values ¢p,|, namely,
(29)
1 2|7 * 2 A
*\ - R CA (W34, +piDA(Wi%,|p;
Im Da(ph)=———(T{-T5), e Ca(WL%, pal) + BADA(WLZ, [pal)]
A - N -
L 1 [ [Im Ca(W,2,[pa))+p3 Im Da(WAZ[Ba)]
wherel' is defined as 7wt W, 2— W32
. 1 (£pi+W)) X f2(W42)dW,2 32
1‘*&:_2 Iml =Tr KV(PSIZ)V # A( A ) A ( )
4 A
* - * where the form factorf ,(W}?) is introduced for conver-
= —2 Im[C,(p}) = WAD4(p})]. (30 2(Wa )

gence. Equatiori32) actually implies two separate relations

For instance, the imaginary parts for the one-pion loop infor Ca andD, . The thresholdNy, is My+m_ in vacuum,

vacuum WV} reduces toN,) are

while in medium it is a more complicated function of

masses, Fermi momentum, and three-momerjfugh
2 kMY The propagator is renormalized in such a way that in

Im Ca(pa)=——"—>5—, vacuum it has a pole at the physical magdg=1232 MeV
24 Wy with a residue equal to unity, as if the were a stable par-
. (3)  ticle. These conditions give rise to the renormalized func-
o fanakaEx_ tions (for arbitraryW,)
2(Pa) 24mm2W2

Re CR(py)=ReC,(pa)— oMy +My(1-2Z71), (33

The in-medium expressions for I8, and Im D, (at non-
zero nucleon densityare more complicated than Eq81)

and depend on botWy and|p,|. ReDR(pa)=ReD,(py)—(1-Z71). (34
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~ e~ 1r Tl 1 the two mean-field calculations as
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The mass shiftthe physical mass minus the bare maasd G (ph)={pr[1-ReDR(pX)1-[Mi+ReCR(p)]
wave function renormalization constant are given, respec- _ . o
tively, by —i[Im C{(pX)+Im DX(p1)prl}~H(P¥2)~.

(37)
SMy=[Re Cx(pa)+M, ReDy(pa)llw,=wm,

(35) In the calculation of the dispersion integrals we use a

, similar form factor as in Ref25],
Z={1-ReD(ps)|lw,=m,~2Ma[Re CL(pa)
+My ReDA(Pa)llw,=m,} (A2—=M2)2+(M2-M2)?\?

(A2=M2)2+(MZ—W3)?

fa(Wy?)= . (39
with the notation ReC (p,) =49 Re CA(pA)/ﬁwi and simi-

larly for Re D(pa). The required properties of the renor- Where\7vi

fired , d by the relati =(W}+M,—M3})? and the normalization is cho-
malized propagator in vacuum are ensured by the relationsy, ¢ ,ch that ,(M%%) =1, which is appropriate for the in-

medium calculation. The cutoff parameter is taken the same
9 as in Ref[25]: A,=1.506 GeV.
(Ei’Z)R|bA:MA: —(Zi’Z)RMA:MA:o, The mean-field description of the nuclear medium neces-
* dpa ' sitated another modification of the form factor. At large val-
(36) ues of the nuclear density the decrease in the effective
3R ~R R masses ofN and A results in values close to zero for the
(2397=CA(pa)+ D5(Pa)Ps- threshold invariant masa/, of the dispersion integrdB2) if
|5A| is large. Since the projection operator on the spin-3/2
Finally, the in-medium\ propagator, which is used in the sector of theA appearing in the calculations bty , leading
calculations described in Sec. Ill, reads to Im C,(pi)] and InfD,(p})]1, has negative powers of the
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A i_nvariant mass, thi; wo_uld cause u_nphysical large pontri— KA=A(TN(I5)>FP(<3). (39)
butions to the dispersion integral coming from the region of

the invariant mass close to zero. We eliminated these con'[r{,—vh o - TR
. o . ; ereF is the Fourier transform of the density distribu-
butions by multiplying the form factor in Eq(38) with tion (fo?r(nq)factob. In Eq. (39), the form factoryof the

