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Spectroscopic amplitudes and microscopic substructure effects in nucleon capture reactions
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Spectroscopic amplitudes play an important role in nuclear capture reactions. These amplitudes are shown to
include both single-particle and polarization effects: the former through their spatial dependence and the latter
through their normalization~the spectroscopic factors!. Coupled-channels equations are developed for the
spectroscopic amplitudes. These equations serve as a convenient starting point for the derivation of several
approximations: Hartree, Hartree-Fock, and two different single-particle models. The single-particle models
include antisymmetry in different ways, but both miss many-body effects. Therefore, cross sections calculated
with either of these models need to be multiplied by the spectroscopic factor.
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I. INTRODUCTION

Nucleon capture reactions at low energies, such
7Be(p,g)8B, 16O(p,g)17F* , or 7Li ( n,g)8Li, play an im-
portant role in our understanding of astrophysical pheno
ena. For example, in the hydrogen-burning process in s
such as our sun, low-energy proton capture on berylli
takes place in the proton-proton chain, and the16O(p,g)17F*
reaction occurs in the carbon-nitrogen-oxygen cycle@1–3#.
Exact knowledge of the reaction rates is necessary for m
eling the energy generation and evolution of hydrog
burning stars. In addition, the7Be(p,g)8B reaction at solar
energies (Ec.m.<20 keV) plays a key role in the ‘‘solar neu
trino puzzle’’ since the neutrino event rate in the existi
chlorine and water Cerenkov detectors is dominated by
high-energy neutrinos produced in the subsequentb decay of
8B @1,2,4#. The 7Li ( n,g)8Li reaction is a key element o
primordial nucleosynthesis in inhomogeneous big bang s
narios@1,5#. It initiates a sequence of reactions which brid
the mass gap atA58 and thus its rate is crucial for dete
mining the amounts of heavier elements produced in th
models.

Direct measurements of capture reactions at energies
responding to astrophysically relevant temperatures, h
ever, are often very difficult, since the cross sections dim
ish exponentially at low energies. Thus, theoretical studie
these processes become very valuable. In addition to mi
scopic theories, such as the nuclear shell model or clu
models, one-body potential models provide a popular fram
work for such investigations. For example, the poten
model was used in Ref.@6# to discuss the energy dependen
of the reaction rates. In the one-body potential mode
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single-particle wave function is used to calculate various
servables; microscopic substructure effects are partially
counted for through the use of spectroscopic factors. T
strategy, however, has recently been the subject of vivid
cussions@7,8#. At issue is the proper normalization of th
cross section. Cso´tó @7#, for instance, maintains that spectr
scopic factors should not be included in potential-model c
culations of the7Be(p,g)8B cross section at low energies
since the reaction depends only on the asymptotic norma
tion coefficient of the 8B bound-state wave function@9#,
whereas the spectroscopic factor arises from the short-ra
properties of the wave function. Mukhamedzhanovet al.
@8,9# argue in favor of using a different approach, based
asymptotic normalization coefficients instead of spect
scopic factors, for determining the relevant cross sectio
However, the asymptotic normalization coefficient conta
short-range effects. It can actually be given in terms of
integral over the interior of the nucleus@10# and its interde-
pendence with the spectroscopic factor has been noted in
earlier work of Locher and Mizutani@11# and of Lovaset al.
@12#.

These recent discussions have motivated us to revisit
question of the proper treatment of microscopic nucl
structure effects in one-body models. In the present work
focus on the role of spectroscopic amplitudes and fact
The use of spectroscopic factors in nuclear reaction calc
tions dates back to the early days of nucleon transfer re
tions @13# and continues to be central in the interpretation
such processes@14#. With the renewed interest in nucleo
capture reactions in the context of astrophysical scenar
and the emerging need for very accurate reaction rate
becomes necessary to review and clarify the assumption
sociated with one of the most basic models of nuclear ph
ics, the one-body potential model.

Before proceeding with the formalism, it is necessary
clarify the meaning of the terms spectroscopic amplitu
spectroscopic factor, and one-body model. For example,
important to realize that there are many spectroscopic am
tudes and spectroscopic factors associated with anA-body

l-
s:
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system, namely, one corresponding to each excited sta
the (A21)-body system. The different amplitudes are n
independent since they are related by a model-indepen
sum rule@15#. In addition, the spectroscopic amplitudes a
related by a set of coupled-channels equations.

The question of what is meant by a one-body mode
more complicated since different notions are associated
the term. The coupled-channels formalism presented he
used to derive two different one-body models and to stu
the connections between them. One approach, which
either the Hartree or the Hartree-Fock approximation in
intermediate step, leads toA noninteracting nucleons in
one-body potential. This, strictly speaking, is not a one-bo
model since there are stillA particles. However, the orbital
corresponding to the different particles decouple and
problem reduces to solvingA one-body equations. The fac
that we still haveA nucleons explicitly present has the a
vantage that antisymmetry can be built inab initio using a
Slater determinant for theA-body wave function. Another
method for generating a one-body model is based on i
grating out the coordinates of (A21) nucleons, effectively
projecting onto a low-dimensional space. In this approa
antisymmetry is enforced separately for each channel in
coupled-channels equations. Truncating to a single cha
results in the approximation advocated by Varga and Lo
et al. @16#, who study the cluster substructure of6Li in this
framework. Their work is based on the generator-coordin
method. The derivation presented here serves to clarify
relation between their model and other approximations.

In Sec. II, we define the terms spectroscopic amplitu
and spectroscopic factor, derive coupled-channels equa
for the amplitudes, and discuss several approxima
schemes, including the first one-body model describ
above. An alternative approach to the spectroscopic am
tudes is considered in Sec. III, which includes details on
second one-body model mentioned above. In Sec. IV,
explore the physical aspects associated with the spatia
pendence of the spectroscopic amplitude and its norm,
spectroscopic factor. We give an expression for the reac
matrix elements in terms of the spectroscopic amplitud
For both single-particle models considered here the react
rates need to be multiplied by a spectroscopic factor. O
conclusions are summed up in Sec. V, and various techn
aspects of our work are included in the Appendixes.

II. SPECTROSCOPIC AMPLITUDES

In this section we expand anA-body wave function in
terms of the ground and excited states of the (A21)-body
system and derive a set of coupled differential equations
the expansion coefficients, of which the spectroscopic am
tudes are a special case. The resulting equations of mo
give insight into the long-range behavior of theA-body
ground state wave function and lead to various approxim
tion schemes. In particular, the Hartree and Hartree-Fock
proximations and a one-body potential-model appro
emerge naturally. For simplicity, spin and isospin degrees
freedom are suppressed and the Coulomb potential is
glected. Furthermore, we do not consider the center-of-m
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motion here; this subject is discussed in Appendix D.
Let CA21

n (r1 , . . . ,rA21) denote thenth ~fully antisym-
metric! eigenstate of the (A21)-body HamiltonianHA21.
The collection of allCA21

n , including both bound and con
tinuum states, forms a complete set of states in the spac
antisymmetric (A21)-body wave functions. Using this
set, $CA21

n %n51,2, . . . , one can construct a basis for th
space of antisymmetricA-body wave functions by
defining ACA

n,r(r1 , . . . ,rA)5ACA
n,r(r1 , . . . ,rA), where

CA
n,r(r1 , . . . ,rA)[CA21

n (r1 , . . . ,rA21)d(r2rA) and A an-
tisymmetrizes between theAth coordinate, which occurs in
the delta function, and the (A21) coordinates inCA21

n .
This ‘‘intercluster’’ antisymmetrization operator is norma
ized so as to satisfyA 25AAA.

The CA
n,r span a space that includes both totally antisy

metric A-body states and mixed-symmetric states, which
antisymmetric in the firstA21 coordinates and symmetri
under interchanges involving theAth coordinate. The basis
sets $CA21

n %, $CA
n,r%, and $ACA

n,r% are discussed in more
detail in Appendix A.

An arbitrary antisymmetricA-body wave functioncA can
then be expanded as

ucA&5
1

A (
n51

` E druACA
n,r&fn~r!

5
1

AA
(
n51

` E druCA
n,r&fn~r!5

1

AA
(
n51

`

uCA21
n &ufn&

~2.1!

with expansion coefficients

fn~r !5^ACA
n,r ucA&5AA^CA

n,r ucA&5^CA21
n ua~r!ucA&.

~2.2!

