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Spectroscopic amplitudes and microscopic substructure effects in nucleon capture reactions
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Spectroscopic amplitudes play an important role in nuclear capture reactions. These amplitudes are shown to
include both single-particle and polarization effects: the former through their spatial dependence and the latter
through their normalizatiorithe spectroscopic factorsCoupled-channels equations are developed for the
spectroscopic amplitudes. These equations serve as a convenient starting point for the derivation of several
approximations: Hartree, Hartree-Fock, and two different single-particle models. The single-particle models
include antisymmetry in different ways, but both miss many-body effects. Therefore, cross sections calculated
with either of these models need to be multiplied by the spectroscopic factor.
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[. INTRODUCTION single-particle wave function is used to calculate various ob-
servables; microscopic substructure effects are partially ac-
Nucleon capture reactions at low energies, such asounted for through the use of spectroscopic factors. This
"Be(p,y)®B, 0(p,y)'F*, or "Li (n,y)Li, play an im-  strategy, however, has recently been the subject of vivid dis-
portant role in our understanding of astrophysical phenomeussions[7,8]. At issue is the proper normalization of the
ena. For example, in the hydrogen-burning process in staoss section. C$0[7], for instance, maintains that spectro-
such as our sun, low-energy proton capture on berylliumscopic factors should not be included in potential-model cal-
takes place in the proton-proton chain, and tf@(p, »)*F*  culations of the’Be(p, y)®B cross section at low energies,
reaction occurs in the carbon-nitrogen-oxygen cydle3]. since the reaction depends only on the asymptotic normaliza-
Exact knowledge of the reaction rates is necessary for modion coefficient of the®B bound-state wave functiof9],
eling the energy generation and evolution of hydrogenwhereas the spectroscopic factor arises from the short-range
burning stars. In addition, théBe(p, y)®B reaction at solar properties of the wave function. Mukhamedzharetval.
energies E. <20 keV) plays a key role in the “solar neu- [8,9] argue in favor of using a different approach, based on
trino puzzle” since the neutrino event rate in the existingasymptotic normalization coefficients instead of spectro-
chlorine and water Cerenkov detectors is dominated by thecopic factors, for determining the relevant cross sections.
high-energy neutrinos produced in the subseqgetécay of  However, the asymptotic normalization coefficient contains
8B [1,2,4]. The “Li (n,y)8Li reaction is a key element of short-range effects. It can actually be given in terms of an
primordial nucleosynthesis in inhomogeneous big bang scentegral over the interior of the nucle(i$0] and its interde-
narios[1,5]. It initiates a sequence of reactions which bridgependence with the spectroscopic factor has been noted in the
the mass gap @A=8 and thus its rate is crucial for deter- earlier work of Locher and MizutaiiiL1] and of Lovaset al.
mining the amounts of heavier elements produced in thesgl2].
models. These recent discussions have motivated us to revisit the
Direct measurements of capture reactions at energies coguestion of the proper treatment of microscopic nuclear
responding to astrophysically relevant temperatures, howstructure effects in one-body models. In the present work we
ever, are often very difficult, since the cross sections diminfocus on the role of spectroscopic amplitudes and factors.
ish exponentially at low energies. Thus, theoretical studies ofhe use of spectroscopic factors in nuclear reaction calcula-
these processes become very valuable. In addition to micraions dates back to the early days of nucleon transfer reac-
scopic theories, such as the nuclear shell model or clusteions[13] and continues to be central in the interpretation of
models, one-body potential models provide a popular framesuch processefl4]. With the renewed interest in nucleon
work for such investigations. For example, the potentialcapture reactions in the context of astrophysical scenarios,
model was used in Reff6] to discuss the energy dependenceand the emerging need for very accurate reaction rates, it
of the reaction rates. In the one-body potential model, &ecomes necessary to review and clarify the assumptions as-
sociated with one of the most basic models of nuclear phys-
ics, the one-body potential model.
*Electronic address: escher@triumf.ca Before proceeding with the formalism, it is necessary to
Electronic address: jennings@triumf.ca clarify the meaning of the terms spectroscopic amplitude,
*Permanent address: Department of Physics, University of Al-spectroscopic factor, and one-body model. For example, it is
berta, Edmonton, Alberta, Canada T6G 2J1. Electronic addresémportant to realize that there are many spectroscopic ampli-
sherif@phys.ualberta.ca tudes and spectroscopic factors associated witiA-dody
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system, namely, one corresponding to each excited state afotion here; this subject is discussed in Appendix D.

the (A—1)-body system. The different amplitudes are not Let W _,(rq, ...,ra_1) denote thenth (fully antisym-
independent since they are related by a model-independenietric eigenstate of theA—1)-body HamiltonianH,_ ;.

sum rule[15]. In addition, the spectroscopic amplitudes areThe collection of alh'}y_,, including both bound and con-
related by a set of coupled-channels equations. tinuum states, forms a complete set of states in the space of

The question of what is meant by a one-body model isantisymmetric A—1)-body wave functions. Using this

more complicated since different notions are associated witQet, {¥" }._1, , One can construct a basis for the

the term. The coupled-channels formalism presented here iace of antisymmetricA-body wave functions by
used to derive two different one-body models and to StUdeefining U (r A=AV (1, ry),  where

the connections between them. One approach, which USQﬁn,r(rl F)=V0(r fa 1)8(r—ra) and A an-
9|ther th? Hartree or the HartreQ—Fock _apprOX|mat|on. n ar{is/;/mmétrize's betweAérll théth cénordinate which occurs in
intermediate step, leads # noninteracting nucleons in a he delta function, and theA(- 1) coordi’nates o

) A-1-

one-body potential. This, strictly speaking, is not a one-bod his “intercluster” antisvmmetrization operator is normal-
model since there are stil particles. However, the orbitals ' > ' uster 2' y zafl P !
ed so as to satisfyl 2= JAA.

corresponding to the different particles decouple and thé? o ) .
problem reduces to solving one-body equations. The fact ~ 1he¥a" span a space that includes both totally antisym-
that we still haveA nucleons explicitly present has the ad- metric A-body states and mixed-symmetric states, which are

vantage that antisymmetry can be builtab initio using a  @ntisymmetric in the firsA—1 coordinates and symmetric
Slater determinant for thé-body wave function. Another under interchanges involving th&th coordinate. The basis
method for generating a one-body model is based on intesets{Wa_1}, {¥a'}, and{,¥}'} are discussed in more
grating out the coordinates oA¢- 1) nucleons, effectively detail in Appendix A.

projecting onto a low-dimensional space. In this approach An arbitrary antisymmetrié\-body wave functiony, can
antisymmetry is enforced separately for each channel in théhen be expanded as

coupled-channels equations. Truncating to a single channel w

results in the approximation advocated by Varga and Lovas ) = E 2 f dr ¥ (1)

et al. [16], who study the cluster substructure fi in this AT & AZA /%N

framework. Their work is based on the generator-coordinate

method. The derivation presented here serves to clarify the 1 - nr 1 - n

relation between their model and other approximations. - \/_K n§=:1 f dr[Wa") én(r)= ﬁ z«l [Wa-1)|¢n)
In Sec. Il, we define the terms spectroscopic amplitude

and spectroscopic factor, derive coupled-channels equations 2.9

for the amplitudes, and discuss several approximation .
schemes, including the first one-body model described”
above. An alternative approach to the spectroscopic ampli-
tudes is considered in Sec. Ill, which includes details on the
second one-body model mentioned above. In Sec. IV, we
explore the physical aspects associated with the spatial detere a(r) [af(r)] is an annihilation[creatior] operator
pendence of the spectroscopic amplitude and its norm, thghich destroygcreate$ a nucleon at positiom and obeys
spectroscopic factor. We give an expression for the reactioghe ysual anticommutation relations. Note that only the first
matrix elements in terms of the spectroscopic amplitudesexpansion in Eq(2.1) is manifestly antisymmetric, while in
For both single-particle models considered here the reactionge other two expressions the antisymmetry information is
rates need to be multiplied by a spectroscopic factor. OUgarried by the expansion coefficients. The coefficients are
conclusions are summed up in Sec. V, and various technicghentical in all three expansions if and only g, is fully

