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Coherent Compton scattering on light nuclei in theD-resonance region
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Coherent Compton scattering on light nuclei in theD-resonance region is studied in the impulse approxi-
mation and is shown to be a sensitive probe of the in-medium properties of theD resonance. The elementary
amplitude on a single nucleon is calculated from the unitaryK-matrix approach developed previously. Modi-
fications of the properties of theD resonance due to the nuclear medium are accounted for through the
self-energy operator of theD, calculated from the one-pion loop. The dominant medium effects such as the
Pauli blocking, mean-field modification of the nucleon andD masses, and particle-hole excitations in the pion
propagator are consistently included in nuclear matter.

DOI: 10.1103/PhysRevC.65.014613 PACS number~s!: 25.20.Dc, 13.60.Fz
o
a

on

w

ll
-
to
e
a

g

,

is
ion

ull
-
a
th
e-
-

am
le
ic
th
re

rg

p
de-

ld
e
cu-
uc-

lse
or
the
ap-
or-
n-
an

one-
e-

e

ng
lse
ton
ros-
e
in-
en-

-
ar

e
xi-

ar
realitu
I. INTRODUCTION

Coherent Compton scattering on nuclei in the region
the D resonance is of considerable interest. The reaction
lows one to study the propagation and decay of theD in the
nuclear medium. In particular, the shift of the pole positi
and a change of the width of theD peak reflect sensitively in
the cross section and polarization observables.

For a comprehensive review on Compton scattering
refer to the recent paper, Ref.@1#. Here we only mention
several models relevant for the present study. The so-ca
‘‘schematic and extended’’ models@2,3# made use of the op
tical theorem and dispersion relations to relate the Comp
scattering amplitude with the total photoabsorption cross s
tion. Important contributions to the amplitude, such
nuclear kinetic and meson seagull terms andD excitation,
were added explicitly@3#. The data for Compton scatterin
were described quite well at forward scattering angles.

Compton scattering was extensively studied in theD-hole
model @3–5#, which was originally developed by Koch
Moniz, and Ohtsuka in Refs.@6,7#. The D excitation is in-
cluded through theM1 transition, and the background
represented by the Kroll-Ruderman part of the virtual-p
photoproduction amplitude, while in Refs.@3,5# the proton
Thomson term~with E1 multipolarity! is also added.

The starting point of the present model is the f
Compton-scattering amplitudeTN on a free nucleon that in
cludes all dominant mechanisms at energies up to, at le
the D resonance. This amplitude has been obtained in
unitary K-matrix approach, similar to the calculations pr
sented in Refs.@8,9# for pion-nucleon scattering, pion photo
production, and Compton scattering on the proton. Par
eters of the model are fixed from a detailed fit to observab
for the elementary reactions above. The Thomson limit d
tated by the low-energy theorem on the nucleon and
Kroll-Ruderman term of the photoproduction amplitude a
automatically included.

Medium effects are taken into account via the self-ene
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of D, while the self-energy is calculated from the pion-loo
mechanism embedded in nuclear matter, as described in
tail in Sec. II. In particular, Pauli blocking effects, mean-fie
modifications of the nucleon andD masses, and particle-hol
contributions to the pion propagator are consistently cal
lated. Thus we avoid arbitrariness associated with introd
ing a parametrized self-energy.

The amplitude on a nucleus is calculated in the impu
approximation. A form factor is introduced to account f
finite size effects. The specific density dependence of
medium effects is accounted for through a local density
proximation. Fermi motion is treated in the so-called fact
ization approximation, in which the elementary Compto
scattering amplitude is calculated on a nucleon with
effective momentum@10–13#. The latter is taken in such a
way that the energy-momentum conservation for theg N
scattering holds, thus ensuring gauge invariance at the
body level. Differential cross sections and photon asymm
tries are calculated for light nuclei (4He and 12C) in the
energy region 150–250 MeV.

The structure of the paper is as follows. In Sec. II w
describe the calculation of medium effects in theD propaga-
tor. Section III presents the basic formalism for calculati
the Compton-scattering amplitude on nuclei in the impu
approximation. Results for the cross section and pho
asymmetry are presented in Sec. IV. Conclusions and p
pects are further outlined. In Appendix A formulas for th
pion self-energy are collected. Details of the kinematics
volved in the reaction on a nucleus are contained in App
dix B.

II. MEDIUM MODIFICATIONS OF THE D RESONANCE

The properties of theD in the nuclear medium are calcu
lated in a relativistic framework for symmetrical nucle
matter, along the lines of Refs.@14–16#. The medium modi-
fications, which are expressed through the dressing of thD
propagator, are investigated using different levels of appro
mation. The imaginary part of theD self-energy~or the D
decay width! is calculated in different models for the nucle
medium. Dispersion relations are used to determine the
part ~mass modification! of the D self-energy.
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In the first subsection the Rarita-Schwinger formalism
introduced to describe theD resonance. The next three su
sections deal with theD decay width. In a first step the
nuclear medium is presented as a noninteracting Fermi se
nucleons leading to the calculation of the Pauli-corrected
cay width and the spreading width. Subsequently mean-fi
effects are included within thesv model of Walecka@17#.
Throughout, the conventions of Bjorken and Drell@18# are
used, and all expressions are derived in the nuclear m
rest frame.

A. Formalism for the D self-energy

The freeD propagator in the Rarita-Schwinger formalis
has the following form@19#:

GD
0 ~pD!mn5

1

p” D2MD1 i e
Fgmn2

1

3
gmgn2

2pD
mpD

n

3MD
2

2
~gmpD

n 2gnpD
m!

3MD
G ~1!

with the massMD51232 MeV andpD5(pD
0 ,pW D). The in-

variant mass of theD resonance will be denoted byWD

5(pD
2 )1/2.