Here a(r) @a†(r)# is an annihilation@creation# operator
which destroys@creates# a nucleon at positionr and obeys
the usual anticommutation relations. Note that only the fi
expansion in Eq.~2.1! is manifestly antisymmetric, while in
the other two expressions the antisymmetry information
carried by the expansion coefficients. The coefficients
identical in all three expansions if and only ifcA is fully
antisymmetric. In this case, the mixed-symmetry comp
nents ofCA

n,r do not contribute.
When cA denotes a bound state, thefn(r) are called

spectroscopic amplitudes, and the associated integrals

Sn5E drufn~r!u2 ~2.3!

are the frequently usedspectroscopic factors@17#. They obey
the sum rule(n51

` Sn5A @see Ref.@15# and also Eq.~A21!].
We observe that for a boundA-body state, there are man
spectroscopic amplitudes~and thus many spectroscopic fa
tors!, namely, one for each excited state of the (A21)-body
nucleus. Given the structural information on th
(A21)-body system that enters the wave functionsCA21

n ,
the spectroscopic amplitudes completely determine the w
1-2
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SPECTROSCOPIC AMPLITUDES AND MICROSCOPIC . . . PHYSICAL REVIEW C64 065801
function cA . The spatial dependence offn(rA) is related to
the properties of the single-particle orbital of theAth nucleon
in the larger system, and the norm offn(r), the spectro-
scopic factor, provides a measure of the structural simila
of the nth excited (A21)-body state and an (A21)-body
subcluster of the fullA-nucleon system.

The interdependence of the spectroscopic amplitudes
be made explicit upon deriving a set of differential equatio
for the fn(r). For anA-body HamiltonianHA , which con-
tains a kinetic energy term and a two-body potential,HA5
2( i 51

A (¹ r i

2 /2mi)1 1
2 ( i , j 51

A V(ur i2r j u), we can write HA

5HA212(¹ r A

2 /2mA)1( i 51
A21V(ur i2rAu), where HA21 de-

notes the Hamiltonian of the (A21)-body system andmi is
the mass of thei th nucleon~for simplicity we assumemi

5m for i 51, . . . ,A). Since uCA21
n & and ucA& are eigen-

states ofHA21 andHA , respectively, we have

^CA21
n uHAucA&5EA^CA21

n ucA&5EA21
n ^CA21

n ucA&

1^CA21
n u2

¹ r A

2

2m
1 (

i 51

A21

V~ ur i2rAu!ucA&.

~2.4!

Inserting the expansion given in Eq.~2.1! for ucA&, we ob-
tain a set of exact, Schro¨dinger-like coupled equations for th
spectroscopic amplitudes:

~EA2EA21
n !fn~r!52

¹ r
2

2m
fn~r!

1 (
n851

`

^CA21
n u (

i 51

A21

V~ ur i2ru!uCA21
n8 &fn8~r!. ~2.5!

This set of equations, originally derived for stripping rea
tions ~see, for example, Ref.@18#!, is not sufficiently appre-
ciated. In the form just given, these equations may be
complex for use directly in calculations, since theVnn8(r)

[^CA21
n u( i 51

A21V(ur i2ru)uCA21
n8 & couple an infinite set of

coefficients. However, they allow us to discuss the lon
range behavior of theA-body ground state wave function a
well as derive commonly used approximations.

The solutions of Eq.~2.5! include not only the physically
relevant completely antisymmetric states, but also the mix
symmetric, i.e., unphysical, states. As long as the coup
equations are solved exactly this does not cause any p
lems since the two classes of states do not mix. Howe
when approximations are invoked one needs to ensure
the unphysical solutions are eliminated.

From Eq.~2.5! we can extract information on the long
range behavior of theA-body ground state wave function
The matrix elementVnn8(rA), for n or n8 corresponding to
an (A21)-body bound state, has a range which is de
mined by the convolution of the~short-range! two-body po-
tential with the bound-state wave function. Thus it falls o
rapidly with increasingr A5urAu. When both CA21

n and
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CA21
n8 describe continuum states, the matrix element ha

long-range, but infinitesimal, tail. Solving Eq.~2.5! outside
the range of the potential, we find that thefn(rA) decouple
and fall off exponentially, fn(rA)
}exp@2A2m(EA21

n 2EA)r A#/r . Since (EA21
n 2EA) is smal-

lest for n51, the long-range behavior of the A-body wav
function is dominated by f1(rA)CA21

1 (r1 , . . . ,rA21).
Thus processes with reaction probabilities that
peaked in the asymptotic region depend only on
asymptotic normalization coefficient, Anc

5 limr→`f1(r)r exp@A2m(EA2EA21
1 )r # ~see also Refs.

@8,9#!. The asymptotic normalization coefficient is a prope
of the spectroscopic amplitude and hence implicitly includ
the spectroscopic factor.

To obtain an explicit expression for the asymptotic no
malization coefficient, we Fourier transform Eq.~2.5! @to in-
clude center-of-mass corrections, use Eq.~D11!#. This gives
us

f̃n~k!5
1

EA2EA21
n 2

k2

2m

(
n851

` E dreikr

3^CA21
n u (

i 51

A21

V~ ur i2ru!uCA21
n8 &fn8~r!. ~2.6!

The pole inf̃n(k) is thus explicitly seen. It is this pole which
is responsible for the upturn in the astrophysicalS factor of
the 7Be(p,g)8B and 16O(p,g)17F* reactions as the inciden
momentum goes to zero@6#. As shown in Ref.@10#, the resi-
due at this pole forn51 is proportional to the asymptoti
normalization coefficient. We have

Anc5 lim
k→2 ik

4mp2 (
n851

` E dreikr

3^CA21
1 u (

i 51

A21

V~ ur i2ru!uCA21
n8 &fn8~r!, ~2.7!

wherek5A2m(EA2EA21
1 ), i.e., the asymptotic normaliza

tion coefficient can be given as an integral over the inter
of the nucleus@since CA21

1 has the spatial extent of th
ground state of the (A21)-body system#. The price paid is
that there is a sum over all the spectroscopic amplitudes

For arbitrary distances, we may consider approximat
the CA21

n in Eq. ~2.5! by Slater determinants constructe
from the spectroscopic amplitudesf i(r) with i
P$1, . . . ,A%. In this case, we obtain the Hartree-Fock equ
tions in coordinate space. TheA Hartree-Fock orbitals can
thus be identified as approximations to the spectroscopic
plitudes and the Hartree-Fock single-particle energies
proximate single-nucleon separation energies. The lo
~Hartree! term arises from the diagonal terms (Vnn) in Eq.
~2.5!, and the off-diagonal terms (Vnn8 with nÞn8) give the
nonlocal~exchange! potential, i.e., the Fock terms originat
1-3
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JUTTA ESCHER, BYRON K. JENNINGS, AND HELMY S. SHERIF PHYSICAL REVIEW C64 065801
from the channel coupling. If the off-diagonal elemen
(Vnn8 , nÞn8) are neglected we obtain the Hartree appro
mation.

A one-body potential model, which treats the nucleus a
system ofA noninteractingnucleons, can be obtained from
either the Hartree or the Hartree-Fock approximation. St
ing from the Hartree equations, one can express the m
body wave functionsCA21

n as Slater determinants of th
f i(r), i P$1, . . . ,A%, and impose the condition that the on
body potential be the same for each single-particle orb
Vnn(r)⇒V(r). Alternatively, beginning from the Hartree
Fock equations, one can dictate the replacement

Vnn8~r!5^CA21
n u (

i 51

A21

V~ ur i2ru!uCA21
n8 &⇒V~r!dnn8 .

~2.8!

In both cases, one obtains the following equation for
fn(r):

~EA2EA21
n !fn~r!52

¹ r
2

2m
fn~r!1V~r!fn~r!, ~2.9!

which defines a one-body potential model withA noninter-
acting nucleons in a common potential. Thus, the one-b
potential model may be regarded as an approximation to
ther the Hartree or the Hartree-Fock approach. In this mo
antisymmetry can be ensured in a straightforward man
many-body wave functions, such asCA21

n or cA , are—like
in the Hartree-Fock picture—Slater determinants construc
from A given single-particle wave functions.

