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Relativistic theory of pairing in infinite nuclear matter
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Realistic nuclear interactions based on the exchange of mesons are used to investigate pairing properties of
symmetric nuclear matter in the framework of a relativistic field theory. For the pairing gap at the Fermi
surface we find good agreement with earlier nonrelativistic descriptions based on phenomenological density
dependent interactions of Gogny. The differences at large densities are traced back to the different behavior of
these forces at short distances. The wave function of the Cooper pair as well as the contributions of the various
parts of the interactions to the pairing field are investigated.
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I. INTRODUCTION

Since it was recognized, already in the late 1950s, th
large number of striking experimental facts, such as, the
matic reduction of the moments of inertia in rotating nuc
or the energy gap in the spectra of many even-even nu
can be understood by the fact that these nuclei are super
systems@1#, it is common practice to include pairing corre
lations in open shell nuclei in the BCS approximation.

In most of such investigations rather simplified pheno
enological forces are used in the particle-particle channe
describe pairing correlations leading to superfluidity@2#.
Most common is the monopole pairing force, which a
only between pairs of particles coupled to angular mom
tum zero, the so-called Cooper pairs, or the surface d
interaction. The strength of these forces is usually adjuste
a phenomenological way to the experimental pairing gap
tained from odd-even mass differences. More sophistica
density dependent Hartree-Fock-Bogoliubov calculations
based on Gogny forces of Gaussian shape with a finite ra
@3# or on Skyrme forces with zero range and an appropr
cutoff in the pairing channel@4#.

In fact, relatively little is known about the details of th
effective particle-particle force in nuclei. Although it is ver
important to take into account pairing to reproduce a la
number of experimental facts in nuclear spectroscopy, m
of the data are not very sensitive to the detailed shape o
pairing force. Already the simple ansatz of a monopole p
ing, which allows to smear out the Fermi surface, leads
most of the cases to satisfactory results.

This fact is in sharp contrast with the situation in t
particle-hole channel, where many data, such as satura
effective masses, compressibility, surface energy, and o
specific properties of nuclear spectra depend in a very se
tive way on the underlying effective force. Many investig
tions have been carried out in this context and since 195
is known that the bare nucleon-nucleon interaction de
mined from scattering experiments cannot be used directl
Hartree-Fock calculations. Three-body forces, Brueck
correlations and possibly also relativistic effects have to
taken into account@5#. In any case, the effective forces a
plicable in the ph channel for Hartree-Fock calculation
show a strong density dependence. In fact, phenomeno
cal density dependent Hartree-Fock calculations based
0556-2813/2001/65~1!/014304~9!/$20.00 65 0143
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Skyrme or Gogny forces as well as phenomenological re
tivistic mean field~RMF! calculations in the framework o
the nonlinear Walecka model are extremely successful in
scribing and predicting many of the properties of finite nuc
over the entire periodic table@6#.

In the particle-particle channel the situation is very diffe
ent. From general considerations it follows that the effect
pairing force should be also density dependent. In any ca
should approach at low densities outside the nuclear sur
the bare nucleon-nucleon interaction. Therefore, density
pendent effective pairing forces that interpolate between
bare nucleon-nucleon interaction at low densities and an
justed interaction in the nuclear interior have been used s
cessfully for the description of the halo phenomena@7,8#. On
the other side, one has also obtained good agreement
experimental halo densities by using the phenomenolog
Gogny interaction with finite range but no density depe
dence in theT51 pairing channel@9#. In addition, very little
is known about the range of the effective pairing forc
Gogny has adjusted it to the properties of theG matrix cal-
culated from bare nucleon-nucleon interactions. Pure z
range forces lead to a divergence of the gap equation. He
in all applications zero range pairing forces have been u
either in finite configuration spaces or in connection@4# with
a cutoff introducing in this way again a finite range. The s
of this cutoff parameter is usually determined by heuris
arguments and in many cases just by the limitations of
computer.

