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Relativistic theory of pairing in infinite nuclear matter
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Realistic nuclear interactions based on the exchange of mesons are used to investigate pairing properties of
symmetric nuclear matter in the framework of a relativistic field theory. For the pairing gap at the Fermi
surface we find good agreement with earlier nonrelativistic descriptions based on phenomenological density
dependent interactions of Gogny. The differences at large densities are traced back to the different behavior of
these forces at short distances. The wave function of the Cooper pair as well as the contributions of the various
parts of the interactions to the pairing field are investigated.
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[. INTRODUCTION Skyrme or Gogny forces as well as phenomenological rela-
tivistic mean field(RMF) calculations in the framework of
Since it was recognized, already in the late 1950s, that &he nonlinear Walecka model are extremely successful in de-
large number of striking experimental facts, such as, the drascribing and predicting many of the properties of finite nuclei
matic reduction of the moments of inertia in rotating nucleiover the entire periodic table].
or the energy gap in the spectra of many even-even nuclei, In the particle-particle channel the situation is very differ-
can be understood by the fact that these nuclei are superfluight. From general considerations it follows that the effective
systemd 1], it is common practice to include pairing corre- pairing force should be also density dependent. In any case it
lations in open shell nuclei in the BCS approximation. should approach at low densities outside the nuclear surface
In most of such investigations rather simplified phenom-the bare nucleon-nucleon interaction. Therefore, density de-
enological forces are used in the particle-particle channel tpendent effective pairing forces that interpolate between the
describe pairing correlations leading to superfluidigf.  bare nucleon-nucleon interaction at low densities and an ad-
Most common is the monopole pairing force, which actsjusted interaction in the nuclear interior have been used suc-
only between pairs of particles coupled to angular momeneessfully for the description of the halo phenomgng]. On
tum zero, the so-called Cooper pairs, or the surface deltthe other side, one has also obtained good agreement with
interaction. The strength of these forces is usually adjusted irxperimental halo densities by using the phenomenological
a phenomenological way to the experimental pairing gap obGogny interaction with finite range but no density depen-
tained from odd-even mass differences. More sophisticatedence in thel' =1 pairing channe]9]. In addition, very little
density dependent Hartree-Fock-Bogoliubov calculations aress known about the range of the effective pairing force.
based on Gogny forces of Gaussian shape with a finite ranggogny has adjusted it to the properties of enatrix cal-
[3] or on Skyrme forces with zero range and an appropriateulated from bare nucleon-nucleon interactions. Pure zero
cutoff in the pairing channgi]. range forces lead to a divergence of the gap equation. Hence,
In fact, relatively little is known about the details of the in all applications zero range pairing forces have been used
effective particle-particle force in nuclei. Although it is very either in finite configuration spaces or in connectidhwith
important to take into account pairing to reproduce a largea cutoff introducing in this way again a finite range. The size
number of experimental facts in nuclear spectroscopy, mosif this cutoff parameter is usually determined by heuristic
of the data are not very sensitive to the detailed shape of therguments and in many cases just by the limitations of the
pairing force. Already the simple ansatz of a monopole paircomputer.
ing, which allows to smear out the Fermi surface, leads in To obtain a full understanding of pairing properties in
most of the cases to satisfactory results. nuclei, however, one should start with a realistic bare
This fact is in sharp contrast with the situation in the nucleon-nucleon interaction. Over the years it has often been
particle-hole channel, where many data, such as saturatioemphasized that the effective force in the pairing channel is
effective masses, compressibility, surface energy, and othawt necessarily th& matrix [10], which sums up all the
specific properties of nuclear spectra depend in a very sendadder diagrams, but thi€ matrix that sums up all the irre-
tive way on the underlying effective force. Many investiga- ducible diagram§11]. Several investigations in this direction
tions have been carried out in this context and since 1950s ftave been carried out in neutron malft&?], but the impor-
is known that the bare nucleon-nucleon interaction detertance of such renormalization effects in ffgchannel has so
mined from scattering experiments cannot be used directly ifar not been discussed for symmetric nuclear matter. In fact,
Hartree-Fock calculations. Three-body forces, Brueckneat least in the singlet channel with the quantum numl&ers
correlations and possibly also relativistic effects have to be=0 andT=1, the renormalization does not seem to play an
taken into accounf5]. In any case, the effective forces ap- essential role. Although this fact is not fully clarified so far,
plicable in the ph channel for Hartree-Fock calculations strong support for this assumption is given by nonrelativistic
show a strong density dependence. In fact, phenomenologinvestigations[13] using the bare Paris potential for BCS
cal density dependent Hartree-Fock calculations based otelculations in nuclear matter at various densities. In these
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calculations quantitative agreement is found for the strength 1

