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Noncoplanarity in proton-proton bremsstrahlung
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Using the soft-photon approximation, we address the issue of the importance of noncoplanarity effects in
proton-proton bremsstrahlung. We investigate the noncoplanar cross section as a function of the noncoplanarity
anglegfor the entire range of the photon polar anglg. Thegdependence is shown to provide a significant
variation in the cross section, for a giver) . Thus, there can be some uncertainty in determining experimental
coplanar cross sections. To avoid the phase-space singularities of spherical geometry, we utilize the Harvard
noncoplanar geometry. A detailed explication of the Harvard geometry is provided. Comparison of our calcu-
lations with experimental data is included.
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I. INTRODUCTION a differential cross section of the fora?o/dQ,dQ,dK is
The role of noncoplanarity in proton-proton bremsstrah-measured(The p;#, p,*, andK*, and other notation, will
lung (ppy) has recently been highlighted. In a theoreticalbe defined in Sec. N.Here dQ;, d€,, anddQ, are the
investigation[1], significant noncoplanarity effects were ob- solid angles corresponding to the three momeaita, p,*,
served in the differential cross section for certain photon, K*, respectively. The photon momentuh defines a
anglesy,, . In a high-statistics Kernfysisch Versneller Instit- polar angled., in the spherical coordinate system and a re-
uut (KVI) experimen{2-4], coplanar and noncoplanar cross lated polar aynglep,/ in the Harvard coordinate system. Be-

sectlonslwzri syst?_matﬁally measnIJred. .TheﬁKVI noncoplaz, se very few experiments have used the Rochester geom-
nar resultq3,4] confirm that noncoplanarity effects are im- v e will focus our remarks on the Harvard geomégy

portant. In addition, it is statef4] that noncoplanar cross In most experiments employing the Harvard geometry, the
sections can test models and theoretical approximations in r%omentap’“ and p,* were measured and the momentum
1 2

more sensitive manner than coplanar results. These findingﬁ,ﬂ was inferred Using energy-momentum conservation. The

fcheoretlc_:al gnd experimental, demonstrate that nonCOpI"Jmacrj'ifferential cross sectiod®a/dQ,dQ,d 6., can be extracted,
ity contributions should not be neglected. U

In th ¢ ¢ . ¢ d onlv th | if the spherical coordinate system is used to analyze the data.
n the past most experments measured only the cop ar]af—ﬁowever, because the cross section in this form exhibits ki-

cross sections, whlch.were then compared with theoreuc%emaﬂc singularities near the end points of the rangé.of
predictions using various coplanar bremsstrahlung amplizy the noncoplanar case, the Harvard noncoplanar coordi-
tudes. Coplanar amplitudes are clearll missing the depensie systen{9,10] has been used to measure noncoplanar
dence upon the noncoplanarity angie. Moreover, as and coplanar cross sections of the fOﬂﬁU’/dQldQZdlﬂy,
pointed out in Ref[1], there is some uncertainty involved in which is free of such kinematic singularities. The Harvard
determining experimental coplanar cross sections. This limitexperimen{9], the Manitoba experimerjtl1], and the Oak
what one can learn from any comparison between experiRidge experimentl2] are three examples of successful mea-
ment and theory in the purely coplanar case. Furthermoresurements using the Harvard geometry. The KVI experiment
one cannot rule out the possibility that noncoplanar effectsdiffers in that all three final-state particles were detected, but
not of dynamical origin, are at least partly responsible forcross sections of the fora®o/d(Q),dQ ,d 6, (plus analyzing
some disagreements in past comparisons between theory apdwers were measured. There are other experimgtsin
experiment. Finally, an important issue has been raised rewhich cross sections and/or analyzing powers were measured
garding the presentation of coplanar and noncoplgnay  using the Harvard geometry.
data, which is to be compared with theoretical calculations There is a crucial difference between the Rochester geom-
[5,6]. etry (cross section of the forml%/dQlded K) and the
Historically, two different experimental arrangements,Harvard geometry (cross section of the form
known as the Harvard geometry and the Rochester geometrg®o/d€),dQ,d g, or d%/dQlszdz//y). In the Rochester
have been used ippy cross section measuremefif. The  geometry, the photon enerd¢ is an independent kinematic
Rochester geometr8] refers to an experimental arrange- variable, and its range includes the poitt0. In the Har-
ment in which the momenta of the two outgoing protonsvard geometry, in contrask is a dependent variable and its
(p1* andp,*) and the emitted photork(*) are detected and range does not include the poit=0 exceptin the elastic
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limit. One implication of this difference lies in the interpre- shown in Fig. 15 of Ref[10]. In the Harvard coordinate
tation of the soft-photon theorem and the soft-photon expansystem the momentg/, p%, p;*, ps*, andK* have the

sion, which is discussed in the Appendix. following components:
Recently, progress has been achieved in the theoretical
investigation ofppy. Sophisticated calculations, using either pY=(E1,0,0p1),
contemporary nucleon-nucleon potentials or other ap-
proaches, have been performgt4]. Higher-order effects p5=(m,0,0,0,

such as rescattering terms, relativistic spin corrections, L . L
negative-energy stateArisobar admixtures, electromagnetic  p;“=(Ej,p; OS¢, Sinf;,p; Singy,p; COSh4 COSH,),
form factors, higher-order exchange currents, and the differ-

ence between pseudoscalar and pseudovedibcouplings p>“=(E5,—p; COng Singz P2 sin% P2 cosgz COS@),
in low order have been explored. However, much less atten-

tion has been given to noncoplanarity effects and to their role x— (K,K cosa sing. —K sina K cosa cosd.)

in interpreting experimental coplanar cross sections. In Ref. ' ree v ’ )
[1], we investigated these problems using two different ap-

proaches, a soft-photon approximation based upon a twovhere

u—two+ special TuTt9 amplitude[15,16 and a realistic

one-boson-exchange modél7]. As shown in Fig. 1 of Ref. Ei=Vm?+pi=m+Ty,

[1], those two approaches lead to similar predictions. More

recently, theT uTtsamplitude has been tested by comparison Ei=Vm*+ 512: m+Ty,

with KVI experimental datg2—4]. The validity of its use in

describing theppy cross section has been well established. E,=ym’+ ﬁéz:m+ Ts, (©)]

This encourages us to employ thaTtsamplitude in further )

exploration of noncoplanarity effects. We report here on ag@nd m is the proton mass. The proton has chagand
ditional results of our soft-photon calculations, provide thednomalous magnetic momeni=1.793. The relation be-
details of our method, present explicit expressions for thdween the coordinates in spherical and Harvard geometry
Harvard geometry kinematics, and compare to the availablEeads

experimental data.

This paper is organized as follows. We discuss in Sec. I ¢$,=tan Y[ csch, tang,],
the kinematics defined in the Harvard noncoplanar system. -
We present a complete set of formulas which can be used to $,=m—tan '[csch, tang,],
determine the needed coordinates for noncoplanar calcula- _
tions. In Sec. Il we define thep elastic scattering ampli- ¢7=27r—tan‘1[csc07tan¢y].
tude which is used to generate tieiTts bremsstrahlung . . .
amplitude. We give explicit expressions for thi@Tts am- 6,=tan [tar? ,+seC o, tar? ¢;]*% (i=1,2,y). (4)

plitude along with comments about its evaluation. In Sec. IV o
we present numerical results and discuss their implicationgzor coplanar events, the three noncoplanarity angigs,
In the Appendix we address certain subtleties of the soft{i=1,2,y), vanish and Eqs4) become

photon approximation.

