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Resonating-group study of baryon-baryon interactions for the complete baryon octet:
NN interaction
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The baryon-baryon interaction for the complete baryon octet is investigated in a unified framework of the
resonating-group method which employs the spin-flavor SU6 wave functions with explicit color degrees of
freedom. The interaction Hamiltonian is composed of the phenomenological confinement potential, the color
Fermi-Breit interaction with explicit flavor symmetry breaking, and the effective meson-exchange potentials of
scalar, pseudoscalar, and vector-meson types, acting between quarks. For the scalar- and vector-meson ex-
changes, the momentum-dependent higher-order terms are incorporated to reduce the attractive effect of the
central interaction at higher energies. The single-particle potentials of the octet baryons, predicted by the
G-matrix calculation, now have proper repulsive behavior in the momentum regionq155 –20 fm21. A mod-
erate contribution of the spin-orbit interaction from the scalar-meson exchange is also included. As to the
vector mesons, a dominant contribution is the quadratic spin-orbit force generated from ther-meson exchange.
This paper discusses the nucleon-nucleon interaction up toTlab5800 MeV. The nucleon-nucleon phase shifts
at the nonrelativistic energies up toTlab5350 MeV are greatly improved, and now have attained the accuracy
almost comparable to that of one-boson-exchange potentials. The deuteron properties and the low-energy
observables of the nucleon-nucleon interaction are examined in the particle basis by incorporating the isospin
symmetry breaking through the mass difference of the neutral and charged pions and the Coulomb effect as
well. The nuclear saturation properties and the single-particle potential of the nucleon in symmetric nuclear
matter are examined through theG-matrix calculation which uses the quark-exchange kernel directly.
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I. INTRODUCTION

One of the purposes of studying the baryon-baryon in
action in the quark model is to obtain the most accur
understanding of the fundamental strong interaction in
natural picture, in which the short-range part of the inter
tion is relevantly described by the quark-gluon degree
freedom and the medium- and long-range parts of the in
action are dominated by the meson-exchange processes
have recently achieved a simultaneous and realistic des
tion of the nucleon-nucleon (NN) and hyperon-nucleon
(YN) interactions in the resonating-group method~RGM!
for the spin-flavor SU6 quark model@1–5#. In this approach
the effective quark-quark (qq) interaction is built by com-
bining a phenomenological quark-confining potential and
colored version of the Fermi-Breit~FB! interaction with
minimum effective meson-exchange potentials~EMEP’s! of
scalar and pseudoscalar meson nonets directly couple
quarks. Owing to the explicit introduction of quark degre
of freedom, this framework is versatile enough to extend
vast knowledge of theNN interaction to theYN, YY inter-
actions, and more generally toB8B8 interactions between th
complete octet (B8) baryons, by utilizing the fact that th
nucleons and hyperons belong to a common class of
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spin-flavor SU6 supermultiplet 56. The flavor symmetr
breaking in the strangeness systems is explicitly introdu
through the quark-mass dependence of the Hamiltonian
the well-established baryon and meson masses. An ad
tage of introducing the EMEP at the quark level lies in t
stringent relationship of the flavor dependence appearin
the various interaction pieces. Accurate description of
NN interaction diminishes the ambiguity of model param
eters, which is crucial since the present experimental data
the YN interaction are still very scarce.

In this study we first upgrade our model@1–5# by incor-
porating such interaction pieces provided by scalar and v
tor mesons as the spin-orbit (LS), quadratic spin-orbit
(QLS), and the momentum-dependent Bryan-Scott ter
Introduction of these pieces to the EMEP is primarily mo
vated by the insufficient description of the experimental d
by previous models. First, some discrepancy of theNN
phase shifts in previous models requires the introduction
vector mesons. For example, the3D2 phase shift in the
model FSS@4# is more attractive than experiment by 10
aroundTlab;300 MeV. This implies that the one-pion ten
sor force is too strong in our previous models. In the st
dard one-boson-exchange potentials~OBEP’s!, the strong
one-pion tensor force is partially weakened by ther meson
tensor force. We use theQLS force of vector mesons from
the reasons given below. Furthermore, some phase shif
other partial waves deviate from the empirical ones by
couple of degrees. Another improvement is required as

o-
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the central attraction. TheG-matrix calculation using the
quark-exchange kernel explicitly@6# shows that energy
independent attraction, dominated bye-meson exchange, i
unrealistic, since in our previous models the single part
~s.p.! potentials in symmetric nuclear matter show a stron
attractive behavior in the momentum regionq1
55220 fm21. We have shown in@7# that this flaw can be
removed by introducing the momentum-dependent high
order term of scalar-meson exchange potentials, the im
tance of which was first pointed out by Bryan and Scott@8#.
In the higher-energy region, theLS term of the scalar meson
also makes an appreciable contribution, in addition to t
momentum-dependent term.

Another purpose of the present investigation is to exam
the charge symmetry breaking~CSB! and the Coulomb effec
from the viewpoint of the quark model. It is well known th
the 1S0 phase shift of thepp interaction is slightly less at
tractive than that of thenp interaction. This charge indepen
dence breaking~CIB! is partially explained by the so-calle
pion-Coulomb correction@9#, which implies ~1! the small
mass difference of the neutron and the proton,~2! the mass
difference of the charged pion and the neutral pion, and~3!
the Coulomb effect. Furthermore, it was claimed long a
that theLp interaction should be more attractive than t
Ln interaction, since the binding energy of the 01 ground
state of L

4 He is fairly larger than that ofL
4 H @10#. The CSB

energy of 350 keV in these isodoublet hypernuclei is mu
larger than the;100 keV CSB effect seen in the3H- 3He
binding energy difference after the correction of thepp Cou-
lomb energy in 3He is made. The early version of th
Nijmegen potential@11# already focused on this CSB in th
OBEP including the pion-Coulomb correction and the corr
threshold energies of theLN-SN coupling in the particle
basis. The RGM calculation using the particle basis is rat
cumbersome, since all the spin-flavor factors of the qua
exchange kernel should be recalculated by properly inco
rating thez components of the isospin quantum numbe
Furthermore, there is a problem inherent in the RGM form
ism: the internal energies of the clusters are usually not p
erly reproduced when a unique model Hamiltonian is us
We have given in@12# a convenient prescription to avoid th
problem without spoiling the exact antisymmetrization effe
of the Pauli principle. For the Coulomb effect, we calcula
the full exchange kernel without any approximation. T
pion-Coulomb correction and the correct treatment of
threshold energies in the particle basis are found to be v
important for the detailed description of the low-energy o
servables in theSN-LN coupled-channel problem, whic
we will discuss in the next paper.

With these renovations of EMEP’s and the framework,
have redetermined model parameters in the isospin bas
fit the most recent result of theNN phase shifts@13#, the
deuteron binding energy, the1S0 NN scattering length, and
the low-energyYN total cross section data. This model
named fss2 since it is based on our previous model F
@3–5#. The agreement of the phase-shift parameters in
NN sector is greatly improved. The model fss2 shares
good reproduction of theYN scattering data and the essent
features of theLN-SN coupling with our previous model
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@1–5#. Since the model parameters are all fixed, we n
extend fss2 to the more generalB8B8 interactions: namely,
the interactions in the strangenessS522 sector (LL, JN,
SL and SS), S523 sector (JL and JS), and S524
sector (JJ). The result of theYN interaction and these
further extensions will be discussed in a forthcoming pap

It would be appropriate to discuss briefly the main diffe
ence between our model and other models developed by
eral groups. A pedagogical description of the quark clus
model is found in the review article@14# by the Tokyo Uni-
versity group. A complete microscopical calculation incorp
rating EMEP’s acting between quarks is also carried out
the Salamanca group@15,16# for the NN interaction and the
Beijing group @17–19# for the NN and YN interactions.
These models incorporate chiral-symmetric effective mes
exchange potentials generated from the scalar and pse
scalar meson exchanges between quarks. Since they
rather small values of the quark-gluon coupling constantaS
;0.5 and the harmonic-oscillator width parameterb
;0.5 fm, their NN interaction is not accurate enough
describe the low partial waves (S wave andP wave! satis-
factorily. In the recent Salamanca model@20#, the channel
coupling effect of theDN andDD configurations is explic-
itly incorporated in order to reproduce the3S1 and 1S0 phase
shifts simultaneously. TheLS component in these models
too small, since they do not take into account the ‘‘antisy
metric’’ LS term contained in the FB interaction. In th
Beijing model@21#, a rather largeLS contribution from the
scalar-meson exchange is assumed. Our model uses a
plete FB interaction with explicit flavor symmetry breakin
together with the moderate contribution of theLS component
from the scalar mesons. Furthermore, this is the first atte
to introduce the vector mesons in a full microscopic way

In the next section we first recapitulate the formulation
the (3q)-(3q) Lippmann-Schwinger RGM~LS-RGM! @7#
and theG-matrix calculation@6# using the quark-exchang
kernel directly. Section II B introduces a new EMEP Ham
tonian for fss2 in the momentum representation. This ser
to clarify the difference between the present model fss2
the previous two models, FSS and RGM-H@3–5#. The spa-
tial part of the quark-exchange kernel in the EMEP sector
given in Appendix A. The model parameters determined
the isospin basis are discussed in Sec. II C. Short comm
are given in Sec. II D with respect to the special treatmen
the particle basis, including the Coulomb force in the m
mentum representation. Section III presents results and
cussions. We first discuss in Sec. III A theNN phase shifts,
differential cross sections, and the polarization for the en
giesTlab<800 MeV. Special attention is paid to the effect
inelastic channels, which is not taken into account in
present framework. The five invariant amplitudes for thepp
scattering are also examined at the highest energyTlab
5800 MeV, in order to clarify the behavior of the s.p. p
tentials in the asymptotic momentum region and to find
clue to the missing ingredients in the present framework. T
deuteron properties and the effective-range parameters o
NN system are discussed in Sec. III B. A simple parame
zation of the deuteron wave functions is given in Append
B. The G-matrix calculation using fss2 is presented in Se
2-2
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III C. This includes the discussion of the nuclear saturat
curve, the density dependence of the s.p. potentials, and
Scheerbaum factor of the s.p. spin-orbit strength in symm
ric nuclear matter. The final section is devoted to a summ

II. FORMULATION

A. Lippmann-Schwinger formalism for „3q…-„3q… RGM
and the G-matrix equation

A new version of our quark model employs the Ham
tonian which includes the interactions generated from
scalar ~S!, pseudoscalar~PS!, and vector ~V! meson-
exchange potentials acting between quarks:

H5(
i 51

6 S mic
21

pi
2

2mi
2TGD 1(

i , j

6 S Ui j
Cf1Ui j

FB

1(
b

Ui j
Sb1(

b
Ui j

PSb1(
b

Ui j
VbD . ~2.1!

HereUi j
Cf is a confinement potential with a quadratic pow

law, andUi j
FB is the full FB interaction with explicit quark-

mass dependence. It is important to note that this confi
ment potential gives a vanishing contribution to the bary
baryon interaction, since we assume (0s)3 harmonic
oscillator wave functions with a common width parameteb
for the internal cluster wave functions. Also, all the cont
butions from the FB interaction are generated from
quark-exchange diagrams, since we assume color-sin
cluster wave functions. These features are all explaine
our previous publications@4#. When the calculations ar
made in the particle basis, the Coulomb force is also in
duced at the quark level. The RGM equation for the par
projected relative wave functionxa

p(R) is derived from the
variational principlê dCuE2HuC&50, and it reads@4#

F«a1
\2

2ma
S ]

]RD 2Gxa
p~R!

5(
a8

E dR8Gaa8~R,R8;E!xa8
p

~R8!, ~2.2!

whereGaa8(R,R8;E) is composed of various pieces of th
interaction kernels as well as the direct potentials of EME

Gaa8~R,R8;E!5d~R2R8!(
b

(
V

Vaa8D
Vb

~R!

