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Search for E(5) symmetry in nuclei: The Ru isotopes
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We carry out an interacting boson model study of the Ru isotopes usin@)aS(6) transitional Hamil-
tonian with fixed parameters, where the variation is due only to the change in boson minfiransitional
behavior in *%Ru is compared with recent predictions of atbEcritical symmetry, including a modified
version with an alternativg@ dependence for th&(®? operator.
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I. INTRODUCTION regions using the same procedure and compare them with the
X(5) calculationd 11].

The study of phase-transitional behavior in physical sys- The paper is organized as follows. In Sec. Il the critical
tems is a difficult endeavor, since under these condition®oint E5) approach is revised. Section Il is devoted to
structural changes occur very rapidly. In atomic nuclei thePresent the IBM description of Ru isotopes and discuss cor-
situation is complicated by the finite particle nature of thesg€sponding potential energy surfaces in relation to tt® E
many-body systems. Shape-phase transitions can be d&mmetry. Finally, in Sec. IV the conclusions of this work
scribed in nuclei in the framework of both the collective are presented.
model[1] and the interacting boson mod&BM) [2]. In the
latter case, the usual procedure is to consider a combination
of symmetries, such as(B) and S@6), or U(5) and SU3),
each of which corresponds to stable structures such as We start our discussion by giving a brief description of
spherical,y unstable, or deformed, for the(®), SO6), and  the E5) analysis.

SU(3) limits of the model, respectively. For certain param- The new approach of lachello starts from the Bohr-
eter values the nucleus undergoes a rapid transition from ongottelson Hamiltonian,

kind of structure to the othdB]. The dynamical symmetries
themselves represent idealized cases where analytical solu-

Il. THE E (5) APPROACH

tions can be found and all observables computed in analytic _ k1 g 29 L 1 I singy

form [2], but one of the most striking successes of this model - 2B|p* &ﬁﬁ B B°sin3y dy yﬁy

was the discovery of nuclei that closely follow these predic-

tions [4]. Although a vast majority of nuclei exhibit a mix- 1 L2

ture of symmetries and require numerical diagonalizations to T 252 smz(T +V(B,7), (1)
C Y= 3TK)

compute their properties, the symmetries nevertheless consti-
tute important benchmarks from which nuclear behavior can
be gauged. In this context, criticédr transitional behavior ~ where thelL,, k=1,2,3 are the body-fixed components of
cannot be described within the IBM in analytic, closed form.the angular momentuifii,5]. For situations where the poten-

In two recent papers, however, lachello has proposed #al does not depend of, one can factorize the solutions of
simple, analytic treatment of nuclei undergoing transitionsEq. (1) as

from spherical toy-unstable shapefs]| [E(5)] or from a

spherical to a deformed configuratid®] [X(5)]. These N M ,

analyses have the attractive feature of being essentially VB 0)=TcAB)P (7.6, @
parameter-free. Surprisingly enough, examples where both

situations seem to be closely approximated were subsavhere the® functions were determined in Refg12,13.
quently found by Casten and Zamfif,8], thus raising the These functions are eigenstates of any quadrupole Hamil-
possibility of studying whether &) and X(5) characteristics tonian that displays O(%)O(3) symmetry, i.e., for
are widespread in transitional nuclei. If that would be theV(8,y)=V(B). Thef(B) functions depend on the selection
case they could represent a helpful theoretical tool in nucleaof the 8 potential. The best known case is that of a five-
structure physics, in a sense complementing the role playedimensional oscillato(B8) ~ B2 that leads to the Laguerre
by the IBM dynamical symmetries. In this paper we analyzepolynomials[1,12,13.

under this new point of view a calculation of the Ru isotopes, Since in a phase-transitional situation one expects to have
which was carried out with an IBM Hamiltonian with fixed a particularly flat potential i8 (in this case, for a vibrator to
parameterg 9], which we combine with a coherent-state y-unstable rotor transition there is nodependencdein Ref.
analysis[10], in order to test the &) predictions. In subse- [5] a five-dimensional infinite well is suggested as a good
guent work we plan to analyze the spherical to deformedapproximation, i.e.,
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V(B)=0, B<p,, term[ ax ]{?) is associated with the tensor (2j2)2]. This
means that they fulfill strict selection rules in the
V(B)=x, B>B,, 3  ¢™M(y,6,) space,Ar==*1 for the former andA7=0,