of pairing correlations at the Fermi surface with the phenom- Aab=§2 VadbcKed - (4)
enological results deduced from Gogny forces, which are cd
believed to present a proper description of pairing in finite}
nuclei[3]. t

Here we extend such investigations in the context of a
relativistic pairing theory, which has been developed in anal-
ogy to the nonrelativistic ongl4,15. Using Greens func- pab=2 ViVpk (5)
tions methods and the factorization of Gork{d6], relativ- K
istic Hartree-Fock-BogoliuboyHFB) equations have been
derived in full analogy to nonrelativistic HFB theory. How- Kkab= > VEUpk. (6)
ever, an early investigation of the pairing problem of sym- k
metric nuclear matter with the phenomenological parameter
sets of the RMF theory15] was completely unsuccessful: According to theno-sea approximatiothe sum ovek runs
the calculated gap parameters at the Fermi surface exceede@ly over quasiparticle states corresponding to particle solu-
the standard values obtained with the Gogny force by mor&ions of the Dirac equation.
than a factor of 3. The origin of this failure was the behavior ~Since we are mainly interested in a relativistic description
of the pairing matrix elements at large momenta. In factOf thepp channel and because it can be argued that the main
these forces were adjusted only for Hartree calculations, i.e€ffects of the Fock terms of meson exchange potentials are
0n|y for momenta below the Fermi momentum. In order toalready taken into account at the Hartree level in a phenom-
obtain reasonable values for the gap parameter one, therghological way, in the following, we neglect the exchange
fore, has used a cutoff also in the relativistic casederm in the mass operatar and obtain in this way the rela-
[15,17,18. tivistic Hartree-Bogoliubov equations.

Of course, bare nucleon-nucleon interactions have a Diagonalizing the Dirac operatérand neglecting the off-
proper Cutoff’ determined by the Scattering data at h|gh endiagonal matrix elements of the pairing field in this baSiS, the
ergies. We, therefore, start with a relativistic version of thefull HB equations can be decomposed inta{(2) matrices
one-meson exchange potential adjusted to the scattering de25BCS type as in the nonrelativistic case, i.e.,
by Machleidt[20] as interaction in th@p channel and solve
the relativistic BCS equations in infinite symmetric nuclear (k)= A(k) U(k)) =E(k)(u(k)) @
matter [15,21] in order to study pairing properties of the A(k)  —e(k)+n/\v(k) v(k))’
superfluid symmetric nuclear matter in the=1 channel.

This paper is organized as follows. In Sec. Il we briefly wheree(k) are the eigenvalues of the Dirac operdipA (k)
introduce the relativistic BCS equations and we present thare the diagonal matrix elements of the pairing field in the
solution for the pairing gap at the Fermi surface. We compar®irac basis, and
our relativistic results with nonrelativistic calculations based
on the Gogny forceD1 [19]. In Sec. Il we study some E(k)=[e(k)—N]*+A(k)? (8)
properties of pairing correlations, i.e, Cooper pair wave func-

tion and the coherence length, obtained by relativistic an@'€ the quasiparticle energies in the BCS approximation.