The propagator has to be dressed due to the interactio
theD with the nuclear medium. This is taken into account
introducing the self-energy in the equation for the inve
propagator,

~GD
21!mn5@~GD

0 !21#mn2SD
mn

5~p” D2MD!~P 3/2!mn22~p” D2MD!~P 11
1/2!mn

1A3MD@~P 12
1/2!mn1~P 21

1/2!mn#2SD
mn , ~2!

where the inverse free propagator is written in terms of
projection operators on the spin-3/2 and spin-1/2 sectors@20#
(P 3/2,P i j

1/2,i j 511,22,12,21). In this paper we concentra
on the dominant spin-3/2 component of theD propagator,
and therefore the self-energy is taken as

SD
mn5SD

3/2~P3/2!mn, ~3!

where we discarded terms proportional to the spin-1/2 p
jection operators. The spin-3/2 component of the self-ene
has the structure

SD
3/25CD~pD!1DD~pD!p” D , ~4!

and the dressed propagator becomes

GD~pD!mn5
1

p” D2MD2SD
3/2~P 3/2!mn

5$p” D@12Re DD~pD!#2@MD1Re CD~pD!#

2 i @ Im CD~pD!1Im DD~pD!p” D#%21~P3/2!mn.

~5!
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Note that in vacuumCD(pD) and DD(pD) are functions of
the invariantWD only, while in the medium these function
acquire additional dependencies on the three-momen
upW Du and the nuclear densityr. We keeppD as an argumen
in Eq. ~4! for the general situation.

B. Width of the D resonance and Pauli blocking

The imaginary part of theD self-energy is calculated from
an effective interaction Lagrangian. We focus on the pio
nucleon decay channel in a nuclear environment. ThepND
interaction Lagrangian is taken in the form@20–22#

LpND5
f pND

mp
gmnD̄mTW †C~]npW !1H.c., ~6!

whereC (Dm) is the nucleon (D) field operator,pW the pion
field, andTi is the isospin1

2 ↔ 3
2 transition operator with the

normalization conditionTiTj
†5d i j 2

1
3 t it j ( i , j 51,2,3). In

the above Lagrangian we dropped the off-shell coupling
theD described by the parameterzp @20–22#, since it affects
only the spin-1/2 components that are not considered in
present work.

The width of the resonance is defined by the imagin
part of the self-energy as

GD~pD!522 Im@CD~pD!1WDDD~pD!#. ~7!

This can more formally be written as a trace,

GD~pD!522 ImF1

4
TrS SD

mn~P 3/2!nm

~p” D1WD!

2WD
D G . ~8!

The contribution to the self-energy for theD decaying into a
nucleon and a pion is

2 i ~SD!mn5S f pND

mp
D 2

(
a51,2,3

E d4k

~2p!4
qmTa

†

3GN~k!~2qn!TaDp~q!, ~9!

whereq5pD2k, andGN(k) andDp(q) are the nucleon and
pion propagators, the structure of which depends on
model used for the nuclear medium. We will now discu
different approximations and their implications for theD de-
cay width.

In vacuum the nucleon and pion propagators in Eq.~9!
reduce to the free nucleon propagator

GN
0 ~k!5

1

k”2MN1 i e
5

MN

EkW
S L1~kW !

k02EkW1 i e
2

L2~2kW !

k01EkW2 i e
D

~10!

and the free pion propagator

Dp
0 ~q!5

1

q22mp
2 1 i e

, ~11!

whereEkW5AukW u21MN
2 andL6 are the projection operator
3-2
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FIG. 1. ~a! In the left panel the
Pauli-correctedD decay width is
depicted as a function of the den
sity r @in units of the equilibrium
density r0 (kF

051.333 fm21)#

and theD three-momentumupW Du
at WD51232 MeV calculated in
the Fermi-gas model.~b! The right
panel shows the results for thi
calculation in function of theD

three-momentumupW Du for the four
different densities stated in th
figure.
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L6~6kW !5
6g0EkW2gW •kW1MN

2MN
. ~12!

Applying the Cutcosky rules for the discontinuity of th
loop integral in Eq.~9!, and using(a51,2,3Ta

†Ta51 one gets
the conventional expression for the width in vacuum

GD
vac5

f pND
2 ~Ekp

1MN!

12pmp
2 WD

kp
3 , ~13!

where

kp
2 5

1

4WD
2 @WD

2 2~MN1mp!2#@WD
2 2~MN2mp!2#

~14!

andEkp
5Akp

2 1MN
2 . SettingWD5MD in Eq. ~13! and using

the experimental valueGD
vac5115 MeV one obtains the cou

pling constantf pND52.15.
The effect of Pauli blocking is included by replacing th

free nucleon propagator by a medium-modified one. If o
models the nuclear environment as a noninteracting Fe
sea of nucleons the propagator becomes~see, e.g., Ref.@23#!

GN
FG~k!5F u~ ukW u2kF!

k”2MN1 i e
1

u~kF2ukW u!

k”2MN2 i e
Gu~k0!1

u~2k0!

k”2MN1 i e

5
MN

EkW
FL1~kW !S u~ ukW u2kF!

k02EkW1 i e
1

u~kF2ukW u!

k02EkW2 i e
D

2
L2~2kW !

k01EkW2 i e
G . ~15!

This is written in the nuclear-matter rest frame, an explici
covariant form is discussed in Ref.@14#. Implementing this
propagator in Eq.~9! and defining the Fermi energyEF
01461
e
i

5AkF
21MN

2 and E65(pD
0 Ekp

6upW Dukp)/WD we obtain the

Pauli-correctedD decay width

GD
D~pD!5

f pND
2 ~Ekp

1MN!kp
2

24pmp
2 upW Du

3@E12max~E2 ,EF!#u~E12EF!. ~16!

This result can be separated into three different energy
gions:

~1! E2.EF : The Pauli-corrected decay width reduces
the vacuum expression~13!, making the widthupW Du indepen-
dent.

~2! E1.EF.E2 :

GD
D~pD!5

f pND
2 ~Ekp

1MN!

24pmp
2 WDupW Du

kp
2 ~Ekp

pD
0 1upW Dukp2WDEF!.

~17!

The width becomesupW Du and density dependent. Taking th
limit upW Du→0 reduces the width to its vacuum value ifEkp

.EF , and to zero ifEkp
<EF .

~3! EF.E1 : The width becomes zero@GD
D(pD)50#.

This means the Fermi sphere engulfs the decay sphere c
pletely, making the Pauli blocking complete.

