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Noncoplanarity in proton-proton bremsstrahlung
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Using the soft-photon approximation, we address the issue of the importance of noncoplanarity effects in
proton-proton bremsstrahlung. We investigate the noncoplanar cross section as a function of the noncoplanarity

anglef̄ for the entire range of the photon polar anglecg . Thef̄ dependence is shown to provide a significant
variation in the cross section, for a givencg . Thus, there can be some uncertainty in determining experimental
coplanar cross sections. To avoid the phase-space singularities of spherical geometry, we utilize the Harvard
noncoplanar geometry. A detailed explication of the Harvard geometry is provided. Comparison of our calcu-
lations with experimental data is included.
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I. INTRODUCTION

The role of noncoplanarity in proton-proton bremsstra
lung (ppg) has recently been highlighted. In a theoretic
investigation@1#, significant noncoplanarity effects were o
served in the differential cross section for certain pho
anglescg . In a high-statistics Kernfysisch Versneller Inst
uut ~KVI ! experiment@2–4#, coplanar and noncoplanar cro
sections were systematically measured. The KVI nonco
nar results@3,4# confirm that noncoplanarity effects are im
portant. In addition, it is stated@4# that noncoplanar cros
sections can test models and theoretical approximations
more sensitive manner than coplanar results. These find
theoretical and experimental, demonstrate that noncopla
ity contributions should not be neglected.

In the past most experiments measured only the copla
cross sections, which were then compared with theoret
predictions using various coplanar bremsstrahlung am
tudes. Coplanar amplitudes are clearly missing the dep

dence upon the noncoplanarity anglef̄. Moreover, as
pointed out in Ref.@1#, there is some uncertainty involved i
determining experimental coplanar cross sections. This lim
what one can learn from any comparison between exp
ment and theory in the purely coplanar case. Furtherm
one cannot rule out the possibility that noncoplanar effe
not of dynamical origin, are at least partly responsible
some disagreements in past comparisons between theor
experiment. Finally, an important issue has been raised
garding the presentation of coplanar and noncoplanarppg
data, which is to be compared with theoretical calculatio
@5,6#.

Historically, two different experimental arrangemen
known as the Harvard geometry and the Rochester geom
have been used inppg cross section measurements@7#. The
Rochester geometry@8# refers to an experimental arrang
ment in which the momenta of the two outgoing proto
(p18

m andp28
m) and the emitted photon (Km) are detected and
0556-2813/2001/65~1!/014001~15!/$20.00 65 0140
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a differential cross section of the formd3s/dV1dVgdK is
measured.~The p18

m , p28
m , andKm, and other notation, will

be defined in Sec. II.! Here dV1 , dV2, and dVg are the
solid angles corresponding to the three momentap18

m , p28
m ,

and Km, respectively. The photon momentumKW defines a
polar angleug in the spherical coordinate system and a
lated polar anglecg in the Harvard coordinate system. Be
cause very few experiments have used the Rochester ge
etry, we will focus our remarks on the Harvard geometry@9#.

In most experiments employing the Harvard geometry,
momentap18

m and p28
m were measured and the momentu

Km was inferred using energy-momentum conservation. T
differential cross sectiond3s/dV1dV2dug can be extracted
if the spherical coordinate system is used to analyze the d
However, because the cross section in this form exhibits
nematic singularities near the end points of the range ofug
for the noncoplanar case, the Harvard noncoplanar coo
nate system@9,10# has been used to measure noncopla
and coplanar cross sections of the formd3s/dV1dV2dcg ,
which is free of such kinematic singularities. The Harva
experiment@9#, the Manitoba experiment@11#, and the Oak
Ridge experiment@12# are three examples of successful me
surements using the Harvard geometry. The KVI experim
differs in that all three final-state particles were detected,
cross sections of the formd3s/dV1dV2dug ~plus analyzing
powers! were measured. There are other experiments@13# in
which cross sections and/or analyzing powers were meas
using the Harvard geometry.

There is a crucial difference between the Rochester ge
etry ~cross section of the formd3s/dV1dVgdK) and the
Harvard geometry ~cross section of the form
d3s/dV1dV2dug or d3s/dV1dV2dcg). In the Rochester
geometry, the photon energyK is an independent kinemati
variable, and its range includes the pointK50. In the Har-
vard geometry, in contrast,K is a dependent variable and i
range does not include the pointK50 exceptin the elastic
©2001 The American Physical Society01-1



-
a

tic
er
ap

n
ic
fe

te
ro
e

ap
w

or
o

ed

ad
he
th
b

.
em
d
u

-

IV
n

of

d
-
le

s
as

s

etry

m.

he
the

the
set
ss

an

TIMMERMANS, GIBSON, LI, AND LIOU PHYSICAL REVIEW C 65 014001
limit. One implication of this difference lies in the interpre
tation of the soft-photon theorem and the soft-photon exp
sion, which is discussed in the Appendix.

Recently, progress has been achieved in the theore
investigation ofppg. Sophisticated calculations, using eith
contemporary nucleon-nucleon potentials or other
proaches, have been performed@14#. Higher-order effects
such as rescattering terms, relativistic spin correctio
negative-energy states,D-isobar admixtures, electromagnet
form factors, higher-order exchange currents, and the dif
ence between pseudoscalar and pseudovectorpN couplings
in low order have been explored. However, much less at
tion has been given to noncoplanarity effects and to their
in interpreting experimental coplanar cross sections. In R
@1#, we investigated these problems using two different
proaches, a soft-photon approximation based upon a t
u–two-t special (TuTts) amplitude@15,16# and a realistic
one-boson-exchange model@17#. As shown in Fig. 1 of Ref.
@1#, those two approaches lead to similar predictions. M
recently, theTuTtsamplitude has been tested by comparis
with KVI experimental data@2–4#. The validity of its use in
describing theppg cross section has been well establish
This encourages us to employ theTuTtsamplitude in further
exploration of noncoplanarity effects. We report here on
ditional results of our soft-photon calculations, provide t
details of our method, present explicit expressions for
Harvard geometry kinematics, and compare to the availa
experimental data.

This paper is organized as follows. We discuss in Sec
the kinematics defined in the Harvard noncoplanar syst
We present a complete set of formulas which can be use
determine the needed coordinates for noncoplanar calc
tions. In Sec. III we define thepp elastic scattering ampli
tude which is used to generate theTuTts bremsstrahlung
amplitude. We give explicit expressions for theTuTts am-
plitude along with comments about its evaluation. In Sec.
we present numerical results and discuss their implicatio
In the Appendix we address certain subtleties of the s
photon approximation.

II. KINEMATICS

A. The Harvard noncoplanar geometry

We consider theppg process,

p~p1
m!1p~p2

m!→p~p18
m!1p~p28

m!1g~Km!, ~1!

wherep1
m(p2

m) is the four-momentum of the incident~target!
proton,p18

m(p28
m) is the four-momentum of the scattered~re-

coil! proton, andKm is the four-momentum of the emitte
photon with polarizationem. In the spherical coordinate sys
tem a three-momentum can be specified by the polar angu
and the azimuthal anglef, while in the Harvard coordinate
system the momentum is specified by two Harvard angleū

and f̄. ~We follow the Harvard noncoplanar approach
outlined in the Appendix of Ref.@10#.! The anglesu, f, ū,
and f̄ are defined relative to thex-z reference plane a
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shown in Fig. 15 of Ref.@10#. In the Harvard coordinate
system the momentap1

m , p2
m , p18

m , p28
m , andKm have the

following components:

p1
m5~E1 ,0,0,p1!,

p2
m5~m,0,0,0!,

p18
m5~E18 ,p18 cosf̄1 sinū1 ,p18 sinf̄1 ,p18 cosf̄1 cosū1!,

p28
m5~E28 ,2p28 cosf̄2 sinū2 ,p28 sinf̄2 ,p28 cosf̄2 cosū2!,

Km5~K,K cosf̄g sinūg ,2K sinf̄g ,K cosf̄g cosūg!,
~2!

where

E15Am21pW 1
25m1T1 ,

E185Am21pW 18
25m1T18 ,

E285Am21pW 28
25m1T28 , ~3!

and m is the proton mass. The proton has chargee and
anomalous magnetic momentk51.793. The relation be-
tween the coordinates in spherical and Harvard geom
reads

f15tan21@cscū1 tanf̄1#,

f25p2tan21@cscū2 tanf̄2#,

fg52p2tan21@cscūg tanf̄g#,

u i5tan21@ tan2 ū i1sec2 ū i tan2 f̄ i #
1/2, ~ i 51,2,g!. ~4!