nonrelativistic calculations. In Sec. IV we summarize our N the case of nuclear matter we consider a particle with

results and give a short conclusion. momenturrk moving in classical fieldS andV of scalar and
vector mesons. We find the eigenvalue of the Dirac equation

e(k) in Eq. (1) is given by

he densityp,, and the pairing tensot,;,, are obtained from
he HFB wave function§J, andV,

II. THE PAIRING GAP AT THE FERMI SURFACE

As discussed in Refs[15,2] the relativistic Hartree- e(k)=V+Jk*+M*?, 9

Fock-Bogoliubov equations are of the form ) . ) )
in which the effective masM* and the vector field/ read

h—m—X\ A U U M*=M+S=M+g,0 and V=g,w, respectively. The
. N v :Ek(v) , (1)  fields are determined by the meson equations of the nonlin-
—A —h*+mx k k ear RMF mode[22]
where . 4q, d3k M* V(K + g0+ gao®
h=ap+ B3 ?) m2 ) (2m)® kT M2 20 TS
(10
is the Dirac operator with the relativistic mass operator
490 (9K 2k (11
W= "5 | 533V ,
Sab=M3an+ 2 Vadnlea, (3) m,, J (2m)
wherev?(k) are BCS occupation numbers ands the Fermi
andA is the relativistic pairing field energy related to the Fermi momentugn by
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3.0 . TABLE |. Maximal pairing correlations at the Fermi surface for
the relativistic versiong\, B, and C of the Bonn potential and for
the Gogny forceD 1.
Potential Af (MeV) ke (fm™Y)
2ot BonnA 2.80 0.76
= BonnB 2.84 0.76
2 BonnC 2.83 0.76
%* GognyD1 2.78 0.80
1.0 |
tions of roughly 2.8 MeV at the Fermi momentukg
~0.8fm™ 1, i.e., at roughly one-fifth of nuclear matter den-
sity. As shown in Table | we find very similar results for the
other relativistic forces BonA and BonnC.
%00 Since the pairing correlations are largest for small densi-

ke, (frn™) ties, i.e., at the surface of the nucleus, this result agrees with
the usual observation that pairing in nuclei is a surface phe-
nomenon. Moreover, the agreement between the results ob-
tained with bare relativistic forces and those obtained with
the Gogny force for the pairing properties of the symmetric
nuclear matter is a particularly interesting outcome as in the
N=V+kg+M*?, (12)  Jatter case it has been shoyh9] that using this density
dependence of the gap parameter in semiclassical calcula-
tions the average pairing properties of finite nuclei can be

reproduced rather well. Thus we can hope that this will re-
g2, andgs, and the meson masses,,m,, are taken from  main trye also for calculations in finite nuclei with bare rela-
the parameter set NL1 of the nonlinear RMF mof3].  ivistic interactions.

However, the results for the pairing gap at the Fermi surface At saturation densityl(§=1.35 fmY), it is rather diffi-

do not depend very much on the parameters used |rphh_e cult to decide whether nuclear matter is superfluid. In any

ke it seems to depend crucially on the interaction. For the
%ogny force a small pairing gap of roughly 0.5 MeV is left,
whereas for the BonB-potential there seems to be no pair-

FIG. 1. Gap parameter at the Fermi surfageas a function of
the density represented by the Fermi momenkgnfior the relativ-
istic Bonn potentialversionB) and for the Gogny forc®1.

and fixed by the density of the systep(m,/g,)?V. In
the following calculations the coupling constas, g,,,

successful description of the ground state properties of finit
nuclei.
The pairing fieldA (k) obeys the usual gap equation

ing.
1 e AK) To understand the difference betweaf and A¢ at
A(p)=— _zf vpp(P.K) — k2dk, higher densities, we analyze the behavior af(k),
4m= Jo VLe(k)=N]2+A%(k) 3 vpp(Ke k), and of the integrand of Eq13)
13
which is formally identical to the one in the nonrelativistic (K= — k? e Kk A(k) 15
case. Here p,(p,k) (== g venlies )\/[g(k)—)\]2+A2(k) o
Upp(p’k):f vpp(P,k)d cose (14 for several values okg for both the interactions. Figures 2

and 3 show (kg ,K), A(k), andi(k) atke=0.3 and 0.8

is the angle averaged relativistp interaction,d being the  fm™%, respectively, for which the agreement between the
angle between the vectopsandk (for details see Ref15]). relativistic and the nonrelativistic solutions is good. Figure 4