1(
V

M aa8
V

~R,R8!2«a M aa8
N

~R,R8!.

~2.3!

The subscripta stands for a set of quantum numbers
the channel wave function;a5@1/2(11)a1 ,1/2(11)a2#
SSzYIIz ;P, where 1/2(11)a specifies a member ofB8; the
spin value 1/2, the SU3 quantum number in the Elliott nota
tion (lm)5(11), anda[YI the flavor label@N51(1/2),
L500, S501 and J521(1/2)], and P is the flavor-
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exchange phase@22#. In the systems of identical particle
with a15a2 and I 15I 2 , P becomes redundant since it
uniquely determined by the total isospinI asP5(21)2I 12I .
These are the channel specification scheme in the iso
basis. In the particle basis, necessary modification should
made for the flavor degree of freedom. The relative ene
«a in the channela is related to the total energyE of the
system in the center-of-mass~c.m.! system through«a5E
2Ea

int . HereEa
int5Ea1

int1Ea2

int with a5a1a2. In Eq. ~2.3! the

sum overV for the direct term implies various contribution
of interaction types for the meson-exchange potentials, w
b specifies the meson species. On the other hand,V for the
exchange kernelMaa8

V (R,R8) involves not only the ex-
change kinetic-energy~K! term but also various pieces of th
FB interaction, as well as several components of EMEP. T
RGM equation~2.2! is solved in the Lippmann-Schwinge
formalism developed in@7# ~which we call LS-RGM!. In this
formalism, we first calculate the basic Born kernel defin
through

Maa8
B

~qf ,qi ;E!5^eiqf•RuGaa8~R,R8;E!ueiqi•R8&

5(
b

(
V

Maa8D
Vb

~qf ,qi !

1(
V

Maa8
V

~qf ,qi !O V~qf ,qi !

2«a Maa8
N

~qf ,qi !, ~2.4!

where«a is the relative energy in the final channel~in the
prior form!. Each component of the Born kernel, Eq.~2.4!, is
given in terms of the transferred momentumk5qf2qi and
the local momentumq5(qf1qi)/2. In Eq. ~2.4! the space-
spin invariantsO V5O V(qf ,qi) are given byO central51 and

O LS5 in•S, O LS(2)
5 in•S(2), O LS(2)s5 in•S(2)Ps ,

with

n5@qi3qf #, S5
1

2
~s11s2!, S(2)5

1

2
~s12s2!,

Ps5
11s1•s2

2
. ~2.5!

For the tensor andQLSparts, it would be convenient to tak
four natural operators defined by

O T5S12~k,k!, O T85S12~q,q!,

O T95S12~k,q!, O QLS5S12~n,n!, ~2.6!

where S12(a,b)5(3/2)@(s1•a)(s2•b)1(s2•a)(s1•b)#
2(s1•s2)(a•b). The direct Born kernelMaa8D

Vb (qf ,qi) in
Eq. ~2.4! is explicitly given in Eq.~2.14!. The exchange Born
kernelMaa8

(V) (qf ,qi) is given in Appendix B of@7# for the FB
interaction and in Appendix A for the EMEP. The LS-RGM
equation is given by
2-3
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Tga~p,q;E!5Vga~p,q;E!1(
b

1

~2p!3E dk Vgb~p,k;E!

3
2mb

\2

1

kb
22k21 i«

Tba~k,q;E!, ~2.7!

where the ‘‘quasipotential’’Vga(p,q;E) or more generally
Vgb(p,q;E) is calculated from

Vgb~p,q;E!5
1

2
@Mgb

B ~p,q;E!1~21!SbP bMgb
B ~p,2q;E!#.

~2.8!

After the standard procedure of the partial-wa
decomposition,1 the LS-RGM equation~2.7! is solved by the
Noyes-Kowalski method@23,24#. The singularity atk5kb is
avoided by separating the momentum region into two piec
The intermediatek integral over 0<k<kb is carried out us-
ing the Gauss-Legendre 15-point quadrature formula and
integral overkb<k,` using the Gauss-Legendre 30-poi
quadrature formula through the mappingk5kb1tan(p(1
1x)/4).

The LS-RGM equation~2.7! is straightforwardly ex-
tended to theG-matrix equation by a trivial replacement o
the free propergator with the ratio of the angle-averag
Pauli operator and the energy denominator:

Gga~p,q;K,v!5Vga~p,q;E!

1(
b

1

~2p!3E d k Vgb~p,k;E!

3
Qb~k,K !

eb~k,K;v!
Gba~k,q;K,v!. ~2.9!

Since a detailed description of this formalism is alrea
given in @6#, there is no need to repeat other equations. T
formula to calculate the Scheerbaum factor for the s.p. s
orbit potential by using theG-matrix solution is also given in
@25#. We only repeat how we deal with the energy depe
dence of the quasipotentialVga(p,q;E) in the G-matrix
equation~2.9!. The total energy of the two interacting pa
ticles in the nuclear medium is not conserved. Since we o
need the diagonalG matrices for calculating s.p. potentia
and the nuclear-matter properties in the lowest-order Brue
ner theory, we simply use

«g5Ea
int2Ec

int1
\2

2ma
q2, ~2.10!

both inVga(p,q;E) andVgb(p,k;E) in Eq. ~2.9!. The mean-
ing and the adequacy of this procedure are discussed in@12#
by using a simple model.

1We use the Gauss-Legendre 20-point quadrature formula to c
out the numerical integration for the partial-wave decomposition
Eq. ~2.8!.
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B. Effective meson-exchange potentials for fss2

The EMEP at the quark level is most easily formulated
the momentum representation by using second-order pe
bation theory with respect to the quark-baryon vertices.
employ the following qq interaction, which is obtained
through the nonrelativistic reduction of the one-boso
exchange amplitudes in the parameterg5(m/2mud) ~where
m is the exchanged meson mass andmud is the up-down
quark mass!:

US~qf ,qi !5gg†
4p

k21m2 H 211
q2

2mud
2

2
1

2mud
2

in•SJ ,

UPS~qf ,qi !52 f f †
1

mp1
2

4p

k21m2 F ~s1•k!~s2•k!2~12cd!

3~m21k2!
1

3
~s1•s2!G ,

UV~qf ,qi !5
4p

k21m2 H f ef e†S 11
3q2

2mud
2 D 2 f mf m†

2

~mudm!2

3F ~s1•n!~s2•n!2~12cqss!
1

3
n2~s1•s2!G

2~ f mf e†1 f ef m†!
2

mudm
in•SJ . ~2.11!

Herek5qf2qi , q5(1/2)(qf1qi), and the quark-meson cou
pling constants are expressed in the operator form in
flavor space@26,27#. For example, the product of the tw
different coupling-constant operatorsg andf are expressed a

g f†5H g1f 1

g8f 8Sala~ i !la~ j !
for H singlet mesons,

octet mesons,
~2.12!

wherela( i ) represents the Gell-Mann matrix for particlei.
For the realistic description, the meson mixing between
flavor singlet and octet mesons is very important. This i
plies using

f h85 f 1cosu1 f 8sinul8 , f h52 f 1sinu1 f 8cosul8 ,
~2.13!

instead of f 1 and f 8l8 in Eq. ~2.12! for the PS mesons
Similar transformation is also applied to the S-meson a
V-meson coupling constants. The SU3 parameters of the
EMEP coupling constants are thereforef 1 , f 8, and u. The
S-meson exchange EMEP in Eq.~2.11! involves not only the
attractive leading term, but also the momentum-dependenq2

term and theLS term. The PS-meson exchange operator
the same as before, but the parametercd is introduced only
for the one-pion exchange in order to reduce the very str
effect of the delta-function-type contact term involved in t
spin-spin interaction. The casecd51 corresponds to the ful
expression, whilecd50 corresponds to the case with n

rry
f

2-4
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spin-spin contact term. The V-meson exchange potentia
composed of the electric-type term, the magnetic-type te
and the cross term. In the electric term, the central fo
generated by thev-meson-exchange potential is usua
most important, and it also includes theq2-type momentum-
dependent term. As to the introduction of the vector-me
EMEP to the quark model, some discussion already
dressed the problem of double counting, especially with
strong short-range repulsion originating from the time co
ponent of thev-meson exchange@28#. We avoid this double
counting for the short-range repulsion and theLS force by
simply choosing appropriate coupling constants for vec
mesons, i.e.,f 1

Ve , f 1
Vm;1, andf 8

Ve50. The magnetic term is
usually important for the isovectorr meson and yields the
spin-spin, tensor, andQLS terms in the standard OBEP. Th
choice in Eq.~2.11! is to keep only theQLS term with the
partial contribution of the spin-spin term proportional toL2,
the reason for which is discussed below. Finally, the cr
term between the electric and magnetic coupling const
leads to theLS force for theqq interaction. The antisymmet
ric LS (LS(2)) force with S5(s12s2)/2 is not generated
from EMEP’s at the quark level, because the flavor opera
in Eq. ~2.12! is the Gell-Mann matrix and also because t
mass difference between the up-down and strange q
masses is ignored in Eq.~2.11!.

We should keep in mind that these EMEP’s, except for
pions, are by no means a theoretical consequence of the
meson-exchange processes taking place between qu
First of all, the static approximation used to derive t
th

e
to

ze

01400
is
,

e

n
d-
e
-

r

s
ts

r

rk

e
eal
rks.

meson-exchange potentials between quarks is not per
sible, since the masses of S mesons and V mesons are
than twice as heavy as the quark massmud

;300–400 MeV. Since the parameterg is not small, the
nonrelativistic reduction is not justified. Also, the very stro
S-meson central attraction is just a replacement of the
processes of the 2p exchange, thepr exchange, theD ex-
citations, and so forth. The V mesons are supposed to be

as composite particles of the (qq̄) pairs. Furthermore, the
choice of terms in Eq.~2.11! is quite ad hocand phenom-
enological. We should consider Eq.~2.11! as an effective
interaction to simulate the residual interaction betwe
quarks, which is not taken into account by the FB intera
tion.

The calculation of the full Born kernel in Eq.~2.4! for
each term of Eq.~2.11! becomes rather involved, if we us
the standard technique of calculating the exchange kerne
the generator-coordinate kernel~GCM kernel!. This becomes
especially tedious when theqq interaction involves the non
staticq2 dependence and the second-order term ofq as in the
QLS force. We have developed in@7# a new technique to
calculate the Born kernel directly from the two-body inte
action in the momentum representation. In this techniq
there is no need to calculate the GCM kernel. Since the fi
expression is rather lengthy for the exchange kernel, i
relegated to Appendix A. Here we only show the direct ter
which is particularly useful to see the main characteristics
the EMEP introduced in the present model:
MD
S~qf ,qi !5g2

4p

k21m2
e2(bk)2/3H X0D1

C F211
1

2~3mud!
2 S q21

9

2b2D G2
3

2~3mud!
2

X0D1

LS in•S2
3

2~3mud!
2

X0D1

LS(2)
in•S(2)J ,

MD
PS~qf ,qi !52 f 2

1

mp1
2

4p

k21m2
e2(bk)2/3X0D1

T F ~s1•k!~s2•k!2~12cd!~m21k2!
1

3
~s1•s2!G ,

MD
V~qf ,qi !5

4p

k21m2
e2(bk)2/3H ~ f e!2 X0D1

C F11
3

2~3mud!
2 S q21

9

2b2D G2~ f m!2
2

~3mudm!2
X0D1

T

3F ~s1•n!~s2•n!2~12cqss!S n2

3
1

k2

b2D ~s1•s2!1
3

2b2 @s13k#•@s23k#G
22 f mf e

2

3mudm
X0D1

LS in•S22 f mf e
2

3mudm
X0D1

LS(2)
in•S(2)J . ~2.14!
the
t
i-
Here X0D1

V represents the spin-flavor factors related to
spin-flavor operators in Eq.~2.11!. The singlet-octet meson
mixing, Eq. ~2.13!, etc., are not explicitly shown becaus
of the typographical reason. The Gaussian fac
exp$2(bk)2/3% appearing in Eq.~2.14! represents the form
factor effect of the (0s)3 cluster wave functions. The finite
size effect of the baryons also appears as the constant
e

r

ro-

point oscillation terms accompanied with theq2 terms, ap-
pearing in the S- and V-meson contributions. For theQLS
force, the same effect appears as the tensor force having
form @s13k#•@s23k#. The magnitude of this term is abou
one-third if we compare this with the strength from the orig
nal tensor term appearing at the level ofqq interaction. The
advantage of using theQLS force in Eq.~2.11!, instead of
2-5
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the tensor force, is that we can avoid thep-r cancellation of
the tensor force for the coupling term of theS andD waves.
The e1 parameter of theNN interaction is very sensitive to
this coupling strength.