To obtain a full understanding of pairing properties
nuclei, however, one should start with a realistic ba
nucleon-nucleon interaction. Over the years it has often b
emphasized that the effective force in the pairing channe
not necessarily theG matrix @10#, which sums up all the
ladder diagrams, but theK matrix that sums up all the irre
ducible diagrams@11#. Several investigations in this directio
have been carried out in neutron matter@12#, but the impor-
tance of such renormalization effects in thepp channel has so
far not been discussed for symmetric nuclear matter. In f
at least in the singlet channel with the quantum numberS
50 andT51, the renormalization does not seem to play
essential role. Although this fact is not fully clarified so fa
strong support for this assumption is given by nonrelativis
investigations@13# using the bare Paris potential for BC
calculations in nuclear matter at various densities. In th
©2001 The American Physical Society04-1
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calculations quantitative agreement is found for the stren
of pairing correlations at the Fermi surface with the pheno
enological results deduced from Gogny forces, which
believed to present a proper description of pairing in fin
nuclei @3#.

Here we extend such investigations in the context o
relativistic pairing theory, which has been developed in an
ogy to the nonrelativistic one@14,15#. Using Greens func-
tions methods and the factorization of Gorkov@16#, relativ-
istic Hartree-Fock-Bogoliubov~HFB! equations have bee
derived in full analogy to nonrelativistic HFB theory. How
ever, an early investigation of the pairing problem of sy
metric nuclear matter with the phenomenological param
sets of the RMF theory@15# was completely unsuccessfu
the calculated gap parameters at the Fermi surface exce
the standard values obtained with the Gogny force by m
than a factor of 3. The origin of this failure was the behav
of the pairing matrix elements at large momenta. In fa
these forces were adjusted only for Hartree calculations,
only for momenta below the Fermi momentum. In order
obtain reasonable values for the gap parameter one, th
fore, has used a cutoff also in the relativistic cas
@15,17,18#.

Of course, bare nucleon-nucleon interactions have
proper cutoff, determined by the scattering data at high
ergies. We, therefore, start with a relativistic version of t
one-meson exchange potential adjusted to the scattering
by Machleidt@20# as interaction in thepp channel and solve
the relativistic BCS equations in infinite symmetric nucle
matter @15,21# in order to study pairing properties of th
superfluid symmetric nuclear matter in theT51 channel.

This paper is organized as follows. In Sec. II we brie
introduce the relativistic BCS equations and we present
solution for the pairing gap at the Fermi surface. We comp
our relativistic results with nonrelativistic calculations bas
on the Gogny forceD1 @19#. In Sec. III we study some
properties of pairing correlations, i.e, Cooper pair wave fu
tion and the coherence length, obtained by relativistic a
nonrelativistic calculations. In Sec. IV we summarize o
results and give a short conclusion.

II. THE PAIRING GAP AT THE FERMI SURFACE

As discussed in Refs.@15,21# the relativistic Hartree-
Fock-Bogoliubov equations are of the form

S h2m2l D

2D* 2h* 1m1l
D S U

V D
k

5EkS U
V D

k

, ~1!

where

h5ap1bS ~2!

is the Dirac operator with the relativistic mass operator

Sab5mdab1(
cd

Vadbcrcd , ~3!

andD is the relativistic pairing field
01430
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2 (
cd

Vadbckcd . ~4!

The densityrab and the pairing tensorkab are obtained from
the HFB wave functionsUk andVk

rab5(
k

Vak* Vbk ~5!

kab5(
k

Vak* Ubk . ~6!

According to theno-sea approximationthe sum overk runs
only over quasiparticle states corresponding to particle s
tions of the Dirac equation.

Since we are mainly interested in a relativistic descript
of thepp channel and because it can be argued that the m
effects of the Fock terms of meson exchange potentials
already taken into account at the Hartree level in a phen
enological way, in the following, we neglect the exchan
term in the mass operatorS and obtain in this way the rela
tivistic Hartree-Bogoliubov equations.

