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Collectivity of double giant resonances in extended RPA theories
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A comparison among extended random phase approxim@R&#) theories is made by calculating the
strength functions of double phonon states of isovector dipole and isoscalar quadrupole giant resonances in
40Ca using the small amplitude limit of the time-dependent density-matrix tH&FHPDM). STDDM includes
all the elements of one-body and two-body amplitudes and provides us with a quite general framework of
extended RPA theories which consider the coupling of one-body amplitudes to two-body amplitudes. The
results are compared with those obtained by using time-dependent versions of the secof8RRBAand
other extended RPA theories. It is found that SRPA overestimates collectivity of the isovector mode and
underestimates that of the isoscalar mode. From a comparison between STDDM and other extended RPA
theories, it is concluded that the inclusion of particle-hole—particle-hole amplitudes is necessary to obtain
appropriate collectivity of double phonon states of giant resonances.
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The double phonon states of giant resonances have b&orn-Green-Kirkwood-Yvon (BBGKY) hierarchy for re-
come the subject of a number of recent experimental anduced density matricd8,9]. TDDM has been applied to the
theoretical investigationdl ]. In the case of giant resonances, two phonon states of giant resonan¢é®,11], and it has
the random phase approximatiRPA) has extensively been been shown that both DGDR and DGQR in TDDM are
used as a standard microscopic theory to study basic propefighly harmonic. The small amplitude limit of TDDM
ties of giant resonancg]. The second RPASRPA [3-6]  (STDDM) [12] is a quite general framework as compared
in which RPA is extended to include two-body amplitudesyith other extended RPA theories in the sense that all the
may be such a microscopic theory_ for double phonon statesiements of one-body and two-body amplitudes are consid-
of giant resonances as RPA for giant resonances. Althougheq \we first calculate the strength functions of DGDR and
SRPA has frequently been used to study the damping ofglarﬁGQR using STDDM and then compare them with those
rgsonance$5,6], numerical application of SRPA to double obtained by using time-dependent versions of SRPA and
giant resonances has been rare: Only a work based.on dther extended RPA theorigs3,14). We will point out that a
schematic model has been reporf@dl Therefore, the appli- roblem of collectivity inherent to SRPA which has been
cability of SRPA and other extended RPA theories to th X Y S
problem of double giant resonances has not been thorought}fown for low-lying two-phonon_state[&&lﬂ also exists In
investigated yet. The aim of this paper is to make a compari® € double phF’”O” states of giant resonances and dempn-
son among extended RPA theories including SRPA by calcuStrate t_hat the inclusion of p.artlcle—hoIg—partlcle—ho.le ampli-
lating the strength functions of a double giant dipole resoludes is necessary to obtain appropriate collectivity of the
nance(DGDR) and a double quadrupole resonab6&QR) ~ double giant resonances. . o
in “Ca. We use the small amplitude limit of the time- We begin with presenting the equations of motion in
dependent density-matrix theory as a basic extended RPRTDDM. When the Hartree-FockHF) ground state is as-
theory. The time-dependent density-matrix the6RDDM) sumed in the formulation of STDDM, it consists of the fol-
is an extended version of the time-dependent Hartree-Fodiewing coupled equations for a one-body amplitgg, and
theory formulated by truncating the well-known Bogoliubov- a two-body amplitudeX,, s, 5 [12],
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wherefaz_l (0) for occupied(unoccupied single-particle pra:<‘1’|ap+a;ayau|‘l’>
states and ,=1—f,, and the subscripA indicates that the e
matrix with it is antisymmetrized. The amplitudgs,, and =2ik{(u|VIp)(¥|VIa)=(ulV]o)(v|VIp)}, (6)

Xapargr In EQs. (1) and (2) have no restriction on single-

particle indices and consist of all possible components: For XPUW=<\P|aZa:a0aP|\If}

examplex,, have one-particleg) —one-hole f), 1h-1p,

1p-1p, and 1h-1h components. Therefore, Eqd) and (2) == 2ik{{p|V|u)(a|V[v) = (p|V]v)(a|V|u)},

give a quite general coupling scheme between the one-body 7)
and two-body amplitudes. In the following, we point out

some relation of STDDM with other extended RPA theories. ) ) i

SRPA has been formulated by using only the-1h and wherep ando refer to u.noccupled single-particle states, and
1h-1p components of the one-body amplitudes and thet @nd v refer to occup|ezd ones. \2Ne chooge- 7,z for the
2p-2h and zh-2p components of the two-body amplitudes diPole operator and/=z"—(x"+y?)/2 for the quadrupole
[3—6]. When only these components are kept in Egsand operator. Ot_he_r elements of_tht_a |n|_tDé_11¥Ba/5/ vanish at first
(2), STDDM is equivalent to the time-dependent version oforder ofk. Similarly, nonvanishing initial values of,,. are
SRPA. It is well-known that in SRPA thep22h amplitudes

cannot couple to thel22p ones[3-6]. It is necessary to Xuo=(¥|a,a,|V)

include the p1h-1plh components oKz, g in addition

to the 2p-2h and 2h-2p ones to make the 22h compo- —2ik v v 8
nents couple to the22p ones. This version of extended ! EV: (Vi) (Vie), ®