C. Determination of parameters

We have four quark-model parameters: the harmon
oscillator width parameterb for the (3q) clusters, the up-
down quark massmud , the strength of the quark-gluon cou
pling constantaS , and the mass ratio of the strange to u
down quarksl5(ms /mud). A reasonable range of the value
for these parameters in the present framework isb
50.5–0.6 fm, mud5300–400 MeV/c2, aS;2, and l
51.2–1.7. Note that we are dealing with the constitu
quark model with explicit mesonic degrees of freedom. T
size of the system determined from the (3q) wave function
with b @the rms radius of the (3q) system is equal tob] is
related to the quark distribution, which determines the ra
in which the effect of the FB interaction plays an essen
role through the quark-exchange kernel. The internal e
gies of the clusters should be calculated from the sa
Hamiltonian as used in the two-baryon system and con
not only the quark contribution, but also various EMEP co
tributions. The value ofaS is naturally correlated withb,
mud , and other EMEP parameters. This implies thataS in
our framework is a parameter which controls the relat
importance of the quark contribution and the EMEP con
bution, and has very little to do with the real quark-glu
coupling constant of QCD.

For the EMEP part, we have three parametersf 1 , f 8, and
u for each of the S, PS, Ve~vector-electric!, and Vm~vector-
magnetic! terms. It is convenient to use the coupling co
stants at the baryon level, in order to compare our result w
the predictions by other OBEP models. These are relate
the coupling constants at the quark level used in Eqs.~2.11!
and ~2.14! through a simple relationship

f 1
S53g1 , f 8

S5g8 , f 1
PS5 f 1 , f 8

PS5
5

3
f 8 ,

f 1
Ve53 f 1

e , f 8
Ve5 f 8

e , f 1
Vm5 f 1

m, f 8
Vm5

5

3
f 8

m.

~2.15!

Through this replacement, the leading term for each me
in Eq. ~2.14! precisely coincides with that of the OBEP wit
Gaussian form factors. In the present framework,
S-meson masses are also considered to be free param
within some appropriate ranges. We further introduce th
extra parameters:cd the strength factor for the delta
function-type spin-spin contact term of the one-pio
exchange potential~OPEP!, cqss the strength factor for the
spin-spin term of theQLS force, andcqT the strength factor
for the tensor term of the FB interaction. These parame
are introduced to improve the fit of theNN phase shifts to
the empirical data, the values of which are fixed through
in the whole calculations of theB8B8 interactions.
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We determine these parameters by fitting the most rec
result of the phase shift analysis SP99@13# for the np scat-
tering with the partial wavesJ<2 and the incident energie
Tlab<350 MeV, under the constraint of the deuteron bindi
energy and the1S0 NN scattering length, as well as to re
produce the available data for the low-energyYN total cross
sections. The result is shown in Table I. The parameters
the previous model FSS are also shown for comparison.
x2 value used in the parameter search is defined throug

Ax25H 1

N (
i 51

N

~d i
cal2d i

expt!2J 1/2

, ~2.16!

where no experimental error bars are employed because
energy-dependent solution of the phase-shift analysis d
not give them. In Eq.~2.16! the sum overi 51-N is with
respect to various angular momenta and energies, and
mixing parameterse1 ande2 are also included in the unit o
degrees. The valueAx2 therefore gives some measure for t
averaged deviation of the calculated phase shifts from
empirical values. Using the parameter set in Table I, we h
obtainedAx250.656° for thenp scattering. The best solu
tion in our previous models isAx2;3° in FSS. Since the
present model fss2 is a renovated version of FSS, we s
marize in the following only the changes and new points
fss2, in comparison with the model FSS.

~1! In the original expression of the meson-exchange
tentials between quarks, the momentum-dependent Bry
Scott term appears in the combination ofq22k2/4 for the S
meson and 3q22k2/4 for the V meson. We find that thes
k2/4 terms ~usually replaced byk252m2) play a rather
characterless role in making the whole interaction sligh
repulsive. With these terms, the energy dependence of
1S0 and 3S1 phase shifts becomes too strong to keep
value ofb in the reasonable range.~The value ofb turns out
to be too small, aboutb;0.4 fm to compensate the stron
energy dependence.! We therefore drop all thesek2/4 terms
in the present calculation.

~2! We ignore theQLS force from the S mesons, since
is very weak. The S-meson EMEP direct term therefore c
sists of the leading term with21 in Eq. ~2.14!, the
momentum-dependent Bryan-Scott term, and theLS term.
~For the YN interaction, etc., a smallLS(2) contribution
emerges at the baryon level from the flavor-octet S meso!
This LS term yields an appreciable contribution at mediu
and higher energies, which consequently reduces the valu
b from the previous value>0.6 fm to a smaller value
;0.56 fm.

~3! The reduction of the spin-spin contact term for the
mesons is introduced only for the pion with the smalle
mass. For the other heavier PS mesons, we assume the
strength factorcd51. The reduction from 1 for the pion
improves the fit of theNN 1P1 phase shift to a great exten
~Otherwise, the repulsion at higher energies is insufficient
this partial wave.! We introducecd only for pion, since the
effect of the present (3q)-cluster folding corresponds to
very low value of the cutoff massL;800–900 MeV for the
pion form factor in the OBEP. It is well known that such
2-6
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TABLE I. Quark-model parameters, SU3 parameters of the EMEPs, S-meson masses, and some redu
factorscd , etc., for the models fss2 and FSS. Ther meson in fss2 is treated in the two-pole approximatio
for which m1 (b1) andm2 (b2) are shown below the table.

b ~fm! mud (MeV/c2) aS l5ms /mud

fss2 0.5562 400 1.9759 1.5512
FSS 0.616 360 2.1742 1.526

f 1
S f 8

S uS u4
S a

fss2 3.48002 0.94459 33.3295° 55.826°
FSS 2.89138 1.07509 27.78° 65°

f 1
PS f 8

PS uPS

fss2 2 0.26748 2 ~no h,h8)
FSS 0.21426 0.26994 223°

f 1
Ve f 8

Ve f 1
Vm f 8

Vm b

fss2 1.050 0 1.000 2.577

~MeV/c2) me mS* md mk

fss2 800 1250 846c 936
FSS 800 1250 970 1145

cd cqss cqT
e

fss2 0.4756d 0.6352 3.139
FSS 0.381 2 2

au4
S is used only forSN(I 53/2).

buV535.264° ~ideal mixing! and two-poler meson with m1 (b1) 5 664.56 MeV/c2 ~0.34687! and
m2 (b2) 5 912.772 MeV/c2 ~0.48747! @30# are used.
cFor theNN system,md5720 MeV/c2 is used.
dOnly for p, otherwise 1.
eThe enhancement factor for the Fermi-Breit tensor term.
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low value ofL converts even the sign of the medium-ran
part of the OPEP if the full strength of the contact term
introduced. The factorcd,1 also reduces the very stron
repulsion generated from the one-pion spin-spin contact t
for theS-wave states of theNN system. In the present frame
work, this repulsion is almost 300 MeV ifcd51 is assumed.
Furthermore, the value ofcd has a strong influence on th
internal energies of single baryons. It reduces the very la
contribution of the pion to theN-D andL-S mass difference,
the latter helping us to keepl5(ms /mud) at the moderate
value. ~Otherwise, we obtainl;1.! If we do not introduce
cd and the parameterscqss, cqT discussed below, theAx2

value cannot be improved by more than 1.5°. The contri
tion of h andh8 mesons was necessary in the previous m
els in order to make the3S central force relatively more
repulsive than the1S central force. In the present framewor
it turns out that the introduction of theseh mesons is not
convenient for the subtle balance of the central and ten
forces, especially in the3P2- 3F2 coupling. We therefore
take out all theseh-meson contributions. The well-know
too-strong repulsion of theNN 1S central force from the
color-magnetic interaction of the FB interaction@17,20# is
remedied by assuming two different masses for the isove
d meson, i.e.,md5720 MeV/c2 for the NN system and
01400
m

e

-
-

or

or

md5846 MeV/c2 for the other strangeness systems~see
footnote c in Table I!.

~4! As is discussed at the end of the preceding subsect
the present model fss2 is theQLS dominant model. This
implies that we use theQLS force to reduce the too stron
OPEP tensor force, instead of the tensor force itself. T
main reason for this choice is that theNN mixing parameter
e1 is very difficult to reproduce if the cancellation of the on
pion tensor force and ther-meson tensor force is too stron
for the S-wave andD-wave coupling. Another question i
how thisQLS force is incorporated into the model. We fin
that theQLSspin-spin termn2(s1•s2) in Eq. ~2.11! plays a
favorable role in improving the fit of theNN phase shifts.
This term corresponds to the (s1•s2)L2 term in the
Hamada-Johnstone potential@29#. Since the full introduction
of this term results in too vigorous behavior, we introduce
reduction factorcqss, the value of which turns out aroun
cqss;0.6. The two-pole formula for ther-meson-exchange
potential, introduced in@30#, is found to give a favorable
result. We further find that the short-range tensor force is s
too weak. We avoid this difficulty simply by increasing th
strength of the tensor term of the FB interaction with t
factor cqT . The valuecqT;3 seems to be reasonable. If w
2-7
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carry out the parameter search withcqT51, the value ofAx2

cannot be improved by more than 1.3° –1.0°, mainly due
the disagreement ofe1. We should note, however, that th
introduction of the V mesons is a rather minor change fr
our previous models. With the exception off 8

Vm52.577, the
V-meson coupling constants in Table I are around 1, whic
less than half of the coupling constants in the stand
OBEP. In particular, the isospin-dependentLS force from the
r meson is exactly zero, sincef 8

Ve is fixed at zero. The short
range repulsion in theNN interaction is still mainly de-
scribed by the color-magnetic term of the FB interaction. T
dominant effect of the V mesons is almost solely t
r-mesonQLS force, which is the reason we call fss2 th
QLS dominant model.

~5! The following five parameters in Table I are direct
related to the reproduction of the low-energyYN cross sec-
tions:l5(ms /mud), uS, u4

S, md , andmk . Among them, the
angle of the singlet-octet meson mixinguS of the S mesons is
used to control the relative strength of the central attrac
of theNN andYN interactions. It was found before@4# that,
once theuS is determined to fit the low-energyLp cross
section data, the attraction of theSN(I 53/2) channel is too
strong and theS1p total cross sections are overestimate
We therefore use a larger value foruS ~which is denoted by
u4

S) only for theSN(I 53/2) channel in order to reduce th
attraction, which is the same prescription employed in
previous models@3,4#.