th expansion coefficients

Bn(D) =X [a) = VA(T R [ha) = (T A_|a(r)]| ‘/’/—\()2' )

aspects of our work are included in the Appendixes. antisymmetric. In this case, the mixed-symmetry compo-
nents of ¥ }'" do not contribute.
Il. SPECTROSCOPIC AMPLITUDES When ¢, denotes a bound state, thg,(r) are called

spectroscopic amplitudeand the associated integrals
In this section we expand afA-body wave function in

terms of the ground and excited states of tide-(1)-body 2

system and derive a set of coupled differential equations for &:f dr| n(r)] 2.3
the expansion coefficients, of which the spectroscopic ampli-

tudes are a special case. The resulting equations of moticd€ the frequently usespectroscopic factoril 7]. They obey
give insight into the long-range behavior of thebody the sumrulez;_;S,=A [see Ref[15] and also Eq(A21)].
ground state wave function and lead to various approximaWe observe that for a boundé-body state, there are many
tion schemes. In particular, the Hartree and Hartree-Fock agspectroscopic amplitudgand thus many spectroscopic fac-
proximations and a one-body potential-model approacthiors), namely, one for each excited state of tihe<(1)-body
emerge naturally. For simplicity, spin and isospin degrees ofiucleus. Given the structural information on the
freedom are suppressed and the Coulomb potential is n¢A—1)-body system that enters the wave functioh_, ,
glected. Furthermore, we do not consider the center-of-magfe spectroscopic amplitudes completely determine the wave
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function ¢, . The spatial dependence @f,(r,) is related to \P,Q/_l describe continuum states, the matrix element has a
the properties of the single-particle orbital of thth nucleon long-range, but infinitesimal, tail. Solving E.5) outside
in the larger system, and the norm &f,(r), the spectro- the range of the potential, we find that tig(r,) decouple

scopic factor, provides a measure of the structural similarityand fall off exponentially, dn(rp)
of the nth excited A—1)-body state and anA—1)-body  «exg—\2m(EA_,—Ea)ral/r. Since EA_,—E,) is smal-
subcluster of the fulA-nucleon system. lest forn=1, the long-range behavior of the A-body wave

The interdependence of the spectroscopic amplitudes cafinction is dominated by ¢1(ra)®x_1(f1, ... Fa_1)-
be made explicit upon deriving a set of differential equationsthys processes with reaction probabilities that are
for the ¢n(r). For anA-body HamiltonianH,, which con-  peaked in the asymptotic region depend only on the

taini a kigetic energy term and a two-body potentigl=  asymptotic normalization coefficient, A,
—ILy(Vi/2m) + 320 V(Ini—rl), we can writt Ha  —jim, _,(n)r exdV2m(Ea—EL_)r] (see also Refs.

=Hp_1— (VEA/ZmA)JrEf‘;llV(lri —ral), where Hy_; de- [8,9]). The asymptotic normalization coefficient is a property

notes the Hamiltonian of theA(— 1)-body system andh; is  ©f the spectroscopic amplitude and hence implicitly includes

the mass of théth nucleon(for simplicity we assumen,  the spectroscopic factor. _ _

—mfor i=1,... A). Since|¥} ) and |g,) are eigen- To o_btaln an_e_pr|C|t expression for the asymptotic nor-

states ofH, ; andH,, respectively, we have malization coefficient, we Fourier transform EG.5) [to in-
clude center-of-mass corrections, use Hl1)]. This gives

us

<‘I’/nx—1| HA| ‘ﬂA) = EA<\PR—1| ¢A> = E/nx— 1<\I’R—1| ¢A>

1 - _
Vrz A-1 an(k):— E fdrelkr
+<\I,R_1|_2_n2+21 V(|ri_rA|)|‘//A>- EA_ER 1_k_2n’:l
a Tt 2m
A-1
XQUA-a 2 VA= IDIWR_) (). (26

(2.4)

Inserting the expansion given in E@®.1) for |,), we ob-
tain a set of exact, Schdinger-like coupled equations for the

spectroscopic amplitudes: The pole ing, (k) is thus explicitly seen. It is this pole which

is responsible for the upturn in the astrophysi8dactor of
(EaeEY ) bo(F)= — ~ (1) the "Be(p, y)®B and %0(p, y)}’F* reactions as the incident
A TA-LTn 2m " momentum goes to zefé]. As shown in Ref[10], the resi-
due at this pole fon=1 is proportional to the asymptotic
normalization coefficient. We have

2

A-1

£ 2 (VR 2 VAn=r W) d (). (29

n=1

Anc= lim 4m=z2 Y, fdreikr
n'=1

k——ik

This set of equations, originally derived for stripping reac-
tions (see, for example, Ref18)), is not sufficiently appre-
ciated. In the form just given, these equations may be too A-1 )
complex for use directly in calculations, since tWg,(r) x(\If,ﬁ_ﬂE V([ri—=rD|Pa_)én(r), (2.7
=(W1_,[SAV(ri—r])|¥h_,) couple an infinite set of =
coefficients. However, they allow us to discuss the long-
range behavior of thd-body ground state wave function as Wherex=y2m(Ex—Ej,_4), i.e., the asymptotic normaliza-
well as derive commonly used approximations. tion coefficient can be given as an integral over the interior
The solutions of Eq(2.5) include not only the physically of the nucleus[since Wi_, has the spatial extent of the
relevant completely antisymmetric states, but also the mixedground state of theX—1)-body systerh The price paid is
symmetric, i.e., unphysical, states. As long as the couplethat there is a sum over all the spectroscopic amplitudes.
equations are solved exactly this does not cause any prob- For arbitrary distances, we may consider approximating
lems since the two classes of states do not mix. Howevethe ¥} _, in Eq. (2.5 by Slater determinants constructed
when approximations are invoked one needs to ensure thom the spectroscopic amplitudesg;(r) with i
the unphysical solutions are eliminated. e{1,... A}. Inthis case, we obtain the Hartree-Fock equa-
From Eq.(2.5 we can extract information on the long- tions in coordinate space. The Hartree-Fock orbitals can
range behavior of thé\-body ground state wave function. thus be identified as approximations to the spectroscopic am-
The matrix elemen¥,, (r,), for n or n’ corresponding to plitudes and the Hartree-Fock single-particle energies ap-
an (A—1)-body bound state, has a range which is deterproximate single-nucleon separation energies. The local
mined by the convolution of théshort-ranggtwo-body po-  (Hartreg term arises from the diagonal term¥ ) in Eq.
tential with the bound-state wave function. Thus it falls off (2.5), and the off-diagonal terms/(,,, with n#n’) give the
rapidly with increasingr,=|ra|. When bothWw}_, and nonlocal(exchangg potential, i.e., the Fock terms originate
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from the channel coupling. If the off-diagonal elementsfirst correction, one usually allows for single-particle orbitals
(Van» N#N") are neglected we obtain the Hartree approxi-which are different for the A—1)-body andA-body sys-
mation. tems. As a result, the expansion @f, Eq. (2.1), will have
A one-body potential model, which treats the nucleus as @ontributions from more thai terms. Consequently, the
system ofA noninteractingnucleons, can be obtained from spectroscopic factors will be, on average, less than 1, and
either the Hartree or the Hartree-Fock approximation. Startmost individual factors will be smaller than 1.
ing from the Hartree equations, one can express the many- Another important correction to be taken into account in-
body wave functions¥}_, as Slater determinants of the volves the treatment of the center-of-mass motion and leads
oi(r), ie{l,... A}, and impose the condition that the one- to the introduction of an intrinsic spectroscopic amplitude
body potential be the same for each single-particle orbital(see Appendix I In both the Hartree-Fock and the one-
V(N =V(r). Alternatively, beginning from the Hartree- body potential-model approaches, the center of mass is erro-
Fock equations, one can dictate the replacement neously confined in a potential. In potential models which
are based on a harmonic oscillator potential the center-of-
, mass corrections can be taken into account exactly. In this
Vi (N=(V3_4| iZl V([ri=rD|Wa_)=V(r) Sny - case, the spectroscopic amplitudes corresponding to valence
- (2.9 shell orbitals increase by a factpA/(A—1)]™2, wherem
denotes the major oscillator shell under consideration, while
In both cases, one obtains the following equation for thehe amplitudes associated with lower shells decrease accord-
dn(r): ingly [15]. The sum rule for the spectroscopic factors re-
mains unaffected. The center-of-mass correction causes some
N r of the spectroscopic factors to be greater than unity.
(Ea=Ea-1)dn(N) == 5 - ¢n(N+V(N¢n(r), (2.9 The above considerations illustrate that information on
the structure of thé\-body wave function of a nuclear sys-