For coplanar events, the three noncoplanarity angles,f̄ i
( i 51,2,g), vanish and Eqs.~4! become

f150,

f25p,

fg52p,

u i5 ū i , ~ i 51,2,g!. ~5!

For a given incident kinetic energyT1, there are three
outgoing particles with nine kinematic degrees of freedo
Because energy and momentum are conserved,

p1
m1p2

m5p18
m1p28

m1Km, ~6!

only five of the kinematic variables are independent. T
choice of these five independent variables depends on
experimental arrangement. For example, in terms of
spherical coordinate system we can choose the
(u1 ,f1 ,u2 ,f2 ,ug) to be independent variables and expre
the differential cross section in the formd3s/dV1dV2dug .
Or, in terms of the Harvard coordinate system, we c
1-2
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choose the set (ū1 ,f̄1 ,ū2 ,f̄2 ,ūg) to be independent vari
ables and express the differential cross section in the f

d3s/dV̄1dV̄2dūg . Note that the solid anglesdV i anddV̄ i
( i 51,2) are defined as

dV i5sinu idu idf i ,

dV̄ i5cosf̄ idū idf̄ i . ~7!

Because it can be shown that

sinu idu idf i5cosf̄ idū idf̄ i , ~8!

we havedV̄ i5dV i , and hence

d3s/dV̄1dV̄2dūg5d3s/dV1dV2dūg . ~9!

In the coplanar case the cross sectiond3s/dV1dV2dug

( ūg5ug) has no kinematic singularity in the entire photo
range (0<ug<2p). However, for noncoplanar events th
allowed range forug ~or ūg) shrinks to less than 2p and the
cross sectiond3s/dV1dV2dug ~or d3s/dV1dV2dūg) di-
verges at the extreme photon emission angles due to
phase-space factor. This problem can be avoided by in
ducing the special photon polar anglecg in the Harvard
noncoplanar coordinate system.

Two steps are involved in defining this new anglecg . ~i!
The first step is to define the so-called ‘‘limitingg ray.’’ In
the Harvard geometry, the average noncoplanar angle o
protons, f̄5(f̄11f̄2)/2, has a kinetically allowed maxi
mum, which we callf̄max. The corresponding emitted pho
ton is called the limitingg ray. It has a three-momentumKW 0

specified by two special Harvard angles,ū0 and f̄0:

KW 05~K0 cosf̄0 sinū0 ,2K0 sinf̄0 ,K0 cosf̄0 cosū0!.
~10!

~ii ! As shown in Fig. 1, a new coplanar photon moment
KW 8 in thex-z reference plane can be defined by a vector s
of KW and2aKW 0,

KW 8[KW 2aKW 0 . ~11!

The polar angle of this new photon momentum iscg , where

KW 85~K8 sincg ,0,K8coscg!. ~12!

We obtain from Eq.~11!

tancg5
sinūg2cotf̄0 tanf̄g sinū0

cosūg2cotf̄0 tanf̄g cosū0

. ~13!

If we choose the set (ū1 ,f̄1 ,ū2 ,f̄2 ,cg) as the independen
kinematic variables, the cross sectiond3s/dV1dV2dcg has
no kinematic singularity in the range 0<cg<2p. One has
mapped the allowed range ofūg , which is less than 2p,
onto the full 2p range ofcg . Among the advantages of thi
01400
m

he
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he

choice of variables, one can integrate this cross section o
cg to obtaind2s/dV1dV2 with no difficulty. In the coplanar
case cg reduces toug and d3s/dV1dV2dcg becomes
d3s/dV1dV2dug . In this work, we calculate
d3s/dV1dV2dcg as a function ofcg , f̄, andT1.

Finding the limiting anglesf̄max, ū0, and f̄0 is one of
the complicated steps in calculating the noncoplanar cr
section, especially for the asymmetric caseū1Þū2. Various
methods can be used to determine these angles. For exa
using the simple method of Lagrange multipliers one c
derive two coupled equations for the proton momentap̃18 and

p̃28 . After solving these two nonlinear equations numerica

one may then calculate the anglesf̄max, ū0, and f̄0 from
p̃18 , p̃28 , and other given conditions. Details are discussed
the next subsection.

B. The limiting gamma ray

If we choose a common noncoplanarity anglef̄ for the
two outgoing protons (f̄5f̄15f̄2), thenf̄ has a maximum
value,f̄max. At this limit, the limiting g ray is defined and it
has momentumKW 0[KW 0(K0 ,ū0 ,f̄0) given by Eq.~10!. If the
magnitudes of the two proton momentapW 18 andpW 28 arep̃18 and

p̃28 , respectively, at this limit, then we can obtain the follow

ing two coupled equations forp̃18 and p̃28 :

052 f 1f 3p̃28
31p1Ẽ28 f 4 cosū1

2Ẽ28@p1
2f 2 cosū11 p̃28 f 3~p1

21 p̃18
22 p̃28

22 f 1
2!#,

~14!

FIG. 1. Three-dimensional representation of the moment
vectors required in defining the new coplanar photon momen

KW 8 and its polar anglecg in the Harvard geometry. In the figureKW

is the original photon momentum,KW 0 is the limitingg ray, anda is
a constant.
1-3
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052 f 1f 3p̃18
31p1Ẽ18 f 4 cosū2

2Ẽ18@p1
2f 2 cosū21 p̃18 f 3~p1

21 p̃28
22 p̃18

22 f 1
2!#,

~15!

wherep1 , f 1 , f 2 , f 3 , f 4 , Ẽ18 , andẼ28 are defined as

p15A2mT11T1
2,

f 1[ f 1~ p̃18 ,p̃28!52m1T12Am21 p̃18
22Am21 p̃28

2,

f 2[ f 2~ p̃18 ,p̃28 ,ū1 ,ū2!5 p̃18 cosū11 p̃28 cosū2 ,

f 3[ f 3~ ū1 ,ū2!512cos~ ū11 ū2!,

f 4[ f 4~ p̃18 ,p̃28 ,ū1 ,ū2!

5$p1
2f 2

212p̃18p̃28 f 3@p1
21~ p̃181 p̃28!22 f 1

2#%1/2,

Ẽ185Am21 p̃18
2,

Ẽ285Am21 p̃28
2. ~16!

Using T1 , ū1 , ū2, and the values ofp̃18 and p̃28 obtained by
solving Eqs.~14! and ~15!, the values off 1 , f 2 , f 3, and f 4
can be found from Eq.~16!. These values can be used
determine K0 , f̄max ~0 <f̄max<p/2), ū0 (2p/2<ū0

<p/2), andf̄0 ~0 <f̄0<p/2) as

K05 f 1 , ~17!

f̄max5cos21@~2p1f 21 f 4!/~2p̃18p̃28 f 3!#, ~18!

ū05tan21@~ p̃28 sinū22 p̃18 sinū1!

3cosf̄max/~p12 f 2 cosf̄max!#, ~19!

f̄05sin21@~ p̃181 p̃28!sinf̄max/K0#. ~20!