~6! The largest ambiguity for determining the paramet
related to theYN interaction lies in the strength of the centr
attraction in theSN(I 51/2) 3S1 channel@7#. If the phase-
shift rise of the 3S1 state is less than 30°, the low-energ
S2p elastic total cross section becomes too small. If t
attraction is too strong, as in RGM-F@2#, the 3S1 phase shift
shows a sudden decrease from 180° to 60° –90°, and
behavior of theLp total cross sections at theSN threshold
becomes a round peak, instead of the cusp structure@31#.
Furthermore, the strength of the central attraction play
crucial role even for the odd-parity state. TheSN(I
51/2) 3P1 phase shift is attractive due to the exchan
kinetic-energy kernel: i.e., the effect of the Pauli princip
@22#. This attraction is reinforced by theLS force in the
diagonal channel and also by theLS(2) force acting between
this channel and the1P1 channel. This channel coupling als
takes place between theSN(I 51/2) channel and theLN
channel. This channel coupling is mainly determined by
strength of theLS(2) force, which is directly related to the
magnitude ofaS , but also considerably influenced by th
strength of the central attraction in theSN(I 51/2) channel.
In @7#, we have clarified that the central attraction of t
previous models RGM-F and FSS is so strong that
SN(I 51/2) 3P1 resonance is moved to theLN 1P1 chan-
nel. The consequence of this behavior is the strong enha
ment of theLp total cross sections in the cusp region. On t
contrary, theP-wave coupling in the model RGM-H is les
strong, and the agreement of theLp total cross sections to
some available experimental data is much better.@See Fig.
10~a! of @4# and Table II of@7#.# Here we assume that th
resonance stays in the originalSN(I 51/2) 3P1 channel and
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try to find the parameter set which gives the maximu
strength of theSN(I 51/2) central attraction. In practice, w
assumeA2/paSx3mudc

25440 MeV @x5(\/mudcb) is the
ratio of the Compton wavelength of the up-down quarks
b] as in RGM-F and FSS,2 and adjust the value ofmd for the
YN interaction, independently of the value in the case ofNN
interaction. If we use a smaller value formd , the SN(I
53/2) 1S0 state becomes more attractive and theSN(I
51/2) 3S1 state becomes less attractive.

~7! Another important change from the previous mod
FSS and RGM-H is the relative strength of the1S0 and 3S1
attraction in theLN interaction. The maximum phase-shi
values of the1S0 and 3S1 states in these models are abo
46° and 16°, respectively, aroundpL;200 MeV/c. The big
difference of almost 30° is known to be unfavorable for t
description of thes-shell L hypernuclei. Detailed few-body
calculations for these hypernuclei have recently been car
out by several groups@32–35# by using various effectiveLN
interactions. In these effectiveLN interactions, the effect of
theSN channel coupling is usually renormalized. These c
culations imply that the phase-shift difference of a little le
than 10° seems to be most appropriate. We follow this s
gestion and adjust the strength of theLN attraction such that
the 1S0 and 3S1 phase-shift difference is less than 10° a
the low-energyLp cross sections are correctly reproduce
We can use thek-meson mass to adjust this phase-shift d
ference. Namely, ifmk is smaller, then theLN 1S0 phase
shift becomes more attractive and the3S1 phase shift be-
comes less attractive.

In order to give an outline of the framework, we summ
rize the difference of FSS and fss2 in Table II, with respec
the meson species and interaction types of EMEP’s inclu
in the models. Table III shows the quark and EMEP con
butions to the baryon mass difference betweenN and
D (DEN2D5ED

int2EN
int) and the mass difference betweenL

andS (DEL2S5ES
int2EL

int), calculated in the isospin basis
We note that various meson contributions largely cancel e
other and the net contribution is roughly given by the qua
contribution from the color-magnetic term of the FB intera
tion.

D. Calculation in the particle basis

In this subsection we discuss some new features requ
in the calculation in the particle basis. Three different typ
of calculations are carried out in this paper.

~1! Calculation in the isospin basis.
~2! Calculation in the particle basis without the Coulom

force.
~3! Calculation in the particle basis with the Coulom

force.
For theNN interaction, the calculation in the particle ba

sis is rather straightforward. We use the empirical proton a

2This value corresponds to assuming theN-D mass difference
293.3 MeV only by the FB interaction, as seen from Table III. If w
use theaS value about 1.3 times larger, the transition of theP-wave
resonance to theLN 1P1 channel takes place in the present mod
2-8
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neutron masses (M p5938.2723 MeV and Mn
5939.565 MeV) and evaluate spin-flavor factors for t
charged pion and the neutral pion separately in the iso
representation. The other spin-flavor factors for heavier m
sons and the FB interaction are generated in the simple i
pin relations. The Coulomb force is introduced at the qu
level by using the quark charges. The exchange Coulo
kernel has the same structure as the color-Coulombic term
the FB interaction.

Only complexity arises when we solve the LS-RG
equation in the momentum representation. The standard t
nique by Vincent and Phatak@36# is employed to solve the
Lippmann-Schwinger equation in the momentum represe
tion, including the Coulomb force. This technique requir
introducing a cutoff radiusRC for the Coulomb interaction
In the RGM formalism, we have to introduce this cutoff
the quark level, in order to avoid violating the Pauli pri
ciple. The two-body Coulomb force assumed in the pres
calculation is therefore written as

TABLE II. The interaction types and the meson species int
duced in the EMEPs of the models fss2 and FSS.C represents the
central force,SS the spin-spin force,T the tensor force, andQLS
the quadratic spin-orbit force.C(BS) implies that the momentum
dependent Bryan-Scott term is also included for the central fo
The tensor term of the vector mesons is switched off at the qu
level.

Model Meson type Interaction type Mesons

S C(BS)1LS e, S* , d, k
fss2 PS SS1T p, K

V C(BS)1LS1QLS v, f, r, K*

FSS S C e, S* , d, k
PS SS1T h8, h, p, K

TABLE III. Quark and EMEP contributions to theN-D mass
difference (DEN2D) and theL - S mass difference (DEL2S) in
MeV, calculated in the isospin basis. The model is fss2. The m
ratio of strange to up-down quarks,l5(ms /mud)51.5512, is em-
ployed to calculate the quark contribution inDEL2S . The details of
the EMEP contribution toDEL2S are given in a forthcoming pape
See Table I for the two-poler-meson parameters and the oth
EMEP parameters.

b mb ~MeV/c2) E ~MeV!

Quark 293.33
d 720 2164.70

DEN2D p 138.039 71.56
v 781.940 234.36
f 1019.413 20.19
r Two pole 80.59

Expt. 293.3 Total 246.23

DEL2S Quark (l51.5512) 69.49
EMEP 2 7.98

Expt. 77.44 Total 77.47
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Ui j
CL5QiQje

2
1

r i j
Q~RC2r i j !, ~2.17!

whereQ is the Heaviside step function andQi , Qj52/3 for
the up quark and21/3 for the down and strange quarks. Th
Coulomb contribution to the internal energies becomes z
for the proton andS1, etc. More explicitly, this can be given
by

Eint
CL5X0E

CLA2

p
axmudc

2H 12expF2
1

2 S RC

b D 2G J ,

~2.18!

wherea5(e2/\c);1/137 is the hyperfine coupling consta
and the direct spin-flavor factor is expressed asX0E

CL

5( i 51,2@Zi(Zi21/3)/221/3# in terms of the total chargeZi
of the i th baryon. The basic Born kernel for the direct Co
lomb term reads

MD
CL~qf ,qi !5Z1Z2e22pRC

2 S 2

kRC
sin

kRC

2 D 2

e2(bk)2/3

with

k5uqf2qi u, ~2.19!

which corresponds to the direct Coulomb potential

VD~r !5Z1Z2e2
1

r H erf~Agr !2
1

2
$erf @Ag~r 1RC!#

1erf @Ag~r 2RC!#%J . ~2.20!

Here erf(x)5(2/Ap)*0
xe2t2dt stands for the error function

andg5mn5(3/4b2). The exchange Coulomb kernel is als
slightly modified from the exact Coulomb kernel. This
given in Appendix A, together with other EMEP kernels. T
value RC should be sufficiently large to be free from an
nuclear effect beyondRC . Then the finalS matrix is calcu-
lated from the condition that the wave function obtained
solving the Lippmann-Schwinger equation with the modifi
Coulomb force is smoothly connected to the asympto
Coulomb wave function. We takeRC59 fm, although a
much smaller value seems to be sufficient. Note that, eve
thenp andnn systems, we have small contributions from t
Coulomb interaction through the exchange Coulomb kern
The difference between the calculations~2! and ~3! for the
system of chargeless particles implies this effect.

III. RESULTS AND DISCUSSIONS

A. NN result

Figures 1~a!–1~i! compare thenp phase shifts and the
mixing angleseJ predicted by fss2 with the recent phas
shift analysis SP99 by Arndt@13#. The parameter search an
the calculation of phase-shift parameters in this subsec
are all carried out in the isospin basis. For comparison,
previous results by FSS are also shown with the dot

-

e.
rk

ss
2-9
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FIG. 1. Calculatednp phase shifts by fss2 in the isospin basis, compared with the phase-shift analysis SP99 by Arndt@13#. The dotted
curves indicate the result given by FSS. Some empirical inelasticity parametersr of SP99 are also shown forTlab>300 MeV, in order to
give a measure of possible deviations of the phase-shift values in the single-channel calculation.
014002-10
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curves. Here we examine the partial waves up toJ54 in the
energy rangeTlab50 –800 MeV. For energies higher tha
300 MeV, the inelasticity parametersr of SP99 are given for
a measure of possible deviations of the phase-shift value
the single-channel calculation. The3D2 phase shift is greatly
improved by theQLS component. Even in the other parti
waves, the improvement of the phase-shift parameters is
ally achieved. This includes~1! 3P0 , 3P1, and 3G4 phase
shifts, ~2! 3S1 , 1S0 , 1P1 , 1F3, and 3H4 phase shifts at
higher energiesTlab5400–800 MeV, and~3! some im-
provement in3F2 phase shift ande2 mixing parameter. On
the other hand,3P2 and 3D3 phase shifts turn out worse an
3F4 phase shift is not much improved. The disagreemen
the 3D3 phase shift and the deviation of the3D1 phase shift
at the higher energies imply that our description of the c
tral, tensor, andLS forces in the3E states requires furthe
improvement. The insufficiency in the3O partial waves is
probably related to the imbalance of the central force and
LS force in the short-range region. The decomposition of
3PJ phase shifts to the central,LS and tensor components
shown in Fig. 2, implies that the3O central force is too
repulsive at higher energiesTlab>400–500 MeV. It should
be noted that whenever the discrepancy of the phase-
parameters between the calculation and the experimen
large, the inelasticity parameters are also very large. In
ticular, the inelasticity parameters of the3P2 , 1D2, and 3F3
states rise very rapidly as the energy increases and r
more than 20° atTlab5800 MeV. The elastic phase shift fo
each of these states shows a dispersionlike resonance b
ior at the energy range from 500 MeV to 800 MeV. These
the well-know dibaryon resonances directly related to
DN threshold in the isospinI 51 channel. The presen
single-channel calculation is not capable of describing th
resonances.

