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The baryon-baryon interaction for the complete baryon octet is investigated in a unified framework of the
resonating-group method which employs the spin-flavog 8ldve functions with explicit color degrees of
freedom. The interaction Hamiltonian is composed of the phenomenological confinement potential, the color
Fermi-Breit interaction with explicit flavor symmetry breaking, and the effective meson-exchange potentials of
scalar, pseudoscalar, and vector-meson types, acting between quarks. For the scalar- and vector-meson ex-
changes, the momentum-dependent higher-order terms are incorporated to reduce the attractive effect of the
central interaction at higher energies. The single-particle potentials of the octet baryons, predicted by the
G-matrix calculation, now have proper repulsive behavior in the momentum regies—20 fm 1. A mod-
erate contribution of the spin-orbit interaction from the scalar-meson exchange is also included. As to the
vector mesons, a dominant contribution is the quadratic spin-orbit force generated frprméson exchange.

This paper discusses the nucleon-nucleon interaction Tp4e 800 MeV. The nucleon-nucleon phase shifts

at the nonrelativistic energies up Tg,,=350 MeV are greatly improved, and now have attained the accuracy
almost comparable to that of one-boson-exchange potentials. The deuteron properties and the low-energy
observables of the nucleon-nucleon interaction are examined in the particle basis by incorporating the isospin
symmetry breaking through the mass difference of the neutral and charged pions and the Coulomb effect as
well. The nuclear saturation properties and the single-particle potential of the nucleon in symmetric nuclear
matter are examined through tBematrix calculation which uses the quark-exchange kernel directly.
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. INTRODUCTION spin-flavor SY supermultiplet 56. The flavor symmetry
breaking in the strangeness systems is explicitly introduced
One of the purposes of studying the baryon-baryon interthrough the quark-mass dependence of the Hamiltonian and
action in the quark model is to obtain the most accuratehe well-established baryon and meson masses. An advan-
understanding of the fundamental strong interaction in aage of introducing the EMEP at the quark level lies in the
natural picture, in which the short-range part of the interacstringent relationship of the flavor dependence appearing in
tion is relevantly described by the quark-gluon degree othe various interaction pieces. Accurate description of the
freedom and the medium- and long-range parts of the inteNN interaction diminishes the ambiguity of model param-
action are dominated by the meson-exchange processes. Wgrs, which is crucial since the present experimental data for
have recently achieved a simultaneous and realistic descrighe Y N interaction are still very scarce.
tion of the nucleon-nucleonNN) and hyperon-nucleon In this study we first upgrade our moddl—-5] by incor-
(YN) interactions in the resonating-group meth@®GM)  porating such interaction pieces provided by scalar and vec-
for the spin-flavor Si quark mode[1-5]. In this approach tor mesons as the spin-orbitL$), quadratic spin-orbit
the effective quark-quarkq(@) interaction is built by com- (QLS), and the momentum-dependent Bryan-Scott terms.
bining a phenomenological quark-confining potential and thantroduction of these pieces to the EMEP is primarily moti-
colored version of the Fermi-BreitFB) interaction with  vated by the insufficient description of the experimental data
minimum effective meson-exchange potentid$/EP’s) of by previous models. First, some discrepancy of bl
scalar and pseudoscalar meson nonets directly coupled phase shifts in previous models requires the introduction of
quarks. Owing to the explicit introduction of quark degreesvector mesons. For example, th#®, phase shift in the
of freedom, this framework is versatile enough to extend oumodel FSS[4] is more attractive than experiment by 10°
vast knowledge of th&IN interaction to theY N, YY inter-  aroundT,,;,~300 MeV. This implies that the one-pion ten-
actions, and more generally ByBg interactions between the sor force is too strong in our previous models. In the stan-
complete octet Bg) baryons, by utilizing the fact that the dard one-boson-exchange potenti@®BEP’Y, the strong
nucleons and hyperons belong to a common class of thene-pion tensor force is partially weakened by theneson
tensor force. We use th@LS force of vector mesons from
the reasons given below. Furthermore, some phase shifts of
*Present address: Japan Meteorological Agency, Chiyoda-ku Tasther partial waves deviate from the empirical ones by a
kyo 100, Japan. couple of degrees. Another improvement is required as for
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the central attraction. Th&-matrix calculation using the [1-5]. Since the model parameters are all fixed, we next
quark-exchange kernel explicitly6] shows that energy- extend fss2 to the more gene@dBg interactions: namely,
independent attraction, dominated bymeson exchange, is the interactions in the strangeneds —2 sector A A, EN,
unrealistic, since in our previous models the single particl& A andX3), S=—3 sector EA andEY), andS=—4
(s.p) potentials in symmetric nuclear matter show a stronglysector €Z). The result of theY N interaction and these
attractive behavior in the momentum regiory;  further extensions will be discussed in a forthcoming paper.
=5-20 fm 1. We have shown ii7] that this flaw can be It would be appropriate to discuss briefly the main differ-
removed by introducing the momentum-dependent higherence between our model and other models developed by sev-
order term of scalar-meson exchange potentials, the impoeral groups. A pedagogical description of the quark cluster
tance of which was first pointed out by Bryan and S¢8tt  model is found in the review articlgl4] by the Tokyo Uni-
In the higher-energy region, thes term of the scalar mesons versity group. A complete microscopical calculation incorpo-
also makes an appreciable contribution, in addition to thigating EMEP’s acting between quarks is also carried out by
momentum-dependent term. the Salamanca grodfd5,1€] for the NN interaction and the
Another purpose of the present investigation is to examindeijing group [17—-19 for the NN and YN interactions.
the charge symmetry breakitt@SB) and the Coulomb effect These models incorporate chiral-symmetric effective meson-
from the viewpoint of the quark model. It is well known that exchange potentials generated from the scalar and pseudo-
the 1S, phase shift of thepp interaction is slightly less at- scalar meson exchanges between quarks. Since they use
tractive than that of thap interaction. This charge indepen- rather small values of the quark-gluon coupling constant
dence breakingCIB) is partially explained by the so-called ~0.5 and the harmonic-oscillator width parameter
pion-Coulomb correctiorf9], which implies (1) the small ~0.5 fm, their NN interaction is not accurate enough to
mass difference of the neutron and the prot@,the mass describe the low partial wavess(wave andP wave satis-
difference of the charged pion and the neutral pion, @)d factorily. In the recent Salamanca modeD], the channel
the Coulomb effect. Furthermore, it was claimed long agocoupling effect of theAN and AA configurations is explic-
that the Ap interaction should be more attractive than theitly incorporated in order to reproduce ti8, and 'S, phase
An interaction, since the binding energy of thé @round  shifts simultaneously. TheS component in these models is
state of {He is fairly larger than that of H [10]. The CSB  too small, since they do not take into account the “antisym-
energy of 350 keV in these isodoublet hypernuclei is muchmetric” LS term contained in the FB interaction. In the
larger than the~100 keV CSB effect seen in théH-*He  Beijing model[21], a rather largd.S contribution from the
binding energy difference after the correction of igCou-  scalar-meson exchange is assumed. Our model uses a com-
lomb energy in3He is made. The early version of the plete FB interaction with explicit flavor symmetry breaking,
Nijmegen potentia[11] already focused on this CSB in the together with the moderate contribution of th& component
OBEP including the pion-Coulomb correction and the correcfrom the scalar mesons. Furthermore, this is the first attempt
threshold energies of thAN-XN coupling in the particle to introduce the vector mesons in a full microscopic way.
basis. The RGM calculation using the particle basis is rather In the next section we first recapitulate the formulation of
cumbersome, since all the spin-flavor factors of the quarkthe (39)-(3q) Lippmann-Schwinger RGMLS-RGM) [7]
exchange kernel should be recalculated by properly incorpcand theG-matrix calculation[6] using the quark-exchange
rating thez components of the isospin quantum numberskernel directly. Section II B introduces a new EMEP Hamil-
Furthermore, there is a problem inherent in the RGM formaltonian for fss2 in the momentum representation. This serves
ism: the internal energies of the clusters are usually not propto clarify the difference between the present model fss2 and
erly reproduced when a unique model Hamiltonian is usedthe previous two models, FSS and RGMB+5]. The spa-
We have given i12] a convenient prescription to avoid this tial part of the quark-exchange kernel in the EMEP sector are
problem without spoiling the exact antisymmetrization effectgiven in Appendix A. The model parameters determined in
of the Pauli principle. For the Coulomb effect, we calculatethe isospin basis are discussed in Sec. Il C. Short comments
the full exchange kernel without any approximation. Theare given in Sec. |l D with respect to the special treatment in
pion-Coulomb correction and the correct treatment of thehe particle basis, including the Coulomb force in the mo-
threshold energies in the particle basis are found to be vergnentum representation. Section Il presents results and dis-
important for the detailed description of the low-energy ob-cussions. We first discuss in Sec. Il A thN phase shifts,
servables in theN-AN coupled-channel problem, which differential cross sections, and the polarization for the ener-
we will discuss in the next paper. giesT|,,<=800 MeV. Special attention is paid to the effect of
With these renovations of EMEP’s and the framework, weinelastic channels, which is not taken into account in the
have redetermined model parameters in the isospin basis fwesent framework. The five invariant amplitudes for e
fit the most recent result of theN phase shiftd13], the  scattering are also examined at the highest enérgy
deuteron binding energy, thtS, NN scattering length, and =800 MeV, in order to clarify the behavior of the s.p. po-
the low-energyY N total cross section data. This model is tentials in the asymptotic momentum region and to find a
named fss2 since it is based on our previous model FS8lue to the missing ingredients in the present framework. The
[3-5]. The agreement of the phase-shift parameters in thdeuteron properties and the effective-range parameters of the
NN sector is greatly improved. The model fss2 shares th&N system are discussed in Sec. Ill B. A simple parametri-
good reproduction of th¥ N scattering data and the essential zation of the deuteron wave functions is given in Appendix
features of theAN-XN coupling with our previous models B. The G-matrix calculation using fss2 is presented in Sec.