) ) ) ) ) +2 for the latter, with the usual restrictions in angular mo-
in which case the wave functions  take the simple form  entum coupling2,12]. Thus the first term leads to “al-
X lowed” transitions in first order and the second to nonzero
f, (B)=C, .8 %2 ﬁlg (4) quadrupole moments and to small values for “forbidden”
&7 &7 7+3/2 :8 ’ A
o ones, in the B5) scheme of Ref[5]. The actual values of
where 7=0,1,2 . . . labels the SC) group, £ is an index these Qbservables in(B depend on the simpl@ depen-
. dence in the operato(8) and(9).
that enumerates the successive zeroes of the Bessel func- .
tions, x; , is the éth zero for a givenr, C;, is a normaliza- The results presented JB] correspond to the energiéd)
BT ST 9 e L and transition operator€8) and (9) with y=0, i.e., for a
tion, andg,, is the range of the square potential in E§). (E2) (E2)_ D
T'=%) of the formT'=“'=ta,, , and the analysis is expected
The full stateq2) can then be denoted by . . T . .
to apply in nuclei undergoing a transition between spherical
|EruL M), (5) and y-unstable shapes. As explained above, the use of the
second order form foif(F?) of Egs. (8) and (9) does not
where u is a label that distinguishes between repedt&sd  modify the A7=*1 transitions in Ref[5] but gives rise to
for a given value ofr. The definition of this index together small values for thel 7=0,=2 matrix elements. These re-
with the L content for eachr can be found in Refd2,12].  sults arise in the framework of the geometric model. Since
Since the stateg5) can be used to generate a five- we would compare the (B) scheme with IBM calculations,
dimensional basis for the Euclidean group in five dimen-however, we shall define an alternativé*?) operator that
sions, they have been labeled b{bE Using these states, all has a differens dependence, consistent with the usual IBM

energies can be calculated exactly up to a scale guadrupole operatof14] as we explain below. In Refs.
, ) [7,14] it has been shown thdf*Ba constitutes a good can-
zﬁ_ (Xg,7) ©6) didate for E5) behavior. In14] the IBM-consistent form for
47 2B g2 the T(E2) operator was shown to lead to a closer agreement

with experiment.
In addition, assuming a first order quadrupole operator in the In what follows we consider a global IBM calculation for
collective variables, the Ru isotopes and compare thé&Epredictions(using the
quadratic forms of both the geometric and IBIVF?) opera-

T(ED_ ' tors) with the transitional nucleu$®Ru.
u = a2,u,=

1
D@)cosy+ E(Dﬁf)ﬁ D) ,)siny
(7) I1l. THE Ru ISOTOPES IN THE IBM

it is likewise possible to calculate aB(E2) values in a The Ru isotopes display a transitional behavior from
parameter independent wayp to the scale factor). One  SPhericalSU(5)] to y-unstableg SQ(6)] shaped9]. As men-
should note, however, that the latter depend on the particuldioned above, this is precisely the situation in whictb)Es
form of Eq. (7). In the context of the geometric model, the €Xpected to be relevant. A systematic study of the Ru iso-
next order in the quadrupole coordinates is giver{ 18} topes was carried out by a simultaneous least-square fit to the
energies of these nuclei in RgB]. The converged Hamil-
(E2) X @ 23 =2) tonian has the form
T,u =t azﬂ"l‘z_\/?[azxaz]lu :t% D/'Lm Qm y R .
H=€'ng+aNng+ BC,[SQ6)]+ yC,[SQ5)]+ 6L2,

8 (10
where . .
with parameters (all in keV) €' =887, a=-53, B
1 =-23.3, y=30.8, ands=5.5, whileC, stands for the qua-

Q(2)=,8 COSy— ﬂ)(BZCOS(Z)/), dratic Casimir operator of the corresponding group Anid

the boson number. Here we prefer to use the equivalent
1 Hamiltonian written in terms of a multipole expansion,
QF=Q%= 5| Asiny+ \/;1xﬂzsir\(27)}, ) ‘
H=eng+ koP P+ kLL+ k3 T3T3— 2 N(N+4).
QP=Q%=o0. ) (11)