$1=0,
IIl. KINEMATICS po=,
A. The Harvard noncoplanar geometry b, =2
Y ’
We consider thep py process, o
6;=0;, (i=12y). 5

P(pY) +p(p5)—p(p*)+p(p*) +v(K*), (D)
For a given incident kinetic energy,, there are three
] o outgoing particles with nine kinematic degrees of freedom.

wherepf(p%) is the four-momentum of the incideftergel  gecause energy and momentum are conserved,
proton,p;“(p,*) is the four-momentum of the scatterge-
coil) proton, andK* is the four-momentum of the emitted pi+ps=p1~+pyt+KH (6)
photon with polarizatiore®. In the spherical coordinate sys-
tem a three-momentum can be Specified by the p0|ar Eﬂ]g|e Only five of the kinematic variables are independent. The
and the azimuthal angle, while in the Harvard coordinate choice of these five independent variables depends on the

system the momentum is specified by two Harvard an@es experimental arrangement. For example, in terms of the

43 (We foll he H q | h spherical coordinate system we can choose the set
and ¢. (We follow the Harvard noncoplanar approac 85(6,,¢1,0,,5,6,) to be independent variables and express

outlined in the Appendix of Re{10].) The angle®, ¢, 6,  the differential cross section in the fordio/dQ ,d(,d 0, .
and ¢ are defined relative to th&-z reference plane as Or, in terms of the Harvard coordinate system, we can

014001-2



NONCOPOLANARITY IN PROTON-PROTON BREMSSTRAHLUNG

choose the seté,¢1,0,,¢,,0,) to be independent vari-

ables and express the differential cross section in the form A

d®0/dQ;dQ,d6,. Note that the solid angles(}; and d(;
(i=1,2) are defined as

in:Sin 0|d0|d¢| s

dQ,=cos¢;da,dg;. 7

Because it can be shown that

sin6,d6;d ;= cos¢;d6,d b, ®)

we haved(_2i=in, and hence

©)

In the coplanar case the cross sectiuﬁ‘tr/dQldQZdey

(§7= ¢,) has no kinematic singularity in the entire photon
range (G<6,<2m). However, for noncoplanar events the

allowed range fom, (orgy) shrinks to less than2 and the
cross sectiord®o/d(2;dQ,d6,, (or d%/dQlszday) di-

d®0/dQ,d0,d6,=d3/d0,dQ,d0, .

verges at the extreme photon emission angles due to the
phase-space factor. This problem can be avoided by |ntro

ducing the special photon polar angde, in the Harvard
noncoplanar coordinate system.

Two steps are involved in defining this new anglg. (i)
The first step is to define the so-called “limiting ray.” In

PHYSICAL REVIEW 65 014001

FIG. 1. Three-dimensional representation of the momentum
vectors required in defining the new coplanar photon momentum

and its polar angley, in the Harvard geometry. In the figure

Is the original photon momenturﬂ,0 is the limiting y ray, anda is
a constant.

choice of variables, one can integrate this cross section over
¥, to obtalndza/dﬂldﬂz with no difficulty. In the coplanar

the Harvard geometry, the average noncoplanar angle of tmase i, reduces tod, and d3c/dQ;dQ,dy, becomes

protons, ¢> (¢1+ ¢2)/2 has a kinetically allowed maxi-
mum, which we callq')max The corresponding emitted pho-
ton is called the limitingy ray. It has a three—momentuﬁb
specified by two special Harvard angles, and ¢y

Ko= Ko Sin g, Ko COSho COSHy).

(10

(Ko COSho Sin B, —

d® cr/dQldQZdH In this  work, we

d%/dQldQZd:p7 as a function of,, ¢, andT;.
Finding the limiting anglespmay. 6o, and ¢, is one of

the complicated steps in calculating the noncoplanar cross

section, especially for the asymmetric ca?ﬁetgz. Various

methods can be used to determine these angles. For example,

using the simple method of Lagrange multipliers one can

derive two coupled equations for the proton momeﬁtand

calculate

(ll) As shown in Fig. 1, a new coplanar photon momentunip/  After solving these two nonlinear equations numerically,
" in thex-z reference plane can be defined by a vector sungne ‘may then calculate the anglés,ax, 6, and ¢, from

of K and — aKO,

- -

K'=K—aK,. (11)

The polar angle of this new photon momentungis, where

K'=(K'siny,,0,K'cosy,). (12)
We obtain from Eq(11)
sin#.,— cot ¢y tand., sin 4,
tany,= 7 Potand,sinby (13

cosf.,— oty tane,, cosby

If we choose the setd, ¢>1,02,¢>2, ,) as the independent
kinematic variables, the cross sectn?v/dﬂldﬂzd ¥, has
no kinematic singularity in the range<O/,<27. One has
mapped the allowed range @f,, which is less than ,
onto the full 27 range ofi,,. Among the advantages of this

pl, p2, and other given conditions. Details are discussed in
the next subsection.

B. The limiting gamma ray

If we choose a common noncoplanarity anador the
two outgoing protons= ;= ), theng has a maximum
value, d)max At this limit, the I|m|t|ng v ray is defined and it
has momenturi(o— O(Ko,ao ¢>0) given by Eq (10) If the
magnitudes of the two proton momerpi?and p2 arep1 and

Bé, respectively, at this limit, then we can obtain the follow-

ing two coupled equations fqy] andp,:
0:2f1f35é3+ plEéf4 COSE

~fD1,

E5[pif,cos6,+pyfa(pi+pii—
(14
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o=2f1f3f)13+ |01Eif4cosg2 After solving this equation numerically to finp’, we can
calculateKy, ¢max, and ¢y from Egs.(17), (18), and (20),
—E1l[pif,cos0,+pifa(pi+ps°—pi* D], respectively. L
(15) Next we can calculate pg,p;.K,60,,¢,) if
5 B (M,T1,61,602,0,4,,00,b0) are given. Once
wherep,, fi, f5, f5, f4, Ej, andE; are defined as (P1.P3 K, 6,,,4,) are determined, the complete expressions
for pl, p2, andK can easily be obtained. Let us first define
_ 2 —
P1=V2mT + T3, the following functions off).,:
f,=f1(p;.py)=2m+T,;— Vm?+p;2— Vm?+py? cosf,—siné, cot
1=f1(p1,pp)=2m+T, \/m P1 \/m P27 tan¢>7—tan¢o by (22)
o L _ cos¢90—sm¢90cot¢7
f,=1,(p1,P3,01,0,)=Pp; COSH; + P, COSH;, o o
N —cos¢sing, sing, 23
. . 0.)= o ~ |,
fa=f3(61,6,)=1—cog6;+ 6,), 1 y) P1 sing —tand,y
f,=1,(p1,p5,01,6,) _ cos¢sing,  siné.
toommm o Ay(6,)=— ! 7l (9
={pif5+2pipsfalps+(p1+ps)>— 1112 sin¢ —tané,