In Fig. 1~a! the full dependence on the denistyr
52kF

3/3p2 and on upW u is shown forWD51232 MeV. The
results at densities 1.2, 0.8, 0.4, and 0.05 times nor
nuclear matter densityr0 (kF

051.333 fm21) are plotted
separately in Fig. 1~b!. At high D-momenta and low densitie
the energy of the decay nucleon lies well above the Fe
energy, and no blocking occurs. At somewhat lower m
menta of theD part of the momenta of the decay nucleon a
Pauli blocked. With increasing density this blocking may b
come complete for the lowestD-momenta, making theD
unable to decay into a pion-nucleon pair@see dashed and
3-3
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dotted curves in Fig. 1~b!#. These phase-space consideratio
result in a strong energy dependence of theD decay width.

C. Spreading width

In the nuclear medium the pion will strongly interact wi
the surrounding baryons creating nucleon-hole andD-hole
excitations. This can be taken into account by dressing
pion propagator with the proper pion self-energy

Dp~q!5
1

q22mp
2 2Pp~q!1 i e

, ~18!

where Pp(q)5Pph(q)1PDh(q) is the polarization self-
energy of the pion. In our calculations we use the pio
nucleon pseudovector coupling

LpNN5
f pNN

mp
C̄gmg5tWC~]mpW ! ~19!

with the pNN-coupling constantf pNN51.01 @15#. In this
work we limit ourselves to forward and backward scatte
particle-hole excitations, and omit antinucleon excitations
Eq. ~15!, which play a role only for very large pion mo
menta. Also intermediateD-hole states are omitted from th
pion self-energy. We expect that their contribution is mo
suppressed than the estimate in Ref.@14# when the width of
the D resonance is taken into account. In principle, a co
01461
s

e

-

d
n

e

-

plete calculation of theD-hole states would require self
consistency between the pion andD self-energies, which
falls outside the scope of the present paper.

The lowest-order pion self-energy now reads

Pph
0 ~q!52 i S f pNN

mp
D 2

2E d4k

~2p!4

3Tr@q”g5~ l”̂1MN!q”g5~k”̂1MN!#
1

4EkW1qWEkW

3F u~ ukW1qW u2kF!

~k01q02EkW1qW1 i e!

u~kF2ukW u!

~k02EkW2 i e!

1
u~kF2ukW1qW u!

~k01q02EkW1qW2 i e!

u~ ukW u2kF!

~k02EkW1 i e!
G ~20!

58S f pNN

mp
D 2

@ uqW u2C0~ uqW u!2C2~ uqW u!

12MN
2 q2L0~q!#, ~21!

where k̂5(EkW ,kW ) and l̂ 5(EkW1qW ,kW1qW ). The analytical ex-
pressions for the functionsL0 , C0, andC2 are given in Ap-
pendix A. When summing the series of particle-hole bubb
the effects of short-range correlations are important. Th
f

d
g

FIG. 2. The imaginary part of
the pion self-energy in function o

the pion three-momentumuqW u at
q05@(pD)02EF#/2 for the D ki-
nematics WD51232 MeV and

upW Du5200 MeV within the
Fermi-gas model and atq0

5@(pD
! )02EF

! #/2 for the D kine-

matics WD
! 5MD

! and upW Du
5200 MeV for the mean-field
models I and II. The markers on

the figures indicate theuqW u values
for cosu equal to 21 ~first
marker!, 0 ~second!, and 1~third!
for the specific kinematics state
above that appear in the spreadin
width calculation; see Eq.~23!.
3-4
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short-range correlations are accounted for in the stand
way by introducing the Landau-Migdal parametergNN8 50.6
@24#,

Pph~q!5q2
Pph

0 ~q!

q21gNN8 Pph
0 ~q!

. ~22!

Using the pion self-energyPph in the pion propagator from
Eq. ~18! we get the spreading width of theD resonance in the
medium

GD
S~pD!5S 2

3WD
3 D S f pND

mp
D 2E

kF

A~pD
0

!22MN
2

dukW u
ukW u2

~2p!2

3E
21

1

d cosu~ k̂•pD1MNWD!

3@WD
2 q̂22~pD•q̂!2#

1

2EkW

3
Im Pph~ q̂!u~2q̂2!

@ q̂22mp
2 2Re Pph~ q̂!#21@ Im Pph~ q̂!#2

,

~23!

where q̂5pD2 k̂. Since the pion self-energy only receive
contributions from the particle-hole excitations, its imagina
part is nonzero only for spacelike pion momenta. This p
restrictions on the integration boundaries in Eq.~23!. The
two-dimensional integral was evaluated numerically. As
example we have plotted in the upper panel of Fig. 2
imaginary part of the pion self-energy in function of the pi
momentumuqW u, as it appears in Eq.~23! for the specificD

kinematics: WD51232 MeV, upW Du5200 MeV, and pion
energyq05(pD

0 2EF)/2.
The results for the spreading width are shown in Fig.

The spreading width is roughly proportional to the dens
which can be understood on the basis of the phase s
available for the hole states. As can be seen from Fig. 3~b! it
is only weakly dependent on the three-momentumupW Du.
Also, the dependence onWD turns out to be rather weak i
the region of interest. The total width of theD in this non-
interacting Fermi sea of nucleons is given by the sum of
spreading width and the Pauli-corrected decay width fr
the previous section.

D. Mean-field effects in the nucleon andD self-energy

A refinement to the free Fermi-gas model can be m
using the Waleckasv model@17# in the mean-field approxi-
mation. Here thes andv meson couple to the nucleon re
sulting in the mean scalar and vector fields^Fs& and ^Vm&.

In the nuclear matter rest frame the spatial part of^Vm& is
averaged to zero, and the constant mean-field contributio
the nucleon self-energy becomes

SN~k!52gs
NF1gv

NVg0 , ~24!
01461
rd

s

n
e

.
,
ce

is

e

to

wheregs
N andgv

N are the coupling constants of the scalar a
vector field with massesms and mv respectively, and̂Fs&
5F, ^Vm&5dm0V. This self-energy can be implemented
the modified Dirac equation@17#

@k”2MN2SN~k!#CN~k!50. ~25!

Introducing the effective nucleon four-momentumk!5(k0

2gv
NV,kW ) and massMN

! 5MN2gs
NF, the nucleon spectrum

is modified to k!25MN
! 2, or k05gv

NV6EkW
! , where EkW

!