The Slater determinants, in one-body potential mod
usually play only a formal role and disappear from sight
actual calculations, to the extent that their existence is o
forgotten causing conceptual confusion. For the matrix e
ments of a one-body operator,O(r), between states that dif
fer only in one orbital, the remaining (A21)-body orbitals
integrate out leaving just the active orbitals. Thus we hav
matrix element like*drfm(r)O(r)fm8(r) wherem andm8
denote the active orbitals. At first sight this expression i
pure one-body expression that seems to have no antisym
try present and indeed at the computational level this is t
In calculating the matrix elements of one-body operat
there is no need to explicitly consider the Slater deter
nants. However, the Slater determinants did their job of
suring antisymmetry before they were integrated out.

Since the single-particle Schro¨dinger equation, Eq.~2.9!,
originates from the coupled-channels equations for the
pansion coefficients, Eq.~2.5!, the bound-state single
particle wave functions of the potential-model discussed h
approximate the spectroscopic amplitudes. Therefore,
potential-model approximation givesA nonzero spectro-
scopic amplitudes, all of which are normalized to one. C
sequently, the associated spectroscopic factors are 1
carry no information on the many-body correlations of t
nuclei involved.

One can, however, move beyond the simple picture oA
noninteracting particles in a common potential and inclu
some many-nucleon correlations in a schematic manner.
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first correction, one usually allows for single-particle orbita
which are different for the (A21)-body andA-body sys-
tems. As a result, the expansion ofcA , Eq. ~2.1!, will have
contributions from more thanA terms. Consequently, th
spectroscopic factors will be, on average, less than 1,
most individual factors will be smaller than 1.

Another important correction to be taken into account
volves the treatment of the center-of-mass motion and le
to the introduction of an intrinsic spectroscopic amplitu
~see Appendix D!. In both the Hartree-Fock and the on
body potential-model approaches, the center of mass is e
neously confined in a potential. In potential models whi
are based on a harmonic oscillator potential the center
mass corrections can be taken into account exactly. In
case, the spectroscopic amplitudes corresponding to val
shell orbitals increase by a factor@A/(A21)#m/2, wherem
denotes the major oscillator shell under consideration, w
the amplitudes associated with lower shells decrease acc
ingly @15#. The sum rule for the spectroscopic factors r
mains unaffected. The center-of-mass correction causes s
of the spectroscopic factors to be greater than unity.

The above considerations illustrate that information
the structure of theA-body wave function of a nuclear sys
tem, which is lost in a simple one-body potential-model a
proach, can be in part recovered through the appropriate
rection to the single-particle wave functions, that is,
multiplying by the spectroscopic factors. In Sec. IV we w
discuss how the resulting deviations of the spectroscopic
tors from 1~or zero! affect physical observables such as t
cross sections for external capture reactions.

III. AN ALTERNATIVE PERSPECTIVE

In this section we approach the spectroscopic amplitu
from a different perspective. Motivated by cluster-model
sults, we derive a set of coupled integral equations. Wh
general cluster-model calculations involve two or more cl
ters of arbitrary size, we restrict ourselves to describing
A-body nucleus as an (A21)-body cluster plus a single
nucleon. The approach pursued in this section has the ad
tage that explicit channel coupling is no longer required
ensure antisymmetry. Again, various approximation schem
can be used to simplify the coupled equations. In particu
in one of these schemes the Hartree-Fock equations ca
recovered; in another a one-body model emerges, which
previously discussed by various authors@16,19# and which
differs from the model presented in the last section.

Starting with the Schro¨dinger equation for anA-body sys-
tem,HAcA5EAcA , and expandingcA in terms of the anti-
symmetric basis statesACA

n,r , we obtain

(
n851

` E dr8^ACA
n,r uHAuACA

n8,r 8&fn8~r8!

5EA (
n851

` E dr8^ACA
n,r uACA

n8,r 8&fn8~r8!, ~3.1!

or, equivalently
1-4
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(
n851

` E drA8 H~n,r,n8,r8!fn8~r8!

5EA (
n851

` E dr8N~n,r,n8,r8!fn8~r8!, ~3.2!

where AH(n,r,n8,r8)5^ACA
n,r uHAuACA

n8,r 8& and

N(n,r,n8,r8)5^ACA
n,r uACA

n8,r 8& denote the kernels of inte

gral operatorsAĤnn8 and N̂nn8 , respectively. The operato
Înn8 (Înn85AĤnn8 or N̂nn8), which is the (n,n8) entry of an
infinite-dimensional matrixÎ (Î5AĤ or N̂), acts as follows:
Înn8 f (r)[*dr8I(n,r,n8,r8) f (r8). The matrix N̂ serves as
the norm operator for the antisymmetrized basis$ACA

n,r% and
has many interesting properties which are discussed in
pendix B. N̂/A is a projection operator which projects a
arbitrary many-body state into the set of completely antisy
metric wave functions. Thus, Eqs.~3.1! and~3.2! contain an
explicit projection onto completely antisymmetric states,
contrast to the coupled differential equations discussed in
previous section, Eq.~2.5!. This projection means that th
solutions of Eq.~3.2!, fn

(sol)(r), can contain arbitrary contri
butions from mixed-symmetric states while still satisfyin
the equations of motion. Thus the projected state,fn

5(1/A)(n851
` *dr8N(n,r,n8,r8)fn8

(sol)(r8), rather than
fn

(sol)(r), corresponds to the physical state.
With Eq. ~3.1! @or, equivalently, Eq.~3.2!#, we have de-

rived a set of coupled-channels~integral! equations, analo-
gous to the system of coupled differential equations in
previous section, Eq.~2.5!. In the present approach, howeve
antisymmetry is explicitly enforced, resulting in a set
equations which contain a projection operator and a com
cated expression for the effective Hamiltonian. To illustra
this, we compare the Hamiltonian kernel in the nonantisy
metrized basis,H(n,r,n8,r8), with the corresponding ex
pression in the antisymmetrized basis,AH(n,r,n8,r8). The
former is local, i.e., diagonal, in the spatial coordinate,
though not in the discrete variablen,

H~n,r,n8,r8!5^CA
n,r uHAuCA

n8,r 8& ~3.3!

5d~r2r8!Fdnn8S EA21
n 2

¹ r8
2

2m
D

1^CA21
n u (

i 51

A21

V~ ur i2ru!uCA21
n8 &G , ~3.4!

whereas the latter has off-diagonal contributions from botr
andn:

AH~n,r,n8,r8!5 (
n951

` E dr9H~n,r,n9,r9!N~n9,r9,n8,r8!

~3.5!
06580
p-

-

e

e

li-
e
-

-

5S EA21
n 2

¹ r
2

2mDN~n,r,n8,r8!

1d~r2r8!^CA21
n u (

i 51

A21

V~ ur i2ru!uCA21
n8 &

2~A21!E )
i 52

A21

dr iCA21
n* ~r8,r2 , . . . ,rA21!

3FV~ ur82ru!1 (
i 52

A21

V~ ur i2ru!GCA21
n8 ~r,r2 , . . . ,rA21!.

~3.6!

Imposing antisymmetry via the projection operator asso
ated withN(n,r,n8,r8) leads to exchange terms in the effe
tive potential.

For the special case of a one-body Hamiltonian,H
5( i 51

A H(r i), we obtain the Hamiltonian kernel
H(n,r,n8,r8)5dnn8d(r2r8)(EA21

n 1H(r)) and

AH(n,r,n8,r8)5N(n,r,n8,r8)(EA21
n 1H(r)), and Eq.~3.2!

reduces to the single-particle Schro¨dinger equation. The ker
nel N(n,r,n8,r8) guarantees that only expansion coefficien
originating from an antisymmetricA-body wave function are
considered, i.e.,N(n,r,n8,r8) ensures that the associate
single-particle orbitals are not among the occupied state
the (A21)-body system. This can be trivially taken into a
count in the calculations. Nevertheless, even in a case
simple as this one,N(n,r,n8,r8) is not diagonal inn,n8.

In order to facilitate working with the above~exact! set of
coupled integral equations, Eq.~3.2!, various approximations
may be considered. For example, the Hartree-Fock equat
are recovered by taking the (A21)-body basis states
CA21

n , to be Slater determinants constructed from the
pansion coefficientsfn(r). In contrast to the approach pre
sented in the previous section, the current method does
require channel coupling to obtain the Fock terms. Inste
the nonlocal~exchange! terms are now explicitly present in
the effective potential, as can be seen in the last line of
~3.6!. Thus, the advantage of using antisymmetric ba
states — coupled channels are not needed to include
Fock term contributions — is offset by additional complic
tions in the resulting equations of motion: the Hamiltoni
kernel is no longer local and the antisymmetry operator
pears explicitly in Eq.~3.2!. Note also that in the Hartree
Fock approximation the channels are implicitly coupl
through the use of expansion coefficients in the (A21)-body
Slater determinants.