Diagonalizing the Dirac operatorh and neglecting the off-
diagonal matrix elements of the pairing field in this basis,
full HB equations can be decomposed into (232) matrices
of BCS type as in the nonrelativistic case, i.e.,

S e~k!2l D~k!

D~k! 2e~k!1l
D S u~k!

v~k! D5E~k!S u~k!

v~k! D , ~7!

wheree(k) are the eigenvalues of the Dirac operatorh, D(k)
are the diagonal matrix elements of the pairing field in t
Dirac basis, and

E~k!5A@e~k!2l#21D~k!2 ~8!

are the quasiparticle energies in the BCS approximation.
In the case of nuclear matter we consider a particle w

momentumk moving in classical fieldsSandV of scalar and
vector mesons. We find the eigenvalue of the Dirac equa
e(k) in Eq. ~1! is given by

e~k!5V1Ak21M* 2, ~9!

in which the effective massM* and the vector fieldV read
M* 5M1S5M1gss and V5gvv, respectively. The
fields are determined by the meson equations of the non
ear RMF model@22#

s52
4gs

ms
2 E d3k

~2p!3

M*

Ak21M* 2
v2~k!1g2s21g3s3,

~10!

v5
4gv

mv
2 E d3k

~2p!3 v2~k!, ~11!

wherev2(k) are BCS occupation numbers andl is the Fermi
energy related to the Fermi momentumkF by
4-2
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RELATIVISTIC THEORY OF PAIRING IN INFINITE . . . PHYSICAL REVIEW C 65 014304
l5V1AkF
21M* 2, ~12!

and fixed by the density of the systemr5(mv /gv)2V. In
the following calculations the coupling constantsgs , gv ,
g2 , andg3 , and the meson massesms ,mv are taken from
the parameter set NL1 of the nonlinear RMF model@23#.
However, the results for the pairing gap at the Fermi surf
do not depend very much on the parameters used in thph
channel as long as one uses a parameter set that provi
successful description of the ground state properties of fi
nuclei.

The pairing fieldD(k) obeys the usual gap equation

D~p!52
1

4p2 E
0

`

vpp~p,k!2
D~k!

A@e~k!2l#21D2~k!
k2dk,

~13!

which is formally identical to the one in the nonrelativist
case. Herevpp(p,k)

vpp~p,k!5E vpp~p,k!d cosu ~14!

is the angle averaged relativisticpp interaction,u being the
angle between the vectorsp andk ~for details see Ref.@15#!.

In this investigation we use the three relativistic versio
A, B, and C of the Bonn potential discussed in Ref.@20#.
They contain the exchange of several mesons. The detail
given in the Appendix.

In Fig. 1 we display the resulting gap parameterDF
B at the

Fermi surfaceDF5D(k5kF) as a function of the density
represented by the Fermi momentumkF for the relativistic
Bonn-B potential~solid line! and compare it with the sam
quantity DF

G obtained in a nonrelativistic calculation@19#
based on the Gogny forceD1 ~dashed line!. Apart from the
difference at larger densities, the solutions are in excel
agreement. In both cases we find maximal pairing corre

FIG. 1. Gap parameter at the Fermi surfaceDF as a function of
the density represented by the Fermi momentumkF for the relativ-
istic Bonn potential~versionB! and for the Gogny forceD1.
01430
e

s a
te

s

are

nt
-

tions of roughly 2.8 MeV at the Fermi momentumkF
'0.8 fm21, i.e., at roughly one-fifth of nuclear matter de
sity. As shown in Table I we find very similar results for th
other relativistic forces BonnA and BonnC.

Since the pairing correlations are largest for small den
ties, i.e., at the surface of the nucleus, this result agrees
the usual observation that pairing in nuclei is a surface p
nomenon. Moreover, the agreement between the results
tained with bare relativistic forces and those obtained w
the Gogny force for the pairing properties of the symmet
nuclear matter is a particularly interesting outcome as in
latter case it has been shown@19# that using this density
dependence of the gap parameter in semiclassical calc
tions the average pairing properties of finite nuclei can
reproduced rather well. Thus we can hope that this will
main true also for calculations in finite nuclei with bare re
tivistic interactions.