5AukW u21(MN
! )2.

In order to assess the sensitivity of the results to
mean-field parameters we have performed calculations
ing two parameter sets from Ref.@23#, henceforth called sets
I and II. Set I, called QHD-I in Ref.@23#, results from a pure
mean-field approximation to the binding energy. The dime
sionless ratios of coupling constants and meson masses
values Cs

25(gs
NMN /ms)

25267.1, Cv
25(gv

NMN /mv)2

5195.9. The nuclear matter equilibrium density is atkF
0

51.42 fm21, with a binding energy of 15.75 MeV and a
effective nucleon massMN

! /MN50.56 atr0. The full density
dependence of the effective mass is defined explicitly by
self-consistency equation

MN
! 5MN2

~gs
N!2

ms
2

MN
!

p2 F kFEF
!2~MN

! !2 lnS kF1EF
!

MN
! D G ,

~26!

whereEF
!5AkF

21(MN
! )2. Set II, called the relativistic Har-

tree approximation in Ref.@23#, takes into account vacuum
fluctuation corrections to the binding energy. The parame
are Cs

25228.2 andCv
25147.8. The equilibrium density is

taken atkF
051.30 fm21, with a binding energy of 15.75

MeV leading to an effective nucleon massMN
! /MN50.73 at

equilibrium density, and the self-consistency equation rea

MN
! 5MN2

~gs
N!2

ms
2

MN
!

p2 F kFEF
!2~MN

! !2 lnS kF1EF
!

MN
! D G

1
~gs

N!2

ms
2

1

p2 FMN
! 3 lnS MN

!

MN
D 2MN

2 ~MN
! 2MN!

2
5

2
MN~MN

! 2MN!22
11

6
~MN

! 2MN!3G . ~27!

The full density dependence of the effective nucle
masses in both cases are shown in Fig. 4. We see a st
reduction of the effective nucleon mass compared to the
nucleon mass with increasing density in both cases, wit
slower decline when the influence of negative energy-sta
is considered.

In the extended mean-field model of Ref.@14# the D is
assumed to move in the means andv fields. The mean-field
contributions to theD self-energy can be treated in an ana
gous way as for the nucleon, i.e., they are absorbed in
effectiveD massMD

! and four-momentumpD
! . In this paper

we employ the so-called universal couplings@14#, gs
N5gs

D

3-5
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FIG. 3. ~a! In the left panel the
spreading width is depicted as
function of the densityr @in units
of the equilibrium densityr0 (kF

0

51.333 fm21)# and theD three-

momentum upW Du at WD

51232 MeV calculated in the
Fermi-gas model.~b! The right
panel shows the results for thi
calculation in function of theD

three-momentumupW Du for the four
different densities stated in th
figure.
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D , and as a result theD effective massMD
! (r)

may be expressed asMD
! (r)5MD2(MN2MN

! ).
We can now investigate the influence of these mean-fi

modifications on the Pauli-corrected decay width and
spreading width of theD by replacing the Fermi-gas nucleo
propagator@Eq. ~15!# in expression~9! and in the calculation
of the pion self-energy@see Eq.~20!# with the mean-field
propagator

GN
sv~k!5F u~ ukW u2kF!

k” !2MN
! 1 i e

1
u~kF2ukW u!

k” !2MN
! 2 i e

Gu~k0
!!

1
u~2k0

!!

k” !2MN
! 1 i e

5
MN

!

EkW
! FL!1~kW !S u~ ukW u2kF!

k0
!2EkW

!
1 i e

1
u~kF2ukW u!

k0
!2EkW

!
2 i e D

2
L!2~2kW !

k0
!1EkW

!
2 i eG , ~28!

whereL!6 follows from Eq. ~12! with the nucleon energy
EkW and the nucleon massMN replaced by the effective vari
ablesEkW

! and MN
! . The resulting expressions are formal

identical to the free Fermi-gas expressions if all kinemati
quantities are replaced by their effective equivalents. In p
ticular, we introduce the effective in-medium mass of theD,
WD

! 5(pD
! 2)1/2. In what follows we will use these effectiv

kinematical quantities in all expressions; it is understood t
they reduce to the original kinematical quantities for the f
Fermi-gas calculations.

In the middle and lower panel of Fig. 2 we depict th
imaginary part of the pion self-energy in function of the pi
momentumuqW u for both mean-field calculations at theD ki-
nematics:WD

! 5MD
! , upW Du5200 MeV, and pion energyq0

5@(pD
! )02EF

! #/2.
01461
ld
e

l
r-

t
e

The results in thesv model for the Pauli-corrected
decay widthGD

D and the spreading widthGD
S at the on-shell

point WD
! 5MD

! (r) for both parameter sets are depicted
Figs. 5 and 6. It is seen that the structure of the decay w
hardly changes when effective masses are introduced;

the limiting value at largeupW Du now becomes density depen
dent. Because of the stronger reduction of the effect
masses the Pauli blocking is more pronounced using par
eter set I.

The mean-field effects result in an overall reduction of t
spreading width as compared to the Fermi-gas calcula
~see Fig. 3!. For the relevant nuclear densitiesr/r0<1.2,
this reduction is stronger at larger densities. It can be sho
that for vanishingD momentum the spreading width i
roughly proportional to the integrated pion propagator
vided by the effectiveD mass. The reduction of the effectiv
mass explains the global density dependence of the spr
ing width in this region. For larger densities the effect of t
pion propagator makes the spreading width saturate
eventually decrease in the mean-field models. The mean-
model I yields a maximal spreading width at around t
equilibrium density. In the mean-field model II, the spreadi
width saturates at much larger densities.

E. Real part of the D self-energy. Renormalization

In the previous sections we have obtained the imagin
part of theD self-energy due to the pion dynamics, i.e., t
sum of the Pauli-corrected decay width and the spread
width. This imaginary part generates a contribution to t
real part of theD self-energy, which can in general be o
tained via a dispersion relation. Based on the general st
ture of the D self-energy in Eq. ~4!, one can find
Re@CD(pD

! )# and Re@DD(pD
! )# through a dispersion relation

in terms of Im@CD(pD
! )# and Im@DD(pD

! )# calculated for ar-
bitrary WD

! . The imaginary parts ofCD(pD
! ) andDD(pD

! ) are
retrieved from the following relations:
3-6
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FIG. 4. The effective nucleon
massMN

! as a function of the den-
sity r @in units of the equilibrium
density r0 ~value depending on
the model!# for the mean-field cal-
culations I and II as explained in
Sec. II D.
i

sion

s

f

in

c-
Im CD~pD
! !52

1

4
~GD

11GD
2!,

~29!