Another approximation method leads to equations wh
were previously obtained by Varga and Lovaset al. @16# in
the framework of the cluster model. In this approach,
ignore those terms inAH(n,r,n8,r8) andN(n,r,n8,r8) that
couple different values of the discrete variable, i.e., contri
tions for whichnÞn8 holds. The equations of motion for th
coefficientsfn(r) then take the following form:

E drA8 H~n,r,n,r8!fn~r8!5EE dr8N~n,r,n,r8!fn~r8!,

~3.7!
1-5
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that is, we have effectively integrated out the coordinates
(A21) particles to obtain a set of one-body equations. T
equation is more general than Hartree-Fock, but the Har
Fock approximation can be recovered by taking
(A21)-body wave functions to be Slater determinants co
posed from the spectroscopic amplitudes. We can then de
the one-body potential model, Eq.~2.9!, as in the previous
section. In these cases antisymmetry can be exactly imp
through the use of Slater determinants and the explicit p
jection operator,N̂, is not needed.

A second one-body equation can be obtained by tak
the (A21)-body wave functions from an external sour
independent of the spectroscopic amplitudes. This can
beyond Slater determinants and Hartree-Fock since theA
21)-body wave functions can include many-body corre
tions; in principle they can even be exact. The quality of t
approximation will depend on how well the (A21)-body
wave functions are chosen. In this approach the orbitals
be considered one at a time. The price paid for this con
nience is twofold. First, the expressions for the Hamilton
become more complicated; compare Eqs.~3.4! and ~3.6!.
Secondly, when we move beyond Slater determinants,N̂ is
explicitly required and, moreover, its diagonal element,N̂nn ,
is no longer a projection operator~see Appendix B!, so anti-
symmetry is not explicit.

The one-body models associated with Eqs.~2.9! and~3.7!
differ, but in most situations both lead to a decoupling of t
expansion coefficients. The exceptions are the Hartree-F
approximation and other self-consistent models in which
(A21)-body wave functions are constructed from the e
pansion coefficients. While the decoupling is in many wa
advantageous, it also implies that we have lost the inform
tion on the relative normalizations of thefn(r ). If we as-
sume thatA of the coefficients are nonzero we may ta
them to be individually normalized to one. This is consiste
with the overall normalization condition A
5(n851

`
(n51

` *drdr8fn* (r)N(n,r,n8,r8)fn8(r8).
In the work of Lovaset al., Eq. ~3.7! was considered for

the case n5n851. The Hamiltonian operator ĥ

5(N̂11)A
21/2Ĥ11(N̂11)

21/2 and the wave function x l

5(N̂11)
1/2f1 were defined. These redefinitions have the

vantage of leading to an equation which takes the same f
as the standard Schro¨dinger equation,ĥx l5Ex l . Thex l pro-
vides a better approximation to the true spectroscopic am
tude than the modelf1 @the solution of Eq.~3.7!# since it
includes the effect of (N̂11)

1/2, an approximate projection
operator onto antisymmetric states. As noted previousl
projection operator may be needed and this is amplified
the discussion of Ref.@7# in the next section. It is alsox l
~normalized to one! that in this approach should be identifie
with the single-particle wave function, both because of t
better correspondence with the true spectroscopic ampli
and because of the form of the equation which it satisfie

IV. SPECTROSCOPIC AMPLITUDES
AND REACTION RATES

In this section we discuss how the spectroscopic am
tudes can be used to calculate reaction rates and elabora
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their physics content. We show that the spatial dependenc
the spectroscopic amplitude and its norm, the spectrosc
factor, describe different physical aspects of the ma
nucleon system, namely, single-particle properties of theAth
particle and distortions of the (A21)-body system, respec
tively. We make the connection to the potential-model a
proach and find that both aspects are included, at least
proximately, when spectroscopic factors are employed
scale the wave functions. Since our findings contradict
conclusions of Ref.@7#, we explore the claims made in tha
paper.

To calculate the relevant reaction cross sections, we
pand both theA-body bound state,ucA(r1 , . . . ,rA)&, and the
wave function in the incident channel,ucA

K(r1 , . . . ,rA)&, as
in Eq. ~2.1!. HereK specifies the asymptotic momentum
the incident particle relative to the (A21)-body target
nucleus. The corresponding expansion coefficients are g
by fn(r)5AA^CA

n,r ucA(r1 , . . . ,rA)& and fn
K(r)

5AA^CA
n,r ucA

K(r1 , . . . ,rA)&, respectively. The expansio
coefficientf1

K(r), associated with the continuum wave fun
tion, is the optical model wave function@20,21#. Thus the
formalism based on expansion coefficients is sufficien
general to include both spectroscopic amplitudes and op
model wave functions. It will be useful whenever we a
dealing with one-body operators. The matrix element for
one-body transition operatorO(r) can then be written as

M[^cAu(
i 51

A

O~r i !ucA
K&5A^cAuO~rA!ucA

K& ~4.1!

5 (
n51

` E drfn* ~r!O~r!fn
K~r!. ~4.2!

To make the connection with the potential model we sepa
the spatial dependence of the spectroscopic amplitude an
normalization,ASn, as follows:

fn~r!5ASnf̃n~r!, ~4.3!

where*druf̃n(r)u251. In Sec. II, we have shown that th
potential-model wave functions approximate the spec
scopic amplitudes. Since the norm off̃n(r) is one, whereas
that offn(r) is Sn , thef̃n(r), rather than thefn(r), should
be identified with the potential-model wave functions. The
is no equivalent normalization factor associated with
scattering state;cA

K is normalized asymptotically.
The transition matrix element given in Eq.~4.2! can now

be written asM5(n51
` ASn*drf̃n* (r)O(r)fn

K(r). Both the
7Be(p,g)8B and 16O(p,g)17F* reactions at threshold ar
peripheral, i.e., the capture processes take place at large
tances from the center of the target nucleus, which is in
ground state. In such situations, as for all direct capture
actions, only the first expansion coefficient forcA

K contrib-
utes and the matrix element reduces toM
→AS1*drf̃1* (r)O(r)f1

K(r). Since the cross section is pro
portional to uMu2, the spectroscopic factor associated w
the ground state of the (A21)-body system,S1, occurs lin-
1-6
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SPECTROSCOPIC AMPLITUDES AND MICROSCOPIC . . . PHYSICAL REVIEW C64 065801
early in the expression for the reaction rate. Thus we c
clude that when a potential-model wave function~or any
other function normalized to one! is used to calculate the
transition matrix elementM, the resulting cross sectio
needs to be multiplied by the associated spectroscopic fa
in order to account for~some of! the many-body correlation
in the nuclei involved. The implications of this for th
asymptotic normalization are discussed at the end of
section.

The separation introduced in Eq.~4.3! is motivated by the
realization that the spatial dependence of the spectrosc
amplitudefn(rA), and its norm, the spectroscopic factorSn ,
describe different physical properties of the nuclear ma
body system. The former is related to the shape of the sin
particle orbital of theAth nucleon in the system, and ca
therefore be expressed through the normalized amplit
f̃n(r). The latter provides a measure of the structural si
larity of the nth excited (A21)-body state and an
(A21)-body subcluster of the larger system. Equivalen
the set of spectroscopic factors associated with the expan
of cA , Eq. ~2.1!, can be viewed as describing the distorti
of the (A21)-body core due to the presence of an ex
nucleon. This can be seen, for example, by castingSn into
the following form:

Sn5E drufn~r !u2 ~4.4!

5AE S )
i 51

A21

dri D E S )
i 51

A21

dri8D
3CA21

n* ~r 1 , . . . ,r A21!CA21
n ~r 18 , . . . ,r A218 !

3F E drcA* ~r 1 , . . . ,r A21 ,r !cA~r 18 , . . . ,r A218 ,r !G .
~4.5!

In the last line~expression in square brackets! we have inte-
grated out the dependence on theAth particle. We are left
with expressions involving wave functions of th
(A21)-body system. The extra particle’s influence is s
present in the modification it has induced in the (A21)-body
cluster. Upon decoupling the equations of motion for t
expansion coefficients, as required in our derivation of
one-body models, this information on the last particle’s
fluence is lost; the many-body correlations contained in
integralsSn disappear and the spectroscopic factors beco
1.