which defines a one-body potential model whnoninter- ~ tem, which is lost in a simple one-body potential-model ap-
acting nucleons in a common potential. Thus, the one-bodjproach, can be in part recovered through the appropriate cor-
potential model may be regarded as an approximation to efection to the single-particle wave functions, that is, by
ther the Hartree or the Hartree-Fock approach. In this modemultiplying by the spectroscopic factors. In Sec. IV we will
antisymmetry can be ensured in a straightforward mannegiscuss how the resulting deviations of the spectroscopic fac-
many-body wave functions, such 88 _, or », are—like  tors from 1(or zerg affect physical observables such as the
in the Hartree-Fock picture—Slater determinants constructeBross sections for external capture reactions.
from A given single-particle wave functions.
The Slater determinants, in one-body potential models, II. AN ALTERNATIVE PERSPECTIVE
usually play only a formal role and disappear from sight in
actual calculations, to the extent that their existence is often In this section we approach the spectroscopic amplitudes
forgotten causing conceptual confusion. For the matrix elefrom a different perspective. Motivated by cluster-model re-
ments of a one-body operatd@?(r), between states that dif- sults, we derive a set of coupled !ntegral equations. While
fer only in one orbital, the remainingA(- 1)-body orbitals ~9eneral clu_ster-m(_)del calculatl_ons involve two or more clus-
integrate out leaving just the active orbitals. Thus we have 4€rs of arbitrary size, we restrict ourselves to describing an
matrix element likefdr ¢ (1) O(r) ¢y (r) wheremandm’ ~ Abody nucleus as anA—1)-body cluster plus a single
denote the active orbitals. At first sight this expression is gucleon. The approach pursued in this section has the advan-
pure one-body expression that seems to have no antisymmige that explicit channel coupling is no longer required to
try present and indeed at the computational level this is truegnsure antisymmetry. Again, various approximation schemes
In calculating the matrix elements of one-body operatorscan be used to simplify the coupled equations. In.partlcular,
there is no need to explicitly consider the Slater determiin one of these schemes the Hartree-Fock equations can be
nants. However, the Slater determinants did their job of enf€covered; in another a one-body model emerges, which was
suring antisymmetry before they were integrated out. previously discussed by various auth@ﬂﬁ,lgl and which
Since the single-particle Schtimger equation, Eg2.9), differs f_rom t_he model 'pr_esented in 'Fhe last section.
originates from the coupled-channels equations for the ex- Starting with the Schrtinger equation for aA-body sys-
pansion coefficients, Eq(2.5), the bound-state single- t€M,Haa=Eaia, and expandings, in terms of the anti-
particle wave functions of the potential-model discussed her8ymmetric basis stateg¥,", we obtain
approximate the spectroscopic amplitudes. Therefore, the
potential-model approximation gives nonzero spectro- * L
scopic amplitudes, all of which are normalized to one. Con- > f dr’' (PR HAl AP R " Y (1)
sequently, the associated spectroscopic factors are 1 and n'=1
carry no information on the many-body correlations of the %
nuclei involved. _ . =Ex >, | dr' PR LR Y (r), (3.0
One can, however, move beyond the simple picturé of n'=1
noninteracting particles in a common potential and include
some many-nucleon correlations in a schematic manner. As@r, equivalently

A-1

VZ
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. ’ ror i n Vf [y
nZ::l f dri/H(n,r,n' ;1" ) (r') = EA_l—ﬁ Nn,r,n",r")
o A-1
=Ep > fdr’/\/(n,r,n’,r’)%,(r’), (3.2 +5(f—f')<‘1’271|i21 V(ri—=r)Wa_y)
n'=1 B
A-1
' _ _ . Nx !
where AR 1) = (P RHA VR ") and (A-1) .Hz e
N i)y =( ¥R w0 denote the kernels of inte- A1
gral operator§AHnn, gndNnn,, respectively. The operator x| V(|r —r|)+ 2 V(|ri—r]) ‘I’Rll(r.fz. e Tal).
Ton' (Zonn = 4Han OF Npnr), Which is the @,n’) entry of an i=2
infinite-dimensional matriZ (Z= /H or \V), acts as follows: (3.6)

Ly f()=Jdr'Z(n,r,n",r")f(r'). The r_natrixN.ser:Ir:/es aS  Imposing antisymmetry via the projection operator associ-
the norm operator for the antisymmetrized basi¥»"} and  ateq withA(n,r,n’,r") leads to exchange terms in the effec-
has many interesting properties which are discussed in Apijye potential.

pendix B. N/A is a projection operator which projects an  For the special case of a one-body Hamiltoniad,
arbitrary many-body state into the set of completely antisym—=3# H(r;), we obtain the Hamiltonian kernels
metric wave functions. Thus, Eq&.1) and(3.2) contain an H(N,r,N' 1) =8y S(r—1") (EA_,+ H(r)) and
explicit projection onto completely antisymmetric states, i”AH(n,r,n’,r’):j\/(n,r,n’,r’)(ER ,+H(r), and Eq.(3.2)
contrast to the coupled differential equations discussed in thg,qyces to the single-particle S'c':_d'rnger equation. The ker-
previous section, EQ(-Z(-S?IB This projection means that the e Afn,r,n’,r') guarantees that only expansion coefficients
solutions of Eq/(3.2), ¢, (r), can contain arbitrary contri-  sriginating from an antisymmetria-body wave function are
butions from mixed-symmetric states while still satisfying considered, i.e.M(n,r,n’,r') ensures that the associated
the equations of motion. Thl(‘fol)the projected sta#g,  single-particle orbitals are not among the occupied states of
=(UA)Z,, _ fdr' Mn,r,n",r") ¢ 7" (r"),  rather  than  the (A—1)-body system. This can be trivially taken into ac-

#$°(r), corresponds to the physical state. count in the calculations. Nevertheless, even in a case as
With Eq. (3.1) [or, equivalently, Eq(3.2)], we have de- simple as this oneM(n,r,n’,r") is not diagonal im,n’.
rived a set of coupled-channelmtegra) equations, analo- In order to facilitate working with the abovexac} set of

gous to the system of coupled differential equations in thecoupled integral equations, E@.2), various approximations
previous section, Eq2.5). In the present approach, however, may be considered. For example, the Hartree-Fock equations
antisymmetry is explicitly enforced, resulting in a set of are recovered by taking theA( 1)-body basis states,
equations which contain a projection operator and a complisF} _;, to be Slater determinants constructed from the ex-
cated expression for the effective Hamiltonian. To illustratepansion coefficientss,(r). In contrast to the approach pre-
this, we compare the Hamiltonian kernel in the nonantisymsented in the previous section, the current method does not
metrized basisH(n,r,n’,r"), with the corresponding ex- require channel coupling to obtain the Fock terms. Instead,
pression in the antisymmetrized basigh{(n,r,n’,r’). The the nonlocal(exchanggterms are now explicitly present in
former is local, i.e., diagonal, in the spatial coordinate, al-the effective potential, as can be seen in the last line of Eq.
though not in the discrete variabie (3.6). Thus, the advantage of using antisymmetric basis
states — coupled channels are not needed to include the
Fock term contributions — is offset by additional complica-

H(n,rn',r")=(WRTHAWa ") (33 tions in the resulting equations of motion: the Hamiltonian
kernel is no longer local and the antisymmetry operator ap-
v2 pears explicitly in Eq.{3.2). Note also that in the Hartree-
=58(r—r") 5nn,(E21__f’) Fock approximation the channels are implicitly coupled
2m through the use of expansion coefficients in tAe-(1)-body
A—1 Slater determinants.