For the symmetric case, one hasū15 ū25 ū, f̄15f̄25f̄,
p̃185 p̃285 p̃8, and ū050. In this case, the coupled equatio

for p̃18 and p̃28 given by Eqs.~14! and ~15! reduce to one
single equation of the form

052p̃82~2m1T1!sin2 ū2Am21 p̃82

3$p1
2 cos2 ū1sin2 ū@p1

214p̃82

2~2m1T122Am21 p̃82!2#%1p1Am21 p̃82cosū

3$p1
2 cos2 ū1sin2 ū@p1

214p̃82

2~2m1T122Am21 p̃82!2#%1/2. ~21!
01400
After solving this equation numerically to findp̃8, we can
calculateK0 , f̄max, andf̄0 from Eqs.~17!, ~18!, and~20!,
respectively.

Next we can calculate (p18 ,p28 ,K,ūg ,f̄g) if

(m,T1 ,ū1 ,ū2 ,f̄,cg ,ū0 ,f̄0) are given. Once
(p18 ,p28 ,K,ūg ,f̄g) are determined, the complete expressio

for pW 18 , pW 28 , andKW can easily be obtained. Let us first defin

the following functions ofūg :

tanf̄g5tanf̄0S cosūg2sinūg cotcg

cosū02sinū0 cotcg
D , ~22!

D1~ ūg!5p1U2cosf̄ sinū2 sinūg

sinf̄ 2tanf̄g
U , ~23!

D2~ ūg!52p1Ucosf̄ sinū1 sinūg

sinf̄ 2tanf̄g
U , ~24!

Dg~ ūg!5p1 sinf̄ cosf̄~sinū11sinū2!A11tan2 f̄g,
~25!

D~ūg!5U cosf̄ sinū1 2cosf̄ sinū2 sinūg

sinf̄ sinf̄ 2tanf̄g

cosf̄ cosū1 cosf̄ cosū2 cosūg

U ,

~26!

p18~ ūg!5
D1~ ūg!

D~ūg!
, ~27!

p28~ ūg!5
D2~ ūg!

D~ūg!
, ~28!

K~ ūg!5
Dg~ūg!

D~ūg!
. ~29!

Insertingp18( ūg), p28( ūg), andK( ūg) into

2m1T15Am21@p18~ ūg!#21Am21@p28~ ūg!#21K~ ūg!
~30!

leads to an equation forūg . Equation~30! can be solved
numerically for ūg . Substituting the value ofūg into Eqs.
~22!–~26!, we obtainf̄g , p18 , p28 , and K from Eqs. ~22!,
~27!, ~28!, and~29!, respectively.

Using p18 and p28 obtained in Eqs.~27! and ~28!, respec-
tively, T18 and T28 can be calculated from Eq.~3!. If

(T1 ,ū1 ,ū2 ,f̄) are given,T18 andT28 will be functions ofcg .
By varying cg throughout its entire 2p range, the kinemati-
cally allowed values ofT18 andT28 will form a closed ring in
the T18 ,T28 plane. This is theT182T28 plot; see Ref.@9#. In
Figs. 2 and 3, we show these plots for 190 MeV and
symmetric angle pair 16°-16°, and for 280 MeV and t
1-4
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asymmetric angle pair 12°-28°, respectively. Starting fr

the largest ring for the coplanar (f̄50) case, as shown in

Figs. 2 and 3, these rings become smaller asf̄ increases. The

smallest ring corresponds tof̄ near the limitingf̄max. Simi-
lar plots were used in the original Harvard experimen
analysis and have been used in many other experiment
data analysis.

III. THE PROTON-PROTON BREMSSTRAHLUNG
AMPLITUDE

A. The proton-proton elastic scattering amplitude

From the variables in Eq.~1! that describe theppg pro-
cess, it is useful to define the following Mandelstam va
ables:

FIG. 2. The kinematically allowed values ofT18 and T28 as a

function of the noncoplanarity anglef̄ for the KVI energy of 190
MeV and the symmetric angle pair 16°-16°.

FIG. 3. The kinematically allowed values ofT18 and T28 as a

function of the noncoplanarity anglef̄ for the TRIUMF energy of
280 MeV and the asymmetric angle pair 12°-28°.
01400
l
for

-

si5~p11p2!2, sf5~p181p28!2,

t15~p182p1!2, t25~p282p2!2,

u15~p282p1!2, u25~p182p2!2. ~31!

When the photon momentumK approaches zero, theppg
process reduces to the correspondingpp elastic scattering
process,

p~p1
m!1p~p2

m!→p~ p̄18
m!1p~ p̄28

m!, ~32!

where

p̄18
m5 lim

K→0
p18

m,

p̄28
m5 lim

K→0
p28

m, ~33!

and the Mandelstam variables defined above become

s5si5~p11p2!2,

t5~ p̄182p1!25~ p̄282p2!2,

u5~ p̄282p1!25~ p̄182p2!2. ~34!

They satisfy the on-shell condition,

s1t1u54m2, ~35!

which shows that only two of the variables are independe
The representation of the covariant on-shellNN scattering

amplitude has been discussed by Goldberger, Grisaru, M
Dowell, and Wong~GGMW! @18#. The GGMW amplitude
for pp elastic scattering has the form@15#

F5F1~G12G̃1!1F2~G21G̃2!1F3~G32G̃3!

1F4~G41G̃4!1F5~G52G̃5!

5 (
a51

5

Fa@Ga1~21!aG̃a#, ~36!

where

Ga5ū~ p̄18!lau~p1!ū~ p̄28!lau~p2!,

G̃a5ū~ p̄28!lau~p1!ū~ p̄18!lau~p2!, ~37!

and we define

~l1 ,l2 ,l3 ,l4 ,l5!5S 1,
smn

A2
,ig5gm ,gm ,g5D ,

~l1,l2,l3,l4,l5!5S 1,
smn

A2
,ig5gm,gm,g5D . ~38!

Note thatla andla are tensors. For example,l2l25l2l2

5 1
2 smnsmn, where the summation overm andn is implied.

In Eq. ~36!, Fa (a51, . . . ,5) areinvariant functions of two
1-5
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independent Mandelstam variables. Guided by a mes
exchange theory of theNN interaction, we chooseu andt to
be the two independent variables and we writeFa
5Fa(u,t). @For the pp elastic scattering case,Fa(u,t)
5Fa(s,t). However, as will discuss below, this relationsh
is not true for theppg case.# By imposing the condition

Fa~u,t !5~21!a11Fa~ t,u!, ~39!

one can verify that the amplitudeF given by Eq.~36! obeys
the Pauli principle.

B. The two-u –two-t special amplitude

The TuTts amplitude used in our bremsstrahlung calc
lations is given by the following expression@15#:

Mm
TuTts~u1 ,u2 ;t1 ,t2!

5e(
a51

5

@ ū~p18!Xamu~p1!ū~p28!lau~p2!

1ū~p18!lau~p1!ū~p28!Ym
au~p2!

1ū~p28!lau~p1!ū~p18!Zamu~p2!

1ū~p28!Tm
au~p1!ū~p18!lau~p2!#, ~40!

where

Xam5Fa~u1 ,t2!F p1m8 1R1m8

p18•K
2VmGla

2Fa~u2 ,t2!laFp1m1R1m

p1•K
2VmG ,

Ym
a5Fa~u2 ,t1!F p2m8 1R2m8

p28•K
2VmGla

2Fa~u1 ,t1!laFp2m1R2m

p2•K
2VmG , ~41!