In this investigation we use the three relativistic versionsshows the same quantities flor=1.2 fm* for which A2 is
A, B, and C of the Bonn potential discussed in R¢20l.  much smaller tham\. The graphs on the left refer to the
They contain the exchange of several mesons. The details afglativistic calculations based on the BoBnpotential and
given in the Appendix. those on the right to the nonrelativistic calculations based on

In Fig. 1 we display the resulting gap paramei@rat the  the Gogny forceD1. We first consider the interactions
Fermi surfaceAr=A(k=kg) as a function of the density v (ke k), plotted with dotted lines. The behavior of the
represented by the Fermi momentp for the relativistic  Bonn potential differs considerably from that of the Gogny
Bonn-B potential (solid line) and compare it with the same force. For small values dfr (Figs. 2 and Bthe relativistic
quantity AF obtained in a nonrelativistic calculatidii9]  force is strongly attractive at smatland it becomes repul-
based on the Gogny ford®1 (dashed ling Apart from the  sive for largek. For larger values okg the strength of the
difference at larger densities, the solutions are in excellenattractive part decreases and fqgr=1.2 fm ! (see Fig. 4
agreement. In both cases we find maximal pairing correlathe potential is only repulsive. On the contrary, the nonrela-
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FIG. 2. Various contributions to the integral in the gap equation FIG. 4. The same results as in Fig. 2 for a Fermi momentum
(13 for the density corresponding to the Fermi momentkpn  ke=1.2 fm %
=0.3 fm L. Comparison of the relativistic BonB-potential and

the Gogny force. The details are discussed in the text. We now concentrate on the relativispp interaction. The

tivistic force is attractive for nearly all momenta. The small Bonr:l potentlal[_iO]_ls de;'“?d as the sum of one-Boéson-
repulsive part does not play an essential role here. exchange contributions of six mesons, namelyw, , p, 4,

We next consider the pairing field&(k) plotted with and#. In Fig. 5 we show the ma}trix elemem§p(I§F,I§) of
solid lines in Figs. 2—4. Fdt-=0.3 and 0.8 fm* AB(k) and the BonnB potential together with the six contributions of

AS(k) have comparable strengths, while fiog=1.2 fm * the different mesons fok==0.8 fm 1. We observe that the
AS(K) is far greater tham (k)B, as i't is expected .from the full interaction results from the cancellation of two main

revious observations on the pairing gap at the Fermi surS™S: thg negative contribution efmeson and the positive
fpace P g 9ap contribution of thew. Although the other mesons have much

Finally, we show the integrandk) given in Eq.(15) by smaller contributions, they cannot be neglected because of

dot-dashed lines and we examine the different contribution£he large cancellation betweenand «. The influence ofo

o d » is however very small.
of vpp(ke,k) and A(Kk) to this integrand. The shaded areas®" ; .
represent the integrahg. In the nonrelativistic case, for In Fig. 6 we study how the exchange of the different

each value okq, AS originates from the contributions of co0NS contribute to the gap at the Fermi suriage As we
: F. AF Orgl . S have just seen for the potential, this quantity results mainly

large intervals where the integrand is positive and of a N€Y: o m the exchange of and w whose corresponding pairing
ligibly small interval where the integrand is negative. In the h surf - f the order of-
relativistic case, the contributions af(k) andv,,(kg,k) to gaps at the Fermi surfadkE™ are of the order of9.5 MeV
AB depend ork' Forke=0.3 and 0.8 frit UV'?/'; fiFn’d that and —6.8 MeV for maximal pairing correlations, respec-

F dep P R ' o) tively. The other mesons play a smaller role; among them we
three intervals contribut¢24]. For ke=1.2fm *, because

; " . . haveAf~—0.85 MeV andAf~+0.42 MeV for the same
vpp IS always positive, only two intervals of opposite sign

contribute toA2 canceling each other to some extent and,
therefore, reducing the pairing gap at the Fermi surface. In
conclusion, the fact that drops to zero fastek? is due to

the strong dependence of the Bonn potential on the Ferm  ,,
momentum at large momenta, i.e., on the short distance be
havior of the potential.