014002-2



RESONATING-GROUP STUDY OF BARYON-BARYON . .. PHYSICAL REVIEW 65 014002

[l C. This includes the discussion of the nuclear saturatiorexchange phasg22]. In the systems of identical particles

curve, the density dependence of the s.p. potentials, and theith a;=a, and1,=1,, P becomes redundant since it is

Scheerbaum factor of the s.p. spin-orbit strength in symmetiniquely determined by the total isosgims P=(—1)?'17".

ric nuclear matter. The final section is devoted to a summaryThese are the channel specification scheme in the isospin
basis. In the particle basis, necessary modification should be

Il. EORMULATION made for the flavor degree of freedom. The relative energy
_ _ _ g, in the channelr is related to the total enerdgy of the
A. Lippmann-Schwinger formalism for (3q)-(3q) RGM system in the center-of-mags.m) system throughe ,=E
and the G-matrix equation —EM™. HereEl'= Eg‘lt+ Eg‘; with a=a,a,. In Eq. (2.3 the

A new version of our quark model employs the Hamil- sym overQ for the direct term implies various contributions
tonian which includes the interactions generated from thQ)f interaction types for the meson-exchange potentia|sy while
scalar (S), pseudoscalar(PS, and vector (V) meson- g specifies the meson species. On the other h@ntbr the
exchange potentials acting between quarks: exchange kernel/\/lga,(R,R’) involves not only the ex-

6 2 6 change kinetic-energ{K) term but also various pieces of the
H=> (micz+ p—'—TG +> Uf]?f+ UiFJ-B FB interaction, as well as several components of EMEP. The
i=1 2m i< RGM equation(2.2) is solved in the Lippmann-Schwinger
formalism developed ifi7] (which we call LS-RGM. In this
+> Uﬁﬁ+2 UiF]?SG+Z Ui\fﬁ)- (2.0 f(r)]rmalism, we first calculate the basic Born kernel defined
B B B throug

Hereuﬁf is a confinement potential with a quadratic power Miar(qf 0 ;E):<eiQf'R|Gaa,(R,R’;E)leiQi'R’>

law, andUf? is the full FB interaction with explicit quark-

mass dependence. It is important to note that this confine- ZE E M 28 (.G

ment potential gives a vanishing contribution to the baryon- 7 o e«d 5

baryon interaction, since we assume s(d harmonic

oscillator wave functions with a common width parameier Q Q

for the internal cluster wave functions. Also, all the contri- +% M e (9,4 O (0, G1)
butions from the FB interaction are generated from the N

quark-exchange diagrams, since we assume color-singlet —&q M. (0, ), (2.9
cluster wave functions. These features are all explained in ) ) ) ] _

our previous publicationg§4]. When the calculations are Wheree, is the relative energy in the final chanr@t the
made in the particle basis, the Coulomb force is also introPrior form). Each component of the Born kernel, &8.4), is
duced at the quark level. The RGM equation for the parity-9iven in terms of the transferred momentuw= ¢ —¢; and
projected relative wave functiog?(R) is derived from the ~the local momentung=(q;+¢;)/2. In Eq.(2.4) the space-

variational principle{ SW|E—H|W¥)=0, and it read$4] spin invariants) = O (qy ;) are given by0 =1 and
42 ( P ﬂ ots=in-s, 0'=in.s), 0 =in.sIp,,
Eqt | == "R
2uq\ R X R with
— ! , I ™ ’ 1 _ 1
; f IR Caw (RREE)x (R, (2.2 n=[Gxq], S=5(o1tey), s )25(0'1_0'2)1
whereqaa,(R,R’;E) is composed qf various pieces of the 1+ 04 0,
interaction kernels as well as the direct potentials of EMEP: PJZT (2.5
G,.(RR;E)=8(R-R")>, >, VQ’B,D(R) For the tensor an@L S parts, it would be convenient to take
g o four natural operators defined by
+> M2 (RR)—e, MY, (RR). OT=Su(kk), OT'=Sp(q0),
[0}
2.3 OT'=8ka), 0%S=Synn), (26

The subscripte stands for a set of quantum numbers of Where SlZ(a’b):(S/_z)[("l'a)(‘TZ'b)“L("’g'a)("l'b?]
the channel wave functionja=[1/2(11),,1/2(11),] — (01-0)(a-b). The direct Born kerneM . (qf.q) in
SSYIl,;P, where 1/2(11a specifies a member dg; the  Ed.(2.4) is explicitly given in Eq.(2.14). The exchange Born
spin value 1/2, the Syquantum number in the Elliott nota- kerneIMfﬁ),(qf ,g;) is given in Appendix B of 7] for the FB
tion (\u)=(11), anda=Y| the flavor label[N=1(1/2), interaction and in Appendix A for the EMEP. The LS-RGM
A=00, =01 and E=-1(1/2)], and P is the flavor- equation is given by
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B. Effective meson-exchange potentials for fss2

1
Tw(p,q,E)—Vya(p,q,E)Jr% (2w)§f dk V(P E) The EMEP at the quark level is most easily formulated in
the momentum representation by using second-order pertur-
xﬂ T, (KqE) 2.7 bation theory with respect to the quark-baryon vertices. We
K2 k/23—k2+i8 pal KO E), : employ the following qq interaction, which is obtained
through the nonrelativistic reduction of the one-boson-
where the “quasipotential’V,,,(p,g;E) or more generally —€xchange amplitudes in the paramefer (m/2m,q) (where
V,45(p.G;E) is calculated from m is the exchanged meson mass ang is the up-down
quark masp

1
EV— rmB . _1\S B i _ 2
(2.8 k?+m? 2mZ,  2mé,

After the standard procedure of the partial-wave 1 Ao
decompositiort,the LS-RGM equatior2.7) is solved by the ~ UPq;,q)=—ffT—; W[(al- K)(05-K)—(1—cy)
+m

Noyes-Kowalski metho@23,24]. The singularity ak=Kkg is m.+

avoided by separating the momentum region into two pieces. 1

The intermediatd integral over Gsk<Kkj is carried out us- X (M2 + k)= (o - ,,2)},
ing the Gauss-Legendre 15-point quadrature formula and the 3

integral overkg<k<< using the Gauss-Legendre 30-point

quadrature formula through the mappikg-kz+tan(m(1 v

+x)/4). U™ (g ,q) =
The LS-RGM equation(2.7) is straightforwardly ex-

tended to theG-matrix equation by a trivial replacement of

the free propergator with the ratio of the angle-averaged X

Pauli operator and the energy denominator:

3 2
n 2lf‘sfef( 1+ d
m

) —fm mt
zmﬁd (mudm)2

1
(o “)(Uz'n)_(l_cqss)§n2(0'1' 0'2)}

2
G,u(P.aK,0)=V,,(p,q;E) —(fmfveefm*)mmS]. (2.11
1
+> —(27T)3f d k V,z(p.kE) Herek=0q;—q, g=(1/2)(g;+q), and the quark-meson cou-
b pling constants are expressed in the operator form in the
Qp(k,K) flavor space26,27. For example, the product of the two
sk Kiw) Gpo(k,gK,w). (2.9  different coupling-constant operataysindf are expressed as
Since a detailed description of this formalism is already gff= glfl_ ~ for [smglet mesons,
given in[6], there is no need to repeat other equations. The gsfs2aNa(i)Na(]j) octet mesons,
formula to calculate the Scheerbaum factor for the s.p. spin- (2.12

orbit potential by using th&-matrix solution is also given in
[25]. We only repeat how we deal with the energy depen
dence of the quasipotential, . (p,g;E) in the G-matrix
equation(2.9). The total energy of the two interacting par-
ticles in the nuclear medium is not conserved. Since we onl
need the diagonab matrices fqr cglculatmg S.p. potentials f o =1,c080+ fgsinONg, f,=—f,sin0+fsco80Ng,
and the nuclear-matter properties in the lowest-order Brueck- 7 K (213
ner theory, we simply use '

where\4(i) represents the Gell-Mann matrix for partigle
For the realistic description, the meson mixing between the
flavor singlet and octet mesons is very important. This im-
)plies using

instead off,; and fghg in Eq. (2.12 for the PS mesons.
Similar transformation is also applied to the S-meson and
V-meson coupling constants. The $yarameters of the
EMEP coupling constants are therefdrg fg, and 6. The
both inV,,(p,q;E) andV,4(p,k;E) in Eq.(2.9). The mean- S-meson exchange EMEP in Eg.11) involves not only the
ing and the adequacy of this procedure are discussgtRin attractive leading term, but also the momentum-deperrqfent
by using a simple model. term and thelL S term. The PS-meson exchange operator is
the same as before, but the parametgers introduced only
for the one-pion exchange in order to reduce the very strong
e use the Gauss-Legendre 20-point quadrature formula to car§ffect of the delta-function-type contact term involved in the
out the numerical integration for the partial-wave decomposition ofSpin-spin interaction. The casg=1 corresponds to the full
Eq. (2.9). expression, whilecs=0 corresponds to the case with no

I &
e, =EN—EM+ Z—qu, (2.10
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spin-spin contact term. The V-meson exchange potential imeson-exchange potentials between quarks is not permis-
composed of the electric-type term, the magnetic-type ternsible, since the masses of S mesons and V mesons are more
and the cross term. In the electric term, the central forcghan twice as heavy as the quark mass,g
generated by thew-meson-exchange potential is usually ~300-400 MeV. Since the parameteris not small, the
most important, and it also includes th&type momentum-  nponrelativistic reduction is not justified. Also, the very strong
dependent term. As to the introduction of the vector-mesors-meson central attraction is just a replacement of the real
EMEP to the quark model, some discussion already adprocesses of the 2 exchange, therp exchange, the\ ex-

dressed the problem of double counting, especially with the;jtations, and so forth. The VV mesons are supposed to behave
strong short-range repulsion originating from the time com-

ponent of thew-meson exchang28]. We avoid this double as _composite pa_rticles of th_eﬁ) _pairs. Furthermore, the
counting for the short-range repulsion and th® force by choice of terms in Eq(2.1]) is quitead hocand phenom-

simply choosing appropriate coupling constants for vecto€nelogical. We should consider E.11) as an effective
mesons, i.e.f, fY™~1, andf¥=0. The magnetic term is interaction to simulate the residual interaction between

usually important for the isovectgr meson and yields the quarks, which is not taken into account by the FB interac-

spin-spin, tensor, an@LS terms in the standard OBEP. The 10N , ,
choice in Eq.(2.1]) is to keep only theQLS term with the The calculation of the full Born kemel in qu.4) for
partial contribution of the spin-spin term proportionallty, ~ €ach term of Eq(2.11) becomes rather involved, if we use
the reason for which is discussed below. Finally, the croséhe standard technique of calculating the exchange kernel in
term between the electric and magnetic coupling constantdie generator-coordinate kerf@CM kerne). This becomes
leads to the.S force for theqq interaction. The antisymmet- €specially tedious when ttegg interaction involves the non-
ric LS (LS(‘)) force with S= (o, — 0,)/2 is not generated staticq2 dependence and the second-order term as$ in the
from EMEP’s at the quark level, because the flavor operatoRLS force. We have developed {I7] a new technique to
in Eq. (2.12 is the Gell-Mann matrix and also because thecalculate the Born kernel directly from the two-body inter-
mass difference between the up-down and strange quadction in the momentum representation. In this technique,
masses is ignored in E¢R.11). there is no need to calculate the GCM kernel. Since the final
We should keep in mind that these EMEP’s, except for theexpression is rather lengthy for the exchange kernel, it is
pions, are by no means a theoretical consequence of the realegated to Appendix A. Here we only show the direct term,
meson-exchange processes taking place between quarkghich is particularly useful to see the main characteristics of
First of all, the static approximation used to derive thethe EMEP introduced in the present model:

M3 (ar,q)=9° .