Nl A,(6,)=p, Sing cose(sin b +sin6,) V1+tarf ¢,

Ei= (25

Er=Vm2+ 2. (16) cosgsing, —cosgsing, sing,

_ 5 5 A(6)=| sing sing —tane, |,
Using T4, 61, 6, and the values op; andp, obtained by

solving Egs.(14) and(15), the values off;, f,, f3, andf, cos¢cosf,  cos¢cosf,  cosd,
can be found from Eq(16). These values can be used to (26)
determine Ko, ¢max 0 <¢pma=ml2), 6y (—7/2<86, A0
</2), andéy (0 <do=<m/2) as pi(6,)=—=", (27)
A(o,)
Kozf y (17) —
' 1A Az(ay)
_ . -~ pa(0,)=—=—, (28
Pmax=C0S [(—pifa+Ta)/(2p1pafa)], (18 A(6,)
Y — Tl i D)l i — A ;
fo=tan [ (p;Sin#,—p; sindy) K(6,)= M (29
_ _ A(8,)
X Cosd’max/(pl_ f2 Cos¢max)]a (19) _ _ —
Insertingp;(4,), pa(6,), andK(6,) into
bo=Sin"[(P1+P2)SIN Prmax/Kol- (20

2m+ Ty = Vm2+[p(0,) 1+ Vm+[p}(0,) 12+ K(,)
For the symmetric case, one has= 6,= 0, ¢1=d,= b, (30

pi= pz p’, and6,=0. In this case, the coupled equations leads to an equation fod? Equation(30) can be solved
for p1 and p2 given by Egs.(14) and (15) reduce to one numerically fora Subsututmg the value 09 into Eqs.

single equation of the form (22—(26), we obtamgy, Py, Py, andK from Egs. (22),
B o _ (27), (28), and(29), respectively.
0=2p’2(2m+T,)sir® §— \Vm?+p’? Using p; and p; obtained in Eqs(27) and (28), respec-

tively, T; and T, can be calculated from Eq(3). If

2 . 2700 A2 =2 AN
x{picos 6+ i [ py+4p (T1,61,60,,¢) are given,T; andT, will be functions ofi,, .

_ o[ 2. =22 [ o =2 o By varying ¢, throughout its entire 2 range, the kinemati-
(2m+ Ty =2Vm™+p™)7]}+pyVm*+ p™cosd cally aIIowedyvaIues ofr; andT, will form a closed ring in
x{p3 co§§+sin2§[pf+4f3’2 the T;,T, plane. This is thel;—T, plot; see Ref[9]. In
Figs. 2 and 3, we show these plots for 190 MeV and the
—(2m+T—2Vm?+p’2)2}Y2 (21)  symmetric angle pair 16°-16°, and for 280 MeV and the
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ool Si=(p1tp2?  si=(pi+ps)?,

ti=(p1—p1)?  t=(ps—p2)?
80 |

u=(ps—p1)?,  U=(p1—pa)? (3D

When the photon momentuid approaches zero, thepy
process reduces to the correspondpyy elastic scattering

(MeV)

/
2

= process,
40 o _
p(pT)+p(P5)—p(P1*) +p(p2"), (32
190 MeV
2 16°-16° where
. . . . . pi= lim p;“,
% 20 40 60 80 100 K—0
T/(MeV)
PNyt i
FIG. 2. The kinematically allowed values @f, and T, as a P2 lllinopz ’ (33
function of the noncoplanarity angk for the KVI energy of 190
MeV and the symmetric angle pair 16°-16°. and the Mandelstam variables defined above become

. ) . ) s=s=(p1+p2)?
asymmetric angle pair 12°-28°, respectively. Starting from o o
the largest ring for the coplanak&0) case, as shown in t=(p1—P1)*=(pP3—P2)%

Figs. 2 and 3, these rings become smalleEéBcreases. The — —

) = T u=(p;—P1)’=(p1—P2)* (34)
smallest ring corresponds tb near the limitingeg 5. Simi-
lar plots were used in the original Harvard experimentalThey satisfy the on-shell condition,
analysis and have been used in many other experiments for o,
data analysis. S+t+u=4m’, (39

which shows that only two of the variables are independent.
The representation of the covariant on-siNdN scattering

lll. THE PROTON-PROTON BREMSSTRAHLUNG amplitude has been discussed by Goldberger, Grisaru, Mac-
AMPLITUDE Dowell, and Wong(GGMW) [18]. The GGMW amplitude
A. The proton-proton elastic scattering amplitude for pp elastic scattering has the forfs]
From the variables in Eq(1) that describe th@py pro- F=F1(G;—Gy)+Fux(Gy+G,)+F3(Gs3—Gy)
cess, it is useful to define the following Mandelstam vari- _ _
ables: TF4(G4+Gy) +F5(Gs—Gs)
5
=2 FaGat(—1)G.l, (36)
2000 [ a=1
280 MeV —_— 0 where
12°-28° - =2’
160.0 | —_—— E — — i a
— Enso Ga:u(pl))\au(pl)u(pZ)A u(p2),
| - Go=U(Py)X u(P)U(PA U(P2), (37)
s

and we define
80.0 |

ey
400 b (Ali)\21A31)\41)\5)_(l7\/§1|757y!7#775)1

mv
0.0

. . . . ; ot
0.0 40.0 80.0 1200 160.0 200.0 (ANLAZ NSNS = ( 1,5 dysyH vH, 'y5) . (38

T, (MeV)

FIG. 3. The kinematically allowed values @f, and T, as a  Note that\, and\¢ are tensors. For example?\ ;=\ ,\2
function of the noncoplanarity angk¢ for the TRIUMF energy of = %UWU’”, where the summation over and v is implied.
280 MeV and the asymmetric angle pair 12°-28°. In Eq.(36), F, («=1,...,5) aranvariant functions of two
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independent Mandelstam variables. Guided by a meson- (P1—P2) 4 (P1— P14

exchange theory of theN interaction, we choose andt to P ;

be the two independent variables and we wrife, 2(p1=P2) K 2(p1—py)-K

=F,(u,t). [For the pp elastic scattering case;,(u,t) (P1—pb) (Pa—pb)

=F,(s,t). However, as will discuss below, this relationship = LT 2 T2 (43)

is not true for theppy case] By imposing the condition

Fa(uit):(_ 1)a+1Fa(t’u);

one can verify that the amplitude given by Eq.(36) obeys

the Pauli principle.

B. The two-u—two-t special amplitude

C2(p1—py)-K  2(py—py)-K
(39) and

1 K
RiM:Z[’}/,u, 'K]+8_m{[ YM!K]!pi}'

1
R, =707, K1+ g—{l7, KLB} (=12, @4

The TuTts amplitude used in our bremsstrahlung calcu-

lations is given by the following expressidm5]:

M,TLuTtS(ULUz;tl,tz)

5

=e;1 [U(P) X, U(P1)U(PHNU(P)

+U(PDALU(PLU(PS) Y Su(p2)

+U(P)N“U(PLU(P])Z,U(P2)

+u(p) TEU(PDUPDALU(P2)],
where

' ’
pl,u.+ Rl,u N

p1-K

I

a

Xa;L:Fa(ulat2)|: "

pl,u.+ Rl,u _
p1-K .

_Fa(UZ!tZ))\a

Y =Fa(uz,ty)

P2+ Ry v, [xe
p2-K

+R
pZ,u Z,u_v
p2.K e

—Fa(ug, t)Ae

' ’
pl,u,+ iy _

Zopu=(—1)F (Ut

Ao

p2,u,+ RZ;L _

— (=D Fu(ug,t)h,

!

péM+R B
py-K g

Tﬁ:(_l)aFa(Uz,tl){

—(—1D)“F (uz,tp) A

with

pz.K M

In Eq. (44), we have employed the usuah,B]|=AB—BA
and {A,B}=AB+BA. As shown in Ref[15], this TuTts
amplitude is gauge invariant, obeys the Pauli principle, and
satisfies other theoretical constraints.