Bonn Potential Gogny Force “E
€ 00
)
<
B
-
-10.0
— AK) . -20.0 L L L L
v, (k) = k=08 m 0.0 2.0 40 6.0 80 10.0
— i) k (fim™)
00 20 40 60 80 00 20 40 60 80 100 FIG. 5. Matrix elements of the relativistic Borihpotential in

K (fm") k (fm") . .
momentum space (kg ,k) at the Fermi momentum of maximal
FIG. 3. The same results as in Fig. 2 for a Fermi momentumpairing correlation&g=0.8 fm~L. The thick solid line corresponds
ke=0.8 fm L, to the full potential and the thin lines correspond to the various
one-meson exchanges.
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FIG. 7. Cooper pair wave functions in momentum spgc¢k)
calculated at different values of the Fermi momentiamas func-
tions of the momentunk for the relativistic BonrB potential and
for the Gogny force.

FIG. 6. Contributions of the different one-meson exchange po-
tentials to the gap parameter at the Fermi surface as a function d¢finction is peaked at=kg. This is due to the fact that the

the density represented by the Fermi momentkym The thick

denominator in Eq(16) has a minimum ak=Kkg, in fact it

solid line corresponds to the full gap and the thin lines correspongeduces ta\ (kg).

to the various mesons gaps.

value of kg. The fact that thep-meson exchange gives a
positive contribution to the total gap at the Fermi surfage
is due to the tenso¥; and vector-tenso¥\,t terms in the
one-rho exchange potenti@ee Table Il

Ill. COOPER PAIR WAVE FUNCTION
AND COHERENCE LENGTH

For a better understanding of the pairing properties w

study the Cooper pair wave function. In momentum space i

is defined by

- A(k)
2[e(k) N2+ AZ(K)

x (k) (16)

On the left and on the right side of Fig. 7 we shoquk)
obtained with the Bonn potential and with the Gogny force,
respectively, at the three valueslgf previously considered,
i.e.ke=0.3, 0.8, and 1.2 fm*. We observe that every wave

TABLE Il. FunctionsA,(k,p), B;

The asymmetric behavior of the pair wave functions in
the momenta intervale<kg andk>kg is a consequence of
the variation of the gap functioA (k) with k. For both the
interactions, the widths of the peaks, which represent the
inverse of the coherence length, have the same siz&for
=0.3, and 0.8 fm', while they are smaller forkg
=1.2 fm L In addition, the fact that foke=1.2 fm ! the
width of the peak is narrower for the Bonn potential than for
the Gogny force is consistent with the observation that in the
former case the gap parameter at the Fermi surlacdrops

Efaster than in the latter. Apart from this, in momentum space

[here are no big differences between the wave functidk$
calculated with the relativistic and nonrelativistic forces.

Of particular interest is the wave function of the Cooper
pair in coordinate spacg(r), wherer represents the dis-
tance between the two nucleons forming a Cooper pair. It is
obtained fromy(k) by Fourier transformation

d3k
(2m)°

x(r)= e ™ Tx(k). (17)

In Fig. 8 we plot this quantity for the Bonn potential and for
the Gogny force at the three valueslgf used before. For

(k,p), andC;(k,p) of Eq. (A3).

i r Xi Ai(k,p) Bi(k,p) Ci(k,p)
o 9o -g2 a(k,p)—m? a(k,p)—AZ

w 9.,7" +95 b(k.p) b(k,p)