—(bk)2/3) +C
k2+m? € | %op

3 3 .
X5S in.s— —— XL )in~S(‘)],

9
—1+—( 2+—) 3 sins
23meg?| T 207) |7 23meg?” O T 2(3myg? O

1 4r 1
MB‘?qf,qi):—f?m; e Xo., <al~k)(az-k>—<1—c5><m2+k2>§<al~ay},
Mg (c.q) = e B0 (192 X§, |14 = (q2+%> —(fM2———— X3
b Y K4+ m? 0D 2(3myq)? 2b (3mygm)2~ 0+
n2 K2
X[ (op-n)(0-N)—(1—Cqysd 3"‘; (0'1'(72)+W[0'1Xk]'[0'2><k]
_ofmpe_ 2 yiS ingopfmpe_ 2 xS o) (2.14
3mygm” P+ 3mygm” P+ ' '

Here XgD+ represents the spin-flavor factors related to thepoint oscillation terms accompanied with thé terms, ap-
spin-flavor operators in Eq2.11). The singlet-octet meson pearing in the S- and V-meson contributions. For @kS
mixing, Eq. (2.13, etc., are not explicitly shown because force, the same effect appears as the tensor force having the
of the typographical reason. The Gaussian factoform[oXK]-[o,XKk]. The magnitude of this term is about
exp{—(bk)?/3} appearing in Eq(2.14 represents the form one-third if we compare this with the strength from the origi-
factor effect of the (8)° cluster wave functions. The finite nal tensor term appearing at the levelqaf interaction. The

size effect of the baryons also appears as the constant zeradvantage of using th@LS force in Eqg.(2.11), instead of
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the tensor force, is that we can avoid thep cancellation of We determine these parameters by fitting the most recent
the tensor force for the coupling term of tBandD waves.  result of the phase shift analysis SH49] for the np scat-

The €, parameter of théNN interaction is very sensitive to tering with the partial waved<2 and the incident energies
this coupling strength. Ti1ab=350 MeV, under the constraint of the deuteron binding
energy and theé'S, NN scattering length, as well as to re-
produce the available data for the low-enelgM total cross
sections. The result is shown in Table I. The parameters of
We have four quark-model parameters: the harmonicthe previous model FSS are also shown for comparison. The

oscillator width parameteb for the (3q) clusters, the up- y2? value used in the parameter search is defined through
down quark mass, 4, the strength of the quark-gluon cou-

pling constantag, and the mass ratio of the strange to up- 1 N 172
down quarks\ = (mg/m, ). A reasonable range of the values 2= = ) (853 s8PH28 (2.16
for these parameters in the present framework bis N =1
=0.5-0.6 fm, m,y=300-400 MeVt?, ag~2, and A\
=1.2-1.7. Note that we are dealing with the constituentvhere no experimental error bars are employed because the
quark model with explicit mesonic degrees of freedom. Theenergy-dependent solution of the phase-shift analysis does
size of the system determined from thegj3wave function ~ Not give them. In Eq(2.16) the sum overi=1-N is with
with b [the rms radius of the @ system is equal tb] is respect to various angular momenta and energies, and the
related to the quark distribution, which determines the rang@ixing parameterg, ande, are also included in the unit of
in which the effect of the FB interaction plays an essentiadegrees. The valugy? therefore gives some measure for the
role through the quark-exchange kernel. The internal ener@veraged deviation of the calculated phase shifts from the
gies of the clusters should be calculated from the sameémpirical values. Using the parameter set in Table I, we have
Hamiltonian as used in the two-baryon system and contaiebtained/x?=0.656° for thenp scattering. The best solu-
not only the quark contribution, but also various EMEP con-tion in our previous models i§y?~3° in FSS. Since the
tributions. The value ofag is naturally correlated withb, present model fss2 is a renovated version of FSS, we sum-
m,q, and other EMEP parameters. This implies thatin ~ marize in the following only the changes and new points of
our framework is a parameter which controls the relativefss2, in comparison with the model FSS.
importance of the quark contribution and the EMEP contri- (1) In the original expression of the meson-exchange po-
bution, and has very little to do with the real quark-gluontentials between quarks, the momentum-dependent Bryan-
coupling constant of QCD. Scott term appears in the combinationgdt k?/4 for the S

For the EMEP part, we have three paramefgrsfg, and  meson and §—k?/4 for the V meson. We find that these
¢ for each of the S, PS, @ector-electrig, and Vm(vector-  k?/4 terms (usually replaced byk?=—m?) play a rather
magnetig terms. It is convenient to use the coupling con-characterless role in making the whole interaction slightly
stants at the baryon level, in order to compare our result witliepulsive. With these terms, the energy dependence of the
the predictions by other OBEP models. These are related ¢S, and 3S; phase shifts becomes too strong to keep the
the coupling constants at the quark level used in Eg41)  value ofb in the reasonable rang€lhe value ofb turns out

C. Determination of parameters

and(2.14) through a simple relationship to be too small, aboub~0.4 fm to compensate the strong
energy dependend@Ne therefore drop all thedé/4 terms
£5=3g fS=g §PS_¢ fPSIEf in the present calculation.
1es Temyes 1L T8 g ey (2) We ignore theQL S force from the S mesons, since it

is very weak. The S-meson EMEP direct term therefore con-
5 sists of the leading term with—1 in Eq. (2.14), the
fYe=3f%, f¥=fg, fYM=fP, fy"=—fD. momentum-dependent Bryan-Scott term, and Itt&term.
3 (For the YN interaction, etc., a smalLS{™) contribution
(2.19 emerges at the baryon level from the flavor-octet S megons.
This LS term yields an appreciable contribution at medium
Through this replacement, the leading term for each mesoand higher energies, which consequently reduces the value of
in Eqg. (2.14) precisely coincides with that of the OBEP with b from the previous value=0.6 fm to a smaller value
Gaussian form factors. In the present framework, the~0.56 fm.
S-meson masses are also considered to be free parameterq3) The reduction of the spin-spin contact term for the PS
within some appropriate ranges. We further introduce threenesons is introduced only for the pion with the smallest
extra parameterscs the strength factor for the delta- mass. For the other heavier PS mesons, we assume the full
function-type spin-spin contact term of the one-pion-strength factorcs=1. The reduction from 1 for the pion
exchange potentiaglOPEB, cqss the strength factor for the improves the fit of theNN 1p, phase shift to a great extent.
spin-spin term of th&@L S force, andc,r the strength factor  (Otherwise, the repulsion at higher energies is insufficient for
for the tensor term of the FB interaction. These parameterthis partial wave. We introducecs only for pion, since the
are introduced to improve the fit of tHéN phase shifts to effect of the present (@ -cluster folding corresponds to a
the empirical data, the values of which are fixed throughoutery low value of the cutoff mass ~800-900 MeV for the
in the whole calculations of thBgBg interactions. pion form factor in the OBEP. It is well known that such a
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TABLE I. Quark-model parameters, S\parameters of the EMEPs, S-meson masses, and some reduction
factorscy, etc., for the models fss2 and FSS. Theneson in fss2 is treated in the two-pole approximation,

for whichm; (B1) andm, (B,) are shown below the table.

b (fm) myg (MeV/c?) as A=mg/myq
fss2 0.5562 400 1.9759 1.5512
FSS 0.616 360 2.1742 1.526
f3 f3 6° 632
fss2 3.48002 0.94459 33.3295° 55.826°
FSS 2.89138 1.07509 27.78° 65°
£Ps £PS gPS
fss2 - 0.26748 - (no n,7")
FSS 0.21426 0.26994 —23°
fie fa° fym fam P
fss2 1.050 0 1.000 2.577
(MeVi/c?) m, Mg ms m,
fss2 800 1250 846 936
FSS 800 1250 970 1145
Cs Cqss CqT €
fss2 0.4756 0.6352 3.139
FSS 0.381 - -

393 is used only fors N(I =3/2).

byV=35.264° (ideal mixing and two-polep meson withm; (B3;) = 664.56 MeVE? (0.34687 and
m, (B,) = 912.772 MeVt? (0.48747 [30] are used.

°For theNN systemm;=720 MeV/c? is used.

dOnly for 7, otherwise 1.

€The enhancement factor for the Fermi-Breit tensor term.

low value of A converts even the sign of the medium-rangem;=846 MeV/c? for the other strangeness systelisee
part of the OPEP if the full strength of the contact term isfootnote ¢ in Table )l

introduced. The factor;<1 also reduces the very strong  (4) As is discussed at the end of the preceding subsection,
repulsion generated from the one-pion spin-spin contact terffhe present model fss2 is tM@LS dominant model. This
for the Swave states of theIN system. In the present frame- jmjies that we use th@LS force to reduce the too strong
work, this repulsion is almost 300 MeV @;=1 is assumed.  opgp tensor force, instead of the tensor force itself. The

Furthermore, the value df, has a strong influence on the 1 ain reason for this choice is that theN mixing parameter
internal energies of single baryons. It reduces the very large

o : . €, is very difficult to reproduce if the cancellation of the one
ff?emlglt)tlétrlol’?e(l);i:‘\hge Séotrl) tiégng(rim/jr/r: 3 r;tatshsedgﬁaee?gteé pion tensor force and the-meson tensor force is too strong
S u

value. (Otherwise, we obtaim ~1.) If we do not introduce for the Swave andD-wave coupling. Another question is

’ how thisQL S force is incorporated into the model. We find
cs and the parameters,ss, Cqr discussed below, the/y? that theQL S spin-spin term?(o4.- o) in Eq. (2,11 plays a
value cannot be improved by more than 1.5°. The contribu;c b? | pin-spin ter tl':rl f_‘t"z ¢ thanN h P )r/fft
tion of » and %’ mesons was necessary in the previous mog:avorable Troie in improving the nit o phase shifts.

els in order to make théS central force relatively more 1HIS term corresponds to thea(- o)L* term in the
repulsive than théS central force. In the present framework, Hamada-Johnstone potentj@b]. Since the full introduction

it turns out that the introduction of thesg mesons is not of thls.term results in too vigorous be'haV|or, we introduce a
convenient for the subtle balance of the central and tensdiduction factorcyss, the value of which turns out around
forces, especially in thé’P,-3F, coupling. We therefore Cqss™0.6. The two-pole formula for thp-meson-exchange
take out all thesey-meson contributions. The well-known Potential, introduced i}30], is found to give a favorable
too-strong repulsion of th&N S central force from the result. We further find that the short-range tensor force is still
color-magnetic interaction of the FB interactiph7,2( is  too weak. We avoid this difficulty simply by increasing the
remedied by assuming two different masses for the isovectastrength of the tensor term of the FB interaction with the
8 meson, i.e.,ms=720 MeV/c? for the NN system and factorcyr. The valuecyr~3 seems to be reasonable. If we
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carry out the parameter search with=1, the value of/x? try to find the parameter set which gives the maximum
cannot be improved by more than 1.3°-1.0°, mainly due testrength of the& N(1 =1/2) central attraction. In practice, we
the disagreement of;. We should note, however, that the assumey2/masx®m,c?=440 MeV [x=(fi/my4cb) is the
introduction of the V mesons is a rather minor change fronratio of the Compton wavelength of the up-down quarks to
our previous models. With the exception if"=2.577, the bl asin RGM-F and FSSand adjust the value ah; for the
V-meson coupling constants in Table I are around 1, which is’ N interaction, independently of the value in the casélbf
less than half of the coupling constants in the standardtéraction. If we use a smaller value fons, the ZN(I
OBEP. In particular, the isospin-depende@force from the =~ 3/2) _So state becomes more attractive and (|

— 3 H
p meson is exactly zero, sintf%‘3 is fixed at zero. The short- 1/2) °S, state becomes less attractive. .
L : L ; : (7) Another important change from the previous models
range repulsion in theNN interaction is still mainly de-

M i 3
scribed by the color-magnetic term of the FB interaction. TheFSS and RGM-H is the relative strength of th&, and S,