Im DD~pD
! !52

1

4WD
!

~GD
12GD

2!,

whereGD
6 is defined as

GD
6522 ImF1

4
TrS SD

mn~P 3/2!nm

~6p” D
! 1WD

! !

2WD
! D G

522 Im@CD~pD
! !6WD

! DD~pD
! !#. ~30!

For instance, the imaginary parts for the one-pion loop
vacuum (WD

! reduces toWD) are

Im CD~pD!52
f pND

2 kp
3 MN

24pmp
2 WD

,

~31!

Im DD~pD!52
f pND

2 kp
3 Ekp

24pmp
2 WD

2
.

The in-medium expressions for ImCD and Im DD ~at non-
zero nucleon density! are more complicated than Eqs.~31!

and depend on bothWD
! and upW Du.
01461
n

We make the assumption that an unsubtracted disper
relation holds at fixed values ofupW Du, namely,

Re@CD~WD
! 2,upW Du!1p” D

! DD~WD
! 2,upW Du!#

5
1

pEWth
2

` @ Im CD~WD8
2,upW Du!1p” D

! Im DD~WD8
2,upW Du!#

WD8
22WD

! 2

3 f D
2 ~WD8

2!dWD8
2, ~32!

where the form factorf D(WD8
2) is introduced for conver-

gence. Equation~32! actually implies two separate relation
for CD andDD . The thresholdWth is MN1mp in vacuum,
while in medium it is a more complicated function o
masses, Fermi momentum, and three-momentumupW Du.

The propagator is renormalized in such a way that
vacuum it has a pole at the physical massMD51232 MeV
with a residue equal to unity, as if theD were a stable par-
ticle. These conditions give rise to the renormalized fun
tions ~for arbitraryWD)

Re CD
R~pD!5Re CD~pD!2dMD1MD~12Z21!, ~33!

Re DD
R~pD!5Re DD~pD!2~12Z21!. ~34!
3-7
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FIG. 5. The Pauli-corrected
decay widthGD

D and the spreading
width GD

S as a function of theD

three-momentumupW Du calculated
in the sv model atWD

! 5MD
! (r)

for four different densities and for
the two mean-field calculations a
explained in the text.
e

r-
n

e

a

-
-
me

es-
l-

tive
e

3/2

e

The mass shift~the physical mass minus the bare mass! and
wave function renormalization constant are given, resp
tively, by

dMD5@Re CD~pD!1MD Re DD~pD!#uWD5MD
,

~35!

Z5$12Re DD~pD!uWD5MD
22MD@Re CD8 ~pD!

1MD Re DD8 ~pD!#uWD5MD
%21,

with the notation ReCD8 (pD)5] Re CD(pD)/]WD
2 and simi-

larly for Re DD8 (pD). The required properties of the reno
malized propagator in vacuum are ensured by the relatio

~SD
3/2!Rup”D5MD

5
]

]p” D

~SD
3/2!Rup”D5MD

50,

~36!

~SD
3/2!R5CD

R~pD!1DD
R~pD!p” D .

Finally, the in-mediumD propagator, which is used in th
calculations described in Sec. III, reads
01461
c-

s

GD
mn~pD

! !5$p” D
! @12Re DD

R~pD
! !#2@MD

! 1Re CD
R~pD

! !#

2 i @ Im CD
R~pD

! !1Im DD
R~pD

! !p” D
! #%21~P3/2!mn.

~37!

In the calculation of the dispersion integrals we use
similar form factor as in Ref.@25#,

f D~WD8
2!5S ~LD

2 2MN
2 !21~MD

2 2MN
2 !2

~LD
2 2MN

2 !21~MN
2 2W̃D

2 !2D 2

, ~38!

whereW̃D
2 5(WD8 1MD2MD

! )2 and the normalization is cho
sen such thatf D(MD

!2)51, which is appropriate for the in
medium calculation. The cutoff parameter is taken the sa
as in Ref.@25#: LD51.506 GeV.

The mean-field description of the nuclear medium nec
sitated another modification of the form factor. At large va
ues of the nuclear density the decrease in the effec
masses ofN and D results in values close to zero for th
threshold invariant massWth of the dispersion integral~32! if
upW Du is large. Since the projection operator on the spin-
sector of theD appearing in the calculations ofGD

6 , leading
to Im@CD(pD

! )# and Im@DD(pD
! )#, has negative powers of th
3-8
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FIG. 6. The Pauli-correctedD
decay widthGD

D and the spreading
width GD

S in function of the den-
sity r @in units of the equilibrium
density r0 ~value depending on
the model!# and the D three-

momentumupW Du calculated in the
mean-field models I and II
~marked by index I and II, respec
tively! at WD

! 5MD
! (r).
tr
o

nt

;

n
W

e
ci
on
eo

-

d

t

ra-
D invariant mass, this would cause unphysical large con
butions to the dispersion integral coming from the region
the invariant mass close to zero. We eliminated these co
butions by multiplying the form factor in Eq.~38! with
g(W̃D)512u(MN2W̃D)(W̃D2MN)2/MN

! 2. We checked

that the multiplying factorg(W̃D) hardly changes theD real
self-energy for the values ofupW Du and r that enter the de-
scription of the Compton cross section in the next section
is added simply to extend ther andupW Du range of validity of
the real part of theD self-energy.