The 2,/7 denominator in Eq(8) is introduced here for later In this case the different operators are defined by
convenience, in order to compare these expressions with

those of Ref.[14]. The «,, variable behaves as the =S dd 12
0O(5)D0(3) tensor {,L)=(1,2), while the second order d 2,:’ poe (12
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we show the results for two-neutron separation energies for
. this Hamiltonian. We see in Fig. 1 that Hamiltoniék®) and
_ (11) leads to a good global description of the complete Ru
isotope chain. We would point out three aspects of this fig-
ure. First, the systematics of the measuré’dis) opposite to
the expected one for a member of the three phonon multiplet.
This seems to indicate that, as already proposed in[R8},
the 0" member of the three phonon multiplet is still missing
experimentally. Second, the states &re systematically cal-
7 culated too high in energy. This was proposed, first in Ref.
] [16] and then analyzed in detail in R¢L5], as an indication
- of the presence of a mixed symmetry state. Finally, note the
_ changing energies of the levels and particularly that of the
P R B 0, state, suggesting a transitional behavior n&4Ru, al-
9% 100 104 108 though this is not reflected in the separation energies. This is
A known to be the case for a second order phase transition, as
FIG. 1. Low-lying energy level systematics for the Ru isotopesIt IS the_ transition from 5) to SA6). . .
(A=96-110, corresponding to boson numbér4—11). Experi- In this paper we analyze the propert_|es of the Ru isotopes
mental and calculated results with Hamiltoniéi) with param-  IN order to investigate the phase transition related to a change
eters given in the text are presented. of shape. The global fit we are considering guarantees that
the parameters are well determined. A geometrical interpre-
1 tation of the abstract Hamiltoniafll) can be obtained by
PT=—(d'd"-s's"), (13)  introducing coherent statg$7—19 that allow to associate to
2 it geometrical shapes in terms of the deformation variables
(B,7). In this case the potential shapes will only depend on

L=y10d"™xd)®, (14 the value ofN. The basic idea of this formalism is to con-
sider that the pure quadrupole states are described by a boson
Ta=(d"xd)®. (15  condensate of the form
With the appropriate translation of the parameters, the 1
equivalent Hamiltonian to Eq10) is obtained with the val- |g;N,B,7)= —(r;)N|o>, (16)
ues (all in keV) e=887-53N, xo=93.2, x;=11.66, and JN!

k3=61.6. The parameters are kept fixed for all the isotopes

studied in this work, the only variation in going from one where the coherent boson is given by
isotope to the other is the changedrinduced by the varia-
tion of the boson numbéy. The boson number is obtained in 1
this work by considering closed shells at 50 both for neu- F;= 5 sT+Bcos;/d$+ —fBsin y(d§+d12) ,
trons and protons. In Fig. 1 we show a comparison of the Vit V2

experimental and theoretical systematics of some low-lying (17

levels in the Ru isotopes frolA=96 to 110, which corre- ) )
spond to boson number ranging frd=4 to 11. In Fig. 2  Which depends on thg and y shape variables. The energy
surface is then defined as

En(B,7)=(g;N,B,v|H|g;N, B3, 7). (18)

where H is given in our case by Ed11), which leads to
potential energy surfaces that ayeindependent. In Fig. 3
these surfaces are plotted as a function of the deformation
parametep for the different Ru isotopes. It is seen that for
around 8, which corresponds #8Ru, a rather flat behavior

of the energy surface as a function gfis indeed obtained.
This kind of potential is thus similar to the one correspond-
ing to E5) [5].