. . attraction in theAN interaction. The maximum phase-shift
dominant effect of the V. mesons is almost solely thevalues of the!S, and 3S; states in these models are about
p-mesonQLS force, which is the reason we call fss2 the 46° and 16° respectivelly aroumd ~200 MeVic. The big
QLS dominant mode[. . . difference of almost 30° is known to be unfavorable for the

(5) The following f|ve. parameters in Table | are directly description of thes-shell A hypernuclei. Detailed few-body
tr_e Iatgg 10 thE; ref’“’%‘;cggn of the :jow-er'&er\gy\l Ctrr? SS stehc- calculations for these hypernuclei have recently been carried
|on|s. f_E]mS .muld)’ » Oa, My, andm, . frT;]ong em, e 5ut by several grougs82-34 by using various effectiv N
angle of the singlet-octet meson mixidd of the S mesons IS interactions. In these effectiveN interactions, the effect of
used to control the relative strength of the central attractloqheEN channel coupling is usually renormalized. These cal-
of thel\rl]N z;n.deN mter.act(ljons.f!t vx;}as lfound befofd] that, culations imply that the phase-shift difference of a little less
once t 30 'Sh etermln_e tof Igdil e_ov/v-en(;rg&p Ic_ross than 10° seems to be most appropriate. We follow this sug-
section data, t e+attract|on ort (I._3 2) channe IS too gestion and adjust the strength of th&l attraction such that
strong and the& " p total cross sections are overestimated.y, o 15, and 3S, phase-shift difference is less than 10° and
we therefore use a larger value f6F (which is denoted by low-energyA p cross sections are correctly reproduced.
63) only for the=N(1=3/2) channel in order to reduce the \ye can use tha-meson mass to adjust this phase-shift dif-
attraction, which is the same prescription employed in thggrance. Namely, ifn, is smaller, then the\N S, phase

previous model$3,4. . shift becomes more attractive and tA8, phase shift be-
(6) The largest ambiguity for determining the parameters.gmes less attractive.

related to theY N interaction lies in the strength of the central In order to give an outline of the framework, we summa-

attraction in the%N(l =1/2) °S, channel[7]. If the phase- (ize the difference of FSS and fss2 in Table 11, with respect to
shift rise of the”S, state is less than 30°, the low-energy the meson species and interaction types of EMEP’s included
2 "p elastic total cross section becomes too small. If thisy the models. Table IIl shows the quark and EMEP contri-
attraction is too strong, as in RGM{B], the *S, phase shift putions to the baryon mass difference betwelnand
shows a sudden decrease from 180° to 60°-90°, and thg (AENfA:EiEt_ Ei,{‘“) and the mass difference betwe&n
behavior of theA p total cross sections at tieN threshold andS (AE, y= Eizm_ gint

. ), calculated in the isospin basis.
becomes a round peak, instead of the cusp Stf“‘m‘ﬂa We note that various meson contributions largely cancel each
Furthermore, the strength of the central attraction plays

h h ibution i hly gi h k
crucial role even for the odd-parity state. THEN(I Bther and the net contribution is roughly given by the quar

e A contribution from the color-magnetic term of the FB interac-
=1/2) 3P, phase shift is attractive due to the exchangetiOn g

kinetic-energy kernel: i.e., the effect of the Pauli principle

[22]. This attraction is reinforced by theS force in the

diagonal channel and also by th&(~) force acting between D. Calculation in the particle basis

this channel and théP, channel. This channel coupling also  |n this subsection we discuss some new features required
takes place between tieN(l=1/2) channel and thAN in the calculation in the particle basis. Three different types
channel. This channel coupling is mainly determined by thesf calculations are carried out in this paper.

strength of theL S force, which is directly related to the (1) Calculation in the isospin basis.

magnitude ofas, but also considerably influenced by the  (2) Calculation in the particle basis without the Coulomb
strength of the central attraction in tBeN(I =1/2) channel. force.

In [7], we have clarified that the central attraction of the (3) Calculation in the particle basis with the Coulomb
previous models RGM-F and FSS is so strong that theorce.

SN(I=1/2) 3P, resonance is moved to theN 'P; chan- For theNN interaction, the calculation in the particle ba-
nel. The consequence of this behavior is the strong enhanceis is rather straightforward. We use the empirical proton and
ment of theA p total cross sections in the cusp region. On the

contrary, theP-wave coupling in the model RGM-H is less

strong, and the agreement of tAe total cross sections t0  27his value corresponds to assuming tNeA mass difference
some available experimental data is much befteee Fig. 293.3 MeV only by the FB interaction, as seen from Table IlI. If we
10(a) of [4] and Table Il of[7].] Here we assume that the use theag value about 1.3 times larger, the transition of Brevave
resonance stays in the originéN(l =1/2) 3P, channel and resonance to thaN P, channel takes place in the present model.
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TABLE II. The interaction types and the meson species intro- 1
duced in the EMEPs of the models fss2 and FSSepresents the Uﬁ"=Qine2rf®(RC—rij), (2.17
central force,SSthe spin-spin forceT the tensor force, an@LS "
the quadratic spin-orbit force&C(BS) implies that the momentum- where® is the Heaviside step function arg , Qi —2/3 for

dependent Bryan-Scott term is also included for the central force,[.he up quark and- 1/3 for the down and strange quarks. The

The tensor term of the vector mesons is switched off at the qualr%oulomb contribution to the internal energies becomes zero

level. .. . .
for the proton an& *, etc. More explicitly, this can be given

Model Meson type Interaction type Mesons by

s C(BY+LS € S* 8 K oL CL\/E ) 1/Rc)|?
fss2 PS SSHT ™ K Eint =Xoe \ aXMuaC™ 1=exp = 5| | |

Vv C(BS+LS+QLS  w, b, p, K* (2.18
FSS S C « S, 6, wherea = (e?/f.c)~1/137 is the hyperfine coupling constant

PS SSHT 7' m, K and the direct spin-flavor factor is expressed X§:

=2i_14Zi(Zi—1/3)/2—1/3] in terms of the total chargg
of theith baryon. The basic Born kernel for the direct Cou-

neutron  masses M,=938.2723 MeV and M, lomb term reads

=939.565 MeV) and evaluate spin-flavor factors for the
charged pion and the neutral pion separately in the isospin 2 kR
representation. The other spin-flavor factors for heavier me-  MS"(q; ,qi)=2122e227-rR(2:(k—sinT
sons and the FB interaction are generated in the simple isos- Re

pin relations. The Coulomb force is introduced at the quar it

level by using the quark charges. The exchange Coulom

kernel has the same structure as the color-Coulombic term of k=g~ i, (2.19
the FB interaction.

Only complexity arises when we solve the LS-RGM which corresponds to the direct Coulomb potential

equation in the momentum representation. The standard tech-

nigue by Vincent and Phatdl86] is employed to solve the 1 1

Lippmann-Schwinger equation in the momentum representa- VD(r)=leZe2F[erf( V) - E{erf[\/;(r+ Re)l
tion, including the Coulomb force. This technique requires
introducing a cutoff radiufkc for the Coulomb interaction.

In the RGM formalism, wechave to introduce this cutoff at +erf[\/§(r—Rc)]}]. (2.20
the quark level, in order to avoid violating the Pauli prin-
ciple. The two-body Coulomb force assumed in the presentjere erf(x):(2/\/E)fée*t2dt stands for the error function
calculation is therefore written as and y= uv=(3/4b%). The exchange Coulomb kernel is also

o slightly modified from the exact Coulomb kernel. This is

_TABLE lll. Quark and EMEP contributions to thN-A mass  iven in Appendix A, together with other EMEP kernels. The
difference QEy_,) and theA - X mass difference AE,-s) in ya1ue R. should be sufficiently large to be free from any
MgV, calculated in the isospin basis. The model is fssZ..The MaS] | lear effect beyon®&c . Then the finalS matrix is calcu-
ratio of strange (o up-down quarks=(ms/m,q)=15512, is em- 10§ from the condition that the wave function obtained by
ployed to calculate the quark contributionAr , _y . The details of solving the Lippmann-Schwinger equation with the modified

the EMEP contribution tA\E, _s are given in a forthcoming paper. Coulomb f . hi d h .
See Table | for the two-pol@-meson parameters and the other oulomb force Is smoothly connected to the asymptotic

2
e—(bk)2/3

EMEP parameters. Coulomb wave function. We tak&:=9 fm, although a
much smaller value seems to be sufficient. Note that, even in
B m; (MeV/c?) E (MeV) thenp andnn systems, we have small contributions from the
Coulomb interaction through the exchange Coulomb kernel.
Quark 293.33 The difference between the calculatiof®@ and (3) for the
o 720 —164.70 system of chargeless patrticles implies this effect.
AEN_»a T 138.039 71.56
® 781.940 —34.36 Ill. RESULTS AND DISCUSSIONS
é 1019.413 -0.19
o Two pole 80.59 A. NN result

Figures 1a)—1(i) compare thenp phase shifts and the

Expt 2933 Total 246.23 mixing anglese; predicted by fss2 with the recent phase-
AE, s Quark (\=1.5512) 69.49 shift analysis SP99 by Arndi.3]. The parameter search and
EMEP - 7.98 the calculation of phase-shift parameters in this subsection
are all carried out in the isospin basis. For comparison, the
Expt. 77.44 Total 77.47

previous results by FSS are also shown with the dotted
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30 ———— Table IV tabulates the values of phase-shift parameters in
o5 the energy rangf,,=25-300 MeV, in comparison with
] phase-shift analyses SP923] and PWA93[37] by the
20 . Nijmegen group. The partial waves only uple 2 are con-
o sidered. If we calculate thg? values Eq(2.16) using these
15 numbers, we obtain/y>=0.59° and 0.60° for SP99 and

PWA93, respectively. We have also calculated the corre-
spondingx? values by using the phase-shift parameters of
OBEP, Paris, and Bonn potentials given in Table 5.23&.
We obtain x?=1.10° (1.08°), 1.41° (1.39°), and
1.32° (1.22°) for OBEP, Paris, and Bonn, respectively, if
SP99(PWA93) is used. The reason we get such results is as
follows. In the meson-exchange models, the accuracy of the
low-energy phase shifts is less than 0.2°, and the agreement
with the experiment is excellent. However, in higher energies
the deviation from the experiment increases, and in some
, L particular partial waves likéS, and 3P, states, it becomes
0 200 400 600 800 more than 2°. In the Paris potential, th&, phase shift is

T (MeV) apparently too repulsive. This is, however, because the pa-
FIG. 2. Decomposition of th@P, phase shifts for thep scat- rameters of the Paris potential are determined by the fit to the

tering to the centraldc), LS (8.g), and tensor §;) components. PP phase shifts, and the correction due to the CSB is prob-
The results given by fssolid curve$ and FSS(dashed curves ~ ably not taken into account in the numbers given in Table 5.2
are compared with the decomposition of the empirical phase shiftéf [38]. Every model has its own weak points. For example,
SP99[13]. the tensor force of the Bonn potential is usually very weak,
which is reflected in the; parameter and in the too attrac-

energy rangeT .,=0—800 MeV. For energies higher than tive behavior of fthe3P0. phase shn‘t.(Howevgr, the recent
300 MeV, the inelasticity parametessof SP99 are given for CP Bonn potential[9] fits the NN phase-shift parameters
a measure of possible deviations of the phase-shift values ## the nonrelativistic energies almost perfectly, with
the single-channel calculation. TRB, phase shift is greatly ~Various possible corrections taken into accouithe weak
improved by theQLS component. Even in the other partial point of our model lies in théP, and ®D 5 phase shifts at the
waves, the improvement of the phase-shift parameters is usintermediate and higher energi€g,=300—-800 MeV. The
ally achieved. This includel) *P,, 3P;, and G, phase empirical 3P, phase shift gradually decreases if we ignore
shifts, (2) 3S;, 'Sy, 'P;, 'F3, and *H, phase shifts at the weak dispersionlike behavior. Our result, however, de-

higher energiesT ,,=400—800 MeV, and(3) some im-  creases too rapidly. OutD, phase shift is too attractive by
provement in®F, phase shift and, mixing parameter. On 4°_6°.