The amplitudeM " ™'uy ,u,;ty,ty) is called the two-
u—two+ amplitude because it dependswon u,, t1, andt,.
It is “special” primarily because it doesot depend upon a
specific linear combination af; andus,,

au;+Bu, —
UZE:T’ a’#O,

(@0 PR pro. @

and/or the linear combination of andt,,

a'ti+8't, — _
_1—52, a'#0, B'#0. (46)
a' + 8

a!’ﬁl:

Equations(41) and (42) show thatF ,(u;,t;) (i,j=1,2) are
the input for the amplitudeM "™, In order to treat
F.(ui,t;) as on-shell amplitudes, we have to impose on-
shell conditions. From the four relations

Si+Up+t;=4m?+2p,-K, (479
si+u;+t,=4m?+2p)-K, 47D
(41) iTuUp T Py (47b)
Si+Uy+t,=4m?—2p;-K, (470
situ+t;=4m?—2p,-K, (470
we define four on-shell conditions by introducing ney
(i,j=1,2) as
521+U2+t1:4m2, (483)
Spptuy+t,=4m?, (48b)
322+ U2+t2:4m2, (48C)
(42
811+U1+t1=4m2, (48d)
where
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Sp1=S—2py- K, (499 28

S12= 51— 2py - K, (49b) 24 1
Sp2=8t+2p;-K, (499 20 1
S11=St+2py-K. (490 16 1

Equationg483—(48d) show that there are only two indepen-
dent variables in a given set ofi(,u; ,t;) (i,j=1,2). Thus,

d°6/dQ,d0,dy, (ub/sr*rad)

we can write 08
Fa(Ug,ty) =Fu(s11,t1), (503 04 _
Fa(uy,t) =Fo(s12,t2), (50D 00
Fa(Uz,t) =Fo(s21.t1), (500

FIG. 4. Noncop_lanappy cross sections as a function of the

F,(Us,t5)=F ,(Sss,t5). (50d) noncoplanar anglep at an incident energy of 280 MeV for the
] angle pair ¢,,6,)=(12.4°,12°) and varioug, .

Equations(493—(49d) and Eqgs.(508—(50d show that the

on-shell points §; ,t;) (i,j=1,2), at which the amplitudes . 3 . —

F.(ui,t)=F,(s.t;) are to be evaluated, involve off-shell ]E)hoton_anglez//y (ll\.le.’ d ffl/dQ1_?strl/fyt asa fltj)ncgo? Of‘ﬁ_ q

contributions becauss; include off-shell factors(For fur- or a giveny,). oncopianarity efiects can be determine

from such a curve. An important application lies in estimat-

ther discussion of this point, see the Appendix. . .
Now, from the fours;; , four center-of-mass momenta can N9 the angular dependent correction facio(y,). As
be defined ! shown in Eq.(5) of Ref.[1],

(d®01dQ;dQ,d0,)eyp
=[C(4,) (R ld1d000, ) eugly 5. (59

. 1
em= SVSii— am?, (51)

and four center-of-mass angles can be obtained fodm
andt;, This factor relates the experimental noncoplanar cross sec-
tion (d%/dQlszdzpy)exp at ¢, to an “experimental” co-
cosl =1+ {; (52) planar cross sectiord?a/dﬂldﬂzdey)exp ate,. (i) The
cm. ij second type of plot is the cross section ratio

2( 1) 2.
Gen) d*0/dQ,dQ,dy, /(dPe/dQ,d0,dy,) - as a function of
Therefore,F(s;; ,t;) will be evaluated at a given set of 4, for a givené. (iii) The third type of plot is the typical
(Am. 0dm),

Fo(ui tj) =F (s ’tj):Fa(qicj.m.'eicj.m)' (53 28

The five invariant amplitudes F.(q!,.6.,) (a 24}

=1,2,...,5) can bevritten as linear combinations of the
five helicity amplitudes which are explicit functions of the 8 2°f

d)

pp phase shifts. In this work, phase shifts and mixing param- g
eters from the Nijmegepp partial-wave analysis PWA93 2 ver |
[19,20 have been used to evaludg(ql,, 6! ). B 12 ]
G
©
IV. RESULTS AND DISCUSSION %}Fo.s 1
©

L)

We present here several results, in addition to those ap 4, |
pearing in Ref[1], which demonstrate the existence of sig-
nificant noncoplanarity effects ippy. Specific calculations 00 . s . s . s . s
are illustrated in Figs. 4—12. Three different types of plots 0 2 6 8

are involved in these figuresi) The first type of plot is in
terms of the standard noncoplanar curves, which are defined FIG. 5. Noncoplanappy cross sections as a function of the

as the dependence of the differential cross sectiomoncoplanar anglep at an incident energy of 280 MeV for the
d%/dQlszd(//y upon the noncoplanar angdefor a given  angle pair ¢;,6,)=(21.2°,12°) and varioug, .
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FIG. 8. Noncoplanappy cross section ratios as a function of
¥, at an incident energy of 190 MeV for the angle pa#h (6,)
=(8°,8°) and variousp. All curves have been normalized to the

coplanar case ap=0°.

noncoplanar curve used in the past. It depicts the noncopla-
nar cross sectiod3s/dQ;dQ,d i, as a function ofyr, fora  final-state protons is decreased. We also observe that cross
given . sections are small fay,=60° and 100°, due to the quadru-

In Fig. 4, we present noncoplanar curves of the first typepole nature of tﬁe radiatiortii) Cross sections vary rapidly
for (6,,0,) = (12.4°,12°) at an incident energy of 280 MeV, as & function of¢ for 4, =140°, 160°, and 179°, implying
the energy of the TRIUMF experimefi8l]. Six different that noncoplanarity effects are significant at back angles.
curves corresponding t¢,=1°, 60°, 100°, 140°, 160°, and Generally speaking, it is correct to state that noncoplanarity
179° are shown. The foyllowing interesting features can beffects are more important for the backward scattering pro-
observed from these six curve§) Noncoplanarity effects C€SS than for the forward scattering process. The KVI experi-
are rather insignificant fogr,=1°, 60°, and 100°. The cor- ment observed significant noncoplanarity effects primarily

’y ) 1 .

responding noncoplanar curves are insensitive to the varif€cause the range 6, covered in thei(spherical geometjy
- experiment lies between 135° and 165° in the “supercluster”

Lo o fever, o shonn n i3 L) 190 Getmety and between 65° and 165 the “boc” o
-z T . etry. It should be pointed out that the contribution from most
6,=0,=8° at an incident energy of 190 Mev. This would pigher-order effectsmentioned in our introductionis sig-
imply that noncoplanarity effects become more significant inyjficant in the regionsy,<20° and .>160°. Thus, the
the regions of smally, as the scattering angle of the two 7 7

FIG. 6. Noncoplanappy cross sections as a function of the
noncoplanar anglep at an incident energy of 190 MeV for the
angle pair ¢,,6,)=(16°,16°) and varioug,, .