Too  (Fo/m) Y y*(K,—p,) +(f,/my)*  p?~k?-mZa(k,p) p*>—k*—AZa(k,p)

pY g, 7" +q2 b(k,p) b(k,p)

p' i(f 2M)[g, v (k,—p,)o" 17 —(f,/2M)? [e(k,p)+m2Im2  [c(k,p)+A2]AZ 1
VT +2(f,g,/M)M* m2 A2

B 957 -05 a(k,p)—m3 a(k,p)— A5

2 (f,/m) Y y*(K,—p,) 7 +(f,/m,)?  p?-k?-mia(k,p) p>—k?—A2a(k,p)
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Bonn Potential Gogny Force 300.0
ek =0,3 frn
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E 100.0
0.004 :
<, 00
s >
=
0.002 -100.0
0.000
0.006
0.0
£ (fr) 0004
=)
. . - . =
FIG. 8. Cooper pair wave functions in coordinate spg¢e) 0.002
calculated at different values of the Fermi momentiymas func-
tions of the coordinate for the relativistic BonnB potential and for 0.000
the Gogny force.
-0.002 . . . .

0.0 0.4 08 12 1.6 20

both interactionsy(r) are oscillating functions of, and the v (fm)

oscillation rate increases with the density. However, we also FIG. 9. Upper part: even-singlet central part of the Bonn poten-
observe important differences between the relativistic andal in the coordinate space and its one-meson exchange contribu-
the nonrelativistic calculations. In the former case, fortions. The former is plotted with a thick solid line and the latter with
all densitiesy(r=0) is close to zero, then it increases till thinner lines. Lower part: Cooper pair wave function lat

a maximum at ,,,~1.0 fm and thereafter it starts to oscil- =0.8 (fm1). Itis peaked where the interaction is mostly attractive.
late at different rates for eackz. We observe that the

highest maximum of the pair wave functiong(rms) (1s)) central part of the bare interaction in coordinate space.
~0.0062 fm > corresponds to the Fermi momentum for\ye gpserve that the full potential, represented in the figure

. .. . . . _ _1
which pairing correlatlf)lns are maximal, i.é;=0.8 fmﬁs. by a thick solid line, is repulsive at short distances, has a
Forkg=0.3 and 1.2 fm", we havex(rma) ~0.0015 fm > ;5 atr~0.7 fm and then a minimum of the order ef50

In the case of the Gogny force, the situation is quite dif-y;o\/ atr,,~0.9fm and, finally, goes to zero for larger dis-

ferent. First of all, the pair wave functiong(r) do not  tances The thinner lines represent the contributions of the
present any pronounced peak at small distances. In particyzrious mesons. In particular, we notice the monotonic in-

lar, they are almost constant in the intervat 1.0 fm for  creasing and decreasing potentials corresponding to the at-
eachkeg, then they decrease and they oscillate with an osCiliactive o mesons and to the repulsive meson, the contri-