At saturation density (kF
S51.35 fm21), it is rather diffi-

cult to decide whether nuclear matter is superfluid. In a
case it seems to depend crucially on the interaction. For
Gogny force a small pairing gap of roughly 0.5 MeV is le
whereas for the Bonn-B potential there seems to be no pa
ing.

To understand the difference betweenDF
B and DF

G at
higher densities, we analyze the behavior ofD(k),
vpp(kF ,k), and of the integrand of Eq.~13!

i ~k!52
k2

4p2 vpp~kF ,k!
D~k!

A@e~k!2l#21D2~k!
~15!

for several values ofkF for both the interactions. Figures
and 3 showvpp(kF ,k), D(k), and i (k) at kF50.3 and 0.8
fm21, respectively, for which the agreement between
relativistic and the nonrelativistic solutions is good. Figure
shows the same quantities forkF51.2 fm21 for which DF

B is
much smaller thanDF

G . The graphs on the left refer to th
relativistic calculations based on the Bonn-B potential and
those on the right to the nonrelativistic calculations based
the Gogny forceD1. We first consider the interaction
vpp(kF ,k), plotted with dotted lines. The behavior of th
Bonn potential differs considerably from that of the Gog
force. For small values ofkF ~Figs. 2 and 3! the relativistic
force is strongly attractive at smallk and it becomes repul
sive for largek. For larger values ofkF the strength of the
attractive part decreases and forkF51.2 fm21 ~see Fig. 4!
the potential is only repulsive. On the contrary, the nonre

TABLE I. Maximal pairing correlations at the Fermi surface fo
the relativistic versionsA, B, andC of the Bonn potential and for
the Gogny forceD1.

Potential DF ~MeV! kF ~fm21!

Bonn A 2.80 0.76
Bonn B 2.84 0.76
Bonn C 2.83 0.76
GognyD1 2.78 0.80
4-3
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M. SERRA, A. RUMMEL, AND P. RING PHYSICAL REVIEW C65 014304
tivistic force is attractive for nearly all momenta. The sm
repulsive part does not play an essential role here.

We next consider the pairing fieldsD(k) plotted with
solid lines in Figs. 2–4. ForkF50.3 and 0.8 fm21 DB(k) and
DG(k) have comparable strengths, while forkF51.2 fm21

DG(k) is far greater thanD(k)B, as it is expected from the
previous observations on the pairing gap at the Fermi
face.

Finally, we show the integrandi (k) given in Eq.~15! by
dot-dashed lines and we examine the different contributi
of vpp(kF ,k) and D(k) to this integrand. The shaded are
represent the integralDF . In the nonrelativistic case, fo
each value ofkF , DF

G originates from the contributions o
large intervals where the integrand is positive and of a n
ligibly small interval where the integrand is negative. In t
relativistic case, the contributions ofD(k) andvpp(kF ,k) to
DF

B depend onkF . For kF50.3 and 0.8 fm21, we find that
three intervals contribute@24#. For kF51.2 fm21, because
vpp is always positive, only two intervals of opposite sig
contribute toDF

B canceling each other to some extent an
therefore, reducing the pairing gap at the Fermi surface
conclusion, the fact thatDF

B drops to zero fasterDF
G is due to

the strong dependence of the Bonn potential on the Fe
momentum at large momenta, i.e., on the short distance
havior of the potential.

FIG. 3. The same results as in Fig. 2 for a Fermi moment
kF50.8 fm21.

FIG. 2. Various contributions to the integral in the gap equat
~13! for the density corresponding to the Fermi momentumkF

50.3 fm21. Comparison of the relativistic Bonn-B potential and
the Gogny force. The details are discussed in the text.
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We now concentrate on the relativisticpp interaction. The
Bonn potential@20# is defined as the sum of one-Boso
exchange contributions of six mesons, namely,s, v, p, r, d,
andh. In Fig. 5 we show the matrix elementsvpp(kF ,k) of
the Bonn-B potential together with the six contributions o
the different mesons forkF50.8 fm21. We observe that the
full interaction results from the cancellation of two ma
terms: the negative contribution ofs meson and the positive
contribution of thev. Although the other mesons have muc
smaller contributions, they cannot be neglected becaus
the large cancellation betweens and v. The influence ofd
andh is however very small.