RPA has been proposed by Kaneseatkal.[13] for low-lying
two-phonon states. It has been discus§&8,15 that the
1plh-1plh components oiX,z, 5 are important to give
appropriate collectivity to low-lying double-phonon states.
Lauritsch and Reinhar{i7] considered the coupling of the =—2ik>, (p|V|v){(¥|V|u). (9)
2p-2h amplitudes to the B-2p ones in their application of v
SRPA to double giant resonances not by explicitly using the
1plh-1plh amplitudes but by renormalizing the residual In numerical applications shown below, we found that the
interaction using a correlated RPA ground state. If the coueoupling ofX, s,/ t0 X, are quite small both for DGDR
pling to the one-body amplitude, . is neglected in E¢(2), and DGQR. Therefore, the above initial valuesxgf,, can
Eq. (2) describes correlations in two-body space with all thepractically be neglected in numerical calculations. The
two-body amplitudes. Equatiof2) without x,,/ is equiva-  strength function of the double phonon states, defined by
lent to an extended RPA equation presented by Danielewicz
and Schuck14]. As will be discussed below, the coupling of .
Xapa' pr 10 X400 is negligible in the case of the double giant SHE)=2, (D, V2] D)|28(E—E,), (10)
resonances considered here. n

To solve Egs(1) and(2) as an initial value problem, we
assume that the motion of a double giant resonance is geis given by the Fourier transform of a time-dependent part of

erated by a two-body operatd® as a two-body moment as

X, =(¥]a,a,¥)

ikv2 1 ( - Et
|W(t=0))=€"""|Dy), 3 S(E)= WJO Va(t)sino-dt, (13)

whereV is either a one-body dipole operator or a quadrupolayhereV, is given by
operator,k is a boosting parameter, and,) the ground-
state wave function. The initial conditions for,,, and
Xaparpr @re determined by using the above boosted wave
function. Assuming thaj®,) is the HF ground-state wave

V(1) =(P ()| VP (1)) — (Do VD)

function, we evaluate =2 (a|VHa" Yot 2 {alV]a'XBIVIB')
aa’ aﬁa',B'
Xaa,(t:0):<ﬂi(t:0)|a:,aa|\lf(t:0)>, (4) X{Xarﬁraﬂ_zfagaﬂrxa/ﬁ} (12)

The terms withx,,. in the above equation have negligible
Xaﬁa,ﬁ,(t:O)=(\If(t=0)|az,a;,aﬁaa|\1f(t=0)>. (5) contributions to the Fourier transformation in Efjl). Thek
dependence d&,(E) is negligible as long ak is sufficiently
small. The energy-weighted sum r/EWSR for DGDR is
At first order ofk, the initial values foiX, 5, 5 are given by  given as[10]
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whereH is the total Hamiltoniangn is the nucleon mass and 0
R, is the following two-body operator: 30
E [MeV]
R,= > 8(ri—r)). (14) FIG. 1. Strength function§,(E) of DGDR in “°Ca calculated
i e protonsj e neutrons in STDDM (solid line) and SRPA(dotted ling.

In Eq. (13), we assumed thad consists of a two-body inter- g\ysR value in STDDM seems reasonable as compared with

action pf the Skyrme type. The second term_on the ”ghtihe RPA value for GDR93%). Since the EWSR value in

hand side of Eq(13), the enhancement term, is due to theSRPA exceeds 100%, DGDR in SRPA has too high collec-

momentum dependence of the Skyrme force and has a Cofjyiry, This problem originates in the fact that the coupling of

tribution of about 30% to the total EWSR vallig0]. Simi- o 2p-2h amplitudesX to the zn-2p onesX is

H H pouy mYpo

larly, EWSR for DGQR is given afl1] missing in SRPA, though in RPA, thepilh amplitudex,,

couples to the &-1p onex,,. In order to include such cou-

fw(ESZE)dEz E<¢o|[\A/2,[H,\A/2]|<I>o> pling of the two-body arﬁSIitudes, we should consider the
0 2 1plh-1plh amplitudesX,,,, in addition to X,;,, and
052 X.vpo @S has been pointed out by Kanesakal. [13]. We