the other hand®P, and ®D; phase shifts turn out worse and

3F, phase shift is not much improved. The disagreement Of We have examined the differential cross sections and po-
4 . . . . . . ~
the 3D phase shift and the deviation of tR®, phase shift arizations for the elastiop and pp scatterings, by incorpo

at the higher energies imply that our description of the cent@ting the full Coulomb folrce in the partlcle.ba3|§. The Im-
tral, tensor, and_S forces in the3E states requires further Provements from the previous FSS results given in Figs. 1, 2
improvement. The insufficiency in thd0 partial waves is ©Of [5] and Figs. 2, 3 of7] are summarized as followst) the
probably related to the imbalance of the central force and theverestimation of thenp differential cross sections at the
LS force in the short-range region. The decomposition of thdorward angle afl ;=320 MeV is corrected(2) the bump
3P, phase shifts to the centrdlS and tensor components, structure of thenp differential cross sections arourt
shown in Fig. 2, implies that théO central force is too =130° at energiesT ,,=300-800 MeV has disappeared,
repulsive at higher energiég,,=400-500 MeV. It should (3) the overestimation of thpp differential cross sections at
be noted that whenever the discrepancy of the phase-shift.m=10°-30° at energiesl,,=140-400 MeV is im-
parameters between the calculation and the experiment gyoved. However, the essential difficulties of FSS and
large, the inelasticity parameters are also very large. In palRGM-H, namely, the oscillatory behavior of the polariza-
ticular, the inelasticity parameters of ti@,, 'D,, and3F;  tion around 6. ,,~110° and that of thepp polarization
states rise very rapidly as the energy increases and reaetiound the symmetric anglé. ,=90° for higher energies
more than 20° al,,,=800 MeV. The elastic phase shift for T,,=400 MeV are not resolved. Furthermore, thp dif-
each of these states shows a dispersionlike resonance beh#erential cross sections show a deep dip at andles

ior at the energy range from 500 MeV to 800 MeV. These are<30° and=150° for T\;,=500 MeV. The low-energyp

the well-know dibaryon resonances directly related to thecross sections ab.,,=90° for T, <100 MeV are still
AN threshold in the isospini=1 channel. The present overestimated. The differential cross section and polarization
single-channel calculation is not capable of describing thesplots of fss2 up toT,,,<800 MeV are available upon re-
resonances. quest.

8 (deg)

curves. Here we examine the partial waves up+ct in the
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TABLE IV. Comparison of thenp phase-shift parameters calculated in the isospin lasiegreeswith
the phase shift analyses SPA%®] by Arndt and PWA9337] by the Nijmegen group.

State Model Tiap (MeV)
25 50 100 150 200 300
fss2 80.98 63.03 43.21 30.51 21.00 7.02
s, SP99 80.26 62.10 42.22 29.69 20.51 7.07
PWA93 80.63 62.77 43.23 30.72 21.22 6.60
fss2 —-2.82 —6.52 —12.43 —16.59 —19.49 —22.58
D, SP99 —-2.72 —6.84 —13.09 —16.69 —19.08 —23.04
PWA93 —2.80 —6.43 —-12.23 —16.48 —-19.71 —24.14
fss2 1.68 1.91 2.21 2.68 3.33 4.97
€ SP99 1.69 2.14 291 3.55 4.08 5.06
PWA93 1.79 2.11 2.42 2.75 3.13 4.03
fss2 -6.70 —10.26 —14.82 —18.38 —21.57 —27.32
P, SP99 -6.71 —9.98 —14.47 —18.29 —21.56 —26.62
PWA93 -6.31 -9.67 —14.52 —18.65 —22.18 —27.58
fss2 3.67 8.82 17.09 22.26 25.06 26.38
D, SP99 3.87 9.37 17.89 22.73 25.03 25.47
PWA93 3.71 8.97 17.28 22.13 2451 25.45
fss2 52.26 41.94 27.51 16.91 8.41 —4.86
15, SP99 51.30 41.88 28.24 16.95 7.74 —-5.49
PWA93 50.90 40.54 26.78 16.94 8.94 —4.46
fss2 8.55 11.25 9.04 4.02 —-1.49 —12.10
3P, SP99 8.24 10.75 8.18 3.15 —-1.95 —11.63
PWA93 8.13 10.70 8.46 3.69 —1.44 —11.47
fss2 —-5.23 —8.68 —13.45 —-17.27 —-20.77 —27.26
°p, SP99 —-4.75 -8.15 —13.52 —-17.92 —-21.64 —28.06
PWA93 —4.88 —8.25 —13.24 —17.46 —21.30 —28.07
fss2 0.64 1.47 3.29 5.30 7.27 10.28
D, SP99 0.64 1.59 3.60 5.60 7.33 9.75
PWA93 0.68 1.73 3.90 5.79 7.29 9.69
fss2 2.58 6.26 12.43 15.92 17.36 16.97
p, SP99 2.70 5.93 10.92 14.11 16.05 17.83
PWA93 2.56 5.89 10.94 13.84 15.46 16.95
fss2 0.10 0.32 0.72 0.98 1.08 0.75
Sk, SP99 0.09 0.33 0.85 1.19 1.31 0.90
PWA93 0.09 0.30 0.76 1.12 1.33 1.19
fss2 —-0.82 —-1.77 —2.85 —3.22 —3.24 —2.94
€ SP99 —-0.70 —1.48 —2.37 —2.71 —2.74 —-2.29
PWA93 —0.76 —1.63 —2.58 —-2.80 —-2.70 -2.30

In order to find a possible reason for the unfavorable ostudes.(See Ref[7] for the notation. In Fig. 3 the Coulomb
cillations of our polarizations, we show in Fig. 3 the five force is neglected in the predictions by the Paris potential.
independentpp invariant amplitudes at the highest energy The result by SP99 is calculated using only the real parts of
Ti.p=800 MeV. They are composed of the real and imagi-the empirical phase-shift parameters. If we recall that the
nary parts ofgy (spin-independent centdalhy (LS), h,  polarization is given by the cross term contribution of the
[(o1-n)(0,-n)-type tensol, h, [(o7-K)(0,-K)-type ten- central, LS, and tensor invariant amplitudeg.e., P(#6)
sof], andhp [(oy-P)(o,-P)-type tensof invariant ampli- =2 IM[(go+h,)(ho)* ]; see Eq(2.32 of [7]) we find that
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the disagreement in lim, and Reh, with the SP99 result mentum intervalj;=5-20 frni ! for all the baryons. In par-
(dotted curvepis most serious. Since the oscillatory behav-ticular, Uy(q;) in the continuous prescription becomes al-
ior of Imh,, in SP99 also appears in g and Imhp, itis  most—80 MeV atq;=10 fm *. This momentum interval
possible that this is an oscillation caused by thal-AN corresponds to the incident energy rarfigg=500 MeV to
channel coupling through the one pion spin-spin and tensd8 GeV in theNN scattering. The®p prescription is a con-
forces. Figure 3 also shows the reason for the underestimaenient way to evaluate the s.p. potentials in the asymptotic
tion of the differential cross sections éf,,<30°. Namely, momentum region in terms of the spin-independent invariant
the imaginary part ofj, is too small both for fss2 and the amplitude at the forward anglgy(#=0). Since the present
Paris potential, and the real part@f is strongly reduced in model fss2 incorporates the momentum-dependent Bryan-
fss2. Scott term, the asymptotic behavior of the s.p. potentials in
Another application of the invariant amplitudes is tRp ~ the large momentum region is improved. We can see this in
prescription for calculating the s.p. potentials of the nucleon$-ig. 4, where the s.p. potentials Nf A, and2, calculated in
and hyperons in nuclear matter. It is discusseff7ijrthat the  the G-matrix approach are shown in the momentum range
s.p. potentials predicted by the model FSS in Genatrix g, =0-10 fm L. Figures 4a) and 4b) show the result in the
calculation show fairly strong attractive behavior in the mo-QTQ prescription, and Figs.(d) and 4d) in the continuous
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FIG. 4. (a) The momentum dependence of the s.p. potentialsy;) predicted by thé&s-matrix calculation of fss2. Th@ T Q prescription
is used for intermediate spectra. The real partyg€q,) is shown.(b) The same ag) but for the imaginary part Ivg(q;). (c) The same
as(a) but in the continuous prescription for intermediate spectra. The nucleon s.p. potentials obtainetffyyphescription are also shown
with respect to thél matrices of fss2, the Paris potentf&9], and the empirical phase shifts SPA%S]. The momentum points selected
correspond td ,,= 100, 200, 400, 800, and 1600 MeV for tNeN scattering. The partial waves upde=8 are included in fss2 and the Paris
potential, andJ<7 in SP99.(d) The same asc) but for the imaginary part Ig(q,).

choice for intermediate spectra. Figurgg)dand 4c) show  —iy, from which the deuteron energy, is most accurately
the real part ofUg(g,), and Figs. 4) and 4d) the imagi- calculated by using the relativistic relation
nary part. In Figs. &) and 4d), the solid curves for the — s
nucleon s.p. potential are compared with the results by the Mp+Mp—eg= VM7— 2+ M5~ 52, 3.1
t®"p prescription with respect to the matrices of fss2, the
Paris potential39], and the empirical phase shifts SHA3]. Figure 5 shows the deuteron wave functions of fss2 in the
The partial waves up td<8 are included in fss2 and the coordinate and momentum representations, compared with
Paris potential, and<7 in SP99. The momentum points those of the Bonn model-C potentigd8] (dotted curves®
calculated correspond to the energiBs,= 100, 200, 400, We find that the difference between the two models is very
800, and 1600 MeV. We find that the real partf(q,)  small. Table V compares various deuteron properties calcu-
nicely reproduces the result of ti@matrix calculation even lated in three different schemes. They are also compared
at such a low energy &B,,=100 MeV. On the other hand, Wwith the empirical values and the predictions by the Bonn
the imaginary part by the®p prescription usually overesti- model-C potential. The final value of the deuteron binding
mates the exact result especially at the lower energies.  energy for fss2 is4=2.2309 MeV. If we use the nonrela-
tivistic energy expressidn eq=(y?/M,) for 4?
=0.05376157 fm? in the full calculation, we obtaire,
. ) =2.2295 MeV and the difference is 1.4 keV. The differ-
The deuteron properties are calculated by solving the LSz ceq within the deuteron parameters calculated in the three
RGM equation with respect to the relative wave functionSyigerent schemes are very small, except for the binding en-
fo(k) andfy(k) in the momentum representatiésee Ap- ooy ¢ In particular, the exchange Coulomb kernel due to
pendix B. The properly normalized wave functions in the yheeyact antisymmetrization at the quark level gives an at-
Schralinger picture are nof;(k) but Fi=yNf;, whereN  yactive effect to the binding energy and increasgy 4.8

represents the normalization kerrfel]. The Swave and ey This is even larger than the relativistic correction in-
D-wave wave functions in the coordinate representation,

u(R) andw(R), are then obtained from the inverse Fourier

transform off, (k). This process is most easily carried out by 3The results of the Bonn model-C potential in Fig. 5 and in Table
expanding F (k) in a series of Yukawa functions \ are pased on the parametrized deuteron wave functions given in
V2/mki(K*+ y?) in the momentum representatiésee Ap-  Table C.4 of(38].

pendix D in[9]). We choosey;=y+(j—1)yo with yq “4In Table V, the value ok, in the isospin basis is calculated using
=0.9 fm 2 andj=1-11. They is the Smatrix poleq= this nonrelativistic formula.