The spectroscopic factors carry information both on
dynamical distortions induced by the interaction between
(A21)-body system and the extra particle and on antisy
metry effects. Specifically, as shown in Appendix C, t
spectroscopic factor can be written as

Sn5Nn^cA
i ,nucA

i ,n&, ~4.6!

where^cA
i ,nucA

i ,n& reflects the influence of the distortions, an
the normalization factorNn contains antisymmetry effects
Specifically, Nn keeps track of the requirement that th
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nucleon orbitals in thenth excited (A21)-body state must

be orthogonal to the orbitalf̃n(r) of the Ath particle @for
details see Eq.~C5!#. When center-of-mass corrections a
taken into account,Nn may be greater than 1, otherwise it
less than or equal to 1. The matrix element^cA

i ,nucA
i ,n& is

always less than or equal to one. Consequently, when ce
of-mass corrections are ignored, we have the restrictionSn

<1 for the spectroscopic factor. The influence of these c
rections are discussed in detail in Appendix D.

At this point we would like to reassert that it is corre
and necessary to include spectroscopic factors in poten
model cross sections of nuclear capture reactions. This
cedure was questioned in Ref.@7#. The author of that pape
argues that the short-range correlations contained in the s
troscopic factor should modify the bound-state wave fu
tion only in the nuclear interior and have no effect on t
asymptotic behavior. Since multiplying the potential-mod
wave function byASn, however, affects its overall norma
ization, including in the tail region, the usual procedure
treating microscopic correlations in the potential model, v
through spectroscopic factors, is pronounced to be incorr
To illustrate his point, the author compares a wave funct
xc(r), which describes the relative motion of7Be andp in
8B, to the spectroscopic amplitude function of the7Be1p
configuration in8B ~Note that thisxc is different from the
wave functionx l introduced by Lovaset al. @16# and dis-
cussed in the previous section!. The wave functionsxc con-
sidered individually do not contain Pauli effects but, wh
used in cluster-model calculations, appear behind an a
symmetrization operator. The spectroscopic amplitudes,
the other hand, are calculated from properly antisymmetri
wave functions. The two functions are shown to agree w
each other and with the appropriately normalized Coulom
Whittaker function in the asymptotic region, but they diff
at small radii, as can be seen in Fig. 2 of Ref.@7#. Their
difference is interpreted as a measure of the Pauli effe
Since multiplyingxc(r) by a spectroscopic factor would a
fect both its short-range and asymptotic behaviors, the au
concludes that this cannot be the proper procedure for in
porating microscopic substructure effects in potential-mo
calculations.

The argument presented in Ref.@7# is not correct. The
function xc(r) does not, in general, correspond to
potential-model wave function. First, unlike the one-bo
wave functions we have considered, it already includes
spectroscopic factor through the normalization of theA-body
wave function. Moreover, very little physics can be asso
ated withxc outside the context of its usual use as a com
nent in a properly antisymmetrized cluster-model wave fu
tion. To show this, we consider an arbitrary product st
cA

P(r1 , . . . ,rA)5w(rA)cA21
P (r1 , . . . ,rA21). In the nonanti-

symmmetrized basis, it has expansion coefficients

fn
P~r!5AA^CA

n,r ucA
P&5w~r!AA^CA21

n ucA21
P &, ~4.7!

and the associated antisymmetrized, i.e., phys
1-7
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state, has expansion coefficients fn(r)
5(1/A)(n851

` *drN(n,r,n8,r8)fn8
P (r). In the product given

above, w(r) can be taken to correspond to the relativ
motion functionxc(r) of Ref. @7#. As discussed in the previ
ous section,N̂ enforces antisymmetry by projecting onto
completely antisymmetric state. Thus, the choice ofw(r) is
somewhat arbitrary, since many functions lead to the sa
physical state. We may, for example, consider the cas
which cA21

P and CA21
n are Slater determinants andcA21

P

5CA21
1 . If we then takew(r) to be orthogonal to the orbit

als in cA21
P , the antisymmetry requirement will turn th

product into a Slater determinant and we obtainf1(r)
5f1

P(r)/AA5w(r). On the other hand, ifw(r) is not or-
thogonal to the occupied orbitals, the nonorthogonal com
nents will be projected out as well. In the extreme case
w(r) being a linear combination of the occupied states,f1(r)
is zero. From these considerations we conclude that the
ference betweenw(r) and the associated physical state h
no particular significance. The effect that antisymmetrizat
has onw(r) is not pertinent to the one-body models cons
ered in this paper since both already include antisymmetr
least approximately.@The effect of antisymmetry on th
shape of the spectroscopic amplitudes is distinct from
effect of antisymmetry contained in theNn of Eq. ~4.6!.# A
more useful comparison would be between the spectrosc
amplitude and (N̂11)

1/2w(r8), since this would measure th
influence of the off-diagonal matrix elements ofN̂ and thus
test the validity of the single-particle model based on E
~3.7!. Neither comparison clarifies the role of the spect
scopic factors since, as previously noted, the spectrosc
factor is contained in bothxc and the spectroscopic ampl
tudes.

At this point it is useful to return to the asymptotic no
malization, Anc , of the spectroscopic amplitude. For th
low-energy 7Be(p,g)8B and 16O(p,g)17F* reactions, for
example, the capture occurs at large radii. Thus
asymptotic normalization of the spectroscopic amplitude
sufficient for describing the bound state in the physica
relevant region. This is in line with the conclusions of Re
@8,9#. As explained above, there are two different physi
effects included in the spectroscopic amplitude and henc
its asymptotic normalization: one is related to the distortio
of the (A21)-body cluster due to the presence of an ad
tional nucleon and is contained in the spectroscopic fa
and the other is related to the single-particle properties
that extra particle and is described by the spatial depend
of the amplitude. Both are needed.

V. CONCLUSIONS

Spectroscopic amplitudes play a central role in the
scription of single-particle transfer reactions such as ra
tive nucleon capture. The amplitudes contain both sing
particle and many-nucleon aspects of the nuclear many-b
problem and can be, in principle, obtained from a fully m
croscopic model. We have presented two alternative
proaches, each based on a set of coupled-channels equa
and have shown how one-body approximations can be
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rived in a systematic manner. We obtained two differe
single-particle models. In both cases, the single-part
wave function was found to be an approximation to the sp
troscopic amplitude but normalized to one rather than to
spectroscopic factor. The quality of the one-body approxim
tion depends on how well it describes the spatial depende
of the spectroscopic amplitude. However, even the b
single-particle wave function will miss the spectroscopic fa
tor.

The first one-body approximation considered here res
in A noninteracting particles in a single-particle potenti
The simplification occurs since the equations for the spec
scopic amplitudes are no longer coupled; instead, we havA
independent equations. Since we still haveA particles andA
orbitals, we can construct an antisymmetricA-body wave
function by taking it to be a Slater determinant. In th
model, it is redundant to explicitly enforce antisymmet
e.g., through projection operators. The quality of this a
proach depends on how well the single-particle potentia
chosen and how well the single-particle wave functions
produce the shape of the spectroscopic amplitudes.

The second one-body model presented here is usually
rived within the generator-coordinate formalism. We o
tained it by truncating a set of coupled integral equations
this approach, antisymmetry is~approximately! imposed for
each orbital separately through~approximate! projection op-
erators. Unlike the first one-body approximation it can
clude many-particle correlations in the (A21)-body sub-
system. In principle, this approach is also simpler since
do not need to consider all the orbitals together. The price
pay is that the potential cannot be approximated as sim
since it implicitly contains a projection into antisymmetr
states. There is also an explicit projection operator that m
be approximated. The quality of this approach depends
the choice of the (A21)-body wave functions and the im
portance of the channel coupling.

It is important to realize that there is not one uniq
single-particle model. Different one-body approximations
the nuclear many-body problem exist and can be deri
independently of each other. The resulting single-parti
models may differ in subtle but crucial details and shou
therefore not be confused with each other. We have deri
two such models and discussed their relation to each o
and distinctions between them. In particular, the very diff
ent techniques for including antisymmetry should be note

The spectroscopic factor, in its simplest form, reflects
partition probability of theA-body system into smaller clus
ters with allowance for antisymmetry effects. In the pres
paper it is cast in a complimentary light. It presents itself
a manifestation of the distortion of the (A21)-body system
due to the presence of theAth particle. This distortion is both
dynamical due to the interactions and kinematical due
antisymmetry. Since these are pure many-body effects t
are, by definition, absent from one-body approximatio
When center-of-mass corrections are included, the spec
scopic factors can be greater than 1 without violating
Pauli principle. Otherwise they must be less than or eq
to 1.