3.4 Another approximation method leads to equations which
' were previously obtained by Varga and Lowtsal. [16] in

the framework of the cluster model. In this approach, we

ignore those terms inyH(n,r,n’,r’) and N(n,r,n’,r') that

couple different values of the discrete variable, i.e., contribu-

(VR 2 V(=D

whereas the latter has off-diagonal contributions from lyoth

andn: tions for whichn#n’ holds. The equations of motion for the
coefficientsg,(r) then take the following form:
AH(n,rn' )= /Zl dr"H(n,r,n",r"NN",r",n’,r") f dr;tH(n,r,n,r’)cﬁn(r’):Ef dr’ M(n,r,n,r")n(r'),
e

(3.5 (3.7)
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that is, we have effectively integrated out the coordinates ofheir physics content. We show that the spatial dependence of
(A—1) particles to obtain a set of one-body equations. Thighe spectroscopic amplitude and its norm, the spectroscopic
equation is more general than Hartree-Fock, but the Hartedactor, describe different physical aspects of the many-
Fock approximation can be recovered by taking thenucleon system, namely, single-particle properties ofAtie
(A—1)-body wave functions to be Slater determinants comparticle and distortions of theA(— 1)-body system, respec-
posed from the spectroscopic amplitudes. We can then deri@ely. We make the connection to the potential-model ap-
the one-body potential model, E(2.9), as in the previous proach and find that both aspects are included, at least ap-
section. In these cases antisymmetry can be exactly 'mpos‘?ﬁoximately, when spectroscopic factors are employed to
through the use of Slater determinants and the explicit progcaie the wave functions. Since our findings contradict the

jection operator/V, is not needed. _ ~ conclusions of Ref[7], we explore the claims made in that
A second one-body equation can be obtained by taklng,aper_

the (A—1)-body wave functions from an external source Tq calculate the relevant reaction cross sections, we ex-

independent of the spectroscopic amplitudes. T_his can 98and hoth thei-body bound statéa(rs, . . . ra)), and the
beyond Slater determinants and Hartree-Fock since ghe (Wave function in the incident channéwﬁ(rl .1, as

—1)-body wave functions can include many-body correla-; o .
tions; in principle they can even be exact. The quality of this" Eq. (2.1). HereK specifies the asymptotic momentum of

approximation will depend on how well theA(1)-body the incident particle rel_ative to th_eA&l)-_bcdy target.
wave functions are chosen. In this approach the orbitals cafjucleus. The corres;r?cr)ndmg expansion coefficients sre given
be considered one at a time. The price paid for this conve®Y _ #n(r)= VACUR [ga(ra, . ra))  and ¢(r)
nience is twofold. First, the expressions for the Hamiltonian= VA(WX'|#A(r1, ... ra)), respectively. The expansion
become more complicated; compare E(3.4) and (3.6). coefficientgb?(r), associated with the continuum wave func-
Secondly, when we move beyond Slater determinakitis ~ tion, is the optical model wave functiof20,21]. Thus the
explicitly required and, moreover, its diagonal eleme¥it, , formalism 'based on expansion co.eff|C|enlts is suff|C|en.tIy
is no longer a projection operatsee Appendix B so anti- 9eneral to include both spectroscopic amplitudes and optical
symmetry is not explicit. model wave functions. It will be useful whenever we are
The one-body models associated with E§s9) and(3.7) dealing with one-body operators. The matrix element for the
differ, but in most situations both lead to a decoupling of theone-body transition operat@?(r) can then be written as
expansion coefficients. The exceptions are the Hartree-Fock A
approximation and other self-consistent models in which the _ Ky K
(A—1)-body wave functions are constructed from the ex- MZWA';l O(r)[ha) =AWl Ora)[¥x)  (4.)
pansion coefficients. While the decoupling is in many ways
advantageous, it also implies that we have lost the informa- >
tion on the relative normalizations of thg,(r). If we as- = 2 dr¢;§(r)0(r)¢>ﬁ(r). (4.2
sume thatA of the coefficients are nonzero we may take n=1
them to be individually normalized to one. This is consisten
with  the  overall normalization condition A
=37 Sy drdr’ ¢k (NAMn,rn’ 1) ¢ (r').
In the work of Lovaset al,, Eq. (3.7) was considered for
theA case An=r1’=l. The Hamiltonian operatorh dn(r)= \/§¢n(r), 4.3
=(N) 2Y*H (M) Y2 and the wave function y,

= (N9 Y24, were defined. These redefinitions have the adWhere fdr|¢,(r)[?=1. In Sec. II, we have shown that the
vantage of leading to an equation which takes the same forfotential-model wave functions approximate the spectro-
as the standard Schtinger equationdy,=Ey,. They, pro- ~ Scopic amplitudes. Since the norm ¢f(r) is one, whereas
vides a better approximation to the true spectroscopic amplithat of ¢,(r) is S, the ¢,(r), rather than thep,(r), should
tude than the moded, [the solution of Eq.(3.7)] since it  be identified with the potential-model wave functions. There
includes the effect of {;,)Y2 an approximate projection 1S NO €quivalent normalization factor associated with the
operator onto antisymmetric states. As noted previously, &cattering stateg;; is normalized asymptotically.
projection operator may be needed and this is amplified in The transition matrix element given in E@t.2) can now
the discussion of Ref.7] in the next section. It is alsg, be written asM=37_,\/S,[dré* (r)O(r) ¢ (r). Both the
(normalized to ongthat in this approach should be identified "Be(p,y)®B and *%O(p,y)'"F* reactions at threshold are
with the single-particle wave function, both because of thisperipheral, i.e., the capture processes take place at large dis-
better correspondence with the true spectroscopic amplitudances from the center of the target nucleus, which is in its
and because of the form of the equation which it satisfies. ground state. In such situations, as for all direct capture re-
actions, only the first expansion coefficient f¢ﬁ contrib-
utes and the matrix element reduces tou
— /S fdré? (nO(r)¢!(r). Since the cross section is pro-
In this section we discuss how the spectroscopic ampliportional to|M|?, the spectroscopic factor associated with
tudes can be used to calculate reaction rates and elaborate the ground state of theA(—1)-body systems,;, occurs lin-

LI'o make the connection with the potential model we separate
the spatial dependence of the spectroscopic amplitude and its
normalization,\/S,, as follows:

IV. SPECTROSCOPIC AMPLITUDES
AND REACTION RATES
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early in the expression for the reaction rate. Thus we connucleon orbitals in theath excited @— 1)-body state must

Cltl?]de fthatt.when a p?ter(;u{al-mOQel wa(\j/et funcltlmi‘r tant);] be orthogonal to the orbitap,(r) of the Ath particle [for
other function normalized to ohas used to calculate the details see Eq(C5)]. When center-of-mass corrections are

transition matrix_e!ement/\/l, the rgsulting Cross se_ction taken into account\, may be greater than 1, otherwise it is
needs to be multiplied by the associated spectroscopic fact?r on . RN
ess than or equal to 1. The matrix eleméugts"| k") is

in order to account fosome of the many-body correlations
in the nuclei involved. The implications of this for the &Wways less than or equal to one. Consequently, when center-

asymptotic normalization are discussed at the end of thi§-mass corrections are ignored, we have the restriciipn
section. =<1 for the spectroscopic factor. The influence of these cor-
The separation introduced in E@.3) is motivated by the rections are discussed in detail in Appendix D.
realization that the spatial dependence of the spectroscopic At this point we would like to reassert that it is correct
amplitudeg,(r), and its norm, the spectroscopic facg, and necessary to include spectroscopic factors in pot.ent|al—
describe different physical properties of the nuclear manymodel cross sections of_nuclear capture reactions. This pro-
body system. The former is related to the shape of the singl&zedure was questioned in R¢T]. The author of that paper
particle orbital of theAth nucleon in the system, and can argues that the short-range correlations contained in the spec-

therefore be expressed through the normalized amplitudg0Scopic factor should modify the bound-state wave func-