FIG. 2. Decomposition of the3PJ phase shifts for thenp scat-
tering to the central (dC), LS (dLS), and tensor (dT) components.
The results given by fss2~solid curves! and FSS~dashed curves!
are compared with the decomposition of the empirical phase s
SP99@13#.
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Table IV tabulates the values of phase-shift parameter
the energy rangeTlab525–300 MeV, in comparison with
phase-shift analyses SP99@13# and PWA93 @37# by the
Nijmegen group. The partial waves only up toJ52 are con-
sidered. If we calculate thex2 values Eq.~2.16! using these
numbers, we obtainAx250.59° and 0.60° for SP99 an
PWA93, respectively. We have also calculated the co
spondingx2 values by using the phase-shift parameters
OBEP, Paris, and Bonn potentials given in Table 5.2 of@38#.
We obtain Ax251.10° (1.08°), 1.41° (1.39°), and
1.32° (1.22°) for OBEP, Paris, and Bonn, respectively,
SP99~PWA93! is used. The reason we get such results is
follows. In the meson-exchange models, the accuracy of
low-energy phase shifts is less than 0.2°, and the agreem
with the experiment is excellent. However, in higher energ
the deviation from the experiment increases, and in so
particular partial waves like1S0 and 3P0 states, it becomes
more than 2°. In the Paris potential, the1S0 phase shift is
apparently too repulsive. This is, however, because the
rameters of the Paris potential are determined by the fit to
pp phase shifts, and the correction due to the CSB is pr
ably not taken into account in the numbers given in Table
of @38#. Every model has its own weak points. For examp
the tensor force of the Bonn potential is usually very we
which is reflected in thee1 parameter and in the too attrac
tive behavior of the3P0 phase shift.~However, the recent
CD Bonn potential@9# fits the NN phase-shift parameter
in the nonrelativistic energies almost perfectly, wi
various possible corrections taken into account.! The weak
point of our model lies in the3P2 and 3D3 phase shifts at the
intermediate and higher energiesTlab5300–800 MeV. The
empirical 3P2 phase shift gradually decreases if we igno
the weak dispersionlike behavior. Our result, however,
creases too rapidly. Our3D3 phase shift is too attractive b
4° –6°.

We have examined the differential cross sections and
larizations for the elasticnp andpp scatterings, by incorpo-
rating the full Coulomb force in the particle basis. The im
provements from the previous FSS results given in Figs.
of @5# and Figs. 2, 3 of@7# are summarized as follows:~1! the
overestimation of thenp differential cross sections at th
forward angle atTlab5320 MeV is corrected,~2! the bump
structure of thenp differential cross sections arounduc.m.
5130° at energiesTlab5300–800 MeV has disappeare
~3! the overestimation of thepp differential cross sections a
uc.m.510° –30° at energiesTlab5140–400 MeV is im-
proved. However, the essential difficulties of FSS a
RGM-H, namely, the oscillatory behavior of thenp polariza-
tion around uc.m.;110° and that of thepp polarization
around the symmetric angleuc.m.590° for higher energies
Tlab>400 MeV are not resolved. Furthermore, thepp dif-
ferential cross sections show a deep dip at anglesuc.m.
<30° and>150° for Tlab>500 MeV. The low-energypp
cross sections atuc.m.590° for Tlab<100 MeV are still
overestimated. The differential cross section and polariza
plots of fss2 up toTlab<800 MeV are available upon re
quest.

ts
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TABLE IV. Comparison of thenp phase-shift parameters calculated in the isospin basis~in degrees! with
the phase shift analyses SP99@13# by Arndt and PWA93@37# by the Nijmegen group.

State Model Tlab (MeV)

25 50 100 150 200 300

fss2 80.98 63.03 43.21 30.51 21.00 7.02
3S1 SP99 80.26 62.10 42.22 29.69 20.51 7.07

PWA93 80.63 62.77 43.23 30.72 21.22 6.60

fss2 22.82 26.52 212.43 216.59 219.49 222.58
3D1 SP99 22.72 26.84 213.09 216.69 219.08 223.04

PWA93 22.80 26.43 212.23 216.48 219.71 224.14

fss2 1.68 1.91 2.21 2.68 3.33 4.97
e1 SP99 1.69 2.14 2.91 3.55 4.08 5.06

PWA93 1.79 2.11 2.42 2.75 3.13 4.03

fss2 26.70 210.26 214.82 218.38 221.57 227.32
1P1 SP99 26.71 29.98 214.47 218.29 221.56 226.62

PWA93 26.31 29.67 214.52 218.65 222.18 227.58

fss2 3.67 8.82 17.09 22.26 25.06 26.38
3D2 SP99 3.87 9.37 17.89 22.73 25.03 25.47

PWA93 3.71 8.97 17.28 22.13 24.51 25.45

fss2 52.26 41.94 27.51 16.91 8.41 24.86
1S0 SP99 51.30 41.88 28.24 16.95 7.74 25.49

PWA93 50.90 40.54 26.78 16.94 8.94 24.46

fss2 8.55 11.25 9.04 4.02 21.49 212.10
3P0 SP99 8.24 10.75 8.18 3.15 21.95 211.63

PWA93 8.13 10.70 8.46 3.69 21.44 211.47

fss2 25.23 28.68 213.45 217.27 220.77 227.26
3P1 SP99 24.75 28.15 213.52 217.92 221.64 228.06

PWA93 24.88 28.25 213.24 217.46 221.30 228.07

fss2 0.64 1.47 3.29 5.30 7.27 10.28
1D2 SP99 0.64 1.59 3.60 5.60 7.33 9.75

PWA93 0.68 1.73 3.90 5.79 7.29 9.69

fss2 2.58 6.26 12.43 15.92 17.36 16.97
3P2 SP99 2.70 5.93 10.92 14.11 16.05 17.83

PWA93 2.56 5.89 10.94 13.84 15.46 16.95

fss2 0.10 0.32 0.72 0.98 1.08 0.75
3F2 SP99 0.09 0.33 0.85 1.19 1.31 0.90

PWA93 0.09 0.30 0.76 1.12 1.33 1.19

fss2 20.82 21.77 22.85 23.22 23.24 22.94
e2 SP99 20.70 21.48 22.37 22.71 22.74 22.29

PWA93 20.76 21.63 22.58 22.80 22.70 22.30
os
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In order to find a possible reason for the unfavorable
cillations of our polarizations, we show in Fig. 3 the fiv
independentpp invariant amplitudes at the highest ener
Tlab5800 MeV. They are composed of the real and ima
nary parts ofg0 ~spin-independent central!, h0 (LS), hn

@(s1•n̂)(s2•n̂)-type tensor#, hk @(s1• k̂)(s2• k̂)-type ten-
sor#, and hP @(s1•P̂)(s2•P̂)-type tensor# invariant ampli-
01400
-

-

tudes.~See Ref.@7# for the notation.! In Fig. 3 the Coulomb
force is neglected in the predictions by the Paris potent
The result by SP99 is calculated using only the real parts
the empirical phase-shift parameters. If we recall that
polarization is given by the cross term contribution of t
central, LS, and tensor invariant amplitudes„i.e., P(u)
52 Im@(g01hn)(h0)* #; see Eq.~2.32! of @7#… we find that
2-12
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FIG. 3. The five invariant am-
plitudes for thepp scattering at
Tlab5 800 MeV, calculated by
fss2 ~solid curves!, the Paris po-
tential @39# ~dashed curves!, and
the empirical phase shifts SP9
@13# ~dotted curves!. The Cou-
lomb force is included in fss2
and SP99, but not in the Pari
potential.
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the disagreement in Imhn and Reh0 with the SP99 result
~dotted curves! is most serious. Since the oscillatory beha
ior of Im hn in SP99 also appears in Imhk and ImhP , it is
possible that this is an oscillation caused by theNN-DN
channel coupling through the one pion spin-spin and ten
forces. Figure 3 also shows the reason for the underest
tion of the differential cross sections atuc.m.<30°. Namely,
the imaginary part ofg0 is too small both for fss2 and th
Paris potential, and the real part ofg0 is strongly reduced in
fss2.

Another application of the invariant amplitudes is theteffr
prescription for calculating the s.p. potentials of the nucle
and hyperons in nuclear matter. It is discussed in@7# that the
s.p. potentials predicted by the model FSS in theG-matrix
calculation show fairly strong attractive behavior in the m
01400
-

or
a-

s

-

mentum intervalq155 – 20 fm21 for all the baryons. In par-
ticular, UN(q1) in the continuous prescription becomes a
most 280 MeV atq1510 fm21. This momentum interval
corresponds to the incident energy rangeTlab5500 MeV to
8 GeV in theNN scattering. Theteffr prescription is a con-
venient way to evaluate the s.p. potentials in the asympt
momentum region in terms of the spin-independent invari
amplitude at the forward angleg0(u50). Since the presen
model fss2 incorporates the momentum-dependent Bry
Scott term, the asymptotic behavior of the s.p. potentials
the large momentum region is improved. We can see thi
Fig. 4, where the s.p. potentials ofN, L, andS calculated in
the G-matrix approach are shown in the momentum ran
q150 –10 fm21. Figures 4~a! and 4~b! show the result in the
QTQ prescription, and Figs. 4~c! and 4~d! in the continuous
2-13
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FIG. 4. ~a! The momentum dependence of the s.p. potentialsUB(q1) predicted by theG-matrix calculation of fss2. TheQTQ prescription
is used for intermediate spectra. The real part ReUB(q1) is shown.~b! The same as~a! but for the imaginary part ImUB(q1). ~c! The same
as~a! but in the continuous prescription for intermediate spectra. The nucleon s.p. potentials obtained by theteffr prescription are also shown
with respect to theT matrices of fss2, the Paris potential@39#, and the empirical phase shifts SP99@13#. The momentum points selecte
correspond toTlab5100, 200, 400, 800, and 1600 MeV for theNN scattering. The partial waves up toJ<8 are included in fss2 and the Par
potential, andJ<7 in SP99.~d! The same as~c! but for the imaginary part ImUB(q1).
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choice for intermediate spectra. Figures 4~a! and 4~c! show
the real part ofUB(q1), and Figs. 4~b! and 4~d! the imagi-
nary part. In Figs. 4~c! and 4~d!, the solid curves for the
nucleon s.p. potential are compared with the results by
teffr prescription with respect to theT matrices of fss2, the
Paris potential@39#, and the empirical phase shifts SP99@13#.
The partial waves up toJ<8 are included in fss2 and th
Paris potential, andJ<7 in SP99. The momentum point
calculated correspond to the energiesTlab5100, 200, 400,
800, and 1600 MeV. We find that the real part ofUN(q1)
nicely reproduces the result of theG-matrix calculation even
at such a low energy asTlab5100 MeV. On the other hand
the imaginary part by theteffr prescription usually overesti
mates the exact result especially at the lower energies.

B. Deuteron properties and effective range parameters

The deuteron properties are calculated by solving the
RGM equation with respect to the relative wave functio
f 0(k) and f 2(k) in the momentum representation~see Ap-
pendix B!. The properly normalized wave functions in th
Schrödinger picture are notf l(k) but Fl5AN fl , whereN
represents the normalization kernel@4#. The S-wave and
D-wave wave functions in the coordinate representati
u(R) andw(R), are then obtained from the inverse Four
transform ofFl(k). This process is most easily carried out
expanding Fl(k) in a series of Yukawa function
A2/pk/(k21g j

2) in the momentum representation~see Ap-
pendix D in @9#!. We chooseg j5g1( j 21)g0 with g0
50.9 fm22 and j 51 –11. Theg is the S-matrix poleq5
01400
e

-
s

,
r

2ig, from which the deuteron energyed is most accurately
calculated by using the relativistic relation

Mn1M p2ed5AMn
22g21AM p

22g2. ~3.1!

Figure 5 shows the deuteron wave functions of fss2 in
coordinate and momentum representations, compared
those of the Bonn model-C potential@38# ~dotted curves!.3

We find that the difference between the two models is v
small. Table V compares various deuteron properties ca
lated in three different schemes. They are also compa
with the empirical values and the predictions by the Bo
model-C potential. The final value of the deuteron bindi
energy for fss2 ised52.2309 MeV. If we use the nonrela
tivistic energy expression4 ed5(g2/MN) for g2

50.053 761 57 fm22 in the full calculation, we obtained
52.2295 MeV and the difference is 1.4 keV. The diffe
ences within the deuteron parameters calculated in the t
different schemes are very small, except for the binding
ergy ed . In particular, the exchange Coulomb kernel due
the exact antisymmetrization at the quark level gives an
tractive effect to the binding energy and increasesed by 4.8
keV. This is even larger than the relativistic correction i

3The results of the Bonn model-C potential in Fig. 5 and in Ta
V are based on the parametrized deuteron wave functions give
Table C.4 of@38#.