In Fig. 6 we study how the exchange of the differe
mesons contribute to the gap at the Fermi surfaceDF . As we
have just seen for the potential, this quantity results mai
from the exchange ofs andv whose corresponding pairin
gaps at the Fermi surfaceDF

s,v are of the order of19.5 MeV
and 26.8 MeV for maximal pairing correlations, respe
tively. The other mesons play a smaller role; among them
haveDF

p'20.85 MeV andDF
r '10.42 MeV for the same

FIG. 4. The same results as in Fig. 2 for a Fermi moment
kF51.2 fm21.

FIG. 5. Matrix elements of the relativistic Bonn-B potential in
momentum spacevpp(kF ,k) at the Fermi momentum of maxima
pairing correlationskF50.8 fm21. The thick solid line corresponds
to the full potential and the thin lines correspond to the vario
one-meson exchanges.

n

4-4



a

w
e

e
,
e

in
f

the
r

for
the

ce

er
-
t is

or

po
n

on

RELATIVISTIC THEORY OF PAIRING IN INFINITE . . . PHYSICAL REVIEW C 65 014304
value of kF . The fact that ther-meson exchange gives
positive contribution to the total gap at the Fermi surfaceDF

r

is due to the tensorVT and vector-tensorVVT terms in the
one-rho exchange potential~see Table II!.

III. COOPER PAIR WAVE FUNCTION
AND COHERENCE LENGTH

For a better understanding of the pairing properties
study the Cooper pair wave function. In momentum spac
is defined by

x~k!5
D~k!

2A@e~k!2l#21D2~k!
. ~16!

On the left and on the right side of Fig. 7 we showx(k)
obtained with the Bonn potential and with the Gogny forc
respectively, at the three values ofkF previously considered
i.e. kF50.3, 0.8, and 1.2 fm21. We observe that every wav

FIG. 6. Contributions of the different one-meson exchange
tentials to the gap parameter at the Fermi surface as a functio
the density represented by the Fermi momentumkF . The thick
solid line corresponds to the full gap and the thin lines corresp
to the various mesons gaps.
01430
e
it

,

function is peaked atk5kF . This is due to the fact that the
denominator in Eq.~16! has a minimum atk5kF , in fact it
reduces toD(kF).

The asymmetric behavior of the pair wave functions
the momenta intervalsk,kF andk.kF is a consequence o
the variation of the gap functionD(k) with k. For both the
interactions, the widths of the peaks, which represent
inverse of the coherence length, have the same size fokF
50.3, and 0.8 fm21, while they are smaller forkF
51.2 fm21. In addition, the fact that forkF51.2 fm21 the
width of the peak is narrower for the Bonn potential than
the Gogny force is consistent with the observation that in
former case the gap parameter at the Fermi surfaceDF drops
faster than in the latter. Apart from this, in momentum spa
there are no big differences between the wave functionsx(k)
calculated with the relativistic and nonrelativistic forces.

Of particular interest is the wave function of the Coop
pair in coordinate spacex(r ), where r represents the dis
tance between the two nucleons forming a Cooper pair. I
obtained fromx(k) by Fourier transformation

x~r !5E d3k

~2p!3 e2 ik•rx~k!. ~17!