A full calculation must include both the one-body an
1-8
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SPECTROSCOPIC AMPLITUDES AND MICROSCOPIC . . . PHYSICAL REVIEW C64 065801
many-body effects. As the present paper emphasizes, this
be accomplished through the use of spectroscopic am
tudes. Obtaining these amplitudes, however, requires the
solution of the coupled equations presented here or a f
microscopic model. While this is still a distant goal, som
recent fully microscopic approaches show promising res
for low-mass systems@22#. Furthermore, models such as th
shell model, the continuum shell model, or the cluster mo
include some many-nucleon correlations and provide rea
able approximations to the full problem. Since many-bo
effects are not contained in one-body models, cross sect
calculated in this framework need to include the spec
scopic factor. For processes that are strongly peaked
the tail region, like the low-energy7Be(p,g)8B and
16O(p,g)17F* reactions, the one-body and many-body
fects can be combined into a single parameter —
asymptotic normalization coefficient.
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APPENDIX A: THE BASES

We begin by defining a basis$CA21
n %n51,2, . . . for HA21

A ,
the space of completely antisymmetric (A21)-body wave
functionscA21(r1 , . . . ,rA21). The basis states are orthono
mal,

E )
i 51

A21

dr iCA21
n* ~r1 , . . . ,rA21!CA21

n8 ~r1 , . . . ,rA21!

5dnn8 , ~A1!

and complete in HA21
A , that is,

E )
i 51

A21

dr i8(
n51

`

CA21
n ~r1 , . . . ,rA21!

3CA21
n* ~r18 , . . . ,rA218 !cA21~r18 , . . . ,rA218 !

5cA21~r1 , . . . ,rA21! ~A2!

holds for anycA21PHA21
A . Specifically, for the sake of con

venience, we chooseCA21
n which are eigenstates of the (A

21)-body Hamiltonian HA2152( i 51
A21(¹ r i

2 /2mi)

1 1
2 ( i , j 51

A21 V(ur i2r j u). To do so, we have to include bot
bound and scattering states. The superscriptn labels the dis-
crete as well as the continuous spectrum ofHA21.

We now consider two differentA-body spaces. The first
denoted byHA , is spanned by

CA
n,r~r1 , . . . ,rA![CA21

n ~r1 , . . . ,rA21!d~r2rA!,
~A3!

wherer is a continuous parameter. TheCA
n,r are orthonormal

with respect to bothn and r:
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E )
i 51

A

dr iCA
n,r* ~r1 , . . . ,rA!CA

n8,r 8~r1 , . . . ,rA!

5dnn8d~r2r8!, ~A4!

and the completeness condition for this basis is given by

E )
i 51

A

dr i8

3S (
n51

` E drCA
n,r~r1 , . . . ,rA!CA

n,r* ~r18 , . . . ,rA8 !D
3cA~r18 , . . . ,rA8 !

5cA~r1 , . . . ,rA!, ~A5!

wherecAPHA . The spaceHA is a direct sum of the sub
spacesHA

A andHA
M which contain, respectively, totally anti

symmetric and mixed-symmetryA-body states. The latter ar
antisymmetric in the firstA21 coordinates and symmetri
with respect to exchanges between theAth nucleon and any
other particle. ForA52, the spaceHA52

M is completely sym-
metric.

An arbitrary wave functioncAPHA can thus be written as
the sum of an antisymmetric and a mixed-symmetric com
nent,

cA~r1 , . . . ,rA!5
A
AA

cA~r1 , . . . ,rA!

1S 12
A
AA

D cA~r1 , . . . ,rA! ~A6!

5cA
A~r1 , . . . ,rA!1cA

M~r1 , . . . ,rA!,
~A7!

where cA
APHA

A , cA
MPHA

M , and A denotes an ‘‘interclus-
ter’’ antisymmetrization operator, which antisymmetrizes b
tween theAth coordinate and the remainingA21 coordi-
nates.A is normalized by the conditionA 25AAA. Since
(A/AA)(12A/AA)50, the two subspaces are orthogonal
each other, that is,

E )
i 51

A

dr icA
A* ~r1 , . . . ,rA!cA

M~r1 , . . . ,rA!50. ~A8!

Furthermore, a symmetric operatorÔS cannot connect the
two subspaces,

E )
i 51

A

dr icA
A* ~r1 , . . . ,rA!ÔScA

M~r1 , . . . ,rA!50.

~A9!

This includes the case whereÔS5HA , where HA is the
A-body Hamiltonian.

The spaceHA
A is spanned by
1-9
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ACA
n,r~r1 , . . . ,rA![ACA

n,r~r1, . . . ,rA!

5A@CA21
n ~r1 , . . . ,rA21!d~r2rA!#

~A10!

or, equivalently,

uACA
n,r&5a†~r!uCA21

n &, ~A11!

wherea†(r) creates a nucleon at positionr and we have used
the conventioncA(r1 , . . . ,rA)5^r1 , . . . ,rAucA&. The cre-
ation and annihilation operatorsa†(r) and a(r) obey the
usual anticommutation relations, which ensure that the rig
hand side of Eq.~A11! is totally antisymmetric. The com
pleteness condition for the basis$ACA

n,r% takes the form

E )
i 51

A

dr i8S 1

A (
n51

` E drACA
n,r~r1 , . . . ,rA!

3ACA
n,r* ~r18 , . . . ,rA8 !DcA~r18 , . . . ,rA8 !5cA~r1 , . . . ,rA!,

~A12!

where cA is a fully antisymmetricA-body wave function
from HA

A . WhencA in Eq. ~A12! is replaced by a state from
HA

M , the right-hand side of the equation vanishes. ThusPA
[1/A(n51

` *druACA
n,r&^ACA

n,r u is a projection operato
which projects statescAPHA onto their antisymmetric com
ponentcA

APHA
A . ThatPA

2 5PA holds can be shown by usin
Eq. ~A14! below.

The advantages of using totally antisymmetric basis st
are obvious. The disadvantages of employing this basis
in the fact that the states are no longer orthonormal. Inst
we have

E )
i 51

A

dr i ACA
n,r* ~r1 , . . . ,rA!ACA

n8,r 8~r1 , . . . ,rA!

5N~n,r,n8,r8!. ~A13!

The norm operator,N̂, and its kernel,N(n,r,n8,r8), have
various interesting properties and are discussed in Appe
B.

The basis statesACA
n,r are not linearly independent, bu

are related to each other through the norm operator,N̂, as
follows:

ACA
n,r~r1 , . . . ,rA!

5
1

A (
n851

` E dr8N~n,r,n8,r8!ACA
n8,r 8~r1 , . . . ,rA!.

~A14!

In fact, the$ACA
n,r% basis is overcomplete and, at least in t

case where theCA21
n are Slater determinants, spans t

spaceHA
A A times. This accounts for the factor 1/A in the

first line of Eq. ~2.1!, and in the completeness relation, E
~A12!.
06580
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An arbitrary antisymmetric A-body wave function
cA(r1 , . . . ,rA) can now be expanded in one of the abo
bases. Using the set$CA

n,r%, we have

cA~r1 , . . . ,rA!5
1

AA
(
n51

` E drCA
n,r~r1 , . . . ,rA!fn~r!,

~A15!

with expansion coefficients

fn~r!5AAE )
i 51

A

dr iCA
n,r* ~r1 , . . . ,rA!cA~r1 , . . . ,rA!.

~A16!

Alternatively, we can use the antisymmetric basis,$ACA
n,r%,

to write

cA~r1 , . . . ,rA!5
1

A (
n51

` E drACA
n,r~r1 , . . . ,rA!fn~r!,

~A17!

where

fn~r!5E )
i 51

A

dr i ACA
n,r* ~r1 , . . . ,rA!cA~r1 , . . . ,rA!.

~A18!

Equation~A17! follows by applying the antisymmetrizatio
operator to Eq.~A15! and Eq.~A18! can be derived from Eq
~A16! by using the identity cA(r1 , . . . ,rA)
5(A/AA)cA(r1 , . . . ,rA), which holds for totally antisym-
metric A-body states, and the Hermitian properties ofA.
Thus, the coefficients are the same in both expansions.