%.(r). The latter provides a measure of the structural simition only in the nuclear interior and have no effect on the

larity of the nth excited @—1)-body state and an asymptotic behavior. Since multiplying the potential-model
(A—1)-body subcluster of the larger system. Equivalently Vave function by\/S,, however, affects its overall normal-

the set of spectroscopic factors associated with the expansi Fetion, including in the tail region, the usual procedure of

of ¥5, EQ.(2.2), can be viewed as describing the distortion t[ﬁgtm% rsn'g(gfgsg')c _‘é‘}ggt'sﬁ'so”_z mr(;rlli pr?éggtgl t;?eo'?]?:gr\:gét
of the (A~ 1)-body core due to the presence of an extraTo iIlIJl?stra[t)e his oir?': the autr'uIJr réom la;res a wavelfunction.
nucleon. This can be seen, for example, by cas8pdnto pornt, P

. } x<(r), which describes the relative motion 6Be andp in
the following form: 8B, to the spectroscopic amplitude function of thBe+ p
configuration in®B (Note that thisy, is different from the
Sﬁf dr|en(r)]? (4.4 wave functiony, introduced by Lovast al. [16] and dis-
cussed in the previous sectjoThe wave functiong, con-
A-1 A-1 sidered individually do not contain Pauli effects but, when
:Af ( H dri)f ( H dr{) used in cluster-model calculations, appear behind an anti-
i=1 i=1 symmetrization operator. The spectroscopic amplitudes, on
the other hand, are calculated from properly antisymmetrized
wave functions. The two functions are shown to agree with
each other and with the appropriately normalized Coulomb-
f dra(ry, oo Fas 1, DYA(ry, o Fasg,0) | Whittaker function in the asymptotic region, but they differ
at small radii, as can be seen in Fig. 2 of Réf]. Their
(4.9  difference is interpreted as a measure of the Pauli effects.
Since multiplyingyx.(r) by a spectroscopic factor would af-
fect both its short-range and asymptotic behaviors, the author
concludes that this cannot be the proper procedure for incor-
porating microscopic substructure effects in potential-model
calculations.
The argument presented in R¢¥] is not correct. The
nction x.(r) does not, in general, correspond to a
otential-model wave function. First, unlike the one-body

XWRE (P, e Fac) WA (rg, o FAZy)

X

In the last line(expression in square bracketse have inte-
grated out the dependence on thth particle. We are left
with expressions involving wave functions of the
(A—1)-body system. The extra particle’s influence is still
present in the modification it has induced in tie{1)-body
cluster. Upon decoupling the equations of motion for thefu
expansion coefficients, as required in our derivation of th

;)Ine-bod_y T‘Ogetlt‘:" this mfgrrgatlon oln che last |?a.rt|cclje.s 't?]'wave functions we have considered, it already includes the
fiuence s lost, the many-body correlations contained in %pectroscopic factor through the normalization of Adeody
integralsS, disappear and the spectroscopic factors becomﬁ/ave function. Moreover, very little physics can be associ-

1. . . .
. . . ted with tside th ntext of i I mpo-
The spectroscopic factors carry information both on thea ed with. outside the context of its usual use as a compo

. . : . . . nent in a properly antisymmetrized cluster-model wave func-
dynamical distortions induced by the interaction between th?ion To SphO\EJ\I tr?/is weyconsider an arbitrary product state

A—1)-body system and the extra particle and on antisym- )
( )-body sy P P (e, . )= () s 1(r1, ... fa_1). In the nonanti-

metry effects. Specifically, as shown in Appendix C, thes mmmetrized basis, it has expansion coefficients
spectroscopic factor can be written as y k P

Sn=No( Uk k™, (4.6

where( k" k") reflects the influence of the distortions, and
the normalization factoN, contains antisymmetry effects.
Specifically, N, keeps track of the requirement that theand the associated antisymmetrized, i.e., physical

BE (1) = VAW R [ yR) = @(r) VAW A_ k1), (47
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state, has expansion coefficients  ¢,(r) rived in a systematic manner. We obtained two different
:(1/A)z;°,:1fdr/\/(n,r,n’,r’)qbrf,(r). In the product given single-particle models. In both cases, the single-particle
above, ¢(r) can be taken to correspond to the relative-wave function was found to be an approximation to the spec-
motion functiony.(r) of Ref.[7]. As discussed in the previ- troscopic amplitude but normalized to one rather than to the

ous section A/ enforces antisymmetry by projecting onto a spectroscopic factor. The quality cf the one—ony approxima-
completely antisymmetric state. Thus, the choicep(f) is  tion depends on hovy well it Qescrlbes the spatial dependence
somewhat arbitrary, since many functions lead to the sam@f the spectroscopic amplitude. However, even the best
physical state. We may, for example, consider the case ifingle-particle wave function will miss the spectroscopic fac-
which ¢h_, and W}_, are Slater determinants angy_, ©F o _
—wl If we then takes(r) to be orthogonal to the orbit- The first one-body approximation considered here results
als iAn_ll,//P the antisymmetry requirement will turn the in A F‘O”"FFefa.C“”Q particlcs in a singlc-particle potential.
product AIE]%O a Slater determinant and we obtah(r) The simplification occurs since the equations for the spectro-
:d)lp(r)/\/zz o(r). On the other hand, its(r) is notl or- scdopic ac;nplitudes are no longer Couﬁlﬁd; instealld, we£ave
C . ' independent equations. Since we still h@vparticles an
thogonal to the occupied orbitals, the nonorthogonal compo- rbitgls we an construct an antisymm(fmdaody wave
nents will be projected out as well. In the extreme case o unctior; by taking it to be a Slater determinant. In this
r) being a linear combination of the occupied stategr . e s
igg(z)ero F?om these considerations we conF::Iude trﬁgtge dit; odel,h I |shredundant to explicitly err:force antisymmetry,

: ) X .g., throu rojection operators. The quality of this ap-
ference b(latwee@(fr) and the associated physical state ha r?)ach degengs g)n how V\F/)ell the single-garticl)é potentialﬁs
no particular significance. The eff hat antisymmetrizati : : ;
hasponqo(r) is ngot pertinent toetﬁeegrtuta sggytn%delsecona:ig hos en a?]d hgw well the single-particle wave functions re-

A : = X “produce the shape of the spectroscopic amplitudes.
ered in this paper since both already include antisymmetry, zﬁ The second oﬁe-body mcF))deI presepnted hzre is usually de-
least approximately[The effect of antisymmetry on the

h £ th . litudes is distinct f hrived within the generator-coordinate formalism. We ob-
shape of the spectroscopic amplitudes is distinct from the;ineq it by truncating a set of coupled integral equations. In
effect of antisymmetry contained in th¢, of Eq. (4.6).] A