4In Table V, the value ofed in the isospin basis is calculated usin
this nonrelativistic formula.
2-14
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FIG. 5. ~a! The deuteron wave
functions predicted by fss2~solid
curves! and by Bonn model-C
@38# in the coordinate representa
tion. ~b! The same as~a! but in the
momentum representation.
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cluded in Eq.~3.1!. The deuteronD-state probability isPD
55.49% in fss2, which is slightly smaller than 5.88% in FS
@4#. These values are rather close to the valuePD55.60%
obtained by the Bonn model-C potential@38#. The
asymptoticD/S state ratioh and the rms radius are very we
reproduced. On the other hand, the quadrupole momen
too small by about 5%–6%. There are some calculati
@41,42# which claim that the effect of the meson-exchan
currents on the dueteron quadrupole moment is as larg
DQd50.01 fm2. It is noteworthy that the Bonn model-C
almost reproduces the correct quadrupole moment, in spi
the fact that theD-state probability is very close to ours.~On
the other hand, the quadrupole moment of CD-Bonn@9# is
Qd50.270 fm2 with a smaller valuePD54.85%.! For the
magnetic moment, precise comparison with the experime
value requires a careful estimation of various correctio
arising from the meson-exchange currents and the relativ
effect of the current operator, etc.

Table VI lists theS- and P-wave effective range param
eters for theNN system, calculated in the three schem
Since the pion-Coulomb correction is not sufficient to e
plain the full CIB effect existing in thenp and pp 1S0
states, a simple prescription to multiply the flavor-sing
S-meson coupling constantf 1

S by a factor 0.9949 is adopte
to reduce the too large attraction of thepp central force.
~This prescription is applied only to the calculation in t
particle basis.! The underlined values of the scattering leng
parametera in Table VI indicate that they are fitted to th
experimental values. We find that the pion-Coulomb corr
tion in the np 1S0 state has a rather large effect ona. The
value a5223.76 fm in the particle basis changes toa5
227.38 fm due to the effect of the pion mass correction a
01400
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the explicit use of the neutron and proton masses. It furt
changes toa5227.87 fm due to the small effect of th
exchange Coulomb kernel. These changes however sh
be carefully reexamined by readjusting the binding energy
the deuteron in Table V. We did not carry out this progra
since the reduction off 1

S to fit these values to the empirica
valuea5223.74860.010 fm does not help much to repro
duce the CIB of thepp channel anyway. We have to say th
the improvement of theNN S-wave effective range param
eters in the particle basis calculation is not excellent, in sp
of the large effort expended in incorporating the pio
Coulomb correction in the microscopic RGM formalism
This shortcoming might be related to the insufficient descr
tion of the low-energypp differential cross sections aroun
ucm;90°. It was also pointed out by the Nijmegen grou
@48# that the Coulomb phase shift should be improved by
effects of two-photon exchange, vacuum polarization, a
magnetic moment interactions, in order to describe the1S0

phase shift precisely at energies less than 30 MeV. Th
effects are not incorporated in the present calculation. T
P-wave effective range parameters are also given in Ta
VI, in order to compare with a number of empirical predi
tions. The parameters of3P2 state are not given, since th
effective range expansion of this partial wave requires a c
rection term related to the accidentalp5 low-energy behavior
of the OPEP@49#.

C. G-matrix calculation

Figure 6 shows saturation curves calculated for ordin
nuclear matter with theQTQ prescription as well as the
continuous prescription for intermediate spectra. T
pre-

f.
TABLE V. Deuteron properties by fss2 in three different calculational schemes, compared with th
dictions of the Bonn model-C potential@38# and the experiment.

Isospin basis Particle basis Bonn C Expt. Re
Coulomb off Coulomb on

ed ~MeV! 2.2250 2.2261 2.2309 fitted 2.2246446 0.000046 @40#

PD (%) 5.490 5.490 5.494 5.60
h5AD /AS 0.02527 0.02527 0.02531 0.0266 0.02566 0.0004 @43#

rms ~fm! 1.9598 1.9599 1.9582 1.968 1.96356 0.0046 @40#

Qd ~fm2) 0.2696 0.2696 0.2694 0.2814 0.28606 0.0015 @44#

md (mN) 0.8485 0.8485 0.8485 0.8479 0.85742
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TABLE VI. Effective range parameters of fss2 for theNN interaction; the scattering lengtha, the
effective ranger, and the shape-dependent parameterP. For thepp andnn systems, the calculation in th
particle basis usesf 1

S30.9949, in order to incorporate the effect of the charge independence breaking. U
length is in fm2l 11 in a, fm22l 11 in r, and fm22l in P for the partial wavel. The experimental values ar
taken from@40,45–48,9#.

Isospin basis Particle basis Expt.

Coulomb off Coulomb on

a 223.76 217.80 27.810 27.806360.0026
pp 1S0 r 2.584 2.675 2.574 2.79460.0014

P 0.0393 0.0423 0.0334

a 22.740 22.876 23.004 24.8261.11, 22.7160.34
pp 3P0 r 3.867 3.831 3.312 7.1460.93, 3.861.1

P 20.014 20.0130 20.0125

a 1.740 1.821 2.112 1.7860.10, 1.9760.09
pp 3P1 r 28.196 28.159 28.269 27.8560.52, 28.2760.37

P 0.0009 0.0010 20.0063

a 223.76 218.04 218.05 218.560.3, 218.960.4
nn 1S0 r 2.584 2.672 2.672 2.7560.11

P 0.0393 0.0423 0.0423

a 22.740 22.881 22.881
nn 3P0 r 3.867 3.823 3.822

P 20.0140 20.0131 20.0131

a 1.740 1.823 1.823
nn 3P1 r 28.196 28.151 28.152

P 0.0009 0.0010 0.0010

a 223.76 227.38 227.87 223.74860.010
np 1S0 r 2.584 2.528 2.525 2.7560.05

P 0.0393 0.0324 0.0324

a 22.740 22.466 22.466
np 3P0 r 3.867 3.929 3.929

P 20.0140 20.0186 20.0186

a 5.399 5.400 5.395 5.42460.004
np 3S1 r 1.730 1.730 1.730 1.75960.005

P 20.010 20.0096 20.0097

a 2.824 2.826 2.826
np 1P1 r 26.294 26.299 26.299

P 20.0058 20.0058 20.0058

a 1.740 1.582 1.582
np 3P1 r 28.196 28.185 28.185

P 0.0009 0.0004 0.0004
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results produced by the Paris potential@39# and the Bonn B
potential@50# are also shown for comparison. Theq1 depen-
dence of the nucleon s.p. potentialsUN(q1) obtained with
the continuous choice is shown in Fig. 7 at three densi
r50.5r0 , 0.7r0, andr0, with r050.17 fm23 being the nor-
mal density.~These densities correspond tokF51.07, 1.2,
and 1.35 fm21, respectively.! For comparison, the results o
the Nijmegen soft-core potential NSC89@51# calculated by
01400
s

Schulzeet al. @52# are also shown. The corresponding figu
of UN(q1) predicted by our previous model FSS is given
Fig. 2 of @6#. We find that fss2 gives the nucleon s.p. pote
tial UN(q1) very similar to that of FSS except for the high
momentum regionq1>3 fm21. As is discussed at the end o
Sec. III A, the too attractive behavior of FSS in this mome
tum region is corrected in fss2, owing to the effect of t
momentum-dependent Bryan-Scott terms involved in
2-16
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RESONATING-GROUP STUDY OF BARYON-BARYON . . . PHYSICAL REVIEW C65 014002
S-meson and V-meson exchange EMEP’s. The satura
curve in Fig. 6 shows that this improvement of the s.p. p
tential in the high-momentum region has the favorable f
ture of moving the saturation density to the lower side,

FIG. 6. Nuclear matter saturation curves obtained for fss2
FSS, together with the results of the Paris potential@39# and the
Bonn model-B~Bonn-B! potential@38#. The choice of the interme
diate spectra is specified by ‘‘QTQ’’ and ‘‘cont.,’’ respectively. Th
result for the Bonn-B potential in the continuous choice is tak
from the nonrelativistic calculation in@50#.

FIG. 7. The nucleon s.p. potentialUN(q1) in nuclear matter in
the continuous choice for intermediate spectra. Predictions by
for three densitiesr50.5r0 , 0.7r0, and r0 are shown. Here the
normal densityr050.17 fm23 corresponds tokF51.35 fm21.
The dashed curves are the results achieved by Schulzeet al. @52#
with the Nijmegen soft-coreNN potential NSC89@51#.
01400
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long as the calculation is carried out with the continuo
prescription. On the other hand, the saturation curve with
QTQ prescription suffers a rather large change in the tran
tion from FSS to fss2. The prediction in fss2 with theQTQ
prescription is very similar to the prediction in Bon
model-B potential. It is interesting to note that our fss2 res
is rather close to Bonn model C for the deuteron proper
~see Table V!, while to model B for the nuclear saturatio
properties. The model B has a weaker tensor force t
model C, which is a favorable feature for the nuclear satu
tion properties.

We should keep in mind that the short-range part of o
quark model is mainly described by the quark-exchan
mechanism. The nonlocal character of this part is entir
different from the usual V-meson-exchange picture in
standard meson-exchange models. In spite of this large
ference the saturation point of our quark model does
deviate much from the Coester band, which indicates t
our quark model has similar saturation properties with ot
realistic meson-exchange potentials.

By using theG-matrix solution of fss2, we can calculat
the Sheerbaum factorSB , which represents the strength o
the s.p. spin-orbit potential defined through@25#

UB
ls~r!52

p

2
SB

1

r

dr~r !

dr
l •s. ~3.2!

The explicit expression ofSB(q1) ~which actually contains
the momentum dependence! in terms of theG matrix is
given in Eq. ~50! of @25#. Here we only considerSB
5SB(q150), as the measure of the s.p. spin-orbit strength
the bound states. The nucleon Sheerbaum factor obtaine
fss2 is SN5242.4 MeV fm5 at kF51.35 fm21, which is
very close to the FSS valueSN5241.3 MeV fm5 @25#.
However, the origin of the s.p. spin-orbit force is rather d
ferent between fss2 and FSS. In FSS the whole stren
comes from the FBLS term, while in fss2 the S-meso
EMEP yields appreciable contribution. This can be seen fr
the simple formula given in Eq.~52! of @25#, which shows
that in the Born approximation the FBLS contribution to the
Scheerbaum factor is determined only by a single stren
factor aSx3mudc

2b5. The value of this factor is
29.35 MeV fm5 for fss2, which is 3/5 of the value of FSS
48.91 MeV fm5. This different origin of the s.p. spin-orbi
force influences the Scheerbaum factor of theL hyperon,
which will be discussed in a forthcoming paper.

IV. SUMMARY

The present-day strangeness nuclear physics is rap
progressing in revealing very rich phenomena of the stro
interaction both in the few-baryon systems and in vario
types of infinite nuclear matter. It is, therefore, very impo
tant to construct a realistic model of the baryon-baryon
teraction, which can simultaneously reproduce all the av
able experimental data for the nucleon-nucleon (NN) and
hyperon-nucleon (YN) interactions. The present framewor
incorporating both the quark and mesonic degrees of fr
dom into the model space explicitly, is versatile enough

d
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predict more general baryon-baryon interactions for the co
plete baryon octet (B8), since the color SU3 and the spin-
flavor SU6 symmetries are exactly treated in the unambig
ous framework of the resonating-group method. The mo
is based on the natural picture that the quarks and gluons
the most economical ingredients in the short-range reg
while the meson-exchange processes are dominant in
medium- and long-range part of the interaction.