From Eq.~A15!, it follows that is also possible to write
the wave functioncA as

cA~r1 , . . . ,rA!5
1

AA
(
n51

`

CA21
n ~r1 , . . . ,rA21!fn~rA!.

~A19!

The coefficientsfn(r) are identical to those in the previou
expansions. From Eqs.~A11! and~A18!, one infers that they
take the following form:

fn~rA!5^CA21
n ua~r!ucA&. ~A20!

When cA(r1 , . . . ,rA) denotes a bound state and th
CA21

n , which occur in the definitions of bothCA
n,r and

ACA
n,r , are eigenstates of the (A21)-body system, then the

fn(r) are thespectroscopic amplitudesand the associated
integralsSn[*drufn(r)u2 are thespectroscopic factors. The
A-dependent normalization factors in the above equations
included so that*) i 51

A dr i ucA(r1 , . . . ,rA)u251 holds, as
well as

(
n51

` E drufn~r!u25A, ~A21!
1-10
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in accordance with the conventional normalization of t
spectroscopic factors. This last equation follows by squar
Eq. ~A15!, integrating over the coordinates, and using
completeness of theCA

n,r .

APPENDIX B: THE NORM OPERATOR

The norm operator for the antisymmetric basis$ACA
n,r%,

N̂, and its kernel,N(n,r,n8,r8), have many interesting prop
erties. To start with, the kernel can be written in seve
equivalent forms:

N~n,r,n8,r8!

5E )
i 51

A

dr i ACA
n,r* ~r1 , . . . ,rA!ACA

n8,r 8~r1 , . . . ,rA!

~B1!

5AAE )
i 51

A

dr iCA
n,r* ~r1 , . . . ,rA!ACA

n8,r 8~r1 , . . . ,rA!

~B2!

5AAE )
i 51

A

dr iCA
n,r* ~r1 , . . . ,rA!ACA

n8,r 8~r1 , . . . ,rA!

~B3!

5AE )
i 51

A

dr iCA
n,r* ~r1 , . . . ,rA!

A
AA

CA
n8,r 8~r1 , . . . ,rA!

~B4!

5^CA21
n ua~r!a†~r8!uCA21

n8 &. ~B5!

We see thatN(n,r,n8,r8) is not only the kernel of the norm
operator for$ACA

n,r%, Eq.~B1!, but is also proportional to the
overlap of an element from$ACA

n,r% with an element from
the nonantisymmetrized basis$CA

n,r%, Eq. ~B2!. Further-
more,N(n,r,n8,r8)/AA is the matrix element of the ‘‘inter-
cluster’’ antisymmetrization operator,A, in the basis$CA

n,r%,
Eq. ~B3!, or—equivalently—N(n,r,n8,r8)/A is the matrix
element of the projection operatorA/AA in that same basis
Eq. ~B4!. Finally, we can writeN(n,r,n8,r8) as the matrix
element ofa(r)a†(r8) in the (A21)-body basis, Eq.~B5!,
wherea†(r) and a(r) create and annihilate, respectively,
nucleon at positionr.

SinceN(n,r,n8,r8) is proportional to a projection opera
tor, it has no inverse. However, its square root—in the se
of a matrix operation—can be given. It is simply the mat
element of the antisymmetrization operatorA,

AN~n,r,n8,r8!

5E )
i 51

A

dr iCA
n,r* ~r1 , . . . ,rA!ACA

n8,r 8~r1 , . . . ,rA!.

~B6!
06580
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To see the projection operator nature ofN̂ more directly, one

can multiply Eq.~A15! by ACA
n8,r 8(r1 , . . . ,rA) and integrate

over the coordinates. IfcA is completely antisymmetric, we
obtain the following equation for the expansion coefficien

fn~r!5
1

A (
n851

` E dr8N~n,r,n8,r8!fn8~r8!. ~B7!

For a mixed-symmetric statecA , on the other hand, we find

05
1

A (
n851

` E dr8N~n,r,n8,r8!fn8~r 8!, ~B8!

i.e., N̂/A, when acting on a set of expansion coefficien
fn(r), behaves like a projection operator: It returns the c
efficients fn(r) of an antisymmetric state and yields ze
when thefn(r) correspond to a mixed-symmetric state.
follows immediately that in a restricted space of coefficie
which originate from a completely antisymmetric wave fun
tion, N̂/A becomes the identity matrix. In this restricted su

space, the functionsACA
n8,r 8/AA act in many ways as if they

were orthonormal.
If we expand an excited state of theA-body system,

CA
k (r1 , . . . ,rA), as in Eq.~2.1!, we obtain expansion coef

ficients fn
A,k(r)[^CA21

n ua(r)uCA
k &. For k51, CA

k51 de-
scribes the ground state of theA-nucleon system and th
fn

A,k51(r) reduce to the usual spectroscopic amplitudes.
a fixedn, on the other hand, thefn

A,k(r) correspond to par-
ticle states built onuCA21

n &. Similarly, one can expand a
(A21)-body state,CA21

n , in terms of (A22)-body basis
states,CA22

m , and obtain expansion coefficientsfm
A21,n(r)

[^CA22
m ua(r)uCA21

n &. With respect to the (A21)-body sys-
tem, the (A22)-body functions represent hole states and
A-body functions are particle states. The expansion coe
cientsfm

A21,n(r) can be used to rewrite the equations of m
tions @Eq. ~2.5!#,

~EA2EA21
n !fn~r!52

¹ r
2

2m
fn~r!1 (

n851

`

(
m51

`

3E dr8fm
A21,n* ~r8!fm

A21,n8~r8!

3V~ ur82ru!fn8~r!. ~B9!

The kernel of the norm operator can also be written
terms of the particle or hole states. For the particle states
insert a complete set of intermediateA-body states,
CA

k (r1 , . . . ,rA), in Eq. ~B5! to obtain

N~n,r,n8,r8!5 (
k51

`

fn
A,k~r!fn8

A,k* ~r8!. ~B10!

On the other hand, using Eq.~A3!, the kernel of the norm
operator can be expressed in terms of the (A21)-body wave
functions:
1-11
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N~n,r,n8,r8!5dnn8d~r2r8!2~A21!

3E )
i 51

A22

dr iCA21
n* ~r1 , . . . ,rA22 ,r8!

3CA21
n8 ~r1 , . . . ,rA22 ,r!. ~B11!

This is not diagonal, in eithern or r, even for the simples
systems. From the last expression we derive the hole-s
form

N~n,r,n8,r8!5dnn8d~r2r8!2 (
m51

`

fm
A21,n* ~r8!fm

A21,n8~r!.

~B12!

Combining Eqs.~B10! and~B12!, we obtain a completenes
relation for the spectroscopic amplitudes corresponding
the set of particle and hole states:

dnn8d~r2r8!5 (
m51

`

fm
A21,n* ~r8!fm

A21,n8~r!

1 (
k51

`

fn
A,k~r!fn8

A,k* ~r8!. ~B13!

The sum overm runs over all states of the (A22)-body
system@the hole states of the (A21)-body system# while the
sum overk runs over the states of theA-body system@the
particle states of the (A21)-body system#. The spectro-
scopic amplitudes for the particle states are not complete
themselves since they lack the contributions that are P
blocked, namely, those contributions corresponding to h
states. Contrary to the impression that this equation m
give, thef ’s are neither orthogonal nor normalized to on

To illustrate the formalism, we consider a two-partic
system. In this case, theCA21

n (r1 , . . . ,rA21)[C1
n(r) are

one-body wave functions and the kernel of the norm oper
is given by

N~n,r,n8,r8!5dnn8d~r2r8!2C1
n* ~r8!C1

n8~r!.
~B14!

The terms diagonal inn are projection operators onto stat
orthogonal toC1

n(r). This is also true for larger particle
numbers if theCA21

n (r1 , . . . ,rA21) are single Slater deter
minants @in that case N(n,r,n,r8)5d(r2r8)
2(s51

A fs
n* (r8)fs

n(r), where the sum is over occupie
single-particle orbitalsfs

n(r8)#. While the matrix elements
diagonal inn are projection operators by themselves, o
needs to divide the full norm operator byA in order to obtain
a projection operator.

APPENDIX C: A BOUND FOR THE
SPECTROSCOPIC FACTOR

In this appendix, we show thatSn can be written as the
product of two factors, which express antisymmetry and
namic distortion effects, respectively. When recoil a
center-of-mass corrections are neglected, both factors ha
06580
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be less than or equal to 1, yielding an upper limit of 1 for t
spectroscopic factor.