In Fig. 8 we plot this quantity for the Bonn potential and f
the Gogny force at the three values ofkF used before. For

-
of

d

FIG. 7. Cooper pair wave functions in momentum spacex(k)
calculated at different values of the Fermi momentumkF as func-
tions of the momentumk for the relativistic Bonn-B potential and
for the Gogny force.
TABLE II. FunctionsAi(k,p), Bi(k,p), andCi(k,p) of Eq. ~A3!.

i G x i Ai(k,p) Bi(k,p) Ci(k,p)

s gs 2gs
2 a(k,p)2ms

2 a(k,p)2Ls
2

v gvgm 1gv
2 b(k,p) b(k,p)

ppv ( f p /mp)g5gm(km2pm) 1( f p /mp)2 p22k22mp
2 a(k,p) p22k22Lp

2 a(k,p)
rV grgm 1gr

2 b(k,p) b(k,p)
rT i ( f r/2M )@grgm(kn2pn)snm#tW 2( f r/2M )2 @c(k,p)1mr

2#mr
2 @c(k,p)1Lr

2#Lr
2 1

rVT 12( f rgr /M )M* mr
2 Lr

2

d gdtW 2gd
2 a(k,p)2md

2 a(k,p)2Ld
2

hpv ( f h /mh)g5gm(km2pm)tW 1( f h /mh)2 p22k22mh
2a(k,p) p22k22Lh

2a(k,p)
4-5
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both interactionsx(r ) are oscillating functions ofr, and the
oscillation rate increases with the density. However, we a
observe important differences between the relativistic
the nonrelativistic calculations. In the former case,
all densitiesx(r 50) is close to zero, then it increases t
a maximum atr max'1.0 fm and thereafter it starts to osci
late at different rates for eachkF . We observe that the
highest maximum of the pair wave functionsx(r max)
'0.0062 fm23 corresponds to the Fermi momentum f
which pairing correlations are maximal, i.e.,kF50.8 fm21.
For kF50.3 and 1.2 fm21, we havex(r max)'0.0015 fm23.

In the case of the Gogny force, the situation is quite d
ferent. First of all, the pair wave functionsx(r ) do not
present any pronounced peak at small distances. In par
lar, they are almost constant in the intervalr ,1.0 fm for
eachkF , then they decrease and they oscillate with an os
lation rate increasing withkF as we have noticed already fo
the relativistic interaction. Comparing the strengths ofxB(r )
andxG(r ) at the different densities, we observe that they
of the same order forkF50.3 and 0.8 fm21, for which, as it
can be noticed from Fig. 1, also the agreement between
corresponding pairing gap at the Fermi surface is very go
namely, DF

B(kF50.3 fm21)'DF
G(kF50.3 fm21)'0.9 MeV

and DF
B(kF50.8 fm21)'DF

G(kF50.8 fm21)'2.8 MeV. On
the contrary, forkF51.2 fm21 the strength ofxG(r ) is far
greater than the strength ofxB(r ). This agrees with the fac
that at this Fermi momentum the pairing gap obtained w
the Gogny force is much greater than the pairing gap
tained with the Bonn potential, namely, we findDF

G(kF

51.2 fm21)'1.9 MeV and DF
B(kF51.2 fm21)'0.9 MeV,

respectively.
Let us now investigate which part of the interaction

responsible for pairing correlations? We, therefore, cons
the Bonn potential in the coordinate space. In this case
Fourier transformation from momentum to coordinate sp
cannot be carried out analytically because of the presenc
nonlocal terms@20#. We, therefore, have used a nonrelativ
tic reduction of the potential in the coordinate space, wh
is a good approximation of the relativistic one at small d
tances. In the upper part of Fig. 9, we show the even-sin