:W<¢O|\72§l|¢o>, (15) performed a calculation using such a modified version of

SRPA (MSRPA). We found that the strength function in
MSRPA is almost identical to that in STDDM. Thus, the
whereR; is a one-body operator associated with the functioncoupling of the -2h amplitudes to the B-2p amplitudes
47%+x2+y?. To be consistent with the derivation of Eq) ~ which is bridged byX,,,, plays a role in reducing collec-
and (2), we use the HF wave function fof,) to evaluate tivity of DGDR. The little difference between the STDDM
the EWSR values. As in previous calculatioi®,11, we and MSRPA results also indicates that no two-body ampli-
use the Skyrme IIl forcéSKIlIl) [16] as the effective inter- tudes other thaiX,,,.,, X,,,, andX,,., are important.
action for a mean-field potential and also as the residual in- In Fig. 2 the strength function of DGQR calculated in
teraction. The spin-orbit force is neglected. To solve theSTDDM (solid line) is compared with that in SRP&lotted
coupled equations Eqgl) and (2), we use the &, 1p, 2s, line). The result in MSRPA differs little from that in STDDM
1d, 2p, and If states for DGDR and thesl 1p, 2s, 1d, and is not shown in Fig. 2. The peak in SRPA is 0.6 MeV
2p, 1f, 3s, 2d, and 1g orbits for DGQR. Although the higher than that in STDDM, and the fractions of the EWSR
single-particle space is truncated, a giant dipole resonancélue depleted below 60 MeV are 91% in STDDM and 79%
(GDR) and a giant quadrupole resonarf@QR) have suffi- in SRPA, respectively. The EWSR value in STDDM seems
cient strength: The RPA calculations with the truncatedreasonable for the truncated single-particle space. Since the
single-particle space had shown that the fractions of th&WSR value in SRPA is much smaller than the RPA value
EWSR values depleted below 40 MeV are 93% for GDR(95%), the collectivity of DGQR in SRPA seems to be too
[10] and 95% for GQR 11]. The integration in Eq(11) is
performed for a finite time interval of 750 frw/As a result, 700000
S,(E) has small fluctuations. To reduce the fluctuations in
S,(E), we multiply V,(t) by a damping factoe 2 before _
performing the time integration. This corresponds to smooth- % 5000001
ing the strength function with a width'. We choosel’ 5400000
=1 MeV. Other calculational details are explained in our
previous publication§10,11]. &)
In Fig. 1 the strength function of DGDR calculated in 32000001
STDDM (solid line) is compared with that in SRP&lotted 1000001
line). Since the coupling 0K 5./’ 10 X, is small, a time
dependent version of the extended RPA equation in [Ré€f. go o 0 " 50
would give a result similar to the STDDM one. The peak E [MeV]
energy in SRPAis 1.2 MeV higher than that in STDDM, and
the fractions of the EWSR value depleted below 60 MeV are FIG. 2. Strength function§,(E) of DGQR in “°Ca calculated
87% in STDDM and 112% in SRPA, respectively. The in STDDM (solid line) and SRPA(dotted ling.

6000001

£
= 3000001
2]
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low. In the case of DGQR, the comparison between the In summary, the strength functions of DGDR and DGQR
SRPA and MSRPA results indicates that the coupling of thén “°Ca were calculated using STDDM. The obtained
2p-2h amplitudes to the B-2p amplitudes which is bridged strength functions were compared with the results in ex-
by the amplitudex,, ., plays a role in enhancing collectiv- tended RPA theories including SRPA. It was found that
ity. The coupling of the p-1h amplitudes to the i-1p ones SRPA overestimates the collectivity of DQDR and underes-
has a similar effect in RPA. We calculated the strength funcliimates that of DGQR and that the inclusion of the
tions of the sinale giant : GDR and G plh-1plh amplitudes is important to obtain appropriate
. gie glant resonances, 1.€., LUK an Q ollectivity of the double giant resonances. Thus, it is con-
using RPA a_nd the Tam_m-Dancoff apprommgtl(d'rDA). N cluded that the @-2h, 2h-2p, and Iplh-1plh amplitudes
TDA, there is no coupling of the @-1h amplitudes to the  are the most important two-body amplitues to be considered
1h-1p ones. We found that TDA gives more collective GDR in the application of extended RPA theories to double giant

and less collective GQR than RPA does. resonances.
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