Since our quark model describes the short-range repul
~which is observed in many channels of the baryon-bar
interactions! in terms of the nonlocality of the quark
exchange kernel, the effect of the short-range correlatio
rather moderate, compared with the standard mes
exchange potentials. This can be seen in the magnitude o
Born amplitudes used in solving the Lippmann-Schwing
RGM ~LS-RGM @7#! and the Bethe-Goldstone equations@6#,
and also in the fairly reasonable reproduction of the sing
particle ~s.p.! spin-orbit strengths calculated in the Born a
proximation@25#. In @7#, we have seen that the Born amp
tudes of the quark model have almost the same orde
magnitude as the empirical scattering amplitudes obtaine
solving the LS-RGM equation. The s.p. spin-orbit streng
SN predicted by theG-matrix solution of our quark model is
almost equal to that in the Born approximation@25#, in con-
trast to the standard potential models like the Reid soft-c
potential with the strong short-range repulsive core@53#.
Since the Born amplitudes in the quark model reflect rat
faithfully the characteristic features of the LS-RGM solutio
it is easy to find missing ingredients that impair the mod

In this study we upgrade our previous model FSS@3,4# in
two respects. The first one is the renovation of the effec
meson-exchange potentials~EMEPs! acting between quarks
We extend our model to include not only the leading terms
the scalar and pseudoscalar mesons but also the vector
sons with all possible standard terms usually used in
nonrelativistic one-boson-exchange potentials~OBEPs!. The
second point is the exact incorporation of the pion-Coulo
correction in the particle basis. This includes the exact tre
ment of the threshold energies and the Coulomb excha
kernel, as well as the separate evaluation of the spin-fla
factors of the charged- and neutral-pion exchange EME
This improvement is necessary in order to study the effec
the charge symmetry breaking in theNN and YN interac-
tions. These two renovations require various mathemat
techniques which are specifically developed in Refs.@7# and
@12# for these purposes. Appendix A in@7# discusses a con
venient transformation formula of the RGM kernel, whic
directly gives the Born kernel for the momentum-depend
EMEPs at the quark level. A procedure to avoid the diffic
ties of threshold energies in the RGM formalism is given
@12#. The new model fss2 with these features has acqu
much freedom to describe theNN andYN interactions more
accurately than FSS. Three different types of calculations
carried out using fss2. The first one is the calculation in
isospin basis, which is used for determining the model
rameters and also for theG-matrix calculation. The secon
and third calculations are done in the particle basis with
without the Coulomb force. When the Coulomb force is
cluded, the standard technique by Vincent and Phatak@36# is
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employed to solve the LS-RGM equation in the moment
representation.

This paper discusses theNN system. The incorporation o
the momentum-dependent Bryan-Scott term@8# and the
vector-meson EMEPs improves the quantitative agreemen
the experimental data to a large extent. The momentu
dependent Bryan-Scott term, included in the scalar- a
vector-meson EMEPs, is favorable in extending our qua
model description of theNN scattering at the nonrelativisti
energies to the higher energies up toTlab5800 MeV and
also in describing reasonable asymptotic behavior of the
potentials in the high-momentum region. For vector meso
we avoid the criticism of the double counting@28# with the
Fermi-Breit contribution by choosing small coupling co
stants around 1 especially for the flavor-singlet coupling c
stantsf 1

Ve and f 1
Vm . Since we have also chosenf 8

Ve50, the
LS contribution from the vector mesons is almost negligib
For ther- and K* -meson contributions, the selected val
f 8

Vm;2.6 through the parameter search is a standard
usually assumed in OBEPs. Although the (f 8

Vm)2 term usu-
ally gives the isovector spin-spin, tensor, and quadratic s
orbit (QLS) terms, we only retain theQLS term with the
L2-type spin-spin term. This choice at the quark level
ratherad hoc, but favorable since we do not want to intro
duce too strong cancellation between the one-pion ten
force and ther-meson tensor force in the3S1-3D1 coupling
term of the NN interaction. Since the (3q) cluster wave
function yields a large cutoff effect for the singular part
the one-pion-exchange potential, we introduce a reduc
factor cd for the spin-spin contact term and multiply th
short-range tensor term of the Fermi-Breit interaction
about factor 3. With these phenomenological ingredients,
accuracy of the model in theNN sector has now becom
almost comparable to that of the OBEP models. For the
ergies above the pion threshold, our single-channel calc
tion of the NN scattering seems to have given nearly sa
factory results, which are visible in the good reproduction
the differential cross sections up toTlab5800 MeV. The po-
larizations for thenp andpp scattering have some unfavo
able oscillations in the energy rangeTlab5400–800 MeV,
but the improvement is a future work which definitely r
quires the explicit introduction of the inelastic channels su
as theDN channel.

TheG-matrix calculation using fss2 shows that our pre
ous results given by FSS is qualitatively pertinent. In partic
lar, the nucleon s.p. potentials in symmetric nuclear ma
are very similar to the predictions of other realisticNN po-
tentials. The nuclear saturation curve predicted by fss2
sembles the curve given by the Bonn model-B potential. I
interesting to note that the deuteron properties of fss2
rather close to those of model C, which is known to hav
larger D-state probability than model B. Since fss2 repr
duces theNN phase shifts at nonrelativistic energies qu
well, the difference of the off-shell effect between our qua
model and the other OBEP models does not seem to ap
so prominently, as far as the nuclear saturation curve is c
cerned.

In a forthcoming paper, we will discuss theYN interac-
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TABLE VII. The spatial part of the exchange Born amplitudes defined by Eq.~A.4! of @7#. The polyno-

mial part ũ(k,q) of the two-body force in Eq.~A3! is also shown. The coefficientsa, e, D52pq/(12t2),
and the vectorsrT 5(V/A2mb), sT 5(A/A2mb) are calculated from Eq.~A14! of @7# by settingx51 and
m53/2 for each interaction typeT. The factorD is nonzero only for theT5D6 types andeÞ0 only for the
T5S, S8 types. The basic spatial functionsf T

V(u) with T5C, CD, LS, TD are defined by Eq.~A10!.

V ũ(k,q) M1T
V (qf ,qi)

C 1 f T
C(u)

SS k2 2m2f T
CD(u)

C(1) q2 3

4b2 S12
a

2m
1

1

3
b2sT

2D f T
C~u!2m2S e

4m D 2

f T
CD~u!2m2

e

4m
b2~rT •sT! f T

LS~u!

SS(1) n2
2

m2

2b2 S12
a

2mDfTCD~u!1
m2

2
sT

2f T
LS~u!2S D

2m2D 2

n2f T
TD~u!

T Y2m(k) 2 f T
TD(u) Y2m(rT)

QLS Y2m(n) 2
m2

4
f T

LS~u! Y2m~sT!1
1

4b2 S 12
a

2m D f T
TD~u! Y2m~rT!2S D

2m2D 2

f T
TD~u! Y2m~n!

LS in Smb

m D2 D

2
f T

LS~u!in
a
c-
n

c
ce

P

ud
e
is

el

t
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r

e
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-
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ve
tion given by fss2. Further extension to more generalB8B8
interactions with the strangenessS522, 23, and24 will
also be shown. Since all the model parameters are alre
determined in theS50 and21 sectors, these are all predi
tions which should be confronted with the future experime
tal data.
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APPENDIX A: EMEP EXCHANGE KERNEL

In this appendix we extend the derivation of the EME
exchange kernel developed in Appendixes A and B in@7#, to
deal with various interaction pieces of the V mesons, incl
ing the LS and QLS terms. The Coulomb exchange kern
and internal-energy contribution from EMEP are also d
cussed.

The systematic evaluation of the quark-exchange kern
carried out by assuming a two-body interaction

Ui j 5(
V

aVwi j
V8 ui j

V9 , ~A1!

wherewi j
V8 represents the spin-flavor part~the color part is

wi j
C51 for EMEP’s! andui j

V9 the spatial part. Four differen
types of the spin-flavor factorsV5C, SS, T, LS are re-
quired for the most general EMEP’s up to the V meso
wC51, wSS5(s1•s2), wT5@s1s2#m

(2) , and wLS5(s1

1s2)/2. For the flavor-octet mesons, these spin opera
should be multiplied with (l il j ), where l represents the
Gell-Mann matrix in the flavor SU3 space. The spin-flavo
factorsXxT

V are defined by Eq.~A.3! of @7# for eachwi j
V with
01400
dy

-

i-
,

-
l
-

is

:

rs

the quark-exchange numberx50, 1 and the five interaction
typesT5E, S, S8, D1 , D2 @54#. The noncentral factors ar
defined by the reduced matrix elements for the tensor op
tors of ranks 1 and 2. For example, the tensor operato
expressed as

S12~k,k!53~s1•k!~s2•k!2~s1•s2!k2

53A10†@s1s2# (2)Y2~k!‡(0), ~A2!

whereY2m(k)5A4p/15k2Y2m( k̂). The reduced matrix ele
ments of the spin operators at the baryon level are assu
to be 1. For the spatial part, we also need three extra ty
V5C(1), SS(1), QLS listed in Table VII. This table shows
the polynomial functionsũ(k,q) accompanied with the
Yukawa function in the momentum representation throug

u~k,q!5
4p

k21m2
ũ~k,q! ~A3!

and the spatial part of the Born kernelM1T
V (qf ,qi) defined in

Eq. ~A.4! of @7# explicitly. The formulas ~A.18!–~A.21!
given in @7# greatly simplify the procedure to obtain thes
results. The spatial functionsf T

V(u) are explicitly given be-
low.

In Eq. ~A1! the coefficientsaV and the correspondenc
among V, V8, and V9 are tabulated in Table VIII. The
EMEP contribution of the exchange Born kernel in Eq.~2.4!
is calculated through

MV~qf ,qi !O V~qf ,qi !5aV(T
X1T

V8 M1T
V9~qf ,qi !.

~A4!

The final result is as follows. For the central part, we ha
V5C, C(1), SS, SS(1) types with
2-19
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MC(V
S)~qf ,qi !5S 2g2

f e
2 D(T

X1T
C f T

C~u!,

MC(1)(V
S)~qf ,qi !52g2S g2

3 f e
2D(T

X1T
C f T

C(1)~u!,

MSS(V
PS)~qf ,qi !5S f 2

1

3 S m

mp1
D 2

f m
2 2

3

D (T
X1T

SSf T
CD~u!,

MSS(1)(
S
V)~qf ,qi !5S g2

1

3
g4

2 f m
2 8

3
g2
D (T

X1T
SSf T

SS(1)~u!.

~A5!

Here g5(m/2mud). In these central terms, the spin-flav
factorsX1E

C,SS should be replaced with2X1S8
C,SS, because of

the subtraction of the internal-energy contribution in t
prior form. The tensor parts of the PS and V mesons
given by

MT(V
PS)~qf ,qi !5S f 2S m

mp1
D 2

2 f m
2

D 1

3m2 ( 8
TÞE

X1T
T f T

TD~u!,

~A6!

where the V-meson contribution is also given for comple
ness although this term is not used in fss2. The EMEPQLS
contribution reads

MQLS(V
S)~qf ,qi !5S g2

1

3
g4

2 f m
2 8

3
g2
D @X1D1

T f D1

QLS~u!

2X1D2

T f D2

QLS~u!#, ~A7!

but also contains the tensor contribution

MQT(V
S)~qf ,qi !5S g2

1

3
g4

2 f m
2 8

3
g2
D 1

4m2 ( 8
TÞE

X1T
T f T

QT~u!,

~A8!

which we callV5QT term. In Eqs.~A7! and~A8!, theQLS
contribution from the S meson is also shown for comple
01400
re

-

-

ness, although this term is negligibly small in fss2. TheLS
term has the contribution both from the S meson and th
meson:

MLS(V
S)~qf ,qi !52S g2~bg!2

2 f mf e4b2g D @X1D1

LS f D1

LS ~u!

2X1D2

LS f D2

LS ~u!#. ~A9!

For the tensor andQLS tensor terms in Eqs.~A6! and~A8!,
each interaction term withT5S, S8, D1 , D2 types should
be rearranged toV5T, T8, T9 types in Eq.~2.6!, according
to the rules given in Eq.~B.13! or ~B.17! of @7#.