; this approach, antisymmetry {@approximately imposed for
more useful comparison would be between the spectroscopig, -, orbital separately througapproximatg projection op-
amplitude and.{/;,)"%e(r"), since this would measure the erators. Unlike the first one-body approximation it can in-
influence of the off-diagonal matrix elementsdfand thus  clude many-particle correlations in theé\{ 1)-body sub-
test the validity of the single-particle model based on Eqsystem. In principle, this approach is also simpler since we
(3.7). Neither comparison clarifies the role of the spectro-do not need to consider all the orbitals together. The price we
scopic factors since, as previously noted, the spectroscopjgay is that the potential cannot be approximated as simply
factor is contained in botly. and the spectroscopic ampli- since it implicitly contains a projection into antisymmetric
tudes. states. There is also an explicit projection operator that must
At this point it is useful to return to the asymptotic nor- be approximated. The quality of this approach depends on
malization, A, of the spectroscopic amplitude. For the the choice of the £—1)-body wave functions and the im-
low-energy "Be(p,v)®B and ®O(p,y)!’F* reactions, for portance of the channel coupling.
example, the capture occurs at large radii. Thus the It is important to realize that there is not one unique
asymptotic normalization of the spectroscopic amplitude issingle-particle model. Different one-body approximations to
sufficient for describing the bound state in the physicallythe nuclear many-body problem exist and can be derived
relevant region. This is in line with the conclusions of Refs.independently of each other. The resulting single-particle
[8,9]. As explained above, there are two different physicalmodels may differ in subtle but crucial details and should
effects included in the spectroscopic amplitude and hence itherefore not be confused with each other. We have derived
its asymptotic normalization: one is related to the distortiondwo such models and discussed their relation to each other
of the (A—1)-body cluster due to the presence of an addi-and distinctions between them. In particular, the very differ-
tional nucleon and is contained in the spectroscopic factoent techniques for including antisymmetry should be noted.
and the other is related to the single-particle properties of The spectroscopic factor, in its simplest form, reflects the
that extra particle and is described by the spatial dependenggrtition probability of theA-body system into smaller clus-

of the amplitude. Both are needed. ters with allowance for antisymmetry effects. In the present
paper it is cast in a complimentary light. It presents itself as
V. CONCLUSIONS a manifestation of the distortion of thé\ (- 1)-body system

due to the presence of tiig¢h particle. This distortion is both

Spectroscopic amplitudes play a central role in the dedynamical due to the interactions and kinematical due to
scription of single-particle transfer reactions such as radiaantisymmetry. Since these are pure many-body effects they
tive nucleon capture. The amplitudes contain both singleare, by definition, absent from one-body approximations.
particle and many-nucleon aspects of the nuclear many-bodyvhen center-of-mass corrections are included, the spectro-
problem and can be, in principle, obtained from a fully mi- scopic factors can be greater than 1 without violating the
croscopic model. We have presented two alternative apPauli principle. Otherwise they must be less than or equal
proaches, each based on a set of coupled-channels equatiotts,L.
and have shown how one-body approximations can be de- A full calculation must include both the one-body and
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many-body effects. As the present paper emphasizes, this can A .

be accomplished through the use of spectroscopic ampli- f IT drwf™(ry, . k)R " (ry, . ra)

tudes. Obtaining these amplitudes, however, requires the full =1

solution of the coupled equations presented here or a fully =8, S(r—1") (A%)
nn ’

microscopic model. While this is still a distant goal, some
recent fully microscopic approaches show promising resultgnd the completeness condition for this basis is given by
for low-mass system22]. Furthermore, models such as the
shell model, the continuum shell model, or the cluster model A
include some many-nucleon correlations and provide reason- f dr{
able approximations to the full problem. Since many-body =1
effects are not contained in one-body models, cross sections
calculated in this framework need to include the spectro- X
scopic factor. For processes that are strongly peaked in
the tail region, like the low-energy’Be(p,y)®B and / /
160( 17, ; _ ) 3 Xpa(ry, ... fp)

p,v)‘F* reactions, the one-body and many-body ef
fects can be combined into a single parameter — the =Ya(ry, ... ), (A5)
asymptotic normalization coefficient.

nZl droni(ry, .. r)WRTE(rL, LR

where /e H,. The spaceH, is a direct sum of the sub-
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the sum of an antisymmetric and a mixed-symmetric compo-
APPENDIX A: THE BASES nent,
We begin by defining a bas{s?Pi_;},—1, .. for Hi_, A
the space of completely antisymmetrid 1)-body wave  #a(r1, - . 1rA):\/_KwA(rli ofp)
functionsys_4(r1, ... Fa_1). The basis states are orthonor-
mal, A
A-1 , + l_\/_K) lﬁA(rl, ,I’A) (AB)
iljl driWar o (ry, oo Fa—)Waa(r, oo Fac1)
=l/l£(r1, P ,I‘A)+(//£/t(r1, P ,I’A),
=Snn' » (A1) (A7)

and complete in |_,, that is, .
P AL where i e Ha, ya'eHX!, and A denotes an “interclus-

AL = ter” antisymmetrization operator, which antisymmetrizes be-
f Il:[l dri,nzl WA 4(ry, oo fa) tween theAth coordinate and the remaining—1 coordi-
nates..A is normalized by the conditiond = \/AA. Since
XU (1, Tl Wa (), o Ay (A/JA)(1— AlJA) =0, the two subspaces are orthogonal to
each other, that is,
=a-1(ry, ... Fa-1) (A2) .
holds for anyi, ;e Hﬁ,l . Specifically, for the sake of con- f A% M _
venience, we choos®}_; which are eigenstates of thé ( E A" (Mo TR YR(T, - Fa) =0 (AB)

—1)-body Hamiltonian ~ Ha_y=—3{(V7/2m;) X
+%E{A;=11V(|ri_rj|)_ To do so, we have to include both Furthermore, a symmetric operat6l® cannot connect the

bound and scattering states. The superseripbels the dis- WO subspaces,
crete as well as the continuous spectrumHgf_;.

A
We now consider two differerd-body spaces. The first, f A% S, M _
denoted byH ,, is spanned by |1:[1 A" (T - IO, - T2 =0,
A9
\I’R’r(rl, P ,rA)E\I’R_l(rl, P ,I’A_l)ﬁ(l’—rA), ( )

(A3) This includes the case whe@S=HA, where H, is the

wherer is a continuous parameter. THEY" are orthonormal  A-body Hamiltonian.
with respect to botm andr: The spaceH; is spanned by
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PNy, A= AYR (1, L TA) An arbitrary antisymmetric A-body wave function
Ya(ry, ..., ra) can now be expanded in one of the above
=A[WA_1(r1, .. Fa-1)8(r=ra)] bases. Using the s¢¥}"}, we have
(A10) 1
or, equivalently, alry, .. JA)=\/—K nzl f drwa’(ry, ... ra)én(r),
| rRY=al(n|vi_,), (A1) (A15)

wherea'(r) creates a nucleon at positiorand we have used With éxpansion coefficients

the conventionga(ry, ... fa)=(r1, ...rala). The cre- A

ation and annihilation operators'(r) and a(r) obey the Bo(1)= A H dr W (r F) a(T Fp)
usual anticommutation relations, which ensure that the right- " " g A T RATEAR L e AT
hand side of Eq(All) is totally antisymmetric. The com- (Al6)

pleteness condition for the bagis¥? '} takes the form
Alternatively, we can use the antisymmetric bagis¥ '},

A o0

1 to write
I1 dri’(‘ N TGN "
i=1 A=

1 o
lr/,A(rl! LR !rA):K nZl f drA\I,RYr(rlv LEC vrA)¢n(r)v

X U™ (ry, .. 'ri\)) Ya(ry, o SR =Ty, ... Fa), (A17)

(A12)  \where

where ¢, is a fully antisymmetricA-body wave function A

from Hy' . Wheny, in Eq. (A12) is replaced by a state from ¢n(f):j IT dr; AR AT, ).

Hx', the right-hand side of the equation vanishes. TRys i=1

=1AS_, [dr| PR W 4PR'| is a projection operator (A18)

which projects stateg, < H, onto their antisymmetric COM- " Equation(A17) follows by applying the antisymmetrization

ponenty;, e Hy . That7% =7, holds can be shown by using ogerator io Eq)(A15) andyEq?REIS) %an be der)i/ved from Eq.