For a y-independent Hamiltonian, the critical poiht,
can be defined as the value Wffor which the second de-
rivative of the potential energy surface becomes nulBat

FIG. 2. Two-neutron separation energies in Ru isotopes. The=0. At values smaller thaN, there is a spherical minimum,
IBM results correspond to the Hamiltonighl) with the parameters  while for larger values the minimum is deformed. For the
given in the text. case of the Hamiltoniafill) we find

S,, (MeV)
>
T

| | | | | | 1
98 100 102 104 106 108 110
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-2 -1 0 1 2 FIG. 4. Experimental datfenergies and €2) values ine? b?
p units] for 1°Ru[15] compared with the IBM calculation presented

. ) in this paper and with the results of th€3Esymmetry[5] with two
FIG. 3. Energy surfacef8) for the Hamiltonian(11), with the elections for theE2 transition operator. In the panel labele(6E

parameters given.in the textZ as a function of the deformation Pag o geometrical operators, Eq8) and (9) have been used. In the
rameterg for the different Ru isotopes from boson number 4 to anel Iabeledﬁ the IBM operators, Eqs20) and (22), were
N=11. In the inset the same is plotted in an expanded scale for thB . L ' o '

used. In all cases, full lines indicate transitions allowed ¥er0

isotopes close to the critical poiht=7, 8, and 9. and broken lines transitions only allowed 0. The numbers
given in this last case correspondje-1. The scales for the ener-
gies andB(E2)’s are fixed by the experimental values of the exci-

56+ 5K0+ 3OK1+ 7K3
- tation energy of the 2 and theB(E2;2; —0;), respectively.

¢ 5(K0+ a) ’

(19

which for the parameters used in this work gives the value sd \/T 5
N.=7.77, close to the valudi=8 mentioned above. In the Qo (B.7y)= 1+ 32 B cosy—\/ xB7cos2y)
inset of Fig. 3 the potential energy surfaces are plotted for

N=7,8, and 9 in an amplified scale, in order to show the ON 1
transition from spherical to deformed shapes as a function of ~sd _ - ; \/: 2ci }

N. An appropriate constant factor was added to each curve in =2 (B.7) 1+8° 2 Asinyt 14X'8 sin(27) |

order to place them at zero energy @+ 0. At this scale it (22

is confirmed thalN= 8 is almost flat inB, as required by the

E(5) prescription. Thus%Ru is close to the critical point to be compared with expressiof@. We note that the only

and should be a good candidate for testing tii®) Bredic-  difference is the common factoNZ(1+ 32). While theN

tions. We stress that we have not adjusted or fine tuned théependence has no consequence as can be incorporated into
Hamiltonian parameters in any way, but have determine@ renormalized value of the effective charge, the
them from the global fit to the isotope series. B-dependent denominator affects the magnitudes of the ma-

In addition to the energies, E2 transitions can betrix elements. Even fog=0 in Eq.(22) the A 7= =1 matrix
easily studied in the IBM. The E2 transition operator can beelements are significantly affected. As shown in R&4], by
written as using the IBM form (22) in conjunction with the five-

dimensional square-well potential wave functidbg, leads
TED=qQt9 (200  toabetter agreement with the data'itiBa. We shall see that
. # the same is true for the transitional nucle\%Ru. We show

; (sd) ; _ below the results of our calculations using the Hamiltonian

\r/\l:hereq is a scale factor an@'*“ is the general IBM quad (1) and quadrupole operaté21). when compared with the
pole operator, e N ;

E(5) and modified-E5) predictions using the quadrupole op-
erators(22) with y#0. We henceforth denote the latter by
E(5).

In Fig. 4 the known experimental data for the low-lying
The operatorsl,,=(—1)"d_,, are introduced to behave as levels in 1%Ru are compared with the theoretical calculation
tensors with appropriate properties under spatial rotationsand the predictions based on the poter The calculated
As discussed above, in Rédb] the simplest form of the E2 B(E2) values in the second panel are obtained with the IBM
operator(8) and(9), corresponding toy=0 was used, while calculation presented in this section and E@) and (21).
in Ref.[14] a form consistent with Eq21) was proposed for Those in panels three and four are obtained for the potential
comparison with experimental data #i*Ba. By computing  (3) with two elections for thé€E2 transition operator, Eq8)
the expectation values of th@ﬁfd) operator in the coherent and(9) in the panel labeled &) and Egs.(20) and (22) in
state(16), one finds the result for the intrinsic quadrupole the panel labele®(5). In all cases, full lines indicate tran-
operatorq 14,20 sitions allowed fory=0 (A7==*=1) and broken lines transi-