g(W,)=1-6(M N_WA)(W{_MN)Z/MKIZ- We checked 1s.1p-shell nuclei withZ=N=A/2 is constructed on the
that the multiplying factog(W,) hardly changes thA real  basis of the experimental charge densities in IR28] (see

self-energy for the values dp,| and p that enter the de- Table V therein, correcting for proton finite size effects and
scription of the Compton cross section in the next section; iBSsuming equal proton and neutron densiti@,) is the

is added simply to extend thfand||5A| range of validity of spin-averaged single-nucleon amplitude defined as
the real part of thé\ self-energy.

(KR! N 3B My TRk pumy),
(40)

.1
Ill. COMPTON SCATTERING (TP =73 mszzﬂ,z

The amplitude for the process of Compton scattering on a
finite nucleus is calculated in the impulse approximation. We . ) )
apply the so-called factorization approximati¢see Ref. Wherep is the effective nucleon momentum in H&S) and
[26], chap. 11, Sec.)2vhich was shown to work well in pion Ms is the projection of the nucleon spin on t& axis. For
photoproductiof10—12 and pion scatterin§l3,27 on nu-  iSospin-saturated systen(rm which we restrict our present
clei, in particular for the light nuclei in Sec. IV, where the discussiofan isospin average is also performed.
nuclear wave function is well described by a harmonic oscil-  The cross section for unpolarized photons in the labora-
lator model. A large part of the effects of the Fermi motiontory frame can now be expressed as
are accounted for by evaluating the amplitude on a nucleon
moving with the effective four-momentum (p’=p+q) in
the initial (final) state, whereq=k—k’ is the four- do |E’|3EA 1
momentum transfe(see Appendix B for precise definitions 40’ =4 20IM 5
The amplitude in this approximation is written as lab T [KIMa Nyy

[Kal?, (41

b
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whereEp=w+M,, o=|k|-|k’|, and N, and\/, are the The photon asymmetry, which can be measured with a

photon helicities. It is convenient to redefine the Compfon linearly polarized photon beam, is defined as

matrix through the amplitud@y(p):

2 _ dO’L - d(T”

M 1 1/2 7_d0'L+d0'H’
N -

Ivp). (42

(44)
My

En(p) En(p’) 4[K/|K']

Tn(p) =

wheredo (do, ) is the cross section for the photon polar-

The latter is normalized according to R&29] (Appendix ization vector in the scattering plafperpendicular to jt

A3) and has simpler properties under Lorentz boosts. Calcur_ele-xrtr(];j (E(;O;SeScercotéznsg]c:irg)iAinc?r:]éelzg];g?;rs ]:‘rrzr:qi ;z;n be
lating the amplitude in the/N center of masgc.m) frame y

(marked with superscripgt) we obtain

do _( k| \*M2 do s
do | 1 <|E'| EA MY e d’| LK) sa do] ]
40|, 1672\ K| MaEgENR+E) "
1 e where s,=Ma(M+2|k|) is the total invariant energy
X5 Z K Zn(P))|%. (43)  squared, and the center-of-mass photon momentum and the
Aydy scattering angle are
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approximation calculatiofLDA) and those for

0.3 different densitiegin units of saturation density
0.2 for the mean-field calculation I. Data are taken
from Refs.[3,36].
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K ml=|KIM /s, (cosf,)cm. Fig. 7 the results for Compton scattering are compared to
.. data. At the pion-production threshold, ~150 MeV, the
1 K[| (1-coso.,) (46) calculation overestimates the data that might be related to
2 ignoring in theK-matrix calculation the real pion-loop con-
K ] v theK-mat Iculation th | I

_ _ _ _ tributions that are responsible for the cusp structure in the
1t'heh.su;]gle—nuclemzj im?#tUde Ilst %ecomg}os;ad into Ionqég Compton multipold 32,33

part, which corresponds to the amplitude on the Ire€ NUCIEON, - 1pq jragsed contributionKﬁd is based on a calculation

plus a term which accounts for the modification of the

resonance in the medium. i.e in which only thes-type tree-level contribution is taken into

account using the medium-modifidd propagator as defined

in Sec. ll[see Eq.(37)]. Note that in the impulse approxi-
TN=TK,ee+(K§d— Kﬁf). (47)  mation the photon is absorbed on a free nucleon and thus one
has to work with the free nucleon mabksy instead of the