Eq. (A14) below. . . o (AL6) by using the identity a(ri, ... fa)
The advantages of using totally antisymmetric basis stateg(A/\/K) Ua(r1, ... 1), which holds for totally antisym-

are obvious. The disadvantages of employing this basis Iiel%etric Abody states, and the Hermitian properties.4f
e coefficients are the same in both expansions.

in the fact that the states are no longer orthonormal. Insteaq,hus th
From Eq.(A15), it follows that is also possible to write

we have
A L the wave functiony, as
_Hl dri JPRN*(ry, o AR (M, o TA)
=

1 < .,
=Nn,r,n’,r"). (A13) pa(re, ---:rA):_\/K 21 Waa(re, - Fa-1) én(ra).
(A19)

The norm operator)V, and its kernel A{n,r,n’,r'), have

various interesting properties and are discussed in AppendiXhe coefficientsp,(r) are identical to those in the previous

B. expansions. From EqéA11) and(A18), one infers that they
The basis stategWy" are not linearly independent, but take the following form:

are related to each other through the norm operatoras N
follows: Bn(ra)=(WVa_1la(n)|sa). (A20)

APRI(ry, ... ra) When (rq, ... ra) denotes a bound state and the
. WR_,, which occur in the definitions of both}" and
. n,r H _

Z J' dr' AV, EN ) 0 (h ). AP, are eigenstates of_the\e 1_) body system, ther_1 the

n=1 ¢,(r) are thespectroscopic amplitudeand the associated

integralsS,= fdr|¢,(r)|? are thespectroscopic factorsThe

A-dependent normalization factors in the above equations are

B A —

In fact, the{ ;¥""} basis is overcomplete and, at least in theincluded so  that/TIL ,dri|#a(r1, . .. ra)|[?=1 holds, as

case where thel') , are Slater determinants, spans theWell as

spaceHx A times. This accounts for the factorAlin the o

f(l'gsltzl)lne of Eq.(2.1, and in the completeness relation, Eq. ,121 f dr|én(r)[2=A, (A21)

> -

(A14)
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in accordance with the conventional normalization of theTg see the projection operator nature’dfnore directly, one
spectroscopic factors. This last equation follows by squarin%an multiply Eq.(A15) by A\If”"r'(rl r,) and integrate
L A 1y

Eq. (AL5), mtegratmgn rover the coordinates, and using theover the coordinates. {5 is completely antisymmetric, we
completeness of th& " .

obtain the following equation for the expansion coefficients:

APPENDIX B: THE NORM OPERATOR 1 =

, . $o(N=7x 2 | dr'Mnrn’,r)gn(r'). (B
The norm operator for the antisymmetric ba§igly'}, ATy

N, and its kernelM(n,r,n’,r’), have many interesting prop-
erties. To start with, the kernel can be written in several
equivalent forms:

For a mixed-symmetric staté,, on the other hand, we find

0=% > [ drAMnen’ )b ('), (B8)

N(narvn,!r,) n'=1
_ dri U0 ) BN I i.e., MA, when gctlng on a.set of expansion coefficients
f iljl AR AV (1 A &n(r), behaves like a projection operator: It returns the co-

efficients ¢,(r) of an antisymmetric state and yields zero
when theg,(r) correspond to a mixed-symmetric state. It
A follows immediately that in a restricted space of coefficients
"’y which originate from a completely antisymmetric wave func-

=Af dr W™ (ry, oo FaA) AR (e, o o . . .
VA 1;[1 AN AATa T (1 A tion, AA becomes the identity matrix. In this restricted sub-

(B2)  space, the functiong®h "'/ A act in many ways as if they
were orthonormal.
A e - If we expand an excited state of th&body system,
=VA Iﬂl driWa (e, o FA) AW (1, o fa) WK(ry, ... .ra), as in Eq.(2.1), we obtain expansion coef-
B3 ficients ¢ (n)=(¥i_jla(r)|¥}). For k=1, W de-
scribes the ground state of thenucleon system and the

(B1)

A ﬁ'kzl(r) reduce to the usual spectroscopic amplitudes. For
=Al ]l dry W™ (ry, ... ,rA)—‘I’RI"’(rl, N a fixedn, on the other hand, the"(r) correspond to par-
=1 VA ticle states built oW}, _,). Similarly, one can expand an

(B4) (A—1)-body state¥'_,, in terms of A—2)-body basis
, states,¥’y_,, and obtain expansion coefficiends;, "(r)
=(Va_slana’(r)[wi_y). (B5)  =(¥M a(r)|¥h_,). With respect to theA— 1)-body sys-
tem, the A—2)-body functions represent hole states and the
We see thatV(n,r,n’,r’) is not only the kernel of the norm A-body functions are particle states. The expansion coeffi-
operator fof_,¥1"}, Eq.(B1), but is also proportional to the cients¢4 “"(r) can be used to rewrite the equations of mo-
overlap of an element frori,¥'}"} with an element from tions[Eq. (2.9)],
the nonantisymmetrized basisVy'}, Eq. (B2). Further-
more, V(n,r,n’,r')/ A is the matrix element of the “inter-
cluster” antisymmetrization operata#, in the basi{W¥ '},
Eq. (B3), or—equivalently—A/{(n,r,n’,r’)/A is the matrix
element of the projection operatgl/ A in that same basis, % f dr,¢A71,n*(r,)¢A71,n'(r,)
Eq. (B4). Finally, we can write\{(n,r,n’,r') as the matrix m m
element ofa(r)a’(r’) in the (A—1)-body basis, Eq(B5),
wherea'(r) anda(r) create and annihilate, respectively, a
nucleon at positiom. The kernel of the norm operator can also be written in

SinceV(n,r,n",r") is proportional to a projection opera- erms of the particle or hole states. For the particle states, we
tor, it has no inverse. However, its square root—in the senspisert a complete set of intermediaté-body states

2

Vi A
(Ea=BA-D)bn() =~ 5+ 2 3

n'=1

XV(|r" =r]) ni(1). (B9)

of a matrix operation—can be given. It is simply the matrix q,k(r ra), in Eq. (B5) to obtain
element of the antisymmetrization operatér AL AR '
JAN(n,r,n’" r") /\/’(n,r,n’,r’):kz_‘,1 ¢ﬁ'k(r)¢>/n\;k*(r’). (B10)

n,r

A
= | IT drwa™(ry, ... r) AR " (ry, ... fa).  On the other hand, using EGA3), the kemel of the norm
=1 operator can be expressed in terms of the-(1)-body wave
(B6)  functions:
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N, 1')=6,,8(r—r")—(A—1) be less than or equal to 1, yielding an upper limit of 1 for the
spectroscopic factor.
We start by defining a normalized spectroscopic ampli-

tude ¢,(r) = ¢,(r)/\/S, and express/S, as follows:

A-2
X ]._.[ driqrgtl(rla I 1rA*21r’)
=1

XWN (F, oo Ta_ol). B11 ~ ~
A-alfLr - Ta-z.l) (B11) V5= [ ardr @0 =BTl cD
This is not diagonal, in eithem or r, even for the simplest
systems. From the last expression we derive the hole-staféext, we introduce a projection operator
form

* P = |A[an\l,2—l]><“4[anq,2\_1]|
NI 1) = Say S =17) = 2 ™ (1) ™ (1), " N, :
m=1

(B12  whereN,=(A[$,¥ar_ 1| A, ¥Ph_,1). An arbitrary state
|i5) can then be broken into two orthogonal parts:

| a)=Polha) + (1= P g = k™ +]ga™, (C3)

(C2

Combining Eqs(B10) and(B12), we obtain a completeness
relation for the spectroscopic amplitudes corresponding to
the set of particle and hole states:

where| k") and|44") are the components df,) which

5nn’5(r_r,):2 ¢gflv“*(r')¢gflv”’(r) are~parallel and orthogonal, respectively, to the state
m=1 | Al ¢, a_11). We can then write the spectroscopic factor as
+ 2 AN (). (B3 Sh=Na(UR"TWR") = No((al ) — (" ¥x™). (CH)
k=1