III. COMPTON SCATTERING

The amplitude for the process of Compton scattering o
finite nucleus is calculated in the impulse approximation.
apply the so-called factorization approximation~see Ref.
@26#, chap. 11, Sec. 2! which was shown to work well in pion
photoproduction@10–12# and pion scattering@13,27# on nu-
clei, in particular for the light nuclei in Sec. IV, where th
nuclear wave function is well described by a harmonic os
lator model. A large part of the effects of the Fermi moti
are accounted for by evaluating the amplitude on a nucl
moving with the effective four-momentump (p85p1q) in
the initial ~final! state, where q5k2k8 is the four-
momentum transfer~see Appendix B for precise definitions!.
The amplitude in this approximation is written as
01461
i-
f
ri-

it

a
e

l-

n

KA5A^TN~pW !&Fr~qW !, ~39!

whereFr(qW ) is the Fourier transform of the density distribu
tion ~form factor!. In Eq. ~39!, the form factor of the
1s-1p-shell nuclei with Z5N5A/2 is constructed on the
basis of the experimental charge densities in Ref.@28# ~see
Table V therein!, correcting for proton finite size effects an
assuming equal proton and neutron densities.^TN& is the
spin-averaged single-nucleon amplitude defined as

^TN~pW !&5
1

2 (
ms561/2

^kW8,lg8 ;pW 8,msuTNukW ,lg ;pW ,ms&,

~40!

wherepW is the effective nucleon momentum in Eq.~B5! and
ms is the projection of the nucleon spin on theOZ axis. For
isospin-saturated systems~to which we restrict our presen
discussion! an isospin average is also performed.

The cross section for unpolarized photons in the labo
tory frame can now be expressed as

ds

dV8
U

lab

5
ukW8u3EA8

4p2ukW uMA

1

2 (
lg ,lg8

uKAu2, ~41!
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FIG. 7. The calculated cross section fo
Compton scattering off the proton as a functio
of angle at fixed photon energy, and as a functi
of photon energy at fixed angle. Data are tak
from Ref. @31#.
n

lc

h a

r-

e

the
where EA85v1MA , v5ukW u2ukW8u, and lg and lg8 are the
photon helicities. It is convenient to redefine the ComptoT

matrix through the amplitudeTN(pW ):

TN~pW !5S MN

EN~pW !

MN

EN~pW 8!

1

4ukW uukW8u
D 1/2

TN~pW !. ~42!

The latter is normalized according to Ref.@29# ~Appendix
A3! and has simpler properties under Lorentz boosts. Ca
lating the amplitude in thegN center of mass~c.m.! frame
~marked with superscriptc) we obtain

ds

dV8
U

lab

5
1

16p2 S ukW8u

ukW u
D 2

EA8

MA

MN
2

EN~pW !EN~pW 1qW !
A2Fr

2~qW !

3
1

2 (
lg ,lg8

u^TN~pW c!&u2. ~43!
01461
u-

The photon asymmetry, which can be measured wit
linearly polarized photon beam, is defined as

Sg5
ds'2ds i

ds'1ds i
, ~44!

whereds i (ds') is the cross section for the photon pola
ization vector in the scattering plane~perpendicular to it!.

The cross section in thegA center-of-mass frame can b
related to the cross section in the laboratory frame as

ds

dV8
U

c.m.

5S uku

ukW8u
D 2

MA
2

sA

ds

dV8
U

lab

, ~45!

where sA5MA(MA12ukW u) is the total invariant energy
squared, and the center-of-mass photon momentum and
scattering angle are
3-10
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FIG. 8. Differential cross section and photo
asymmetry for Compton scattering off4He at an
energy of 206 MeV as a function of angle and
an angle of 37° as a function of energy. Th
curves represent the results of the local dens
approximation calculation~LDA ! and those for
different densities~in units of saturation density!
for the mean-field calculation I. Data are take
from Refs.@3,36#.
n
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e
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t
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th
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e
n
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ate
be
ukW c.m.u5ukW uMA /AsA, ~cosug!c.m.

512
ukW uukW8u

ukW c.m.u2
~12cosug!. ~46!

The single-nucleon amplitude is decomposed into o
part, which corresponds to the amplitude on the free nucle
plus a term which accounts for the modification of theD
resonance in the medium, i.e.,

TN5TN
free1~KN

Dd2KN
D f !. ~47!

The first term is theT matrix for Compton scattering on th
free nucleon; the term between parentheses accounts fo
nuclear-medium modification of theD resonance. To avoid
double counting the vacuum contribution is subtracted.

The T matrix for Compton scattering off a free proto
TN

free, is calculated in aK-matrix model very similar to tha
of Ref. @9#. This covariant coupled-channel calculation
pion scattering, pion photoproduction, and Compton scat
ing on the nucleon satisfies unitarity constraints below
two-pion production threshold and is gauge invariant. In
calculation ofTN

free the D is treated as a genuine spin-3
resonance@30# in order to be compatible with the prese
treatment of the in-mediumD resonance. The change in th
structure of thegND andpND vertices~the disappearanc
of the spin-1/2 off-shell couplings! necessitated modificatio
of parameters of ther ands exchanges in thet channel. A
comparable fit to the data as in Ref.@9# could be obtained. In
01461
e
n,

the

r-
e
e

Fig. 7 the results for Compton scattering are compared
data. At the pion-production threshold,Eg'150 MeV, the
calculation overestimates the data that might be related
ignoring in theK-matrix calculation the real pion-loop con
tributions that are responsible for the cusp structure in
f EE

12 Compton multipole@32,33#.

The dressedD contributionKN
Dd is based on a calculation

in which only thes-type tree-level contribution is taken int
account using the medium-modifiedD propagator as defined
in Sec. II @see Eq.~37!#. Note that in the impulse approxi
mation the photon is absorbed on a free nucleon and thus
has to work with the free nucleon massMN instead of the
medium-modified oneMN

! . The D self-energy parameter
will depend on the difference between theD invariant mass
and the nucleon mass (d5WD2MN) and are therefore
evaluated atWD

! 5MN
! 1d. The subtractedD contribution

KN
D f in vacuum is obtained from a similar calculation usin

the free propagator instead.
In the limit of low photon energies the cross section f

Compton scattering is given by the Thomson limit, where
matrix element is proportional toZ2/A. In the present calcu-
lation only the contribution to Compton scattering propo
tional toZ, the total number of protons, is taken into accou
thus the contribution proportional toNZ is omitted. As such
the Thomson limit is violated sinceZ2/A5Z2NZ/A. The
neglected contribution is thought to arise from intermedi
excitations to collective giant dipole resonance states and
related to the finite extent of the nuclear system@34,35#. For
3-11
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FIG. 9. Values of the param
eters that define the self-energy o
the D resonance evaluated at th
D invariant mass (WD) and three-

momentum (upW Du) appropriate for
Compton scattering off4He as
shown in Fig. 8.
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this reason one expects this contribution to be vanishin
small at forward angles. At backward angles, where the o
proton cross section is suppressed by the form factor du
the large momentum transfer, the two-body mechanism m
give a significant contribution. In our approach the equiv
lent contribution would arise from two-body contributions
the electromagnetic current arising from the nucleon-nucl
interaction. As argued, such a contribution is of margi
importance at forward angles but large at backward ang
In a future work this will be included explicitly; currently w
have ignored these two-body currents.