We start by defining a normalized spectroscopic am
tude f̃n(r)5fn(r)/ASn and expressASn as follows:

ASn5E drf̃n* ~r!fn~r!5^A@f̃nCA21
n #ucA&. ~C1!

Next, we introduce a projection operator

Pn[
uA@f̃nCA21

n #&^A@f̃nCA21
n #u

Nn
, ~C2!

where Nn5^A@f̃nCA21
n #uA@f̃nCA21

n #&. An arbitrary state
ucA& can then be broken into two orthogonal parts:

ucA&5PnucA&1~12Pn!ucA&[ucA
i ,n&1ucA

',n&, ~C3!

where ucA
i ,n& and ucA

',n& are the components ofucA& which
are parallel and orthogonal, respectively, to the st
uA@f̃nCA21

n #&. We can then write the spectroscopic factor

Sn5Nn^cA
i ,nucA

i ,n&5Nn~^cAucA&2^cA
',nucA

',n&!. ~C4!

The expression in brackets is less than or equal to one s
^cAucA&51 and botĥ cA

i ,nucA
i ,n& and ^cA

',nucA
',n& are posi-

tive semidefinite. When the (A21)-body system is com-
pletely described by the wave functionCA21

n , i.e. when
there are no distortions due to the potential of theAth
nucleon, ^cA

',nucA
',n& vanishes and^cA

i ,nucA
i ,n&51. Thus

^cA
i ,nucA

i ,n&, and thereforeSn , provides a measure of the dy
namic distortions induced by the presence of the extra p
ticle.

Since the factorNn can be expressed as

Nn512 (
m51

` S E drfm
A21,n* ~r!f̃n~r! D 2

, ~C5!

where the sum is explicitly non-negative and less than
equal to one, it is also restricted,Nn<1. Nn carries the effect
of the antisymmetrization and equals one only whenfn(r) is
orthogonal tofm

A21,n(r) for all m.
From the above considerations it follows thatSn<1. If

antisymmetry was neglected, the spectroscopic factor co
be as large asA, since the sum rule given in Eq.~A21! would
be the only restriction onSn . When center-of-mass correc
tions are incorporated, Eq.~C4! still holds, but Eq.~C5! has
to be modified andNn can become larger than one. Th
influence of center-of-mass corrections is discussed in
next Appendix.

APPENDIX D: CENTER-OF-MASS CORRECTIONS AND
INTRINSIC SPECTROSCOPIC AMPLITUDES

When dealing with the center-of-mass problem it is use
to introduce the Jacobi coordinatesrj5Rj2r j 11, whereRj
is the center-of-mass coordinate of thej-body system defined
by particles 1 throughj. Taking into account the center-of
1-12
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mass motion, theA and (A21)-body wave functions are
written as

cA~r1 , . . . ,rA!5
exp@ ikA•RA#

AV cA
I ~r1 , . . . ,rA21!

~D1!

and

Cn,kA21~r1 , . . . ,rA21!

5
exp@ ikA21•RA21#

AV C I
n~r1 , . . . ,rA22!,

~D2!

respectively. HerekA and kA21 are the center-of-mass mo
menta of theA and (A21)-body systems, respectively. W
have used box normalization with volumeV. The spectro-
scopic amplitude is written as

fn,kA21
~r !5AAE )

i 51

A

dr id~r2rA!Cn,kA21* ~r1 , . . . ,rA21!

3cA~r1 , . . . ,rA!

5
exp@ i r•~kA2kA21!#

AV
AA

3E )
i 51

A21

dri

expF i rA21•S A21

A
kA2kA21D G

AV
~D3!

3C I
n* ~r1 , . . . ,rA22!cA

I ~r1 , . . . ,rA21!
~D4!

5
exp@ i r•~kA2kA21!#

AV f̃n
I S A21

A
kA2kA21D .

~D5!

This equation is unexpected and requires some comme
Formally it is correct: the spatial dependence of the spec
scopic amplitude is given by a plane wave and the spec
scopic factor isuf̃n

I (@(A21)/A#kA2kA21)u2. Sincef̃n(k) is
on the order of 1/AV, it is small and the condition that th
spectroscopic factor must be less then or equal to on
easily satisfied. The plane wave behavior of the spec
scopic amplitude arises from translational invariance. T
combination (@(A21)/A#kA2kA21) is Galilean invariant.
By taking both the (A21)-body and theA-body systems to
be in states of good momentum we have forced theAth
particle to also be in a state of good momentum;f̃n

I (k) is
then the probability amplitude for finding theAth particle
with relative momentumk when the (A21)-body system is
in staten. Its Fourier transform, which we identify as th
intrinsic spectroscopic amplitude, is given by@compare Eq.
~A16!#
06580
ts.
o-
o-

is
o-
e

fn
I ~r!5E dkA21

exp@ i r•kA21#

AV f̃n
I ~kA21!

5E dkA21fn,kA21
~r!ukA50 ~D6!

5AAE )
i 51

A21

drid~r2rA21!

3C I
n* ~r1, . . . ,rA22!cA

I ~r1 , . . . ,rA21!. ~D7!

In analogy withf̃n
I (k), fn

I (r) is the probability amplitude
for finding theAth particle at the distancer from the center
of mass of the (A21)-body system when that system is
the staten. The intrinsicA-body wave function can be writ
ten in terms of the intrinsic spectroscopic amplitudes
@compare Eq.~2.1!#

cA
I ~r1 , . . . ,rA21!5

1

AA
(
n51

`

fn
I ~rA21!C I

n~r1 , . . . ,rA22!.

~D8!

As we show in the next paragraph, the intrinsic spectrosco
amplitude is also the quantity that is needed to calcu
physical observables.

We now write the transition matrix element, Eq.~4.2!, in
terms of the intrinsic spectroscopic amplitude as follows:

^cAu(
i 51

A

exp@2 ik•r i #ucA
K&

5 (
n,kA21

` E drfn,kA21
* ~r!exp@2 ik•r#fn,kA21

K ~r!

~D9!

5 (
n51

` E drfn
I* ~r!exp@2 ik•r~A21!/A#fn

KI~r!

3d~kK1k2kA!, ~D10!

where the transition operator has been taken to be a p
wave as is appropriate for radiative capture and the spin
isospin dependencies have been suppressed for simpl
The functionsfn

KI(r) andfn
I (r) are intrinsic spectroscopic

amplitudes for the scattering and bound states, respectiv
The delta function ensures overall momentum conservat
The (A21)/A factor in the exponential takes care of th
laboratory to center-of-mass transformation.

The equations of motion for the intrinsic spectroscop
amplitudes are easily derived by substituting Eq.~D5! in Eq.
~B9!. This gives
1-13
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~EA
B2EA21

n !fn
I ~r!52

¹r
2

2m
fn

I ~r!1 (
n851

`

(
n851

`

3E dr8rnn8~r8!V~ ur82ru!fn8
I

~r!,

~D11!

wherem is the reduced mass and

rnn8~r!5S A21

A22D 3

fm
In* @r~A21!/~A22!#

3fm
In8@r~A21!/~A22!# ~D12!

is the transition density for the (A21)-body system. The
(A21)/(A22) factors originate in the conversion from th
RA222rA21 coordinate to theRA212rA21 coordinate. The
diagonal transition density is the usual density and is norm
ized toA21.

The remaining quantity to consider is the norm opera
N̂. This is most easily done starting with Eq.~B12!. We
e
.

e,

06580
l-

r,

obtain the following expression for the kernelN(n,r,n8,r8):

N~n,r,n8,r8!5dnn8d~r2r8!2S ~A21!2

A~A22! D
3

3 (
m51

`

f̃m
n* F ~A21!2

A~A22! S r81
r

~A21! D G
3f̃m

n8F ~A21!2

A~A22! S r1
r8

~A21! D G . ~D13!

In contrast to the situation where the center-of-mass cor
tions are neglected, the amplitudes in the sum given h
depend on both coordinates. Consequently, the intrinsic s
troscopic factorsSn

I 5*drufn
I (r)u2 no longer have to be les

than 1. This is illustrated in Ref.@15# for the harmonic oscil-
lator model. The completeness relation for the particle a
hole states, Eq.~B13!, is also modified, since this last equ
tion must be used instead of Eq.~B12!. The spectroscopic
amplitudes corresponding to the particle states are just
placed by their intrinsic counterparts.
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