The expression in brackets is less than or equal to one since

The sum overmm runs over all states of theA( 2)-body (al¥a)=1 and both(z,/;”'”w”’”) and (4" w4 are posi-
systen{the hole states of the\(—1)-body systerhwhile the tivg sgmidefinite. When thgﬂ(— 1)—b03y sfstem is com-

sum overk runs over the states of th&-body systenithe ; LN :
. - pletely described by the wave functioff,_,, i.e. when
particle states of the—1)-body system The Spectro-  y,o0” 516 no distortions due to the potential of thth

scopic amplitudes for the particle states are not complete b gL . Iy oy
themselves since they lack the contributions that are PauﬁUCIeon’ (4a"19a") vanishes and(ys"|yx")=1. Thus

[.nf )0 i -
blocked, namely, those contributions corresponding to holé"bA _| ‘pA.>' ar_1d th(_ereforesh, provides a measure of the dy
states. Contrary to the impression that this equation ma{famic distortions induced by the presence of the extra par-
give, the¢’s are neither orthogonal nor normalized to one. |cIe._

To illustrate the formalism, we consider a two-particle  >ince the factoN, can be expressed as

system. In this case, th@)_,(rq, ... ra_1)="Y(r) are o )
_one_-body wave functions and the kernel of the norm operator N,=1— Z ( f dr¢ﬁ(l'”*(r)?ﬁn(r) ’ (C5)
is given by m=1
NN ) =8y S(r—r1") =W (r') El(r). where the sum is explicitly non-negative and less than or

(B14) equal to one, it is also restricted,<1. N,, carries the effect
of the antisymmetrization and equals one only wkig(r) is

The terms diagonal im are projection operators onto states orthogonal toqgﬁ— (ry for all m.
orthogonal toWi(r). This is also true for larger particle  From the above considerations it follows tigg<1. If
numbers if the®'y ,(ry, ... ra_;) are single Slater deter- antisymmetry was neglected, the spectroscopic factor could
minants  [in that case N(n,r,n,r")=48(r—r’) be as large aé, since the sum rule given in E¢A21) would
—E§=l ¥ (r')¢2(r), where the sum is over occupied be the only restriction or$,. When center-of-mass correc-
single-particle orbitalsp2(r’)]. While the matrix elements tions are incorporated, EQC4) still holds, but Eq.(C5) has
diagonal inn are projection operators by themselves, oneto be modified and\, can become larger than one. The
needs to divide the full norm operator Byin order to obtain  influence of center-of-mass corrections is discussed in the

a projection operator. next Appendix.
APPENDIX C: A BOUND FOR THE APPENDIX D: CENTER-OF-MASS CORRECTIONS AND
SPECTROSCOPIC FACTOR INTRINSIC SPECTROSCOPIC AMPLITUDES

In this appendix, we show th&, can be written as the When dealing with the center-of-mass problem it is useful
product of two factors, which express antisymmetry and dy+o introduce the Jacobi coordinatps=R;—r;, 1, whereR;
namic distortion effects, respectively. When recoil andis the center-of-mass coordinate of jHeody system defined
center-of-mass corrections are neglected, both factors have by particles 1 througlj. Taking into account the center-of-
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mass motion, theéA and (A—1)-body wave functions are

ip-Ka_1]~
written as ¢>'n(p)=j dkA]_M\/T}Al](ﬁln(kAl)
_exdika-Ral |
Ya(ry, ... ,I’A)—TlﬂA(PL cPa-1) :J dkA—1¢n,kA,1(P)|kA=0 (D6)
(D1)
and A-1
\I,n,kA,l(rl’ o vrA—l) = \/K iI;II dpl 5(p_pA—1)
_exdika1-Ra-a] XU (py, ... pa-2)Ua(P1, - - Pa-1). (D7)
- \/]—) \PI (plv e ,PA—z),

(D2)  In analogy with®}(k), ¢! (p) is the probability amplitude
) for finding theAth particle at the distance from the center
respectively. Her&k, andk, 4, are the center-of—m_ass MO- of mass of the A—1)-body system when that system is in
menta of theA and (A—1)-body systems, respectively. We the staten. The intrinsicA-body wave function can be writ-
have used box normalization with volumé The spectro- ten in terms of the intrinsic spectroscopic amplitudes as

scopic amplitude is written as [compare Eq(2.1)]
A
b, (N=VA f 11 A 8(r—ra) WMA-1(ry, L Falq) L ®
Un(PL, - - A1) = " 2 (A DV (pr, - pa-2)-
Xha(lqy, ... fa) (D8)
_ exdir- (ka— kAfl)]\/K
JV As we show in the next paragraph, the intrinsic spectroscopic
amplitude is also the quantity that is needed to calculate
oxd i . A_lk —k physical observables.
Al PA-17| T AT RAmL We now write the transition matrix element, E¢.2), in
XJ’ |];[l dp; D] terms of the intrinsic spectroscopic amplitude as follows:
(D3) A
XU (py, - - pa-2)PaPL, - - - PA-1) <t//AIZ,l exd —ik- ]| %)
(D4)
exfir- (ka—ka 1)1~ [A—1 = > f dren, (Nexd —ik-rlgn, (1)
= ¢ Ka—Ka-1]- ka1
Vv A
(D5) (D9
This equation is unexpected and requires some comments. -
Formally it is correct: the spatial dependence of the spectro- _ % i _ Kl
scopic amplitude is given by a plane wave and the spectro- ngl dpdy” (p)exi —ik- p(A=1)/Aldy (p)
. . ~ I _ _ 2 . -~ .
scopic factor ig ¢, ([ (A—1)/Alka—Kka_1)|%. Sincee, (k) is « (ke +K—Ke). (D10)

on the order of 1fV, it is small and the condition that the
spectroscopic factor must be less then or equal to one is

easily satisfied. The plane wave behavior of the spectropyhere the transition operator has been taken to be a plane
SCOpiC amplitude arises from translational invariance. ThQNave as is appropriate for radiative Capture and the Spin and
combination [(A—1)/Alka—ks-1) is Galilean invariant. isospin dependencies have been suppressed for simplicity.
By taking both the A—1)-body and theA-body systems 10 The functions¢X'(p) and ¢! (p) are intrinsic spectroscopic

be in states of good momentum we have forced Mie  ampjitudes for the scattering and bound states, respectively.
particle to also be in a state of good momentuﬁh(k) iS  The delta function ensures overall momentum conservation.
then the probability amplitude for finding th&th particle  The (A—1)/A factor in the exponential takes care of the
with relative momentunk when the A—1)-body system is laboratory to center-of-mass transformation.

in staten. Its Fourier transform, which we identify as the = The equations of motion for the intrinsic spectroscopic
intrinsic spectroscopic amplitude, is given fjgompare Eq. amplitudes are easily derived by substituting H2H) in Eq.
(A16)] (B9). This gives
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2

v .
(EE—E271>¢L<p>=—2—;;¢L<p>+ > >
n=1n'=

obtain the following expression for the kern&(n,r,n’,r'):

1
(A 1)2 3

Mn,r,n',r')y= 8y 8(r—r")— ( A(A— 2))

xf dp’ prn (P V(1" =) &1, (p),

(D11)

Do ) P,
8 "’“‘[A(A 2)(”(A—l)”

.
+(A_1)”. (D13

whereu is the reduced mass and B [ (A=1)?
m| A(A—2)

Pon(p)=

) dm*[P(A—1)/(A=2)]
In contrast to the situation where the center-of-mass correc-
X(j)ln?,[p(A— 1)/(A-2)] (D12)  tions are neglected, the amplitudes in the sum given here
depend on both coordinates. Consequently, the intrinsic spec-
is the transition density for theA—1)-body system. The troscopic factorss,= fdp| 4/ (p)|? no longer have to be less
(A—1)/(A—2) factors originate in the conversion from the than 1. This is illustrated in Ref15] for the harmonic oscil-
Ra-2—Tra-1 coordinate to theRy_;—ra—y coordinate. The |ator model. The completeness relation for the particle and
diagonal transition density is the usual density and is normalhole states, EqB13), is also modified, since this last equa-
ized toA—1. tion must be used instead of E(12). The spectroscopic
The remaining quantity to consider is the norm operatoramplitudes corresponding to the particle states are just re-
N. This is most easily done starting with EB12). We  placed by their intrinsic counterparts.
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