24 T T T T T T T 24| — 305" 1
157Mev ?;go
o [ ° o === &
190 MeV — v [ 30°-30 o=
20 | 8°-16° R k
—-— y=80
——- yF120°
e =160°
1.6 | — wA179° b

o
©

d’6/dQ,dQ,dy, (ubisr’rad)

d’6/dQ,dQ,dy, (ubisr’rad)

[
n

o0l — .
é ' L L L L "IY(deg)

0.0
0 -
(deg) : :
FIG. 9. Noncoplanappy cross sections as a function ¢f, at

FIG. 7. Noncoplanappy cross sections as a function of the an incident energy of 157 MeV for the angle paiﬁ(@)
noncoplanar anglep at an incident energy of 280 MeV for the =(30°,30°) and varioug). The data forp=1.5° (crossesand for
angle pair ¢,,6,)=(8°,16°) and various,, . ¢=13.5° (circles are from the Harvard experime(Ref.[9]).
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25

20 T T T T

L 280 MeV

»
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1
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do/dQ,dQ,dy, (ubisr’rad)
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d’°6/dQ,d0Q,d6, (ub/sr’rad)
o

60
V,(deg) 0 (deg)

FIG. 10. Noncoplanappy cross sections as a function #f, at FIG. 11. Noncoplanappy cross sectionsd®o/dQ);dQ,d 0,)
an incident energy of 280 MeV for the angle Pail’Tl(Fz) as a function of9,, at an incident energy of 190 MeV for the angle
=(28°,12.4°) and variousp. The coplanar data are from the Par (f1,6)=(16°,16°) and variousP. The noncoplanar data
TRIUMF experiment(Ref. [31]). [®@=2.5° (cm_:les), ®=7.5° (crossey ®=12.5° (diamonds, (D_
=17.5° (asterisky and® =27.5° (dotg] are from the KVI experi-
ment (Refs.[3,4]).
discrepancy between theory and experiment for the coplanar
case in these two regions may depend upon a complex consated. We include data from the Harvard experini@htfor
bination of effects, requiring thorough theoretical and experi-comparison with the theoretical curves. One observes that,
mental investigation to understan@i) Near the maximum for a giveny,(<140°), the cross section decreases mono-
d(= dmay, the six curves converge to imply similar cross tonically with increasingp. The theoretical curves describe
sections(iv) In the past a unique noncoplanar curve, whichwell the noncoplanar data for the two rangesdofshown.
represents the integrated cross sectimnthe double differ-  Such plots also demonstrate that all curéés the cross
ential cross sectigras a function ofp, was either calculated sectiond3a/dQ,dQ,d ) are free of kinematic singularity.
theoretically or measured experimentally. If such a curve is In Fig. 10, we present a similar plot at 280 MeV for
used to obtain a correction fact@; thenC will be a con- (¢, 4,)=(28°,12.4°) andp=0°,1°, 3°, 5°, and 7°. These
stant; that isC will be independent ofl.,,. However, the fact noncoplanar curves indicate that noncoplanarity effects are
that all six curves shown in this figure differ significantly much more significant in the region @f,>90° than in the
implies that noncoplanarity effects depend p. The cor-  region of ,,<90°. We include the coplanar data from the
rection faCtOI'SC(l,/Iy) obtained from these six curves will TRIUMF experiment[gl] for Comparison_ The ﬁgure con-
vary with ¢,. Thus, the first type of plot gives a very useful firms that noncoplanar effects could play a role in under-
picture for investigating noncoplanarity effects. standing the back angle data.
_ We show three more such plots in Fig[d 280 MeV for In Fig. 11, we compare our calculated noncoplanar cross
(6,,0,)=(21.2°,12)], Fig. 6 [at 190 MeV for (,,0,)  sections with the KVI dat§3,4] at 190 MeV for the angles
=(16°,16°)], and Fig. 7 [at 190 MeV for (;,65) (61,6,)=(16°,16°) in the spherical coordinate system. Us-
—(8°,16°)]. Again, very similar features as are observed inind the spherical coordinate syst¢&®], the KVI experiment
Fig. 4 can be found in these figures. This strongly suggestgieasured the noncoplanar cross section of the form
that such features are more or less universal. d0/dQ,dQ,d6, . Here, we plot the cross section as a func-

In Fig. 8, we show a second type of plot at 190 MeV for tion of 6, for the noncoplanarity angleb=0°, 2.5°, 7.5°,
,=6,=8° and $=0°, 2°, 4°, 6°, and 8°. The curves in 12.5",-17.5", and 27..5°(See Ref[32]_ for the definition _of
this figure show a complex noncoplanar behavior, because 5? This noncoplanarity angle@, defined m_the spherical
the small proton angles. This complication is reflected in thecoordinate systeni32], is different from our¢, defined in
plot of the first type shown in Fig. 1 of Refl] for the the Harvard coordinate systenthe maximum noncoplanar-
identical case. Such a complexity would be less prominent ity angle in this case i®m,,=29.0°. Due to the phase-space
an analogous plot for 157 MeV arﬁ:@:%o, because factor, the range of), decreases a® increases, and the

for larger proton angles the cross section decreases moR0SS Section diverges at both ends of the rangé,ofThe
. _ s experimental data fo =2.5° were considered to be copla-
monotonically with increasings for almost ally,,.

The above comment is also illustrated in Fig. 9, where w nar [2-4] and compared as such with theoretical calcula-
rlg. %, Sions. Note, however, that our calculations show that the dif-

show the third type of plot at 157 MeV fat; = 6,=30° and  ference between the cross sectionsdor 0° (coplanay and
$=0.5°, 1.5° 2.5° and 3.5°. At this energy and for thesed=2.5° (noncoplanaris significant forg,>145°. In gen-
large proton angles, noncoplanarity effects are not complieral, the agreement between our calculations and the experi-
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24 — T ] amplitudeM , as an expansion in powers of the photon en-
ergy K (the soft-photon expansi@gn
— $=0.0°,8=16.0° 190 MeV
20 $=0.7°,8=16.0 1 A
. M
= M”—?+Bﬂ+CMK+-~-, (A1)
o
g where
El
%N A,=lim (KM ,),
G K—0
-Ov—
g g
m_g y B”:iITOW(KM“)X“
d C,= ! li i KM A2
y,(deg) =3 K'T()ﬁ( ;s (A2)

FIG. 12. Noncoplanappy cross sections as a function #f, at

an incident energy of 190 MeV for variougl(,@) and variousp.
The data(for & =2.5°) are from the KVI experimer(Refs.[2,3]).

then the theorem states that the first two coefficiefsand

B, [or the first two terms of the expansiol (/K+B,)]

may be calculated exactly in terms of the corresponding elas-

mental data is good, especially for the data with small nonlic scattering amplitude and electromagnetic constants of the

coplanarity anglegless than 12.5°). participating particles. In EqA2), the x; refer to a set of
Finally, in Fig. 12, we show the corresponding cross secindependent variables which are held constant in carrying

=16° and for varying noncoplanarity anglés=2.5°, 7.5°,  tude is defined to be
12.5°, 17.5°, 22.5°, and 27.5° in the spherical coordinate

: . . A
system, the corresponding polar and noncoplanarity angles in MSPAZ# B,,. (A3)
the Harvard coordinate system are given b= 60,,¢) g K
=(16.0°,07°), (15.9°,21°), (15.6°,34°), (15.3°,48°), . . ) .
(14.8°.61°), and (14.3°,73°), respeciively. The maximum 'ltﬂet?‘rorpri of this amplitude, the soft-photon cross section has
noncoplanarity angle iy ,,=7.69°. The “coplanar” KVI
data are added for comparison. Figure 12 again demonstrates spa 01 _
that noncoplanarity effects are indeed much more significant o —T+ oot oK. (Ad)
in the region ofiy,,>90° than in the region of,<90°.