FIG. 8. Cooper pair wave functions in coordinate spacex(r )
calculated at different values of the Fermi momentumkF as func-
tions of the coordinater for the relativistic Bonn-B potential and for
the Gogny force.
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(1S0) central part of the bare interaction in coordinate spa
We observe that the full potential, represented in the fig
by a thick solid line, is repulsive at short distances, ha
zero atr'0.7 fm and then a minimum of the order of250
MeV at r min'0.9 fm and, finally, goes to zero for larger dis
tances. The thinner lines represent the contributions of
various mesons. In particular, we notice the monotonic
creasing and decreasing potentials corresponding to the
tractives mesons and to the repulsivev meson, the contri-
bution of the one-pion exchange that in this channel of thepp
interaction is strongly repulsive forr<1.0 fm and weakly
attractive forr>1.0 fm, the rho-exchange potential, which
also strongly repulsive at small distances, has a zeror
;0.6 fm and gives an attractive contribution of the order
240 MeV at 0.8 fm, much stronger than the contribution
p. This is due to the fact that ther is heavier than thep
meson and due to the presence of the tensor and ve
tensor terms in the potential. Moreover, the influence of thd
functions in the spin-spin~central! force of the one-pion and
of the one-rho exchanges are reduced by the form fac
applied to the nucleon-meson-nucleon vertices of the po
tial. In Fig. 9 we have omitted the contributions of thed and
h mesons as they are negligible.

In the lower part of Fig. 9 we show the Cooper pair wa
function in coordinate space forkF50.8 fm21 and observe a
correspondence between behavior of the potential and
wave function: at small distances, where the interaction
strongly repulsive, the size ofx(r ) is small. In particular, for
interparticle distances less than 0.1 fm it seems very unlik
that two nucleons condense into a Cooper pair. At lar
distances the strength ofx(r ) clearly increases together wit
the decreasing in the strength of the potential, in particu
x(r ) has a maximum of 0.006 atr min'0.8 fm at which the

FIG. 9. Upper part: even-singlet central part of the Bonn pot
tial in the coordinate space and its one-meson exchange cont
tions. The former is plotted with a thick solid line and the latter w
thinner lines. Lower part: Cooper pair wave function atkF

50.8 (fm21). It is peaked where the interaction is mostly attractiv
4-6
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interaction is mostly attractive. The same observations
be repeated also for the other values of the Fermi mom
tum, as we have seen that every Cooper pair wave func
in coordinate space shows a peak at the same valuer 5r min
independent of the density.

From these considerations, we conclude that pairing
relations in nuclei are mainly due to the attractive part of
interaction and that the effect of the repulsive part is to s
the peak of the Cooper pair wave function outwards.

In Fig. 10 we show corresponding results in coordin
space for the Gogny force. In this casex(r ) is not sup-
pressed by the repulsive part of the force, indeed its stren
is maximal in the corresponding interval. In comparison w
the Bonn potential, the Gogny force is far less repulsive
small distances and less attractive at intermediate distan

An important quantity for a better understanding of pa
ing properties in nuclei is the coherence lengthj. From a
microscopic point of view, it represents the squared m
distance of two paired particles. In terms of the Cooper p
wave functions it is defined as

j25

E d3r ux~r !u2r 2

E d3r ux~r !u2
5

E
0

`

dkk2u]x~k!/]ku2

E
0

`

dkk2ux~k!u2
, ~18!

and for our calculations we have chosen the coordinate s
representation since it is numerically more convenient.
Fig. 11 we display the coherence lengthj for the Bonn po-
tential ~solid line! and for the Gogny force~dashed line! as a
function ofkF . In both cases, we observe that in the inter
of larger pairing correlations, i.e., 0.4<kF (fm21)<0.9 ~see
Fig. 1!, j is an almost constant function of the Fermi m
mentum and has its lower value of around 5.0–6.0 fm. W

FIG. 10. Upper part: channel1S0 for the Gogny force in coor-
dinate space. Lower part: Cooper pair wave function atkF

50.8 (fm21). It is maximal where the interaction is mostly repu
sive.
01430
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therefore, find that the distance between two nucleons fo
ing a Cooper pair is as large as the dimension of a nucle
For low densities (kF<0.25 fm21) and for high densities
(kF>1.0 fm21) the strength of the coherence length i
creases rapidly, meaning that the two nucleons become m
and more separated. Finally the difference of the cohere
length obtained with the Bonn potential and the cohere
length calculated with the Gogny force at larger densit
agrees with the observation that the pairing gap drops fa
for the relativistic interaction than for the nonrelativist
force.