B. Deuteron properties and effective range parameters
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cluded in Eq.(3.1). The deuterorD-state probability isPy,  the explicit use of the neutron and proton masses. It further
=5.49% in fss2, which is slightly smaller than 5.88% in FSSchanges toa= —27.87 fm due to the small effect of the
[4]. These values are rather close to the vayge=5.60%  exchange Coulomb kernel. These changes however should
obtained by the Bonn model-C potentidl38]. The  be carefully reexamined by readjusting the binding energy of
asymptoticD/S state ratiop and the rms radius are very well the deuteron in Table V. We did not carry out this program,
reproduced. On the other hand, the quadrupole moment igince the reduction ofS to fit these values to the empirical
too small by about 5%-6%. There are some calculationgajyea=—23.748-0.010 fm does not help much to repro-

[41,42 which claim that the effect of the meso_n-exchangeduce the CIB of thep channel anyway. We have to say that
currents on the dueteron quadrupole moment is as large e improvement of th&lN Swave effective range param-

AQq=0.01 ff. It is noteworthy that the Bonn m.odeI-IC eflers in the particle basis calculation is not excellent, in spite
almost reproduces the correct quadrupole moment, in spite g S . .
of the large effort expended in incorporating the pion-

the fact that th®-state probability is very close to ourn Coulomb correction in the microscopic RGM formalism.

the other hand, the quadrupole moment of CD-B@his : ) . . - :
Qy=0.270 fn? with a smaller valueP=4.85%) For the This shortcoming might be related to the insufficient descrip-

magnetic moment, precise comparison with the experimentd|on ©f the low-energypp differential cross sections around
value requires a careful estimation of various correctiondem™~90°. It was also pointed out by the Nijmegen group
arising from the meson-exchange currents and the relativistic48] that the Coulomb phase shift should be improved by the
effect of the current operator, etc. effects of two-photon exchange, vacuum polarization, and
Table VI lists theS and P-wave effective range param- magnetic moment interactions, in order to describe tBg
eters for theNN system, calculated in the three schemesphase shift precisely at energies less than 30 MeV. These
Since the pion-Coulomb correction is not sufficient to ex-effects are not incorporated in the present calculation. The
plain the full CIB effect existing in thenp and pp 'S,  P-wave effective range parameters are also given in Table
states, a simple prescription to multiply the flavor-singletVl, in order to compare with a number of empirical predic-
S-meson coupling constaﬁf by a factor 0.9949 is adopted tions. The parameters ofP, state are not given, since the
to reduce the too large attraction of tipg central force. effective range expansion of this partial wave requires a cor-
(This prescription is applied only to the calculation in the rection term related to the accidengal low-energy behavior
particle basig.The underlined values of the scattering lengthof the OPEH49].
parametera in Table VI indicate that they are fitted to the
experimental values. We find that the pion-Coulomb correc-
tion in thenp 1S, state has a rather large effect anThe Figure 6 shows saturation curves calculated for ordinary
value a=—23.76 fm in the particle basis changes ae nuclear matter with theéQTQ prescription as well as the
—27.38 fm due to the effect of the pion mass correction ancdtontinuous prescription for intermediate spectra. The

C. G-matrix calculation

TABLE V. Deuteron properties by fss2 in three different calculational schemes, compared with th pre-
dictions of the Bonn model-C potentigd8] and the experiment.

Isospin basis Particle basis Bonn C Expt. Ref.
Coulomb off ~ Coulomb on

eq (MeV) 2.2250 2.2261 2.2309 fitted 2.2246440.000046 [40]

Po (%) 5.490 5.490 5.494 5.60

n=Ap/Ag 0.02527 0.02527 0.02531 0.0266 0.02560.0004 [43]
rms (fm) 1.9598 1.9599 1.9582 1.968 1.96350.0046 [40]

Qq (fm?) 0.2696 0.2696 0.2694 0.2814 0.28600.0015 [44]

ma (un) 0.8485 0.8485 0.8485 0.8479 0.85742
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TABLE VI. Effective range parameters of fss2 for tieN interaction; the scattering length the
effective range, and the shape-dependent paramé&teFor thepp and nn systems, the calculation in the
particle basis use@x 0.9949, in order to incorporate the effect of the charge independence breaking. Unit of

length is in fnf' " ina, fm 2 inr, and fm 2 in P for the partial wavd. The experimental values are
taken from[40,45-48,9.
Isospin basis Particle basis Expt.
Coulomb off Coulomb on

a —23.76 —17.80 —7.810 —7.8063+0.0026
pp 1Sy r 2.584 2.675 2.574 2.7940.0014

P 0.0393 0.0423 0.0334

a —2.740 —2.876 —3.004 —4.82+1.11,—-2.71+0.34
pp P, r 3.867 3.831 3.312 7.140.93, 3.8:1.1

P —-0.014 —0.0130 —0.0125

a 1.740 1.821 2.112 1.7280.10, 1.970.09
pp 3P, r —-8.196 -8.159 —8.269 —7.85+0.52, —8.27+0.37

P 0.0009 0.0010 —0.0063

a —23.76 —18.04 —18.05 —18.5+0.3, —18.9+-0.4
nn s, r 2.584 2.672 2.672 2.750.11

P 0.0393 0.0423 0.0423

a —2.740 —2.881 —2.881
nn 3P, r 3.867 3.823 3.822

P —0.0140 -0.0131 -0.0131

a 1.740 1.823 1.823
nn 3P1 r —8.196 —8.151 —8.152

P 0.0009 0.0010 0.0010

a —23.76 —27.38 —27.87 —23.748-0.010
np 1S, r 2.584 2.528 2.525 2.750.05

P 0.0393 0.0324 0.0324

a —2.740 —2.466 —2.466
np 3P, r 3.867 3.929 3.929

P —0.0140 —0.0186 —0.0186

a 5.399 5.400 5.395 5.4240.004
np 381 r 1.730 1.730 1.730 1.7590.005

P —0.010 —0.0096 —0.0097

a 2.824 2.826 2.826
np P, r —6.294 —-6.299 —6.299

P —0.0058 —0.0058 —0.0058

a 1.740 1.582 1.582
np 3P, r —8.196 —8.185 —8.185

P 0.0009 0.0004 0.0004

results produced by the Paris potenfid®] and the Bonn B Schulzeet al.[52] are also shown. The corresponding figure
potential[50] are also shown for comparison. The depen-  of Uy(q;) predicted by our previous model FSS is given in
dence of the nucleon s.p. potentidls(q;) obtained with  Fig. 2 of [6]. We find that fss2 gives the nucleon s.p. poten-
the continuous choice is shown in Fig. 7 at three densitiesial Uy(q,) very similar to that of FSS except for the higher
p=0.5pq, 0.7po, andpg, with po=0.17 fm 3 being the nor- momentum regio; =3 fm 1. As is discussed at the end of
mal density.(These densities correspond kp=1.07, 1.2, Sec. Il A, the too attractive behavior of FSS in this momen-
and 1.35 fm!, respectively. For comparison, the results of tum region is corrected in fss2, owing to the effect of the
the Nijmegen soft-core potential NSC891] calculated by momentum-dependent Bryan-Scott terms involved in the
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-5 - - - - - - long as the calculation is carried out with the continuous
e prescription. On the other hand, the saturation curve with the
/] QTQ prescription suffers a rather large change in the transi-
/ y tion from FSS to fss2. The prediction in fss2 with Q& Q

1 prescription is very similar to the prediction in Bonn
model-B potential. It is interesting to note that our fss2 result
SSsm—— e 1 is rather close to Bonn model C for the deuteron properties
N FeS@@ - A (see Table V, while to model B for the nuclear saturation
TN fes2 (QTQ) properties. The model B has a weaker tensor force than

5 \ . CTTEes @1Q) 1 model C, which is a favorable feature for the nuclear satura-
- \ ~Exp tion properties.

We should keep in mind that the short-range part of our
Bonn-B (cont)) - quark model is mainly described by the quark-exchange
""" ‘F'S‘S‘};;m_ mechanism. The nonlocal character of this part is entirely
different from the usual V-meson-exchange picture in the
standard meson-exchange models. In spite of this large dif-
ference the saturation point of our quark model does not
deviate much from the Coester band, which indicates that
| | our quark model has similar saturation properties with other
o5 . . . . . . realistic meson-exchange potentials.
1.2 1.4 16 1.8 By using theG-matrix solution of fss2, we can calculate
ke (fm ) the Sheerbaum factd®g, which represents the strength of

FIG. 6. Nuclear matter saturation curves obtained for fss2 anéhe s.p. spin-orbit potential defined throuigs]
FSS, together with the results of the Paris poteriéd] and the 7 1dp(r)
Bonn model-B(Bonn-B) potential[38]. The choice of the interme- U'BS(r)= - =S5
diate spectra is specified by “QTQ” and “cont.,” respectively. The 2" r dr
result for the Bonn-B potential in the continuous choice is take
from the nonrelativistic calculation if60].

—20 fss2 (cont.) ]

|- o. (3.2

"The explicit expression 085(q;) (which actually contains
the momentum dependenca terms of theG matrix is

S-meson and V-meson exchange EMEP’s. The saturatioft Vo !N Eq. (50) of [25]. Here we only con5|derSB .
=S(q,=0), as the measure of the s.p. spin-orbit strength in

curve in Fig. 6 shows that this improvement of the s.p. po- .
o . ; the bound states. The nucleon Sheerbaum factor obtained by
tential in the high-momentum region has the favorable fea $52 is Sy= —42.4 MeV P at ke—1.35 fm L, which is

ture of moving the saturation density to the lower side, a
9 y very close to the FSS valu€y=—41.3 MeVfn? [25].

However, the origin of the s.p. spin-orbit force is rather dif-
ferent between fss2 and FSS. In FSS the whole strength
I A comes from the FBLS term, while in fss2 the S-meson
ofF . EMEP yields appreciable contribution. This can be seen from
[ - i the simple formula given in Eq52) of [25], which shows
that in the Born approximation the ABS contribution to the

20

-20r Scheerbaum factor is determined only by a single strength
% factor agx®myqc?b®. The value of this factor is
= 29.35 MeV fn? for fss2, which is 3/5 of the value of FSS,
= 48.91 MeV frr. This different origin of the s.p. spin-orbit
i i force influences the Scheerbaum factor of thehyperon,

-80 which will be discussed in a forthcoming paper.