The first term is thel' matrix for Compton scattering on the i \m-modified oneM?. The A self-energy parameters

free nucleon; the term between parentheses accounts for the . : .
; e . will depend on the difference between theinvariant mass
nuclear-medium modification of th& resonance. To avoid

double counting the vacuum contribution is subtracted. andl the dHUCIe*OE nlaSS5(: \:]VA_ MbN) ani are ths refore
The T matrix for Compton scattering off a free proton, evaluated atW,=My+d. The subtractecd contribution

Tiee is calculated in &-matrix model very similar to that Ky in vacuum is obtained from a similar calculation using

of Ref. [9]. This covariant coupled-channel calculation of the free propagator instead.

pion scattering, pion photoproduction, and Compton scatter- In the limit of low photon energies the cross section for
ing on the nucleon satisfies unitarity constraints below theCompton scattering is given by the Thomson limit, where the
two-pion production threshold and is gauge invariant. In thematrix element is proportional t8%/A. In the present calcu-
calculation ofo,\r,ee the A is treated as a genuine spin-3/2 lation only the contribution to Compton scattering propor-
resonancd 30] in order to be compatible with the present tional toZ, the total number of protons, is taken into account;
treatment of the in-medium resonance. The change in the thus the contribution proportional dZ is omitted. As such
structure of theyNA and wNA vertices(the disappearance the Thomson limit is violated sincB?/A=Z—NZ/A. The

of the spin-1/2 off-shell couplingsecessitated modification neglected contribution is thought to arise from intermediate
of parameters of the and o exchanges in thechannel. A excitations to collective giant dipole resonance states and be
comparable fit to the data as in REJ] could be obtained. In related to the finite extent of the nuclear syst&4,35. For
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this reason one expects this contribution to be vanishinglgity profile (p,) was taken consistently with the form factor
small at forward angles. At backward angles, where the onen Eg. (39).
proton cross section is suppressed by the form factor due to In Fig. 8 we have plotted, for various nuclear densities,
the large momentum transfer, the two-body mechanism maghe cross section and photon asymmetry for Compton scat-
give a significant contribution. In our approach the equiva-tering on“He in mean-field model I, both at fixed lab angle
lent contribution would arise from two-body contributions to 0,=37° and lab energf, =206 MeV. The results show a
the electromagnetic current arising from the nucleon—nucleogtrong density dependence. In order to obtain more insight
?nteraction. As argued, such a contribution is of marginalwe have plotted in the upper panels of Fig. 9 the values of
importance at forward angles but large at backward anglegyq three-momenturtp,| and (kinematica) invariant mass
In afL_lture work this will be included explicitly; currently we W, of the A as enter in the calculations presented in Fig. 8.
have ignored these two-body currents. In the lower panels we show the real and imaginary part of
theA self-energy. We concentrate on the dominant imaginary
part, as this seems sufficient to explain the global density
dependence of the cross section. At fiteg=206 MeV, by
Cross sections have been calculated fole and1C at  far the largest contribution to the imaginary part is due to the
several densities to investigate medium effects. To comparspreading width. The decay width in this energy regime van-
with data an average over density,}, based on the local ishes for the larger densities and is very small for the lowest
density approximatiofiLDA ), has been performed. The den- densities. The width therefore almost vanishes at zero den-