Zam5~21!aFa~u1 ,t2!F p1m8 1R1m8

p18•K
2VmGla

2~21!aFa~u1 ,t1!laFp2m1R2m

p2•K
2VmG ,

Tm
a5~21!aFa~u2 ,t1!F p2m8 1R2m8

p28•K
2VmGla

2~21!aFa~u2 ,t2!laFp1m1R1m

p1•K
2VmG , ~42!

with
01400
n-

-

Vm5
~p182p2!m

2~p182p2!•K
1

~p182p1!m

2~p182p1!•K

5
~p12p28!m

2~p12p28!•K
1

~p22p28!m

2~p22p28!•K
~43!

and

Rim5
1

4
@gm ,K” #1

k

8m
$@gm ,K” #,p” i%,

Rim8 5
1

4
@gm ,K” #1

k

8m
$@gm ,K” #,p” i8%, ~ i 51,2!. ~44!

In Eq. ~44!, we have employed the usual@A,B#[AB2BA
and $A,B%[AB1BA. As shown in Ref.@15#, this TuTts
amplitude is gauge invariant, obeys the Pauli principle, a
satisfies other theoretical constraints.

The amplitudeMm
TuTts(u1 ,u2 ;t1 ,t2) is called the two-

u–two-t amplitude because it depends onu1 , u2 , t1, andt2.
It is ‘‘special’’ primarily because it doesnot depend upon a
specific linear combination ofu1 andu2,

uā,b̄5
āu11b̄u2

ā1b̄
, āÞ0, b̄Þ0, ~45!

and/or the linear combination oft1 and t2,

t ā8,b̄85
ā8t11b̄8t2

ā81b̄8
, ā8Þ0, b̄8Þ0. ~46!

Equations~41! and ~42! show thatFa(ui ,t j ) ( i , j 51,2) are
the input for the amplitudeMm

TuTts. In order to treat
Fa(ui ,t j ) as on-shell amplitudes, we have to impose o
shell conditions. From the four relations

si1u21t154m212p28•K, ~47a!

si1u11t254m212p18•K, ~47b!

sf1u21t254m222p1•K, ~47c!

sf1u11t154m222p2•K, ~47d!

we define four on-shell conditions by introducing newsi j
( i , j 51,2) as

s211u21t154m2, ~48a!

s121u11t254m2, ~48b!

s221u21t254m2, ~48c!

s111u11t154m2, ~48d!

where
1-6
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s215si22p28•K, ~49a!

s125si22p18•K, ~49b!

s225sf12p1•K, ~49c!

s115sf12p2•K. ~49d!

Equations~48a!–~48d! show that there are only two indepe
dent variables in a given set of (si j ,ui ,t j ) ( i , j 51,2). Thus,
we can write

Fa~u1 ,t1!5Fa~s11,t1!, ~50a!

Fa~u1 ,t2!5Fa~s12,t2!, ~50b!

Fa~u2 ,t1!5Fa~s21,t1!, ~50c!

Fa~u2 ,t2!5Fa~s22,t2!. ~50d!

Equations~49a!–~49d! and Eqs.~50a!–~50d! show that the
on-shell points (si j ,t j ) ( i , j 51,2), at which the amplitude
Fa(ui ,t j )5Fa(si j ,t j ) are to be evaluated, involve off-she
contributions becausesi j include off-shell factors.~For fur-
ther discussion of this point, see the Appendix.!

Now, from the foursi j , four center-of-mass momenta ca
be defined,

qc.m.
i j 5

1

2
Asi j 24m2, ~51!

and four center-of-mass angles can be obtained fromqc.m.
i j

and t j ,

cosuc.m.
i j 511

t j

2~qc.m.
i j !2

. ~52!

Therefore,Fa(si j ,t j ) will be evaluated at a given set o
(qc.m.

i j ,uc.m.
i j ),

Fa~ui ,t j !5Fa~si j ,t j !5Fa~qc.m.
i j ,uc.m.

i j !. ~53!

The five invariant amplitudes Fa(qc.m.
i j ,uc.m.

i j ) (a
51,2, . . . ,5) can bewritten as linear combinations of th
five helicity amplitudes which are explicit functions of th
pp phase shifts. In this work, phase shifts and mixing para
eters from the Nijmegenpp partial-wave analysis PWA93
@19,20# have been used to evaluateFa(qc.m.

i j ,uc.m.
i j ).

IV. RESULTS AND DISCUSSION

We present here several results, in addition to those
pearing in Ref.@1#, which demonstrate the existence of si
nificant noncoplanarity effects inppg. Specific calculations
are illustrated in Figs. 4–12. Three different types of pl
are involved in these figures:~i! The first type of plot is in
terms of the standard noncoplanar curves, which are defi
as the dependence of the differential cross sec
d3s/dV1dV2dcg upon the noncoplanar anglef̄ for a given
01400
-

p-

s

ed
n

photon anglecg ~i.e., d3s/dV1dV2dcg as a function off̄
for a givencg). Noncoplanarity effects can be determine
from such a curve. An important application lies in estim
ing the angular dependent correction factorC(cg). As
shown in Eq.~5! of Ref. @1#,

~d3s/dV1dV2dug!exp

5@C~cg!~d3s/dV1dV2dcg!exp#cg5ug
. ~54!

This factor relates the experimental noncoplanar cross
tion (d3s/dV1dV2dcg)exp at cg to an ‘‘experimental’’ co-
planar cross section (d3s/dV1dV2dug)exp at ug . ~ii ! The
second type of plot is the cross section ra
d3s/dV1dV2dcg /(d3s/dV1dV2dcg) f̄50 as a function of
cg for a givenf̄. ~iii ! The third type of plot is the typica

FIG. 4. Noncoplanarppg cross sections as a function of th

noncoplanar anglef̄ at an incident energy of 280 MeV for th

angle pair (ū1 ,ū2)5(12.4°,12°) and variouscg .

FIG. 5. Noncoplanarppg cross sections as a function of th

noncoplanar anglef̄ at an incident energy of 280 MeV for th

angle pair (ū1 ,ū2)5(21.2°,12°) and variouscg .
1-7
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noncoplanar curve used in the past. It depicts the nonco
nar cross sectiond3s/dV1dV2dcg as a function ofcg for a
given f̄.

In Fig. 4, we present noncoplanar curves of the first ty
for ( ū1 ,ū2)5(12.4°,12°) at an incident energy of 280 Me
the energy of the TRIUMF experiment@31#. Six different
curves corresponding tocg51°, 60°, 100°, 140°, 160°, and
179° are shown. The following interesting features can
observed from these six curves:~i! Noncoplanarity effects
are rather insignificant forcg51°, 60°, and 100°. The cor
responding noncoplanar curves are insensitive to the va
tion of f̄. However, as shown in Fig. 1 of Ref.@1#, nonco-
planarity effects are significant in the regionscg,15° for
ū15 ū258° at an incident energy of 190 Mev. This wou
imply that noncoplanarity effects become more significan
the regions of smallcg as the scattering angle of the tw

FIG. 6. Noncoplanarppg cross sections as a function of th

noncoplanar anglef̄ at an incident energy of 190 MeV for th

angle pair (ū1 ,ū2)5(16°,16°) and variouscg .

FIG. 7. Noncoplanarppg cross sections as a function of th

noncoplanar anglef̄ at an incident energy of 280 MeV for th

angle pair (ū1 ,ū2)5(8°,16°) and variouscg .
01400
la-

e

e

a-

n

final-state protons is decreased. We also observe that c
sections are small forcg560° and 100°, due to the quadru
pole nature of the radiation.~ii ! Cross sections vary rapidly
as a function off̄ for cg5140°, 160°, and 179°, implying
that noncoplanarity effects are significant at back ang
Generally speaking, it is correct to state that noncoplana
effects are more important for the backward scattering p
cess than for the forward scattering process. The KVI exp
ment observed significant noncoplanarity effects prima
because the range ofug covered in their~spherical geometry!
experiment lies between 135° and 165° in the ‘‘superclust
geometry and between 65° and 165° in the ‘‘block’’ geom
etry. It should be pointed out that the contribution from mo
higher-order effects~mentioned in our introduction! is sig-
nificant in the regionscg,20° and cg.160°. Thus, the

FIG. 8. Noncoplanarppg cross section ratios as a function o

cg at an incident energy of 190 MeV for the angle pair (ū1 ,ū2)

5(8°,8°) and variousf̄. All curves have been normalized to th

coplanar case atf̄50°.