IV. CONCLUSIONS

In this work we applied a relativistic field theory to stud
pairing properties of symmetric nuclear matter in the1S0
channel at zero temperature. For this purpose, we have
the very successful nonlinear parametrization NL1 of
RMF theory in theph channel, while thepp channel has been
described for the first time by using a relativistic version o
realistic nucleon-nucleon interaction, namely, the Bonn
tential.

In agreement with earlier nonrelativistic investigatio
based on the Paris potential, we have found that a relativ
bare nucleon-nucleon potential reproduces essentially
properties of nuclear matter obtained by using the phen
enological Gogny force, which is adjusted to reproduce
perimental data of finite nuclei. We can hence conclude t
renormalization effects of the pairing force do not play
major role in the1S0 channel. However, this observation
in contrast to results of calculations of polarization effects
pure neutron matter and this point deserves, therefore, fur
investigations.

In detail, we have found differences between the pair
properties calculated with the Bonn potential and the o
calculated with the Gogny force in the region of saturati
density. By analyzing the origin of these discrepancies
have found that they originate from the strong repulsion

FIG. 11. Coherence length as a function of the Fermi mom
tum kF for the relativistic Bonn-B potential and for the Gogny
force.
4-7
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the bare nucleon-nucleon interaction at short distances.
to be expected that renormalization effects play a role
reduce these discrepancies.

Finally, we have calculated the contributions of the va
ous meson exchange potentials to the pairing gap. As
pected, there is a large cancellation between the stro
repulsivev exchange and the strongly attractives exchange,
which dominates the essential region of small momenta.
contributions of other mesons, such as the pion and ther, are
much smaller, but not negligible because of this cancellat
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APPENDIX

We give here the explicit expressions of the matrix e
ments entering the gap equation~13! of the relativistic Bonn
potential, which, as already mentioned in the text, is defin
as the sum of one-boson exchange of the mesonss, v, p, r,
h, and d. In momentum space, as shown in great detail
Ref. @15#, the antisymmetrized matrix elements in thepp
channel for one-meson exchange can be written as

vpp~k,p!

57
M* 2

2E* ~k!E* ~p!

Tr~L1~k!GL1~p!g0T †G†Tg0

~k2p!21mm
2

3 f 2~@k2p#2!, ~A1!

whereL1(p) is the projector onto positive energy solutio
T is the representation of the time reversal operator in D
space, andf (@k2p#2) is the form factor applied to eac
nucleon-meson vertex, i.e.,

f ~@k2p#2!5F Lm
2 2mm

2

~k2p!21Lm
2 G , ~A2!
01430
is
o

-
x-
ly

e

n.

e

-

d

n

c

Lm being the cutoff mass. In Table II we list the verte
functions for the single one-meson exchange potential of
Bonn potential.

As we perform only pairing correlations in theT
51-channel, the dependence of the matrix elements on
isospin is trivial and after averaging over the angle@see Eq.
~14!# the total potential can be written as

vpp~k,p!5
1

8E~k!E~p!kp(
i

x i„Ai~k,p!U i~k,p!

1Bi~k,p!F i~k,p!1Ci~k,p!Y i~k,p!…,

~A3!

where i 5s,v,p,r, the functionsU i(k,p), F i(k,p), and
Y i(k,p) are defined by

U i~k,p!5 ln
~k1p!21mi

2

~k2p!21mi
2

~k2p!21L i
2

~k1p!21L i
2 ~A4!

F i~k,p!5~L i
22mi

2!F 1

~k1p!21L i
22

1

~k2p!21L i
2G

~A5!

Y i~k,p!5~L i
22mi

2!2 ln
~k1p!21L i

2

~k2p!21L i
2 , ~A6!

the coefficientsAi(k,p), Bi(k,p), andCi(k,p) are given in
Table II, and the functionsa(k,p), b(k,p), andc(k,p) are
defined as

a~k,p!54M* 22~Ek2Ep!2 ~A7!

b~k,p!54~2EkEp2M* 2! ~A8!

c~k,p!54EkEp1~Ek1Ep!2. ~A9!
to

cl.
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