IV. RESULTS FOR COHERENT COMPTON SCATTERING
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sity. At fixed 6,,=37° and with increasing energy the Pauli- large energies fof,,=37°, and deviates from the asymmetry
corrected decay width becomes more important, showing ugata points. The mean-field calculations tend to improve this.
in the A width at small density and in the global increase The cross sections fdC is shown in Fig. 11. Because of
with energy starting at 300 MeV. the larger radius of?C the cross section falls off faster with
Much of the density dependence of the cross sections ingle than that for*He. The drop in the cross section at
Fig. 8 can be understood from the density dependence of thenergies beyond 250 MeV is partly due to an increased width
imaginary part of thed self-energy. At a photon energy of of the A resonance and partly due to the form factor cutting
206 MeV one is relatively far from the peak of tdereso-  the cross section at larger momentum transfers. This effect is
nance. An increase in the width of the resonance thereforglso seen in the data.
results in an increase of the cross section at this energy. The
opposite happens when one approaches the peak of the reso-
nance, where the cross section decreases with density. The V. SUMMARY AND CONCLUSIONS
data show clear evidence that this is indeed the correct
mechanism, at 206 MeV the vacuum calculation falls below In this paper we have presented a calculation of the cross
the data while the LDA result shows a good correspondencgection for Compton scattering dile and*<C in aK-matrix
with the data at forward angles. Near the resonance thgodel where the amplitudes are calculated in the impulse
vacuum calculation overestimates the data by a factor of 2pproximation. Fermi motion is incorporated using the fac-
while the LDA result gives a much better prediction or eventorization approximation scheme. The medium effects are in-
lies below. The sharp fall-off of the cross section with anglecluded by replacing the fred propagator by a medium-
is mostly due to the form factor which falls off strongly with modified A propagator in thes-type resonant tree-level
increasing momentum transfer. diagram. The medium properties of theresonance are in-
At backward angles the cross section is not reproducedjestigated in a relativistic framework for symmetrical
which is probably due to the double-scattering contributionnuclear matter.
which is missing from the present calculations. The photon This involves the calculation of th& self-energy, which
asymmetry at 206 MeV shows only a minor density depenwas performed in a Fermi-gas model and two mean-field
dence as compared to the error bars on the data. models. The imaginary part includes the Pauli-corrected de-
In Fig. 10 we compare théHe cross section and asym- cay width and the spreading width incorporating particle-
metry with LDA calculations for the Fermi-gas and mean-hole excitations; the real part was calculated using dispersion
field calculations | and Il. The Fermi-gas calculation under-integrals. In both the Fermi-gas and mean-field calculations
shoots the data at small angles flér=206 MeV and at the width is increased as compared to the fiewidth. This
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increase tends to be stronger for the Fermi-gas model thamperative that multiple scattering should be incorporated in
for the mean-field models. the model.

The differential Compton scattering cross section shows a
strong density dependence. Within a local density approxi-
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APPENDIX A: ANALYTICAL EXPRESSIONS FOR THE PION SELF-ENERGY

The real and imaginary parts of the pion self-energy can be expressed as

foanl2 - N .
ReH3h<q>=8( m““) {lal?Colah —Ca(lal) +2MRa? R Lo(@)1}, (A1)
foan) 2
Im Ip(q) =8 m“”) {2MRa? Im[Lo(a) T}, (A2)

where the expressions for the functiodig andC, read as
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. dk  6(|k|—ke)8(ke—|k+q|)
0(||):J (|k| = kg) O(ke— |k+q]

Ei—Egig A3
(2m)? 4EiEr. g [Ex—Ekql (A3)

H[3(|5|2—k§—Iﬁllﬁl)—ZMﬁﬂLIIZIZJEQ+[|6|2—2(Mﬁ+|E|2)+Iﬁ|||2|]E|ﬁ||a|+3EF|l?|2

967|q|
D K=k,
- Ex+ |k
+3|g/M2in Eetlk) H , (Ad)
; dk  6(|K|—Ke) (ke [K+q])
= Ei—Eis gl Ei+ Egigl? (A5)
b= | T ame (B EedlE R
2 2 2 E 4__ 2 4 4 2 3 |2
_—16w2|ﬁ| (2M§ kF)—|k| || [15|q| —40M2|q|?2—8M7 — 15k — 20M2 k2 — 30| 3| k| + 10k2| K|

e N N 1 ., - - iy g N .
+20q|?||*+ 4M[ k|2 = 3K “Eg— 5[ 4IK|*—|a|*+4My+ 4]al|k| >~ 6]q|*[k|*~[a[*[k| + 8BMR K| *+ 18V q?