FIG. 9. Noncoplanarppg cross sections as a function ofcg at

an incident energy of 157 MeV for the angle pair (ū1 ,ū2)

5(30°,30°) and variousf̄. The data forf̄51.5° ~crosses! and for

f̄53.5° ~circles! are from the Harvard experiment~Ref. @9#!.
1-8
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discrepancy between theory and experiment for the copla
case in these two regions may depend upon a complex c
bination of effects, requiring thorough theoretical and expe
mental investigation to understand.~iii ! Near the maximum
f̄(5f̄max), the six curves converge to imply similar cro
sections.~iv! In the past a unique noncoplanar curve, whi
represents the integrated cross section~or the double differ-
ential cross section! as a function off̄, was either calculated
theoretically or measured experimentally. If such a curve
used to obtain a correction factorC, thenC will be a con-
stant; that is,C will be independent ofcg . However, the fact
that all six curves shown in this figure differ significant
implies that noncoplanarity effects depend oncg . The cor-
rection factorsC(cg) obtained from these six curves wi
vary with cg . Thus, the first type of plot gives a very usef
picture for investigating noncoplanarity effects.

We show three more such plots in Fig. 5@at 280 MeV for
( ū1 ,ū2)5(21.2°,12°)], Fig. 6 @at 190 MeV for (ū1 ,ū2)
5(16°,16°)], and Fig. 7 @at 190 MeV for (ū1 ,ū2)
5(8°,16°)]. Again, very similar features as are observed
Fig. 4 can be found in these figures. This strongly sugg
that such features are more or less universal.

In Fig. 8, we show a second type of plot at 190 MeV f
ū15 ū258° and f̄50°, 2°, 4°, 6°, and 8°. The curves i
this figure show a complex noncoplanar behavior, becaus
the small proton angles. This complication is reflected in
plot of the first type shown in Fig. 1 of Ref.@1# for the
identical case. Such a complexity would be less prominen
an analogous plot for 157 MeV andū15 ū2530°, because
for larger proton angles the cross section decreases m
monotonically with increasingf̄ for almost allcg .

The above comment is also illustrated in Fig. 9, where
show the third type of plot at 157 MeV forū15 ū2530° and
f̄50.5°, 1.5°, 2.5°, and 3.5°. At this energy and for the
large proton angles, noncoplanarity effects are not com

FIG. 10. Noncoplanarppg cross sections as a function ofcg at

an incident energy of 280 MeV for the angle pair (ū1 ,ū2)

5(28°,12.4°) and variousf̄. The coplanar data are from th
TRIUMF experiment~Ref. @31#!.
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cated. We include data from the Harvard experiment@9# for
comparison with the theoretical curves. One observes t
for a givencg(<140°), the cross section decreases mo
tonically with increasingf̄. The theoretical curves describ
well the noncoplanar data for the two ranges off̄ shown.
Such plots also demonstrate that all curves~for the cross
sectiond3s/dV1dV2dcg) are free of kinematic singularity

In Fig. 10, we present a similar plot at 280 MeV fo
( ū1 ,ū2)5(28°,12.4°) andf̄50°,1°, 3°, 5°, and 7°. These
noncoplanar curves indicate that noncoplanarity effects
much more significant in the region ofcg.90° than in the
region of cg,90°. We include the coplanar data from th
TRIUMF experiment@31# for comparison. The figure con
firms that noncoplanar effects could play a role in und
standing the back angle data.

In Fig. 11, we compare our calculated noncoplanar cr
sections with the KVI data@3,4# at 190 MeV for the angles
(u1 ,u2)5(16°,16°) in the spherical coordinate system. U
ing the spherical coordinate system@32#, the KVI experiment
measured the noncoplanar cross section of the fo
d3s/dV1dV2dug . Here, we plot the cross section as a fun
tion of ug for the noncoplanarity anglesF50°, 2.5°, 7.5°,
12.5°, 17.5°, and 27.5°.~See Ref.@32# for the definition of
F. This noncoplanarity angleF, defined in the spherica
coordinate system@32#, is different from ourf̄, defined in
the Harvard coordinate system.! The maximum noncoplanar
ity angle in this case isFmax529.0°. Due to the phase-spac
factor, the range ofug decreases asF increases, and the
cross section diverges at both ends of the range ofug . The
experimental data forF52.5° were considered to be copla
nar @2–4# and compared as such with theoretical calcu
tions. Note, however, that our calculations show that the
ference between the cross sections forF50° ~coplanar! and
F52.5° ~noncoplanar! is significant forug.145°. In gen-
eral, the agreement between our calculations and the ex

FIG. 11. Noncoplanarppg cross sections (d3s/dV1dV2dug)
as a function ofug at an incident energy of 190 MeV for the ang
pair (u1 ,u2)5(16°,16°) and variousF. The noncoplanar data
@F52.5° ~circles!, F57.5° ~crosses!, F512.5° ~diamonds!, F
517.5° ~asterisks!, andF527.5° ~dots!# are from the KVI experi-
ment ~Refs.@3,4#!.
1-9
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mental data is good, especially for the data with small n
coplanarity angles~less than 12.5°).

Finally, in Fig. 12, we show the corresponding cross s
tions at 190 MeV in Harvard coordinates. For fixedu15u2
516° and for varying noncoplanarity anglesF52.5°, 7.5°,
12.5°, 17.5°, 22.5°, and 27.5° in the spherical coordin
system, the corresponding polar and noncoplanarity angle
the Harvard coordinate system are given by (u 1̄5u 2̄,f̄)
5(16.0°,0.7°), (15.9°,2.1°), (15.6°,3.4°), (15.3°,4.8°),
(14.8°,6.1°), and (14.3°,7.3°), respectively. The maximum
noncoplanarity angle isf̄max57.69°. The ‘‘coplanar’’ KVI
data are added for comparison. Figure 12 again demonst
that noncoplanarity effects are indeed much more signific
in the region ofcg.90° than in the region ofcg,90°.

In conclusion, we find that noncoplanar effects in proto
proton bremsstrahlung are non-negligible. Therefore, non
planarity should be properly included in any analysis of e
perimental ppg data. Moreover, special care should
exercised in attempting to draw conclusions from a comp
son of experimental data with purely coplanar calculation
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APPENDIX: SOFT-PHOTON APPROXIMATION

The soft-photon approximation is based upon a fun
mental theorem, known as the soft-photon theorem, first
rived by Low @21# in 1958. If one writes a bremsstrahlun

FIG. 12. Noncoplanarppg cross sections as a function ofcg at

an incident energy of 190 MeV for various (ū1 ,ū2) and variousf̄.
The data~for F52.5°) are from the KVI experiment~Refs.@2,3#!.
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amplitudeMm as an expansion in powers of the photon e
ergy K ~the soft-photon expansion!,

Mm5
Am

K
1Bm1CmK1•••, ~A1!

where

Am5 lim
K→0

~KMm!,

Bm5 lim
K→0

]

]K
~KMm!xi

,

Cm5
1

2
lim
K→0

]2

]K2
~KMm!xi

, ~A2!

then the theorem states that the first two coefficients,Am and
Bm @or the first two terms of the expansion (Am /K1Bm)]
may be calculated exactly in terms of the corresponding e
tic scattering amplitude and electromagnetic constants of
participating particles. In Eq.~A2!, the xi refer to a set of
independent variables which are held constant in carry
out the partial differentiation. Thus, the soft-photon amp
tude is defined to be

Mm
SPA5

Am

K
1Bm . ~A3!