lation rate increasing witkg as we have noticed already for y,tion of the one-pion exchange that in this channel ofie
the relativistic interaction. Comparing the strengthgB¢r) interaction is strongly repulsive far<1.0fm and weakly
andx(r) at the different densities, Weiolbserve that they areyractive forr =1.0 fm, the rho-exchange potential, which is
of the same order fokg=0.3 and 0.8 fm", for which, as it 450 strongly repulsive at small distances, has a zemo at
can be noticed from Fig. 1, also the agreement between the g g fm and gives an attractive contribution of the order of
corresponcélng pairing gap at t(?e Fermi surface is very good. 409 MeV at 0.8 fm, much stronger than the contribution of
namely, Af(ke=0.3 fm ) ~AP(ke=0.3 fm)~0.9 MeV . This is due to the fact that the is heavier than ther
and AP(ke=0.8 fm 1) ~AF(ke=0.8 fm)~2.8 MeV. On  meson and due to the presence of the tensor and vector-
the contrary, forke=1.2fm™* the strength ofy®(r) is far  tensor terms in the potential. Moreover, the influence ofghe
greater than the strength gf(r). This agrees with the fact functions in the spin-spifcentra) force of the one-pion and
that at this Fermi momentum the pairing gap obtained withof the one-rho exchanges are reduced by the form factors
the Gogny force is much greater than the pairing gap obapplied to the nucleon-meson-nucleon vertices of the poten-
tained with the Bonn potential, namely, we finiS(ks  tial. In Fig. 9 we have omitted the contributions of thend
=1.2 fm )~1.9 MeV and Af(ke=1.2 fm %)~0.9 MeV,  » mesons as they are negligible.
respectively. In the lower part of Fig. 9 we show the Cooper pair wave
Let us now investigate which part of the interaction is function in coordinate space féx=0.8 fm ! and observe a
responsible for pairing correlations? We, therefore, considecorrespondence between behavior of the potential and the
the Bonn potential in the coordinate space. In this case theave function: at small distances, where the interaction is
Fourier transformation from momentum to coordinate spacetrongly repulsive, the size gf(r) is small. In particular, for
cannot be carried out analytically because of the presence diterparticle distances less than 0.1 fm it seems very unlikely
nonlocal termg20]. We, therefore, have used a nonrelativis-that two nucleons condense into a Cooper pair. At larger
tic reduction of the potential in the coordinate space, whichdistances the strength g{r) clearly increases together with
is a good approximation of the relativistic one at small dis-the decreasing in the strength of the potential, in particular,
tances. In the upper part of Fig. 9, we show the even-singley(r) has a maximum of 0.006 at,,~0.8fm at which the

014304-6



RELATIVISTIC THEORY OF PAIRING IN INFINITE . ..

PHYSICAL REVIEW C 65 014304

600 =t 300 . .
40.0 E = Bonn
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>
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&
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o~ 0004 |
&
g
= 0.002 |
0.0 : .
00 05 10 L5
0000 k, (fm)
0.0 10 2.0 30 , .
© (fm) FIG. 11. Coherence length as a function of the Fermi momen-

tum kg for the relativistic BonrB potential and for the Gogny

FIG. 10. Upper part: channéls, for the Gogny force in coor-  force.
dinate space. Lower part: Cooper pair wave function kat
=0.8(fm Y. It is maximal where the interaction is mostly repul- therefore, find that the distance between two nucleons form-
sive. ing a Cooper pair is as large as the dimension of a nucleus.

For low densities Kr<0.25 fm 1) and for high densities
interaction is mostly attractive. The same observations cafke=1.0 fm™ ) the strength of the coherence length in-
be repeated also for the other values of the Fermi momersreases rapidly, meaning that the two nucleons become more
tum, as we have seen that every Cooper pair wave functioand more separated. Finally the difference of the coherence
in coordinate space shows a peak at the same valug,,, length obtained with the Bonn potential and the coherence
independent of the density. length calculated with the Gogny force at larger densities

From these considerations, we conclude that pairing coragrees with the observation that the pairing gap drops faster
relations in nuclei are mainly due to the attractive part of thefor the relativistic interaction than for the nonrelativistic
interaction and that the effect of the repulsive part is to shifforce.
the peak of the Cooper pair wave function outwards.

In Fig. 10 we show corresponding results in coordinate
space for the Gogny force. In this cagér) is not sup- . . L
pFr)essed by the repgulgive part of the forc;ieqfS i)ndeed its stFr)ength In this work we applied a relativistic field theory to study
is maximal in the corresponding interval. In comparison withPaifing properties of symmetric nuclear matter in 8y
the Bonn potential, the Gogny force is far less repulsive af@nnel at zero temperature. For this purpose, we have used
small distances and less attractive at intermediate distancef'® Very successful nonlinear parametrization NL1 of the