QPP=(s"d+d"s)P)+ x(d"d){. (21)
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ST ST T T T reasonably confident about the predicted transition values in
I T 104Ru that are yet to be measured. These calculations closely
resemble the values &(5).
Two points should be commented combining Figs. 1, 4,
and 5:(i) The energy ratio #/2; in 1°Ru shows an impor-

E@" EQT )
1 Ll

) R Ty tant anharmonicity and deviates from thé&FEvalue, (i) it
%A o oMo seems that the state”Gmember of the three-phonon multip-
let in 1%“Ru (and probably in*%?Ru) is experimentally miss-
A o] T ing and the one measured is a mixed-symmetry gtatbas
=R 1 rES)  EGH ! a large mixed-symmetry compongnthis could be also the
o e 18 L1 FT 18 °F case for the observed*3in '®Ru although the measured
" 1 = 7F 1 Fosp B(E2;3; —2,) fits nicely with theE(5) value. Probably, as
E [ . 1 II ] stated in Ref[15], there are one full symmetry and one
1] {5 ST ol i1y mixed-symmetry 3 states in the same energy region
%o S U Y strongly mixed up. These points have to be investigated.
FIG. 5. Systematics of several calculated energy BE2) IV. CONCLUSIONS
ratios as a function oA for the Ru isotopes compared with the . . . .
results of the B5) symmetry(dashed lines For B(E2) values also In this paper we have carried out a simultaneous fit to the

the values of theE(5) symmetry withy=1 is shown(dotted- ~RU isotopes, using a global Hamiltonian with fixed param-
dashed ling The IBM calculation(full line) was done with Hamil- ~ €ters(except for the boson numbé¥). These isotopes are
tonian (11) and the parameters given in the texR,(E2) well described by a transitional IBM Hamiltonian with a
=B(E2;4; 27 )/B(E2;2;,—0;) and Ry(E2)=B(E2;0;, Mixture of U5) and SA6) symmetries. The potentials aris-
— 27 )IB(E2;2{;—07 ). The experimental data are taken from ing from a coherent-state analysis indicate tHédRu is close
Refs.[15,21]. to the critical point between spherical apdunstable struc-
tures. We have compared energy &(dE2) ratios for the Ru
tions only allowed ify#0. The numbers given in this last isotopes, and particularly®Ru, with the recently proposed
case correspond tg=1. In the IBM calculation(second E(5) model of Ref[5]. We find that the known experimental
pane) the boson effective charge is calculated to dpe information on'®Ru is well described by these critical sym-
=0.106 eb which is very close to the value calculated in metry, particularly if we use a modified form for thigE2)
Ref.[16]. In theE(5) case, with the IBM transition operators operator, consistent with the IBM quadrupole operator form
from Egs.(20) and (22), the calculated effective charge is (21) [E(5)]. Although the data are not sufficient to make a
q=0.136 eb for a valueg,,=1.0[which is the S@6) value  definite claim, the IBM predicted values and tB€5) results
in the largeN limit] of the potential rang€3). are in excellent agreement.

In Fig. 5 we present the behavior of some energy and Although these results are encouraging, we should point
B(E2) ratios for the series of Ru isotopes and compare thergut that other examples of(® critical behavior should be
with the critical symmetry. The available experimental datasought, while a better understanding of {Belependence of
for the corresponding observables are shown, together witthe quadrupole operator is required.
the E5) andE(5) values of Refd5,14]. The notation of the We are currently examining the(®) transitions using a
states is that of Ref5], L7 ,. We see that the region around similar approach. In summary, we believe that additional ex-
104Ru is indeed surprisingly close to tk@ values. Al- perimental and theoretical work is needed to assess the rel-
though the experimental information dffRu is not enough  evance of the £5) analytical description of critical behavior
to make a definite statement about the validity ¢6)Hor N nuclei.
E(5)] for this nucleus, we are able to remark the following:

(@ %Ru is closer to both predictions than any of the
other isotopes, particularly if we make the comparison using This work was supported in part by Conacyt under Project
the IBM form (22) for the T(F?) operator E(5)]. No. 32397-E and by the Spanish DGICYT under Project No.

(b) Since the IBM calculation seems to provide a veryPB981111. Wethank R. Bijker and J.E. GamiRamos for
good general description of the whole isotope series, we feanlightening discussions.
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