In terms of this amplitude, the soft-photon cross section
the form

sSPA5
s21

K
1s01s̄1K. ~A4!

Historically, Low defined the soft-photon theorem direct
in terms of the bremsstrahlung cross sections. In this case,
the soft-photon expansion gives

s5
s21

K
1s01s1K1•••, ~A5!

where

s215 lim
K→0

~Ks!,

s05 lim
K→0

]

]K
~Ks!xi

,

s15
1

2
lim
K→0

]2

]K2
~Ks!xi

, ~A6!

and the theorem states that the first two terms (s21 /K and
s0) of this expansion may be evaluated exactly in terms
the corresponding elastic scattering amplitude and the e
tromagnetic constants of the participating particles. The s
photon cross section can be defined as
1-10
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sL
SPA5

s21

K
1s0 . ~A7!

Note that because of the extra terms̄1K @which is not iden-
tical to s1K in Eq. ~A5!# in Eq. ~A4!, sSPA is not equal to
sL

SPA.
Let us first discuss two different interpretations of t

soft-photon expansion and theorem.~i! Rigorously speaking
@22#, the expansion given by Eq.~A1! @or Eq. ~A5!# implies
the following conditions:

~A! K must be an independent variable and it has a ra
including the point atK50.

~B! The expansion ofMm ~or s) must be carried out no
only for those dynamical terms~or factors! which are explicit
functions ofK but also for those dependent kinematic va
ables which are implicit functions ofK. In other words, the
kinematics and dynamics of the bremsstrahlung proc
should be expanded consistently and completely.

~C! The coefficients Am ,Bm , Cm , . . . , etc. ~or
s21 ,s0 ,s1 , . . . , etc.! exist and they are independent ofK.
They are to be evaluated at a unique on-shell point, (s,t) or
(u,t). Here,t andu are defined by Eq.~34!.

These three conditions assure that the soft-photon am
tudeMm

SPA ~or the soft-photon cross sectionsL
SPA) physically

exists and it is independent of the off-mass-shell~or off-
energy-shell! effects. WhensL

SPA is plotted as a function o
K, Eq. ~A7! yields a family of hyperbolas characterized b
two K-independent constantss21 ands0.

This rigorous interpretation of the soft-photon expans
and theorem does not always apply to all types of cross
tion. As an example, let us choose the set (u1 ,f1 ,u2 ,f2 ,ug)
to be independent variables and express the cross secti
the form d3s/dV1dV2dug . This is a common choice fo
those experiments which use the Harvard geometry, and
type of cross section is classified as theH-type cross section
@22#. In this case, the dependent variables arep18 , p28 , fg ,
andK. SinceK is not an independent variable and the ran
of K does not include the point atK50, we cannot letK
approach zero arbitrarily~or simply setK equal to zero!.
Thus, ‘‘the limit K tends to zero’’ does not physically exis
under the restriction of energy-momentum conservation
fact ~as pointed out in Ref.@22#!, because the conditionp1

m

1p2
m2p18

m2p28
m2KmÞ0 at K50 would imply thatd4(p1

1p22p182p282K)50, the cross sectiond3s/dV1dV2dug

must vanish atK50. We therefore conclude that the so
photon expansion given by Eq.~A5! does not physically ex-
ist for the cross sectiond3s/dV1dV2dug , and hence the
soft-photon theorem defined in terms of Eq.~A5! cannot be
rigorously derived for this type of cross section.

The soft-photon expansion exists only for theR-type cross
section. For example, if we choose the set (u1 ,f1 ,ug ,fg ,
K) to be the independent variables and express the c
section in the formd3s/dV1dVgdK, then the above three
conditions are satisfied and the soft-photon theorem can
rigorously derived for the cross sectiond3s/dV1dVgdK.
We refer to Ref.@22# for detailed discussion.

~ii ! The second interpretation applies to bothH-type and
R-type cross sections, though it is absolutely required in
01400
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case of theH-type cross section. In this second interpre
tion, the above three conditions are modified as follows:

(A8) K may or may not be an independent variable and
range may or may not include the point atK50.

~B 8) The expansion ofMm ~or s) applies only to those
terms which are explicit functions ofK.

(C8) The coefficientsAm ,Bm ,Cm , . . . , ~or s21 ,s0 ,
s1 , . . . ) maystill be functions ofK. They can be evaluated
at different on-shell points.

In this second interpretation, the statement ‘‘the limitK
tends to zero’’ in Eqs.~A2! and ~A6! means that we simply
set those terms which depend explicitly onK to be zero. An
important aspect of this interpretation is that it allows
choice of different on-shell points, at whichAm andBm ~or
s21 and s0) can be evaluated. This is because the so
photon theorem, under the second interpretation, does
specify how these on-shell points are to be selected. T
various soft-photon amplitudes~or cross sections! which are
evaluated at different on-shell points can be constructed.
the difference between any two soft-photon amplitudes
alwaysO(K). For a detailed discussion and examples,
Ref. @23#. An example of choosing different on-shell poin
for theTuTtsamplitude is discussed in Sec. III of this wor
@see Eqs.~45!–~50d!#.

In general, on-shell points can be chosen fromuā,b̄ ,
t ā8,b̄8 , andsā9,b̄9 . Hereuā,b̄ , andt ā8,b̄8 are defined by Eqs
~45! and ~46!, respectively~but with the new constraintsā
1b̄Þ0, ā>0, b̄>0 and ā81b̄8Þ0, ā8>0, b̄8>0), and
sā9,b̄9 is a linear combination ofsi andsf ,

sā9,b̄95
ā9si1b̄9sf

ā91b̄9
, ā9>0, b̄9>0, ā91b̄9Þ0.

~A8!

Depending upon the choice of the on-shell points, at wh
the soft-photon amplitudeMm

SPA is to be evaluated, we ca
construct two distinct classes of soft-photon amplitud
Mm

(1)(u,t) and Mm
(2)(s,t). These two classes of amplitude

have been investigated@24# and the most important result
can be summarized as follows:

~1! The (u,t) classMm
(1)(u,t): The on-shell points for this

class of soft-photon amplitudes can be chosen fr
(uā,b̄ ,t ā8,b̄8). That is, an infinite number of on-shell poin
can be used. This theoretical ambiguity cannot be avoide
we apply only the soft-photon theorem~under the second
interpretation! to construct soft-photon amplitudes@i.e., the
Mm

(1)(u,t) amplitudes in this case#. However, the soft-photon
theoremalonecannot provide a correct bremsstrahlung a
plitude for a given bremsstrahlung process. Other theoret
constraints are also required. In fact, these additional th
retical constraints for any bremsstrahlung process can
used to find the right class of amplitude@Mm

(1)(u,t) or
Mm

(2)(s,t)] for the process and to determine specific on-sh
points at which to evaluate the constructed soft-photon a
plitude. Therefore, the theoretical ambiguity can be remov
Let us use theppg process as an example to illustrate th
point. For this process, we have to impose at least the
lowing additional constraints:~1a! The constructed soft-
1-11
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photon amplitudeMm must obey the Pauli principle@15#.
~1b! The constructed soft-photon amplitude should be re
tivistic and its internal amplitudeMm

I must satisfy the analy
ticity condition @25#. ~1c! The amplitudeMm should reduce
to the corresponding special amplitudeM̄m at the tree-level
approximation@24#. In our case, in order to be consiste
with the meson theory of theNN interaction, M̄m is the
bremsstrahlung amplitude derived from the one-bos
exchange~OBE! diagrams. The constraint~1a! implies that
all amplitudesMm

(2)(s,t), except for Low’s original ampli-
tude, cannot be used to describe theppg process becaus
these amplitudes violate the Pauli principle. The constra
~1b! is a fundamental requirement and it should not be co
promised because of the soft-photon approximation. Th
terms which violate the analyticity condition do not belo
to the internal amplitude. It is the constraint~1c! which de-
mands that a valid soft-photon amplitude should be in
(u,t) class. Guided by all three additional constraints, a s
photon amplitude has been rigorously derived in Ref.@15#.
This amplitude is the two-u–two-t special amplitude
Mm

TuTts(u1 ,u2 ,t1 ,t2) used in this work, Eqs.~40!–~44!. It
should be pointed out thatMm

TuTts depends on the elasticpp
amplitude @Fa(ui ,t j ) ( i , j 51,2)] evaluated at four specia
on-shell points (u1 ,t1), (u1 ,t2), (u2 ,t1), and (u2 ,t2). Thus,
the constraint~1c! rules out the possibility of evaluatingFa
at any combination of (uā,b̄) and any combination o
(t ā8,b̄8).