In conclusion, we find that noncoplanar effects in proton-  Historically, Low defined the soft-photon theorem directly
proton bremsstrahlung are non-negligible. Therefore, noncan terms of the bremsstrahlung cross sectionin this case,
planarity should be properly included in any analysis of ex-the soft-photon expansion gives
perimental ppy data. Moreover, special care should be
exercised in attempting to draw conclusions from a compari- o_q

son of experimental data with purely coplanar calculations. 7Tk +ogto K+, (AS5)
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and the theorem states that the first two terms (/K and

o) of this expansion may be evaluated exactly in terms of
The soft-photon approximation is based upon a fundathe corresponding elastic scattering amplitude and the elec-

mental theorem, known as the soft-photon theorem, first detromagnetic constants of the participating particles. The soft-

rived by Low [21] in 1958. If one writes a bremsstrahlung photon cross section can be defined as

APPENDIX: SOFT-PHOTON APPROXIMATION
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oy case of theH-type cross section. In this second interpreta-
oL —T+Uo . (A7) tion, the above three conditions are modified as follows:

(A") K may or may not be an independent variable and its
range may or may not include the pointkat0.

Note that because of the extra teaK [which is not iden- (B') The expansion oM , (or o) applies only to those

tical to ;K in Eq. (A5)] in Eq. (A4), o°PAis not equal to

o SPA terms which are explicit functions .

il f e

Let us first discuss two different interpretations of the (C) The quﬁ'C'entSA“’B“’C“’ -+, (O a-1,00,
o1, - .. ) maystill be functions ofK. They can be evaluated

soft-photon expansion and theore(i). Rigorously speaking
[22], the expansion given by EGAL) [or Eq. (AS)] implies In this second interpretation, the statement “the lilit

the following conditions: y :
(A) K must be an independent variable and it has a rang%endﬁ to zero™ i iqsr(]AdZ) an%(AG)I_m_elans th%t we S|m£Iy
including the point aK =0 Set those terms which depend explicitly irto be zero. An
(B) The expansion of ' (or o) must be carried out not important aspect of this interpretation is that it allows a
only for those dynamical term{sr factorg which are explicit choice of different on-shell points, at whidk, andB, (or

. : X o d og) can be evaluated. This is because the soft-
functions ofK but also for those dependent kinematic vari- % 2n% 70 : .
ables which are implicit functions d? In other words, the photon theorem, under the second interpretation, does not

X . . specify how these on-shell points are to be selected. Thus,
kinematics and dynamics of the bremsstrahlung process. . . .
i various soft-photon amplituddésr cross sectionswhich are
should be expanded consistently and completely.

(©) The coefficients A, B C etc. (or evaluated at different on-shell points can be constructed. But
N ) the difference between any two soft-photon amplitudes is
o_41,00,01, ..., €tc) exist and they are independent kf

They are to be evaluated at a unique on-shell powt) (or always O(K). For a detailed discussion and examples, see
(u,1). Here,t andu are defined by Eq34). Ref.[23]. An example of choosing different on-shell points

" for the TuTtsamplitude is discussed in Sec. Il of this work
These three conditions assure that the soft-photon amplrSee Eqs(45)—(500)]
tudeM $"* (or the soft-photon cross sectioff ) physically '

. o In general, on-shell points can be chosen fromy,
exists and it is mdepender;tp/c\;f the off-mass-shel off- 2.5, ands, 5. Hereu,, 5, andt,: 5 are defined by Eqs.

energy-shejl effects. Wherno?" " is plotted as a function of . . .
K, Eqg. (A7) yields a family of hyperbolas characterized by (4Q and(_46), re_spectlvely(but with the new constrainte

two K-independent constants_; and oy. +B#0, @=0,5=0 anda’+p'#0, a'>0, §'=0), and
This rigorous interpretation of the soft-photon expansionSa”,s” i @ linear combination of; andsy,
and theorem does not always apply to all types of cross sec-

at different on-shell points.

. N '+—/I . o o

tion. As an example, Ie.t us choose the sit,p1,0,,$5,0,)  spe a_S. Esf =0, B'=0, o'+ pB"#0.

to be independent variables and express the cross section in : o'+ B

the form d3¢/dQ,dQ,d6,. This is a common choice for (A8)

those experiments which use the Harvard geometry, and this

type of cross section is classified as theype cross section Depending upon the choice of the on-shell points, at which
[22]. In this case, the dependent variables pie p;, b, the soft-photon amplitud&/lf;PA is to be evaluated, we can
andK. SinceK is not an independent variable and the rangeconstruct two distinct classes of soft-photon amplitudes:
of K does not include the point &=0, we cannot lek ~ M{P(u,t) and M?)(s,t). These two classes of amplitudes
approach zero arbitrarilyor simply setK equal to zerp have been investigatd@4] and the most important results
Thus, “the limit K tends to zero” does not physically exist can be summarized as follows:

under the restriction of energy-momentum conservation. In (1) The (u,t) classM E})(u,t): The on-shell points for this
fact (as pointed out in Ref22]), because the conditiop’ class of soft-photon amplitudes can be chosen from
+ps—pit—pst—KH#£0 atK=0 would imply thaté*(p;  (Un z.ta 5). Thatis, an infinite number of on-shell points
+p,—p;—ps—K)=0, the cross sectiod®s/dQ,dQ,d 0, can be used. This theoretical ambiguity cannot be avoided if
must vanish ak=0. We therefore conclude that the soft- We apply only the soft-photon theorenfunder the second
photon expansion given by E6A5) does not physically ex- interpretation to construct soft-photon amplitudése., the

ist for the cross sectiod®s/dQ,dQ,d6,,, and hence the M{P(u,t) amplitudes in this cageHowever, the soft-photon
soft-photon theorem defined in terms of E45) cannot be theoremalone cannot provide a correct bremsstrahlung am-

rigorously derived for this type of cross section. plitude for a given bremsstrahlung process. Other theoretical
The soft-photon expansion exists only for fRéype cross ~constraints are also required. In fact, these additional theo-
section. For example, if we choose the sét,@:,6,,4,, retical constraints for any bremsstrahlung process can be

K) to be the independent variables and express the crossed to find the right class of amplitudev {P(u,t) or
section in the forn*d%/dﬂldﬂyd K, then the above three Mﬁf)(s,t)] for the process and to determine specific on-shell
conditions are satisfied and the soft-photon theorem can hgoints at which to evaluate the constructed soft-photon am-
rigorously derived for the cross secticnﬁcr/dﬂldﬂyd K. plitude. Therefore, the theoretical ambiguity can be removed.
We refer to Ref[22] for detailed discussion. Let us use thepy process as an example to illustrate this
(i) The second interpretation applies to bétitype and  point. For this process, we have to impose at least the fol-
R-type cross sections, though it is absolutely required in thdowing additional constraints(1la) The constructed soft-
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photon amplitudeM , must obey the Rauli principlgl5]. (i) We choose the set{, ¢, ,52,52'%) to be the inde-
(1b) The constructed soft-photon amplitude should be relapendent variables and calculate the cross section of the form
tivistic and its internal amplitudM'M must satisfy the analy- d30/d91d92d%_ The dependent variables av¢, p5, K,

ticity condition [25]. (1c) The amplitudEM# should reduce and Ey. SinceK is not an independent variable, we cannot
to the corresponding special amplitule, at the tree-level |et K approach zero arbitrarily. Moreover, the range kof
approximation[24]. In our case, in order to be consistent does not include the poif{=0, i.e. 0# K in<K=<Kpax.