IV. SUMMARY

_80.

i ] The present-day strangeness nuclear physics is rapidly
~100 - s s s progressing in revealing very rich phenomena of the strong
0 1 2 3 4 5 interaction both in the few-baryon systems and in various

ar (fm ) types of infinite nuclear matter. It is, therefore, very impor-

FIG. 7. The nucleon s.p. potentidly(g,) in nuclear matter in  t@nt to construct a rea_\llstlc model of the baryon-baryon in-
the continuous choice for intermediate spectra. Predictions by fssgeraction, which can simultaneously reproduce all the avail-
for three densitie=0.5p,, 0.7p,, and p, are shown. Here the able experimental data for the nucleon-nucledNj and
normal densityp,=0.17 fm 2 corresponds toke=1.35 fm L. hyperon-nucleonY N) interactions. The present framework,
The dashed curves are the results achieved by Scletilak [52] incorporating both the quark and mesonic degrees of free-
with the Nijmegen soft-cor&lN potential NSC8951]. dom into the model space explicitly, is versatile enough to
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predict more general baryon-baryon interactions for the comemployed to solve the LS-RGM equation in the momentum
plete baryon octetRg), since the color SYand the spin- representation.
flavor SUy symmetries are exactly treated in the unambigu- This paper discusses thN system. The incorporation of
ous framework of the resonating-group method. The modethe momentum-dependent Bryan-Scott tef8] and the
is based on the natural picture that the quarks and gluons awector-meson EMEPSs improves the quantitative agreement to
the most economical ingredients in the short-range regiorthe experimental data to a large extent. The momentum-
while the meson-exchange processes are dominant in thiependent Bryan-Scott term, included in the scalar- and
medium- and long-range part of the interaction. vector-meson EMEPs, is favorable in extending our quark-
Since our quark model describes the short-range repulsiomodel description of th&N scattering at the nonrelativistic
(which is observed in many channels of the baryon-baryorenergies to the higher energies up g,=800 MeV and
interactions in terms of the nonlocality of the quark- also in describing reasonable asymptotic behavior of the s.p.
exchange kernel, the effect of the short-range correlation igotentials in the high-momentum region. For vector mesons,
rather moderate, compared with the standard mesoRge avoid the criticism of the double countifig8] with the
exchange potentials. This can be seen in the magnitude of the,mi-Breit contribution by choosing small coupling con-
Born amplitudes used in solving the Lippmann-Schwingelgiants around 1 especially for the flavor-singlet coupling con-
RGM (LS-RGM[7]) and the Bethe-Goldstone equatid stantsf}® and f}™. Since we have also chosé}’=0, the
and also in the fairly reasonable reproduction of the Smglei_Scontribution from the vector mesons is almost nedliaibl
particle (s.p) spin-orbit strengths calculated in the Born ap- * Lo gligiole.
proximation[25]. In [7], we have seen that the Born ampli- F\(/)nr] the p- and K*-meson contributions, the selected valug
tudes of the quark model have almost the same order dfe —2-6 through the parameter search is a standard size
magnitude as the empirical scattering amplitudes obtained bysually assumed in OBEPs. Although thgT)* term usu-
solving the LS-RGM equation. The s.p. spin-orbit strengthally gives the isovector spin-spin, tensor, and quadratic spin-
Sy predicted by thes-matrix solution of our quark model is Orbit (QLS) terms, we only retain th@QLS term with the
almost equal to that in the Born approximatid@®], in con-  L°-type spin-spin term. This choice at the quark level is
trast to the standard potential models like the Reid soft-coréatherad hog but favorable since we do not want to intro-
potential with the strong short-range repulsive c¢58]. duce too strong cancellation between the one-pion tensor
Since the Born amplitudes in the quark model reflect ratheforce and thep-meson tensor force in thés;-*D; coupling
faithfully the characteristic features of the LS-RGM solution, term of the NN interaction. Since the @ cluster wave
it is easy to find missing ingredients that impair the model. function yields a large cutoff effect for the singular part of
In this study we upgrade our previous model H8&]in  the one-pion-exchange potential, we introduce a reduction
two respects. The first one is the renovation of the effectivdactor ¢ for the spin-spin contact term and multiply the
meson-exchange potentidEMEPS acting between quarks. short-range tensor term of the Fermi-Breit interaction by
We extend our model to include not only the leading terms ofbout factor 3. With these phenomenological ingredients, the
the scalar and pseudoscalar mesons but also the vector m&ccuracy of the model in thBIN sector has now become
sons with all possible standard terms usually used in th@/most comparable to that of the OBEP models. For the en-
nonrelativistic one-boson-exchange potenti@8EPS. The  ergies above the pion threshold, our single-channel calcula-
second point is the exact incorporation of the pion-Coulomiion of the NN scattering seems to have given nearly satis-
correction in the particle basis. This includes the exact treatfactory results, which are visible in the good reproduction of
ment of the threshold energies and the Coulomb exchandée differential cross sections upTg,,=800 MeV. The po-
kernel, as well as the separate evaluation of the spin-flavdarizations for thenp andpp scattering have some unfavor-
factors of the charged- and neutral-pion exchange EMEP'sable oscillations in the energy randg,,=400-800 MeV,
This improvement is necessary in order to study the effect obut the improvement is a future work which definitely re-
the charge symmetry breaking in tiNN and YN interac-  quires the explicit introduction of the inelastic channels such
tions. These two renovations require various mathematicals theAN channel.
techniques which are specifically developed in REf$and The G-matrix calculation using fss2 shows that our previ-
[12] for these purposes. Appendix A [if] discusses a con- ous results given by FSS is qualitatively pertinent. In particu-
venient transformation formula of the RGM kernel, which lar, the nucleon s.p. potentials in symmetric nuclear matter
directly gives the Born kernel for the momentum-dependengre very similar to the predictions of other realigidN po-
EMEPs at the quark level. A procedure to avoid the difficul-tentials. The nuclear saturation curve predicted by fss2 re-
ties of threshold energies in the RGM formalism is given insembles the curve given by the Bonn model-B potential. It is
[12]. The new model fss2 with these features has acquirethteresting to note that the deuteron properties of fss2 are
much freedom to describe tidN andY N interactions more rather close to those of model C, which is known to have a
accurately than FSS. Three different types of calculations arkarger D-state probability than model B. Since fss2 repro-
carried out using fss2. The first one is the calculation in theduces theNN phase shifts at nonrelativistic energies quite
isospin basis, which is used for determining the model pawell, the difference of the off-shell effect between our quark
rameters and also for th&-matrix calculation. The second model and the other OBEP models does not seem to appear
and third calculations are done in the particle basis with ando prominently, as far as the nuclear saturation curve is con-
without the Coulomb force. When the Coulomb force is in-cerned.
cluded, the standard technique by Vincent and Phizgékis In a forthcoming paper, we will discuss théN interac-
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TABLE VII. The spatial part of the exchange Born amplitudes defined by(&d) of [7]. The polyno-
mial partu(k,q) of the two-body force in Eq(A3) is also shown. The coefficients, e, A=2pg/(1— 72,
and the vectorgp, = (V/\2ub), or=(A/\2ub) are calculated from EqA14) of [7] by settingx=1 and

n=23/2 for each interaction typ&. The factorA is nonzero only for th&=D . types ande# 0 only for the
7=S, S' types. The basic spatial functiomg(e) with 7=C, CD, LS, TD are defined by EqA10).

o u(k.) M2r(c )
c ! t7(0)
ss < —1$2(6)
3 1 2
C(1) o W(k%ﬁébzaf f?(a)fmz(i ng(a)fmZibz(pT.gT)f,Lrs(g)
m? @ m2 A \2
s11) n® —z—bz(l—ﬂ)ffoD(GH70-72f5[5(0)—(z—ﬂz) n?f1°(6)
T V2u(K) —17°(0) Y2ulp)
QLS V,,.(n) m s 1 % \s1D ANV
20 =~ 170 Voulop+ 72| 1= [11°(0) Voulen=| 52| F1°(0) Vaulm)
mb\?A
LS in (—) ST (0)in

tion given by fss2. Further extension to more gen@&gBg
interactions with the strangeneSs- —2, —3, and—4 will

the quark-exchange number=0, 1 and the five interaction
types7=E, S S', D, , D_ [54]. The noncentral factors are

also be shown. Since all the model parameters are alreadiefined by the reduced matrix elements for the tensor opera-
determined in th&=0 and—1 sectors, these are all predic- tors of ranks 1 and 2. For example, the tensor operator is
tions which should be confronted with the future experimen-expressed as

tal data.
SiAk,k)=3(o1-K)(0-K)— (o7 0'2)k2
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Sports and Cultur¢12640265. ments of the spin operators at the baryon level are assumed
to be 1. For the spatial part, we also need three extra types
0Q=C(1),S91), QLSlisted in Table VII. This table shows

the polynomial functionsu(k,q) accompanied with the

In this appendix we extend the derivation of the EMEPvyykawa function in the momentum representation through
exchange kernel developed in Appendixes A and Bripto

deal with various interaction pieces of the V mesons, includ-

ing theLS and QLS terms. The Coulomb exchange kernel u(k,q)= 5
and internal-energy contribution from EMEP are also dis- k
cussed.

The systematic evaluation of the quark-exchange kernel {&nd the spatial part of the Born kernéfi(qr ,q) defined in
carried out by assuming a two-body interaction Eq. (A.4) of [7] explicitly. The formulas(A.18)—(A.21)
given in [7] greatly simplify the procedure to obtain these
results. The spatial function‘é}(&) are explicitly given be-
low.

In Eq. (A1) the coefficientsa® and the correspondence
among ), Q', and )" are tabulated in Table VIII. The
EMEP contribution of the exchange Born kernel in E2}4)
is calculated through

APPENDIX A: EMEP EXCHANGE KERNEL

47
>u(k,a)
+m

(A3)

(A1)

— Q,,,Q' Q"
Ull—g o Wij uij y

wherewi‘j" represents the spin-flavor pdthe color part is

w;;=1 for EMEP'S and uf} the spatial part. Four different
types of the spin-flavor factor®=C, SS T, LS are re-
quired for the most general EMEP’s up to the V mesons:
WC:]., WSS:(O']_'(Tz), WT:[O']_(T2](2), a.nd WLS:(O']_
+0,)/2. For the flavor-octet mesons, these spin operators
should be multiplied with X;\;), where X represents the
Gell-Mann matrix in the flavor SUspace. The spin-flavor The final result is as follows. For the central part, we have
factorsX;-are defined by EqA.3) of [7] for eachw} with ~ Q=C, C(1), SS S1) types with

M2(ar,q) O (g -Qi):aQET X?T’ M%(Qf NeDR
(A4)
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TABLE VIII. The coefficients «? and the correspondence
among(}, ', Q" in the two-body force Eq(Al). The columng
implies the meson types and=(m/2m,4) with m being the meson
mass.