Although the amplitudeMm
TuTts has already been dis

cussed in Sec. III B, the following four remarks will help u
to understand some important features of this amplitude

~i! We should emphasize that

Fa~u2 ,t1!5Fa~s21,t1!ÞFa~si ,t1!, ~A9a!

Fa~u1 ,t2!5Fa~s12,t2!ÞFa~si ,t2!, ~A9b!

Fa~u2 ,t2!5Fa~s22,t2!ÞFa~sf ,t2!, ~A9c!

Fa~u1 ,t1!5Fa~s11,t1!ÞFa~sf ,t1!. ~A9d!

As explained in Sec. III B, the four on-shell conditions giv
by Eqs. ~48a!–~48d! allow us to write the four relations
given by Eqs.~50a!–~50d!. Equations~47a!–~47d! can be
used to explain the four inequalities given by Eqs.~A9a!–
~A9d!, respectively. For example, let us use Equation~47a!
to explain Eq.~A9a!. Equation~47a! involves four kinemati-
cal variables: three Mandelstam variables (si ,u2 ,t1) and an
off-shell factor 2p28•K, which is related to the square of th
invariant mass of the off-mass-shellp28 leg @(p281K)25m2

12p28•K# on which the photon emission occurs. In oth
words, Eq.~47a! is not an on-shell condition because the
are three independent variables in this equation. One ca
simply ignore the off-shell factor 2p28•K and setFa(u2 ,t1)
equal toFa(si ,t1). Thus, while the condition given by Eq
~48a! permits us to evaluate the amplitudeFa(u2 ,t1) at the
on-shell point (s21,t1), the condition given by Eq.~47a! for-
bids us to evaluate these amplitudes at the on-shell po
(si ,t1).
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~ii ! We choose the set (ū1 ,f̄1 ,ū2 ,f̄2 ,cg) to be the inde-
pendent variables and calculate the cross section of the f
d3s/dV1dV2dcg . The dependent variables arep18 , p28 , K,

and f̄g . SinceK is not an independent variable, we cann
let K approach zero arbitrarily. Moreover, the range ofK
does not include the pointK50, i.e. 0ÞKmin<K<Kmax.
Therefore, all off-shell factors (2p1•K, 2p2•K, 2p18•K, and
2p28•K) must be greater than zero and we have

s215si22p28•K,si , ~A10a!

s125si22p18•K,si , ~A10b!

s225sf12p1•K.sf , ~A10c!

s115sf12p2•K.sf . ~A10d!

Equations~A10a!–~A10d! imply that

sf,~s22,s21,s12,s11!,si . ~A11!

These results lead to the following interpretation. Equatio
~A10a!, ~50a!, and ~A9a! show that the off-shell factor
22p28•K reducessi to s21 and shifts the on-shell point from
(si ,t1) to (s21,t1) for the amplitude Fa(u2 ,t1)
5Fa(s21,t1). Equation~A10b!, ~50b!, and~A9b! show that
the off-shell factor22p18•K reducessi to s12 and shifts the
on-shell point from (si ,t2) to (s12,t2) for the amplitude
Fa(u1 ,t2)5Fa(s12,t2). Equation~A10c!, ~50c!, and ~A9c!
show that the off-shell factor 2p18•K boostssf to s22 and
shifts the on-shell point from (sf ,t2) to (s22,t2) for the am-
plitudeFa(u2 ,t2)5Fa(s22,t2). Equation~A10d!, ~50d!, and
~A9d! show that the off-shell factor 2p28•K boostssf to s11

and shifts the on-shell point from (sf ,t1) to (s11,t1) for the
amplitudeFa(u1 ,t1)5Fa(s11,t1). Now si j can be used to
define four kinetic energies of the proton in the c.m. syste
We find

Tc.m.
i j 5Asi j /22m. ~A12!

Similarly, si and sf can also be used to define two kinet
energies of the proton in the c.m. system. We obtain

Tc.m.
( i ) 5Asi /22m, ~A13!

Tc.m.
( f ) 5Asf /22m. ~A14!

From Eq.~A11!, we can show that

Tc.m.
( f ) ,Tc.m.

i j ,Tc.m.
( i ) . ~A15!

Equation~A15! explains why the kinetic energiesTc.m.
i j used

in the TuTts amplitude never reachTc.m.
( i ) or Tc.m.

( f ) . For ex-
ample, at 190 MeV,Tc.m.

( f ) may reach an energy as low as 1
MeV for some cases, but Eq.~A15! shows thatTc.m.

i j will
always be greater than 10 MeV. Again, this is becauseTc.m.

i j

~or si j ) involve off-shell contributions.
~iii ! All on-shell points, (si j ,t j ) @or (qc.m.

i j ,uc.m.
i j ) defined

by Eqs. ~51! and ~52!#, can be defined in the whole phas
1-12
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space. In other words, the anglesuc.m.
i j can be physically de-

fined in the whole phase space without any problem. On
other hand, if we choose the on-shell points to be (si ,t1),
(si ,t2), (sf ,t1), and (sf ,t2), then these points will have
phase-space problem@26#, which was first discussed in Re
@27#. The reason is as follows@27#. Fromsi andsf , two c.m.
momenta can be defined,

qc.m.
(x) 5

1

2
Asx24m2 ~x5 i , f !, ~A16!

and four c.m. scattering anglesuc.m.
x j can be determined from

qc.m.
(x) and t j ( j 51,2),

cosuc.m.
x j 511t j /@2~qc.m.

(x) !2#. ~A17!

This is the so-called two-energy–four-angle approximati
The phase-space problem associated with this approxima
is that not alluc.m.

i j angles can be physically defined in th
whole phase space. As discussed in remark~i! above, this
problem arises because the on-shell points used in this
proximation have ignored all off-shell factors shown in Eq
~47a!–~47d!. Furthermore, the two-s–two-t special (TsTts)
amplitude violates the Pauli principle.

~iv! TheTuTtsamplitudeMm
TuTts is different from Low’s

original amplitude@21# for several reasons. A major differ
ence between these two amplitudes is that they use very
ferent on-shell conditions. TheTuTts amplitude uses four
on-shell conditions given by Eqs.~48a!–~48d! and evaluates
thepp amplitudeFa at four different on-shell points (si j ,t j )
( i , j 51,2), while Low’s amplitude utilizes a single on-she
condition,

s̄1 t̄ 1ū54m2, ~A18!

wheres̄5(si1sf)/2, t̄ 5(t11t2)/2, andū5(u11u2)/2, and
evaluatesFa at one on-shell point (s̄, t̄ ). If we add the four
Eqs.~47a!–~47d! together, we obtain

s̄1 t̄ 1ū54m21~p18•K1p28•K2p1•K2p2•K !/2.
~A19!