The EMEP spatial functionsf T
V(u) used here are define

by extending f T
CN(u), f T

SN(u), and f T
TN(u) given in Eq.

~B.18! of @7#. The following four basic functions are used
Table VII:5

5Note thatf T
C(u)52 f T

CN(u) and f T
CD(u)53 f T

SN(u) except for the
difference ofcd , but f T

TD(u) here contains different numerical fac
tors from those off T

TN(u).

TABLE VIII. The coefficients aV and the correspondenc
amongV, V8, V9 in the two-body force Eq.~A1!. The columnb
implies the meson types andg5(m/2mud) with m being the meson
mass.

b V aV
wV8 uV9

C 2g2 wC uC

C(1)
g2

2g2

m2

wC uC(1)

S SS(1)
g2

g4

3m4

wSS uSS(1)

QLS
g2 g4

3m4
wT uQLS

LS
2g2

2g2

m2

wLS uLS

PS SS 2f 2
1

3mp1
2

wSS uSS

T
2f 2

1

3mp1
2

wT uT

C f e
2 wC uC

C(1)
fe

2
6g2

m2

wC uC(1)

SS
2fm

2
2

3m2

wSS uSS

V SS(1)
2fm

2
8g2

3m4

wSS uSS(1)

T
fm
2

1

3m2

wT uT

QLS
2fm

2
8g2

3m4

wT uQLS

LS
2fmfe

8g

m2

wLS uLS
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f T
C~u!54pS 3

2D 3/2

\cb2

¦

expH 2
1

3
b2~q21k2!J ỸaE

~0!

S 8

11D
1/2

expH 2
2

11
b2F4

3
~q21k2!2k•qG J ỸaSS 1

A11
buq1ku D

S 1

2D 1/2

expH 2
1

3
b2S q21

1

4
k2D J ỸaD1

S 1

2
buku D

S 2

3D 1/2

expH 2
1

3
b2k2J ỸaD2

S 1

A3
buqu D

for T55
E,

S,

D1 ,

D2 ,

f T
CD~u!5 f T

C~u! with ỸaT~r!→ỸaT~r!2
1

2aT
,

f T
LS~u!5 f T

C~u! with ỸaT~r!→Z̃aT
(1)~r!,

f T
TD~u!524pS 3

2D 3/2

\cb25
S 8

11D
5/2

expH 2
2

11
b2F4

3
~q21k2!2k•qG J Z̃aS

D S 1

A11
buq1ku D

S 1

2D 5/2

expH 2
1

3
b2S q21

1

4
k2D J Z̃aD1

D S 1

2
buku D

S 2

3D 5/2

expH 2
1

3
b2k2J Z̃aD2

D S 1

A3
buqu D

for T5H S,

D1 ,

D2 .

~A10!

The S8-type spatial functionf S8
V (u) is obtained fromf S

V(u) by takingk→2k. There is noE-type possible for the noncentra
terms. The coefficientsaT are given byaS5aS85(11/8)aE , aD1

52aE , and aD2
5(3/2)aE , with aE5(mb)2/25(1/2)

3(mcb/\)2. For the spin-spin part of the one-pion-exchange EMEP,ỸaT(r)2(1/2aT) should be modified intoỸaT(r)

2cd (1/2aT). The modified Yukawa functionsỸa(r), Z̃a
(1)(r), andZ̃a(r) are essentially given by the error function of th

imaginary argument:

Ỹa~r!5ea2r2E
0

1

e2a/t21r2t2dt, Z̃a
(1)~r!5

1

2a
ea2r2E

0

1

e2a/t21r2t2t2dt, Z̃D
a~r!5ea2r2E

0

1

e2a/t21r2t2t4dt. ~A11!

The other spatial functions appearing in Eqs.~A5!–~A9! are defined by using the four spatial functions in Eq.~A10!:

f T
C(1)~u!53 3

8aE5
1

5

8

1

2

0

6 1S 1

2mD 25
0

1

4
~k1q!2

q2

k2
6 4 f T

C~u!2S 3

16D
25

0

1

0

0
6 f T

CD~u!2
3

16
b25

0

1

4
~k1q!2

0

0
6 f T

LS~u!

for T55
E,

S,

D1 ,

D2 ,

f T
SS(1)~u!52

1

4aE5
1

5

8

1

2

0

6 f T
CD~u!2S 1

2m2D 25
0

0

1

1
6 n2f T

TD~u!1
1

2m25
0

1

4
~k1q!2

q2

k2
6 f T

LS~u! for T55
E,

S,

D1 ,

D2 ,
014002-21
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f D6

QLS~u!52
1

4 S 1

mD 4

f D6

TD ~u!,

f T
QT~u!55

1

2aE

5

8
f S

TD~u!2 f S
LS~u!

1

2aE

1

2
f D1

TD ~u!2 f D2

LS ~u!

2 f D1

LS ~u!

for T5H S,

D1,

D2 .

~A12!

For the numerical calculation, it is convenient to inclu
the direct term also in the above expressions. This can

achieved in Eqs.~A5!–~A9!, if we further addX0D1

V8 f D
V9(u)

term, in addition to theX1D1

V8 f 1D1

V9 (u) term. The direct-type

spatial functionsf D
V(u) are given by

f D
C~u!5

4p

k21m2
e2(mk)2/3 ~A13!

and

f D
V~u!5 f D

C~u!

¦

2
k2

m2

21

1

3aE

S 1

mD 2S 1

9
q21

1

2b2D
S 1

mD 4S 1

9
n21

1

3b2k2D
1

9 S 1

mD 4

2
1

3aE

for V55
CD,

TD,

LS,

C~1!,

SS~1!,

QLS,

QT.

~A14!

The Coulomb exchange kernel is very similar to the col
Coulombic term of the FB interaction, as is discussed in S
II D. Only difference is~1! aS→a5(e2/\c), ~2! the defini-
tion of the Coulomb spin-flavor factor

XxT
CL5CxK zxjU(

i , j

T
QiQjUjL , ~A15!

and~3! the modification of the spatial functionh̃0(r) in Eq.
~B.5! of @7#, by the effect of the Coulomb cutoff atRC . The
last modification is achieved by

h̃0~r!→h̃0~r!2g~x,r!,

g~x,r!5e2(r21x2)E
0

1

er2t2cos~2rxt!dt, ~A16!
01400
be

-
c.

with x5(1/A2)(RC /b), (2/A11)(RC /b), (1/2)(RC /b), and
(1/A3)(RC /b) for the T5E, S or S8, D1 , and D2 types,
respectively. The functiong(x,r) is expressed as

g~x,r!5
Ap

2r
e2r2

Im erf~x1 ir!

5
Ap

2r
e2x2

@sin~2rx!Rew~r1 ix !

1cos~2rx!Im w~r1 ix !#, ~A17!

where w(z)5e2z2
erfc(2 iz) with erfc(z)512erf(z). We

note the simple relationship

g~0,r!5
Ap

2r
Im w~r!5h̃0~r!,

g~x,0!5e2x2
. ~A18!

For example, theT5E type spatial function is given by
f E

CL(u)5A2/paxmudc
2(4/3)f (u)(12e2(RC /b)2/2), since

h̃0(0)51 @cf. Eq. ~2.18!#.
The EMEP contribution to the internal energies of t

octet baryons originates only from the central force. It rea

Eint
S 5mg2X0E

C F S 211
3g2

4aE
DYaE

~0!1
g2

2
YaE

D ~0!G
2mg2X0E

SS g4

12aE
YaE

D ~0!,

Eint
PS5

m

3
f 2S m

mp1
D 2

X0E
SSYaE

D ~0!,

Eint
V 5m fe

2X0E
C F S 11

9g2

4aE
DYaE

~0!1
g2

2
YaE

D ~0!G
1m fm

2 X0E
SS2

3S 11
g2

aE
DYaE

D ~0!, ~A19!

where the values of the modified Yukawa functions at
origin are given by Ya(0)51/Apa2eaefrc(Aa) and
Ya

D(0)5Ya(0)21/(2aApa). The g2u2YaE

D (0) contribu-

tions in Eq.~A19!, which correspond to thek2/4 momentum-
dependent Bryan-Scott term, are neglected in the present
culation ~see Sec. II. C!.

APPENDIX B: DEUTERON WAVE FUNCTIONS

The relative wave functions for the deuteron in the m
mentum representation, f l(q);1/(g21q2)Tl ,2(q,2 ig,
2ed), satisfy the homogeneous equation

~g21p2! f l~p!52
2m

\2

4p

~2p!3 (
l 8

E
0

`

q2dq

3Vll 8~p,q,2ed! f l 8~q!, ~B1!

whereVll 8(p,q,2ed) is the partial-wave components of Eq
~2.8!. Since f l(q) are the relative wave functions of th
2-22
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TABLE IX. The coefficientsCj andD j in Eq. ~B6! for the parametrized deuteron wave functions. T
model is fss2, calculated in the particle basis with the full Coulomb exchange kernel. The numb
parameters isn511, but the lastCj and the last threeD j ~the parenthesized values! should be calculated from
Eqs.~C.7! and ~C.8! of @38#.

j g j Cj (fm21/2) D j (fm21/2)

1 0.23186542 0.88177292969 0.2231736601831021

2 1.13186542 20.22759285797 20.47989721024
3 2.03186542 20.8737808299931021 0.70358390560
4 2.93186542 20.192141452343102 20.196028489763102

5 3.83186542 0.190196611233103 0.162456885803103

6 4.73186542 20.100795456193104 20.753422033603103

7 5.63186542 0.283440690463104 0.199896759893104

8 6.53186542 20.448196434163104 20.306666246473104

9 7.43186542 0.404629563213104 (0.270470418243104)
10 8.33186542 20.195711004063104 (20.127796053353104)
11 9.23186542 (0.394777139463103) (0.251273209563103)
th

ic

-

ll
RGM equation, one needs to renormalize them through
square root of the normalization kernel@4#. This can be
achieved by calculating

Fl~q!5q fl~q!1q(
N

RNl~q,b2/3!
gN

A11gN11
JNl ,

~B2!

whereRNl(r ,n) represents the radial part of the harmon
oscillator wave function with the width parametern, and
gN5(1/3)N12 with N50, 2, 4, . . . are theeigenvalues of
the exchange normalization kernel for the3E states of the
NN system. The harmonic-oscillator componentsJNl of
f l(q) are calculated from

JNl5E
0

`

q2dqRNl~q,b2/3! f l~q!. ~B3!

The deuteron wave functionsul(r ) in the coordinate repre
sentation @customarily written asu(r )5u0(r ) and w(r )
5u2(r ) for the S-wave andD-wave states, respectively# are
obtained from the Fourier transformation

ul~r !5 i lA2

pE0

`

dq~qr ! j l~qr !Fl~q!. ~B4!
ys

ys

g.

01400
e

-

In particular,f l(q) are normalized such that

(
l
E

0

`

dr@ul~r !#25(
l
E

0

`

dq@Fl~q!#251. ~B5!

We follow the standard ansatz@55,38,9# for the simple
parametrization of the deuteron wave functions:

Fl~q!5(
j 51

n H Cj

DJ
JA2

p

q

q21g j
2

for H l 50,

l 52,

ul~r !55 (
j 51

n

Cje
2g j r

(
j 51

n

D je
2g j rS 11

3

g j r
1

3

~g j r !2D for H l 50,

l 52.

~B6!

The range parametersg j are chosen asg j5g1( j 21)g0
with g050.9 fm21 and n511. The coefficientsCj ( j
51 –10) andD j ( j 51 –8) with g50.231 865 42 fm21 are
given in Table IX for the deuteron wave functions in the fu
calculation. The other coefficients, namely, the lastCj and
the last threeD j , should be calculated from Eqs.~C.7! and
~C.8! of @38#.
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