with the meson theory of th&IN interaction,M , is the  Therefore, all off-shell factors (- K, 2p,-K, 2p;-K, and
bremsstrahlung amplitude derived from the one-boson2p).K) must be greater than zero and we have
exchangg(OBE) diagrams. The constrairiia) implies that

all amplitudest)(s,t), except for Low’s original ampli- Sy1=5;—2p5-K<s;, (A109)
tude, cannot be used to describe fhey process because

these amplitudes violate the Pauli principle. The constraint s1,=5—2p;-K<s, (A10b)
(1b) is a fundamental requirement and it should not be com-

promised because of the soft-photon approximation. Those S,,=5;+2p1-K>sq, (A100)
terms which violate the analyticity condition do not belong

to the internal amplitude. It is the constraific) which de- S11=Si+2p,-K>s;. (A10d)
mands that a valid soft-photon amplitude should be in the . .

(u,t) class. Guided by all three additional constraints, a softEguations(A10a—(A10d) imply that

photon amplitude has been rigorously derived in R&§]. $/<(Sp:521,512,511) <5 . (A11)

This amplitude is the twa—two+ special amplitude
M YTy, Uz, ty,t,) used in this work, Eqs(40)—(44). It
should be pointed out that """ depends on the elastjzp
amplitude[F ,(u;,t;) (i,j=1,2)] evaluated at four special
on-shell points ¢4,t;), (u;,t,), (u,,t;), and U,,t,). Thus,
the constrain{1c) rules out the possibility of evaluatirnig,
at any combination of (,z) and any combination of
(tar 1)

Alﬁthough the amplitudeM ;"™ has already been dis-
cussed in Sec. Il B, the following four remarks will help us
to understand some important features of this amplitude:

(i) We should emphasize that

These results lead to the following interpretation. Equations
(Al0a), (50a, and (A9a) show that the off-shell factor
—2p,-K reducess; to s,; and shifts the on-shell point from
(si,t1) to (sp,ty) for the amplitude F_(u,,t;)
=F,(s,1,t1). Equation(A10b), (50b), and(A9b) show that
the off-shell factor—2p; - K reducess; to s;, and shifts the
on-shell point from §;,t,) to (s;»,t,) for the amplitude
F.(uq,t5)=F ,(s12,t5). Equation(A10c¢), (500, and (A9c)
show that the off-shell factor 2K boostss; to s,, and
shifts the on-shell point fromst ,t,) to (s,,,t,) for the am-
plitudeF ,(u,,t5)=F ,(S2,t5). Equation(A10d), (50d), and
(A9d) show that the off-shell factor- K boostss; to s,

Fo(Uz,ty) =F o (So1,t1) #F o (Si,t1), (A9a) and shifts the on-shell point fromsq,t,) to (s11,t;) for the
Pl t)=Fu(st)#Fa(s (A9 G ralon i the proton in the c.m. system.
F,(Up,t5)=F ,(Sy0,t5) #F (St ,to), (A90) We find

Fa(ug,t)=F,(S11,t1) #F (St ). (A9d) T m=1sj/2—m. (A12)

] ] - ~ Similarly, s; ands; can also be used to define two kinetic
As explained in Sec. Il B, the four on-shell conditions given energies of the proton in the c.m. system. We obtain
by Egs. (489—(48d) allow us to write the four relations

given by Egs.(508—(50d). Equations(479—(47d) can be Tf;i?nZ\/S—i/Z—m, (A13)
used to explain the four inequalities given by E¢&9a)— o

(A9d), respectively. For example, let us use Equatiéiia T = Jsi/2—m. (A14)
to explain Eq.(A9a). Equation(473 involves four kinemati- o

cal variables: three Mandelstam variableg,(,,t;) and an  From Eq.(A11), we can show that

off-shell factor ;- K, which is related to the square of the . _

invariant mass of the off-mass-shel} leg [ (ps+K)?=m? T <Tdm<TOh. (A15)

+2p,-K] on which the photon emission occurs. In other

words, Eq.(473 is not an on-shell condition because there

Equation(A15) explains why the kinetic energiég! . used

are three independent variables in this equation. One cannbt the TuTts amplitude never reacfi), or T}, . For ex-

simply ignore the off-shell factor (&,- K and setF ,(u,,t;)
equal toF ,(sj,t1). Thus, while the condition given by Eq.
(483 permits us to evaluate the amplituéte(u,,t;) at the
on-shell point §,1,t1), the condition given by Eq473 for-

ample, at 190 MeVT{") may reach an energy as low as 10
MeV for some cases, but E¢A15) shows thatT!  will
always be greater than 10 MeV. Again, this is becallg
(or sj;) involve off-shell contributions.

bids us to evaluate these amplitudes at the on-shell points (iii) All on-shell points, §;;,t;) [or (qV..,6! ) defined

(Si 7t1) .

by Egs.(51) and (52)], can be defined in the whole phase
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space. In other words, the angleés,, can be physically de- O(K). We emphasize that the violation is not@(K/K) as
fined in the whole phase space without any problem. On thé&tated in Ref.[26]; see Refs[15,25. Because the soft-
other hand, if we choose the on-shell points to bgt),  Photon approximation is specified only @(K) [i.e., viola-
(si.t2), (S¢,t1), and 6¢,t,), then these points will have a tions atO(K) are acceptab!e the two amplitudes predict
phase-space problef@6], which was first discussed in Ref. Very similar result25]. Our investigations reveal thatpy

[27]. The reason is as follow@7]. Froms; ands;, two c.m.  Cross section data from low energies to energies near the
momenta can be defined ' ’ pion-production threshold can be consistently described by

these two amplitudes, even for those kinematic conditions
1 where the conventional Low amplitude disagrees with ex-
® = > Vs,—4m? (x=i,f), (Al6)  perimental data or potential model calculations.
(2) The (s,t) classM{?)(s,t): The on-shell points for this
class of soft-photon amplitudes can be chosen from

and four c.m. scattering anglé§’,, can be determined from (Sw 3 .tar 31). Again, the fact that the soft-photon theorem

gxr)n andt; (j=1,2), allows one to choose the on-shell points arbitrarily is a the-
i () \2 oretical ambiguity. However, as we have previously men-
costeim =1+t /[2(q¢m) ]- (A17) " tioned in(1) above[for the (u,t) classM (D(u,1)], there are

o ... other additional theoretical constraints which can be imposed
This is the so-called two-energy—four-angle approximation;