Because of energy-momentum conservation andKmKm50,
the term involving the four off-shell factors will cancel pre
cisely and Eq.~A19! reduces to Eq.~A18!. In other words,
the on-shell condition given by Eq.~A18! does not include
any off-shell factors. This is quite different from the on-sh
conditions given by Eqs.~48a!–~48d! which include off-shell
factors through the use of the newsi j . In short, the four
on-shell points (si j ,t j ) used in theTuTts amplitude take
into account all off-shell factors, but the single on-shell po
( s̄, t̄ ) used in Low’s amplitude is independent of off-she
factors.

Another amplitudeM2m
TuTts given by Eq.~49! of Ref. @15#

was used in Ref.@16# for ppg calculations.Both Mm
TuTts and

M2m
TuTts are relativistic, gauge invariant, and consistent wi

the soft-photon theorem, except thatMm
TuTts obeys the Pauli

principle while M2m
TuTts violates the Pauli principle at orde
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O(K). We emphasize that the violation is not atO(K/K) as
stated in Ref.@26#; see Refs.@15,25#. Because the soft-
photon approximation is specified only toO(K) @i.e., viola-
tions at O(K) are acceptable#, the two amplitudes predic
very similar results@25#. Our investigations reveal thatppg
cross section data from low energies to energies near
pion-production threshold can be consistently described
these two amplitudes, even for those kinematic conditio
where the conventional Low amplitude disagrees with
perimental data or potential model calculations.

~2! The (s,t) classMm
(2)(s,t): The on-shell points for this

class of soft-photon amplitudes can be chosen fr
(sā9,b̄9 ,t ā8,b̄8). Again, the fact that the soft-photon theore
allows one to choose the on-shell points arbitrarily is a t
oretical ambiguity. However, as we have previously me
tioned in~1! above@for the (u,t) classMm

(1)(u,t)], there are
other additional theoretical constraints which can be impo
in order to construct a validMm

(2)(s,t) amplitude for a given
bremsstrahlung process. This theoretical ambiguity can
removed if specific on-shell points are specified by the i
posed constraints. The constraint~1c! mentioned in~1! is one
such constraint. For radiative resonance scattering proce
the constraint~1c! requires that a valid amplitude should b
in the (s,t) class;i.e., Mm 5 Mm

(2)(s,t) andM̄m5 M̄m
(2)(s,t).

This constraint can also specify certain on-shell points
the amplitudeMm

(2)(s,t). Taking thep1pg process near the
D11 resonance as an example,M̄m

(2)(s,t) is the amplitude
given by Eq.~54! of Ref. @28#, which is derived from the
Feynman diagrams shown in Fig. 2 of Ref.@28#. Reference
@28# demonstrates how a general two-s–two-t special
(TsTts) @or the two-energy–two-angle special~TETAS!#
amplitude@Eq. ~75! of Ref. @28## can be constructed from
M̄m

(2)(s,t). $See also Refs.@24,27# for a further discussion
regarding theTsTts ~or TETAS! amplitude.% This TsTts
amplitude depends upon the elasticp1p amplitude evalu-
ated at four specific on-shell points@(si ,t1), (si ,t2),
(sf ,t1), and (sf ,t2)]. Thus, the constraint~1c! rules out the
possibility of evaluating the elasticp1p amplitude at arbi-
trary combinations of (sā9,b̄9) and (t ā8,b̄8). Hence the theo-
retical ambiguity can be removed.

The (TsTts) amplitudes, which represent a class of a
plitudes evaluated at (si ,sf :t1 ,t2), were found to be optima
for processes involving strongs-channel resonance effect
Several practical versions of theTsTts amplitude can be
defined and two well-known versions have already been
vestigated. They are the two-energy–four-angle spe
~TEFAS! amplitudes and the TETAS amplitudes@27#. Be-
cause the center-of-mass angleQc.m. cannot be defined for
some kinematical points involving (sf ,t1) and (sf ,t2), the
TEFAS amplitudes cannot be used for those points. Thi
the so-called phase-space problem. To circumvent this p
lem, the TETAS amplitudes were introduced in Ref.@27#.
The TETAS amplitudes, which are free of the phase-sp
problem, have been shown to be the most successful in
scribing bremsstrahlung processes near a resonance.

BecauseTuTts and TETAS amplitudes effectively de
scribe different bremsstrahlung processes, the theore
constraints to be imposed upon them can differ. For exam
the amplitudes for theppg process must obey the Pauli prin
ciple. Since theTsTtsamplitudes do not obey the Pauli prin
1-13
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ciple, the TuTts amplitudes given by Eq.~40! should be
used to describe theppg process. On the other hand, in ord
to describe a bremsstrahlung process associated with a
nificant resonance, a valid amplitude must predict the cor
~energy! position and width of the resonant peak, as obser
in the bremsstrahlung spectrum. Using Eqs.~24! and~25! of
Ref. @23#, this criterion was investigated thoroughly@29#.
Processes likep1pg @28# andp12Cg @29# in the region of a
resonance can only be well described by amplitudes wh
are evaluated atsi andsf ; the TETAS amplitudes were dem
onstrated to provide an excellent description of those p
cesses. Equations~24! and ~25! of Ref. @23# can also be
applied to explain why theTuTts amplitudes should not be
used to describe thep1pg and p12Cg processes. The con
ventional Low amplitude fails to describe thep6pg and
p12Cg data in the vicinity of a resonance; in particular,
predicts incorrectly the position and width of the resonan
peaks observed in thep12Cg spectrum@29#.

Historically, the idea of using the two-energy–one-an
~TEOA! amplitudes to describe bremsstrahlung processe
a resonance region was first proposed by Feshbach and
nie @30#. They realized that such amplitudes should be eva
ated at two special energies: the initial energy (si) and the
final energy (sf), but not any linear combination ofsi and
sf . All TETAS and the special TEOA amplitudes meet th
requirement~the TEFAS amplitudes also satisfy this requir
ment except that they have the phase-space problems!. On
the other hand, the conventional Low amplitude, which
typically a one-energy–one-angle amplitude, cannot be u
to describe any bremsstrahlung process in the vicinity o
resonance. This is because Low’s amplitude is evaluate
s̄5 1

2 (si1sf) and t̄ 5 1
2 (t11t2). The expression fors̄ ~a lin-

ear combination ofsi andsf),
s.

d

,

the

s.
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.
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s̄5
1

2
~si1sf !5

asi1bsf

a1b
, ~A20!

implies thata5b51. Substitutinga5b51 into Eqs.~24!
and~25! of Ref. @23# givesKg52K0 andGg52NGel , which
disagree with the observed experimental values,

Kg.K0 ,

Gg.NGel ~A21!

for the p12Cg case@29#.
Feshbach and Yennie were able to derive a nonrelativi

version of the TEOA amplitude, known as the Feshba
Yennie approximation~FYA!. However, their attempt to con
struct a relativistic version of the TEOA amplitude was n
successful. Since the amplitude involves a noncovariant t
with a factordm0K0

21 @see Eqs.~51a!–~50c! of Ref. @30##, the
cross section calculated in the lab system and the C.M.
tem would yield quite different results. A relativistic versio
of the special TEOA amplitude~or the relativistic FYA! was
discussed in Ref.@27#. The TETAS amplitude, which satis
fies all theoretical constraints, can be considered as the
eralized Feshbach-Yennie approximation.

In short, theTuTts amplitudes are optimal for brems
strahlung processes involving strongu-channel exchange ef
fects while the TETAS amplitudes are optimal for those
volving strong s-channel resonance effects. As for tho
processes which do not involve either strongu-channel ex-
change effects or strongs-channel resonance effects, th
TuTts amplitude, the TETAS amplitude, and Low’s amp
tude would yield similar results.
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