IV. RESULTS FOR COHERENT COMPTON SCATTERING

Cross sections have been calculated for4He and 12C at
several densities to investigate medium effects. To comp
with data an average over density (rA), based on the loca
density approximation~LDA !, has been performed. The de
01461
ly
e-
to
y
-

n
l
s.

re

sity profile (rA) was taken consistently with the form facto
in Eq. ~39!.

In Fig. 8 we have plotted, for various nuclear densitie
the cross section and photon asymmetry for Compton s
tering on 4He in mean-field model I, both at fixed lab ang
ug537° and lab energyEg5206 MeV. The results show a
strong density dependence. In order to obtain more ins
we have plotted in the upper panels of Fig. 9 the values
the three-momentumupW Du and ~kinematical! invariant mass
WD of the D as enter in the calculations presented in Fig.
In the lower panels we show the real and imaginary par
theD self-energy. We concentrate on the dominant imagin
part, as this seems sufficient to explain the global den
dependence of the cross section. At fixedEg5206 MeV, by
far the largest contribution to the imaginary part is due to
spreading width. The decay width in this energy regime v
ishes for the larger densities and is very small for the low
densities. The width therefore almost vanishes at zero d
3-12
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FIG. 10. LDA calculation of coherent Comp
ton scattering off4He in the Fermi-gas model an
the mean-field models I and II. The data are fro
Refs.@3,36#.
li-
u

se

s
f t
f

fo
T
re
T

re
ow
nc
th
f

en
le

h

e
on
to
en

-
n
er

ry
his.
f

h
at
idth
ng
ct is

oss

lse
c-
in-

-
l
-
al

eld
de-
le-
sion
ons
sity. At fixed ug537° and with increasing energy the Pau
corrected decay width becomes more important, showing
in the D width at small density and in the global increa
with energy starting at 300 MeV.

Much of the density dependence of the cross section
Fig. 8 can be understood from the density dependence o
imaginary part of theD self-energy. At a photon energy o
206 MeV one is relatively far from the peak of theD reso-
nance. An increase in the width of the resonance there
results in an increase of the cross section at this energy.
opposite happens when one approaches the peak of the
nance, where the cross section decreases with density.
data show clear evidence that this is indeed the cor
mechanism, at 206 MeV the vacuum calculation falls bel
the data while the LDA result shows a good corresponde
with the data at forward angles. Near the resonance
vacuum calculation overestimates the data by a factor o
while the LDA result gives a much better prediction or ev
lies below. The sharp fall-off of the cross section with ang
is mostly due to the form factor which falls off strongly wit
increasing momentum transfer.

At backward angles the cross section is not reproduc
which is probably due to the double-scattering contributi
which is missing from the present calculations. The pho
asymmetry at 206 MeV shows only a minor density dep
dence as compared to the error bars on the data.

In Fig. 10 we compare the4He cross section and asym
metry with LDA calculations for the Fermi-gas and mea
field calculations I and II. The Fermi-gas calculation und
shoots the data at small angles forEg5206 MeV and at
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he

re
he
so-
he
ct
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e
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d,
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large energies forug537°, and deviates from the asymmet
data points. The mean-field calculations tend to improve t

The cross sections for12C is shown in Fig. 11. Because o
the larger radius of12C the cross section falls off faster wit
angle than that for4He. The drop in the cross section
energies beyond 250 MeV is partly due to an increased w
of the D resonance and partly due to the form factor cutti
the cross section at larger momentum transfers. This effe
also seen in the data.

V. SUMMARY AND CONCLUSIONS

In this paper we have presented a calculation of the cr
section for Compton scattering on4He and12C in aK-matrix
model where the amplitudes are calculated in the impu
approximation. Fermi motion is incorporated using the fa
torization approximation scheme. The medium effects are
cluded by replacing the freeD propagator by a medium
modified D propagator in thes-type resonant tree-leve
diagram. The medium properties of theD resonance are in
vestigated in a relativistic framework for symmetric
nuclear matter.

This involves the calculation of theD self-energy, which
was performed in a Fermi-gas model and two mean-fi
models. The imaginary part includes the Pauli-corrected
cay width and the spreading width incorporating partic
hole excitations; the real part was calculated using disper
integrals. In both the Fermi-gas and mean-field calculati
the width is increased as compared to the freeD width. This
3-13
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FIG. 11. LDA calculation of
coherent Compton scattering o
12C in the Fermi-gas model and
the mean-field models I and II
The data are from Ref.@37#.
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increase tends to be stronger for the Fermi-gas model
for the mean-field models.

The differential Compton scattering cross section show
strong density dependence. Within a local density appro
mation, the density dependence of theD propagator results
in a much better description of the data, as compared
calculation using the vacuumD propagator. Mean-field mod
els which incorporate a reduced effective mass of
nucleon andD tend to improve on the results in a Fermi-g
calculation. Both mean-field results are quite close, indic
ing that the cross section is not that sensitive to the u
effective masses.

The present one-body mechanism is unable to desc
the data at backward angles. In order to improve this, i
01461
an

a
i-

a

e

t-
d

be
s

imperative that multiple scattering should be incorporated
the model.
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APPENDIX A: ANALYTICAL EXPRESSIONS FOR THE PION SELF-ENERGY

The real and imaginary parts of the pion self-energy can be expressed as

Re Pph
0 ~q!58S f pNN

mp
D 2

$uqW u2C0~ uqW u!2C2~ uqW u!12MN
2 q2 Re@L0~q!#%, ~A1!