. 191E 1aUONin order to construct a valiv {?)(s,t) amplitude for a given
The phase-space problem associated with this approX'm""t'o&emsstrahIung process. This theoretical ambiguity can be

is that not all6¢,, angles can be physically defined in the removed if specific on-shell points are specified by the im-
whole phase space. As discussed in rentarkabove, this  posed constraints. The constraibt) mentioned in1) is one
problem arises because the on-shell points used in this aguch constraint. For radiative resonance scattering processes,
proximation have ignored all off-shell factors shown in Egs.the constraint{1c) requires that a valid amplitude should be
(478—(47d. Furthermore, the twe—two- special sTt9 in the (5,t) classii.e, M, = M(Z)(s,t) andmﬂz I\W(z)(s,t).
amplitude violates the Pauli pTrirT‘?Sil?'e-_ This constraint can also specify certain on-shell points for
(iv) The TuTtsamplitudeM " *is different from Low's  the amplitudeM (2)(s,t). Taking thew* py process near the
original amplitude[21] for several reasons. A major differ- »++ (asonance as an exampd(?(s,t) is the amplitude
ence between these two amplitudes is that they use very dib‘iven by Eq.(54) of Ref. [28], wﬁich is derived from the
ferent on-shell conditions. Th&uTts amplitude uses four EFeynman diagrams shown in Fig. 2 of RE28]. Reference
on-shell conditions given by Eq#48a—(48d and evaluates [2g] demonstrates how a general twetwot special
the pp amplitudeF, at four different on-shell pointss(; ,t;) (TsTty [or the two-energy—two-angle specilETAS)]
(i,j=1,2), while Low's amplitude utilizes a single on-shell amplitude[Eq. (75) of Ref.[28]] can be constructed from

condition, M®)(s,t). {See also Refs24,27 for a further discussion
- ) regarding theTsTts (or TETAS amplitude} This TsTts
stt+u=4m’, (A18)  amplitude depends upon the elasti¢ p amplitude evalu-

_ _ _ ated at four specific on-shell points(s;,t;), (sSi,t2),
wheres=(s;+5¢)/2, t=(t;+1,)/2, andu=(u;+u,)/2, and  (s,t;), and ;,t,)]. Thus, the constraintlc) rules out the
evaluates,, at one on-shell points(t). If we add the four ~ Possibility of evaluating the elastie " p amplitude at arbi-

Eqgs.(479—(47d) together, we obtain trary combinations of€;» z) and (5 5). Hence the theo-
retical ambiguity can be removed.

ST U=4m2+ (D! - K+0.-K—D1-K—Do-K)/2. _The (TsTt9 amplitudes, which represent a class (_)f am-
(P1-K+pa-K=py-K=p2-K) (A1)  Plitudes evaluated as(,s; :ty.t,), were found to be optimal
for processes involving strongtichannel resonance effects.
Because of energy-momentum conservation Kn&*“=0, Several practical versions of thEsTts amplitude can be
the term involving the four off-shell factors will cancel pre- Sggtri]ggt :(;‘d %_";’fé;"’ealllr'é‘”?k‘]"é” Yv%sg)r?esrghjvﬁn?rlrgﬁgl)g biggclina_ |
cisely and Eq(A19) reduces to Eq(A18). In other words, . - el
the on-shell condition given by EqA18) does not include (TEFAS)h amphtude? and the TETAS amplgudgzp. gef'
any off-shell factors. This is quite different from the on-shell €3US¢€ the center-ol-mass ang¥ ., cannot be defined for

conditions given by Ea€48a—(48d which include off-shell SO0Me kinematical points involvings(,t;) and (s;,t;), the
factolrsl, thsl’gll,l\éh th}:a l?se{e o? tr(1e g)e\;v\‘ I Inlshgrt theSfour TEFAS amplitudes cannot be used for those points. This is
19 - 1

; : ; the so-called phase-space problem. To circumvent this prob-
on-shell points §;;,t;) used in theTuTts amplitude take . . :
into account all off-shell factors, but the single on-shell pointlem’ the TETAS amplitudes were introduced in REi7].

— . , i o ¢ off-shell The TETAS amplitudes, which are free of the phase-space
S&%rgsed in Low's amplitude is independent of off-shell o ohiem  have been shown to be the most successful in de-

) TuTts . scribing bremsstrahlung processes near a resonance.
Another amplitudeM;,, "™ given by Eq.(49) of TRﬁft'SDS] BecauseTuTts and TETAS amplitudes effectively de-
was used in Re{.16] for ppy calculationsBoth M," “and  scribe different bremsstrahlung processes, the theoretical
M3 "' are relativistic, gauge invariant, and consistent with constraints to be imposed upon them can differ. For example,
the soft-photon theorenexcept thaM ;""" obeys the Pauli the amplitudes for thppy process must obey the Pauli prin-
principle while ngm violates the Pauli principle at order ciple. Since thd' sTtsamplitudes do not obey the Pauli prin-
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ciple, the TuTts amplitudes given by Eq40) should be _ 1 as;+ Bs

used to describe thepy process. On the other hand, in order s=5(sits)= Tt p (A20)
to describe a bremsstrahlung process associated with a sig-
nificant resonance, a valid amplitude must predict the correct . i .
(energy position and width of the resonant peak, as observed"Plies thata=4=1. Substitutinge=/5=1 into Eqs.(24)
in the bremsstrahlung spectrum. Using E@8)) and (25) of and(25) of Ref.[23] givesK, =2K, andI', =2NI';, which
Ref. [23], this criterion was investigated thoroughl29]. disagree with the observed experimental values,
Processes liker " py [28] andp*?Cy [29] in the region of a

resonance can only be well described by amplitudes which Ky=Ko,
are evaluated & ands;; the TETAS amplitudes were dem-
onstrated to provide an excellent description of those pro- I, =NIg (A21)

cesses. Equation®4) and (25) of Ref. [23] can also be
applied to explain why th&uTtsamplitudes should not be for the p'’Cy case[29].

used to describe the " py andp'’Cy processes. The con-  Feshbach and Yennie were able to derive a nonrelativistic
ventional Low amplitude fails to describe the"py and  version of the TEOA amplitude, known as the Feshbach-
p'?Cy data in the vicinity of a resonance; in particular, it Yennie approximatioiFYA). However, their attempt to con-
predicts incorrectly the position and width of the resonancestruct a relativistic version of the TEOA amplitude was not
peaks observed in the'’Cy spectrum(29]. successful. Since the amplitude involves a noncovariant term
Historically, the idea of using the two-energy—one-angleyith afactor&Mngl [see Eqs(51a—(500) of Ref.[30]], the
(TEOA) amplitudes to describe bremsstrahlung processes igross section calculated in the lab system and the C.M. sys-
a resonance region was first proposed by Feshbach and Yeg@m would yield quite different results. A relativistic version
nie[30]. They realized that such amplitudes should be evalupf the special TEOA amplitudéor the relativistic FYA was
ated at two special energies: the initial energy) @nd the  discussed in Ref27]. The TETAS amplitude, which satis-
final energy 6), but not any linear combination & and fies all theoretical constraints, can be considered as the gen-
s;. All TETAS and the special TEOA amplitudes meet this eralized Feshbach-Yennie approximation.
requirementthe TEFAS amplitudes also satisfy this require-  |n short, theTuTts amplitudes are optimal for brems-
ment except that they have the phase-space problédms  strahlung processes involving stronghannel exchange ef-
the other hand, the conventional Low amplitude, which isfects while the TETAS amplitudes are optimal for those in-
typically a one-energy—one-angle amplitude, cannot be usegblving strong s-channel resonance effects. As for those
to describe any bremsstrahlung process in the vicinity of grocesses which do not involve either stramghannel ex-
resonance. This is because Low's amplitude is evaluated ghange effects or strong-channel resonance effects, the
s=3(si+s;) andt=3(t,+t,). The expression fog (a lin-  TuTtsamplitude, the TETAS amplitude, and Low's ampli-

ear combination o§; andsy), tude would yield similar results.
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