2
s g o) Q 0 Q"
MEOW(qr ) =27 3f2)2 XI5, £ “ v "
e/ T C g WC uC
, C(1) ,27 wC uc®
f21( m ) e
3 s sg1) A S 4SS
P! m, .+ 2 Y
M S ) = S |2, e
f2m§ QLS gz ,y4 WT uQLS
W LS LS
LS 2272 w u
¢
2} 4
s 937 cocat PS ss g2 L wSS uss
Mgy, ) = g | 2 X0 3
—fﬁﬁ e T 1 w' u’
_f2
(A5) ant,
Here y=(m/2m,y). In these central terms, the spin-flavor C f2 wC uc
factors X$:°S should be replaced with-XS2°, because of c(1) 67 we uew
the subtraction of the internal-energy contribution in the fe oz
prior form. The tensor parts of the PS and V mesons are ss , 2 WSS uSs
given by fmﬁ
\V; Ssl) _fZ% wSS uss(l)
2( m )2 ™3t
P f 1 , T 1 w' u’
M@ =|  \me) | 553" X 13%0), g
_f2 T#E T LS
m QLs , 87 w u®
(AB) g
. . . . L 8 LS LS
where the V-meson contribution is also given for complete- S —fmfew—;/ " !

ness although this term is not used in fss2. The EMHFS

contribution reads

ness, although this term is negligibly small in fss2. &
term has the contribution both from the S meson and the V

21 4 meson:
< g 3Y
MOV (g, q) = 8 [Xip, f3556) LSS 9%(by)? LS .Ls
_f2m§72 M V(qf:qi):_(_fmfe4b2,y)[xlD+fD+(0)
_wT_ £QLS —X5S f5S (o). (A9)
Xip_f5_ (0], (A7) o o

but also contains the tensor contribution

1
s 92574 1
MW (g ,q) = 3 e > X1 19%0),
_f2_ 2 T#E
m37

(A8)

which we callQ=QT term. In Eqs(A7) and(A8), theQLS

For the tensor an@L S tensor terms in EqSA6) and (A8),
each interaction term witi=S, S’, D, , D _ types should
be rearranged tO =T, T', T” types in Eq.(2.6), according
to the rules given in EqB.13) or (B.17) of [7].

The EMEP spatial functionﬁf}(e) used here are defined
by extending f$V(6), f3N6), and fIN(6) given in Eq.
(B.19) of [57]. The following four basic functions are used in
Table VII:

®Note thatf$(6) = — f$N(6) andf$P(6) =353 6) except for the
difference ofc, but f1°(6) here contains different numerical fac-

contribution from the S meson is also shown for complete+ors from those of 1(6).
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1
exp{ - §b2(q2+ k?)

3/2
f9,(0)=47r(§) hich? L
2.0 L2
q +4k

1 1/2 1b2
I

E

(8)1/2 2 24 ) 5
11 PP z@tk)—kq —b|q+k|

1/2 1
Yl ey
exp[ 3b k ]yaD
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Y (0)

for 7=

]5;%+(§b|k|)

2

5 ~ 1
£$2(0)=1%(0) with I, (p)—I, (p)— o

t55(0)=146) with ,,(p)—ZN(p),

( 8 5/2 2b24 ) k2 .
17) &P~ P z@+k)-kaq
15/2 lb2

3| P 3

5

5/2 1 ~ 1
- exq’ - §b2k2] z | =
\ B \/§

3/2
f}D(a)=—4w(§) hch

1
2. 12
q+4k

20| Loiark|

]ZD (1b|k|) for 7={ D
aD+ 2 - +

b|CI|)

(A10)

The S’ -type spatial function‘g,(e) is obtained fromfg(a) by takingk— —k. There is ncE-type possible for the noncentral
terms. The coefficients; are given byas= ag =(11/8)ag, ap, =2ag, and ap =(3/2)ag, with ag=(mb)?/2=(1/2)

X (mch'4)2. For the spin-spin part of the one-pion-exchange EMEE;(;»)—(l/Za?) should be modified intcﬁiaq(p)
—c; (1/2a4). The modified Yukawa function®,(p), Z"(p), andZ,(p) are essentially given by the error function of the

imaginary argument:

1 1 1
jja(p) — ea*pzf e a/t2+p2t2dt' %al)(p) — %eafpzf e a/t2+p2t2t2dt, EDQ(P) — ea*pzf e a/t2+p2t2t4dt' (All)
0 0 0

The other spatial functions appearing in EG&5)— (A9) are defined by using the four spatial functions in E&10):

(1)
0 0
5 0
3|8 12] Lkt 3\2| 1 3 | Lkt
CW)py=| — _ 4 ~ CD gy 12l 4 LS
O gac) 1 * Zm) , 7 (16) of 70 16" fr(6)
2 d 0
k2
kOJ
EI
for 7={ >
or 7= D. .
D—!
(1\
0
5 0 L E,
1 gy = — ° f7°(60)— (i)z ° n2(0)+ 5= Z(k P’ 2(0) for 7= >
T 4(XE E 2m 1 q2 7 D+1
2 1 k2 D—;
kOJ
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QLS _ 1 4TD
o= 7| ] 5200,

2 fTD(H) fLS(H) S
27 )=¢ 1 1o, s for 7={ D,
2ar 2f|3+(9) f5o () 5
—f5°(6)
(A12)
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with x=(1/y/2)(Rc/b), (2IW11)(Re/b), (1/2)(Rc/b), and
(1//3)(Rc/b) for the 7=E, Sor S, D, , andD_ types,
respectively. The functiog(x,p) is expressed as

— e Imerf(x+i
Q(X,P)—Ze merf(x+ip)

= 2—\/jeXZ[sin(pr)ReW(p-F iX)

+cog2px) Imw(p+ix)], (A17)

_ 2 . .
For the numerical calculation, it is convenient to includeWhere w(z)=e"*erfc(—iz) with erfc(z)=1-erf(z). We
the direct term also in the above expressions. This can bgote the simple relationship

achieved in Eqs(A5)—(A9), if we further addXgp, 5 (6)

term, in addition to the(%+f‘f,;+(0) term. The direct-type

spatial functions‘g(a) are given by

£S(0)= %e(m”% (A13)
and
[ 2
m2
-1
1 ( CD,
3o TD,

1\2(1, 1 LS,
fo(0)=f5(0) \m (_Q+2b2 for Q={ C(1),

Al e
m 3b? QLS
1(1)4 | QT.

9\m

1

| 3
(A14)

The Coulomb exchange kernel is very similar to the color-

g(0,p)= £lm w(p)=ho(p),

9(x,0)=e "% (A18)

For example, the7=E type spatial function is given by
i(E:L(ﬁ):\/2/77axmudc2(4/3)f(0)(1—e’(RC’b)Z’Z), since
ho(0)=1 [cf. Eq.(2.18)].

The EMEP contribution to the internal energies of the
octet baryons originates only from the central force. It reads

Eﬁn mQZXOE

39 Y o
-1+ raE)YaE(O)Jr?YaE(O)
—mgPXSE— 7 A (0),

0E12

2

XoeY ac(0),

EPS= —f

|nt_

m_+

w

E=mfXSe

9y2 Y 5
1+ er) YQE(O)'F 7YC'E(O)

2552 4 D
+mEXSES| 1+ | Y20, (A19)

where the values of the modified Yukawa functions at the
origin are given by Y,(0)=1/Jmra—e%frc(Ja) and
YP(0)=Y,(0)—1/(2a\7a). The 72|2YD (0) contribu-

Coulombic term of the FB interaction, as is discussed in Sedions in Eq.(A19), which correspond to thle2’4 momentum-

[ID. Only difference is(1) ag—a= (ezlhc) (2) the defini-

tion of the Coulomb spin-flavor factor

T
; QQ

Xr= cx< z,& §> : (A15)

and (3) the modification of the spatial functidm(p) in Eq.
(B.5) of [7], by the effect of the Coulomb cutoff & . The
last modification is achieved by

ho(p)—ho(p)—a(x,p),

_ _( 2+X2) 1 2t2
g(x,p)=e" ¥ e’ t'cog2pxt)dt, (A16)
0

dependent Bryan-Scott term, are neglected in the present cal-
culation(see Sec. Il.¢

APPENDIX B: DEUTERON WAVE FUNCTIONS

The relative wave functions for the deuteron in the mo-
mentum  representation, f,(q)~1/(y*+ 9% T, _(q,—i7,
—€q4), Satisfy the homogeneous equation

2u 4
PHRNPI=~ 32 g S |
XVy(p,d, — € i (a), (BY)

whereV|,:(p,q,— €q) is the partial-wave components of Eq.
(2.9). Since f|(q) are the relative wave functions of the
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TABLE IX. The coefficientsC; andD; in Eq. (B6) for the parametrized deuteron wave functions. The
model is fss2, calculated in the particle basis with the full Coulomb exchange kernel. The number of
parameters ia= 11, but the lasC; and the last threB; (the parenthesized valueshould be calculated from

Egs.(C.7) and(C.8) of [38].

j Vi C; (fm™1? D; (fm~'?)

1 0.23186542 0.88177292969 0.22317366016 1
2 1.13186542 —0.22759285797 —0.47989721024
3 2.03186542 —0.87378082998 10 * 0.70358390560

4 2.93186542 —0.1921414523% 107 —0.19602848978 107
5 3.83186542 0.190196611230° 0.16245688588 10°
6 4.73186542 —0.10079545619 10* —0.75342203368 10°
7 5.63186542 0.28344069044.0* 0.19989675989 10*
8 6.53186542 —0.44819643418 10° —0.3066662464% 10*
9 7.43186542 0.404629563210* (0.27047041824 10%)
10 8.33186542 —0.19571100408 10° (—0.1277960533% 10%)
11 9.23186542 (0.394777139480°) (0.25127320958 10°)

RGM equation, one needs to renormalize them through thén particular,f;(q) are normalized such that
square root of the normalization kerngt]. This can be

achieved by calculating 2 f dr[u|(r)]2=2 J dq[F/(q)]2=1. (B5)
r Jo ™ Jo
YN
Fi(a)=qafi(q)+ Rni(9,b%3)——=——Ju, i
(a)=af(q) QEN: ni(d )\/1+—7N+1 NI We follow the standard ansaff5,38,9 for the simple

parametrization of the deuteron wave functions:

"(C \F q =0
J L)

Fi(a)=>, — f
(@) j=1(DJ] Wq2+7j2 or {|:2,

(B2)

where Ry (r,v) represents the radial part of the harmonic-
oscillator wave function with the width parameter and
yn=(1/3N*2 with N=0, 2, 4, ... are thesigenvalues of

the exchange normalization kernel for tRE states of the " -
NN system. The harmonic-oscillator componerdg of Zl Cie ' =0
fi(q) are calculated from uy(r)= " for [ o
n
3 3 I=2.
F o2 2 > Dje | 1+ —+ 2)
=] a dqRy(9,b%3)f,(q). (B3) =1 Yit ()

(B6)

The d(_auteron wave funct?onﬁ(r) in the coordinate repre- The range parameterg; are chosen ag;=vy+(j—1)o

sentation [customarily written asu(r)=ug(r) anql w(r) with ,=0.9 fm ! and n=11. The coefficientsC; (j

=u;(r) for the Swave a_mdD—wave states, respectivélgre =1-10) andD; (j=1-8) with y=0.23186542 fml are
obtained from the Fourier transformation given in Table IX for the deuteron wave functions in the full

5 (o calculation. The other coefficients, namely, the l@stand

_ilL ]2 ; the last threeD;, should be calculated from Eq&C.7) and

u(r)=i \/7 f dq(qr NFi(Q). B4 i g
(1) py a(anji(ar)F(a) (B4) (C.8 of [38].
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