Im Pph
0 ~q!58S f pNN

mp
D 2

$2MN
2 q2 Im@L0~q!#%, ~A2!

where the expressions for the functionsC0 andC2 read as
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C0~ uqW u!5E dkW

~2p!3

u~ ukW u2kF!u~kF2ukW1qW u!

4EkWEkW1qW
@EkW2EkW1qW # ~A3!

5F 1

96p2uqW u
G F @3~ uqW u22kF

22uqW uukW u!22MN
2 1ukW u2#EkW1@ uqW u222~MN

2 1ukW u2!1uqW uukW u#EukW u2uqW u13EFukW u2

13uqW uMN
2 lnS ~EkW1ukW u!

~EukW u2uqW u1ukW u2uqW u!
D GU

ukW u5k1

ukW u5k2

, ~A4!

C2~ uqW u!5E dkW

~2p!3

u~ ukW u2kF!u~kF2ukW1qW u!

4EkWEkW1qW
@EkW2EkW1qW #@EkW1EkW1qW #

2 ~A5!

5F 1

16p2uqW u
G F ~2MN

2 2kF
2 !

EF

6
ukW u21

EF

4
ukW u41

1

60
@15uqW u4240MN

2 uqW u228MN
4 215kF

4220MN
2 kF

2230uqW u3ukW u110kF
2 ukW u2

120uqW u2ukW u214MN
2 ukW u223ukW u4#EkW2

1

30
@4ukW u42uqW u414MN

4 14uqW uukW u326uqW u2ukW u22uqW u3ukW u18MN
2 ukW u2118MN

2 uqW u2

14MN
2 uqW uukW u#EukW u2uqW u1

uqW u3MN
2

2
lnS ~EukW u1ukW u!

EukW u2uqW u1ukW u2uqW u
D GU

ukW u5k1

ukW u5k2

, ~A6!

with the integration boundaries

k15max~kF ,uqW u2kF!, k25kF1uqW u. ~A7!

The relativistic equivalent of the Lindhard function is

L0~q!5E dkW

~2p!3

u~ ukW u2kF!u~kF2ukW1qW u!

4EkWEkW1qW
F 1

EkW2EkW1qW2q02 i e
2

1

EkW2EkW1qW1q02 i e
G . ~A8!

Based on the work in Refs.@38,39# the real and imaginary parts ofL0 can be written as1

Re@L0~q!#5
1

8~2p!2uqW u H 2EFI 1
(2)~q0!1q0I 2

(2)~q0!12~E1
(2)2E2

(2)!2Aa@u~q224MN
2 !1u~2q2!#I 2

(1)~Aa!1uqW uI 2
(1)~ uqW u!

12A2au~q2!u~4MN
2 2q2!FarctanS E1

(1)

A2a
D 2arctanS E2

(1)

A2a
D G J , ~A9!

Im@L0~q!#5
p

8~2p!2uqW u
$@~2EF1q0!2 f ~q0!#u„q02max~0,E2

(2)!…u~E1
(2)2q0!

2u~2kF2uqW u!@~2EF2q0!2 f ~q0!#u~q0!u~2E2
(2)2q0!%, ~A10!

where

I 1
(6)~x!5 lnF ~E1

(6)1x!~E1
(6)2x!

~E2
(6)1x!~E2

(6)2x!
G , I 2

(6)~x!5 lnF ~E2
(6)1x!~E1

(6)2x!

~E1
(6)1x!~E2

(6)2x!
G , ~A11!

E1
(6)5EkF1uqW u6EF , E2

(6)5EkF2uqW u6EF , ~A12!

1In the original article@39# some typing errors occur in these formulas.
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f ~x!5uqW uA11
4MN

2

uqW u22x2
, a5 f 2~q0!, ~A13!

EukW u6uqW u5AukW u262ukW uuqW u1uqW u21MN
2 . ~A14!
al

he

-

ue

ti

n

rm

tum
ant

and
All analytic expressions have also been checked numeric

APPENDIX B: KINEMATICS

We consider kinematics in the laboratory frame for t
gA scattering, where the initial nucleus is at rest,

v1MA5AMA
21qW 2, ~B1!

and (v,qW )5ukW u2ukW8u,kW2kW8) is the four-momentum trans
ferred to the nucleusA. The energy of the final photon is

ukW8u5
ukW u

11ukW u/MA ~12cosug!
~B2!

whereug is the photon scattering angle.
The nucleon ‘‘effective’’ momentumpW can be found by

assuming energy-momentum conservation on the constit
nucleon

v1AMN
2 1pW 25AMN

2 1~pW 1qW !2 ~B3!

with the same four-momentum transfer. In the nonrelativis
approximation, whereuqW u!m, one obtains from Eqs.~B1!
and ~B3!

2pW •qW 5qW 2S MN

MA
21D . ~B4!

A possible solution of Eq.~B4! is given by

pW 52aqW ~B5!
ck

tt

01461
ly.

nt

c

with

a5
1

2 S 12
MN

MA
D'

1

2 S 12
1

AD . ~B6!

The component of the momentumpW perpendicular toqW is not
determined from Eq.~B4! and may be conveniently chose
equal to zero.

In the relativistic case the solution of Eq.~B3! is more
complicated. If we seek an effective momentum in the fo
of Eq. ~B5!, then we obtain two solutions

a65
1

2 S 16
v

uqW u
A112

MN
2

vMA
D . ~B7!

It is easy to check that for the nonrelativistic kinematicsa2

in Eq. ~B7! reduces to Eq.~B6!. Forward scattering (ug

50) is a special case for whichv5uq̄u50. In this case the
exact solution is given by Eq.~B6!.

To make a transformation of the single-nucleonT matrix
from the system where the nucleon moves with a momen
pW to thegN center-of-mass system we consider the invari
Mandelstam variables

sN5~k1p!25MN
2 12ukW uEN~pW !22kW•pW ,

~B8!
tN5~k2k8!2522ukW uukW8u~12cosug!.

The corresponding center-of-mass three-momentum
photon scattering angle can be obtained from

upW cu5ukW cu5~sN2MN
2 !/2AsN, cosuN

c 511tN /2~kW c!2.
~B9!
. C
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