An important quantity for a better understanding of pair- RMF theory in thephchannel, while th@p channel has been
ing properties in nuclei is the coherence lengthFrom a desprl_bed for the first tlme_by using a relativistic version of a
microscopic point of view, it represents the squared meafiedlistic nucleon-nucleon interaction, namely, the Bonn po-

distance of two paired particles. In terms of the Cooper paiféntial- _ . o o
wave functions it is defined as In agreement with earlier nonrelativistic investigations

based on the Paris potential, we have found that a relativistic
bare nucleon-nucleon potential reproduces essentially the
properties of nuclear matter obtained by using the phenom-
. (19 enological Gogny force, which is adjusted to reproduce ex-
perimental data of finite nuclei. We can hence conclude that
renormalization effects of the pairing force do not play a
major role in the'S, channel. However, this observation is
and for our calculations we have chosen the coordinate spade contrast to results of calculations of polarization effects in
representation since it is numerically more convenient. Irpure neutron matter and this point deserves, therefore, further
Fig. 11 we display the coherence lengilior the Bonn po- investigations.
tential (solid line) and for the Gogny forcédashed lingas a In detail, we have found differences between the pairing
function ofkg . In both cases, we observe that in the intervalproperties calculated with the Bonn potential and the ones
of larger pairing correlations, i.e., Gskg (fm~1)<0.9 (see  calculated with the Gogny force in the region of saturation
Fig. 1), ¢ is an almost constant function of the Fermi mo- density. By analyzing the origin of these discrepancies we
mentum and has its lower value of around 5.0—-6.0 fm. Wehave found that they originate from the strong repulsion in

IV. CONCLUSIONS

de"r|)((r)|2r2 fdkk2|¢9)((k)/¢9k|2
= °

strl)((r)l2 f:dkkzl)((k)l2
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the bare nucleon-nucleon interaction at short distances. It ig, being the cutoff mass. In Table Il we list the vertex
to be expected that renormalization effects play a role tqunctions for the single one-meson exchange potential of the
reduce these discrepancies. Bonn potential.

Finally, we have calculated the contributions of the vari- As we perform only pairing correlations in th&
ous meson exchange potentials to the pairing gap. As ex=1-channel, the dependence of the matrix elements on the
pected, there is a large cancellation between the stronglgospin is trivial and after averaging over the anjglee Eq.
repulsivew exchange and the strongly attractivexchange, (14)] the total potential can be written as
which dominates the essential region of small momenta. The
contributions of other mesons, such as the pion angthee 1
much smaller, but not negligible because of this cancellation. vpp(k,p)= WE(D)kpZ xi(Ai(k,p)O;(k,p)
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Contract No. 06 TM 979. where i =o,w0,mp, the functionsO,(k,p), ®;(k,p), and

Y;(k,p) are defined by

APPENDIX
(k+p)*+m? (k—p)°+A?
We give here the explicit expressions of the matrix ele- Gi(k,p)=|n(k_ V2 (ke p)2s A2 (A4)
ments entering the gap equatitiB) of the relativistic Bonn P i P i
potential, which, as already mentioned in the text, is defined
as the sum of one-boson exchange of the mesons , p, s 1 1
7, and 8. In momentum space, as shown in great detail in ®i(k,p)=(A7—my) (Ep) 2T A2 (kp)Zr A2
Ref. [15], the antisymmetrized matrix elements in thp (A5)
channel for one-meson exchange can be written as
vpp(K,P) (k+p)?+A7
PP Yi(k,p):(A?_m?)2|nm, (A6)
M2 Tr(A (KA, (p)y°T TT7° '
=+
2E* (k)E* —p)2+m? . o
(E*(p) (k=p)"+mp, the coefficientsA(k,p), Bi(k,p), andC;(k,p) are given in
X f2([k—p]?), (A1)  Table II, and the functiona(k,p), b(k,p), andc(k,p) are
defined as
whereA . (p) is the projector onto positive energy solution,
Tis the representation of the time reversal operator in Dirac a(k,p)=4M*2— (E,— Ep)2 (A7)

space, and ([k—p]?) is the form factor applied to each
nucleon-meson vertex, i.e.,

. b(k,p)=4(2E4E,—M*?) (A8)
f(k—p]D)=|—m " |, A2
(L=pl? [(k—p)2+Am (42 c(k,p)=4EE,+ (E+Ep)% (A9)
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