> » [Kl=kz
- |al*M§ (Ejig+ kD)
+4MRIql[KI1E g - g+ 5 In| — ‘_‘ ——— : (AB)
Eq—1q+ 1kl —1al =k,
with the integration boundaries
ky=max(ke,|q[ —Kke), ko=ke+|q]. (A7)
The relativistic equivalent of the Lindhard function is
dk  6(|k|—ke) 0(ke— |[k+ql) 1 1
Lo(a)= f - —— —|. (A8)
(2m) 4EREg . g Eki—Ekiq—Qo—le Eg—Egigtao—ie

Based on the work in Ref§38,39 the real and imaginary parts bf, can be written &s

1 N N
Re{Lo<q>]=m|2EF|&><qo>+qol<><qo>+2<E&>—E<’)—JE[e<q2—4Mﬁ>+0(—q2>]l<*><JZ>+|q|I<*><|q|>
E(+) E(+)
+2V=ab(q?) 6(4M3—?) arctar(ﬁ)—arctar( \/__CY)H (A9)
Im[Lo(a)]= 8(2”)2|»|{[(2EF+q0> f(do)16(do— Max 0.E ) A(EL )~ o)
— 0(2ke—|a))[(2Er—do) — F(d0)16(do) 6(—E) —qp)}, (A10)
where
(EC+x)(EC)—x) (ES+x)(EC)—x)

(*) — (%) —
o= EOED x| 0 (ES+x)(EF—x) | (ALY
EC)=E +1g*Er, EY)=Ey _1g=Ek, (A12)

Yn the original article[39] some typing errors occur in these formulas.
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. 4M? .
f(x)=|q 1+|a|2—_xz, a=1%(qo),
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All analytic expressions have also been checked numerical

APPENDIX B: KINEMATICS

(A13)
Ejg= 1= VIKI 2= 2|kl g+ g+ M2, (A14)
[
yvith
_Lf My 1t 56
a2\t w2 Al (B9

We consider kinematics in the laboratory frame for the

vA scattering, where the initial nucleus is at rest,
w+ MA: \ Mi"‘d)z,

and (,q)=|k|—|k’|,k—k’) is the four-momentum trans-
ferred to the nucleué. The energy of the final photon is

(B1)

_ K
1+|k|/M A (1—cosé,)

K| (B2)

where 6, is the photon scattering angle.
The nucleon “effective” momentunﬁ can be found by

The component of the momentLﬁrperpendicuIar taﬁ is not
determined from Eq(B4) and may be conveniently chosen
equal to zero.

In the relativistic case the solution of EB3) is more
complicated. If we seek an effective momentum in the form
of Eq. (B5), then we obtain two solutions
|

2

2
IVIN

1+ @

|l @M
It is easy to check that for the nonrelativistic kinematics
in Eq. (B7) reduces to Eq(B6). Forward scattering €,

=0) is a special case for which=|g|=0. In this case the

1+2

. (B7)

a’:=

assuming energy-momentum conservation on the constituegt 5t solution is given by E4B6).

nucleon

w+ M2+ p?= M2+ (p+0)? (B3)

with the same four-momentum transfer. In the nonrelativisti

approximation, wherég|<m, one obtains from EqgB1)
and(B3)

25 G=Ge| N _4 (B4)
pP-9=q M, .
A possible solution of Eq(B4) is given by
p=—aq (B5)

To make a transformation of the single-nuclébmatrix
from the system where the nucleon moves with a momentum

|5 to the yN center-of-mass system we consider the invariant
CMandelstam variables

su=(k+p)2=MZ+2[K En(p) —2K-p,
. (B8)
tN=(k—k’)2:—2|k||k’|(1—cos¢97).
The corresponding center-of-mass three-momentum and
photon scattering angle can be obtained from
|p%| =K% = (sn—M2)/2y/sy,  €OS6S=1+1ty/2(K°)2.
(B9)
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