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Determination of pN scattering lengths from pionic hydrogen and pionic deuterium data

A. Deloff
Soltan Institute for Nuclear Studies, Hoza 69, PL-00-681 Warsaw, Poland

~Received 24 April 2001; published 21 November 2001!

The pN s-wave scattering lengths have been inferred from a joint analysis of the pionic hydrogen and the
pionic deuterium x-ray data using a nonrelativistic approach in which thepN interaction is simulated by a
short-ranged potential. This potential is assumed to be isospin invariant and its range, the same for isospinI
53/2 andI 51/2, is regarded as a free parameter. The proposed model admits an exact solution of the pionic
hydrogen bound state problem, i.e., thepN scattering lengths can be expressed analytically in terms of the
range parameter and the shift (e) and width (G) of the 1s level of the pionic hydrogen. We demonstrate that
for small shifts and short ranges from the exact expression, one retrieves the standard range independent
Deser-Trueman formula. Thepd scattering length has been calculated exactly by solving the Faddeev equa-
tions and also by using a static approximation. It has been shown that the same very accurate static formula for
pd scattering length can be derived~i! from a set of boundary conditions;~ii ! by a reduction of Faddeev
equations; and~iii ! through a summation of Feynman diagrams. By imposing the requirement that thepd
scattering length, resulting from the Faddeev-type calculation, be in agreement with pionic deuterium data, we
obtain bounds on thepN scattering lengths. The dominant source of uncertainty in the deduced values of the
pN scattering lengths are the experimental errors in the pionic hydrogen data.

DOI: 10.1103/PhysRevC.64.065205 PACS number~s!: 11.80.Jy, 13.75.Gx, 25.80.Dj, 25.80.Hp
pe
r-
u
to
a

de

h-
e

e
s
ea

nd
ng
e

en

iti
e

ta
ry
in
Th

e
t
.
a

ial

nd
ing
eby
e is
gely
t is
po-
is
vel-
a-
one

se

cat-
eu-

d it
-

by

e

nd-
, a
nly
i-
are
is
d
o-
I. INTRODUCTION

The determination of low-energy pion-nucleon (pN) pa-
rameters has been the focus of much theoretical and ex
mental efforts. Thes-wavepN scattering lengths are of pa
ticular importance serving as testing ground for vario
theoretical considerations. In addition to that, their isovec
combination provides input in the Goldberger-Miyazaw
Oehme@1# sum rule to be used to extract thepNN coupling
constant. In recent years major advances have been ma
the experimental and theoretical investigation of thepN sys-
tem. With the advent of meson factories~LAMPF, PSI, and
TRIUMF! and the corresponding influx of the new hig
accuracypN scattering data, considerable progress has b
achieved in thepN phase shift analyses@2–4#, providing the
means to examine even such subtleties as isospin symm
breaking effects@3,5,6#. Recently,pN scattering experiment
have been complemented by high quality pionic x-ray m
surements performed both on pionic hydrogen@7,8# and on
pionic deuterium@9#. The measurements of the shifts a
widths in the 1s levels in these atomic systems, resulti
from strongpN interaction, allows us to extract directly th
corresponding scattering lengths, i.e.,app andapd , respec-
tively. Therefore, the new x-ray data constitute an indep
dent source of information on the low-energypN scattering
parameters. On the theoretical side, the physical quant
bearing on the low-energypN interaction have now becom
accessible to calculations@10# conducted within quantum
chromodynamics~QCD!. Since QCD is known to be highly
nonperturbative at low energies, its low-energy implemen
tion has been based instead on a chiral perturbation theo
which the effective Lagrangian is expanded in increas
powers of derivatives in meson fields and quark masses.
approach in practice involves a Taylor expansion in the m
son four-momenta and therefore it may be expected that
lower the energy, the more accurate are the predictions
this context, the precise knowledge of the experimental v
0556-2813/2001/64~6!/065205~17!/$20.00 64 0652
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ues of the low-energypN scattering parameters is essent
for further development of the theory.

The purpose of this work is to extract thes-wave pN
scattering lengths using exclusively the pionic hydrogen a
pionic deuterium x-ray data. The key reason for proceed
along this route is that the low-energy regime can be ther
investigated without recourse to scattering data and ther
no danger that the low-energy parameters have been lar
determined by the data at high energies. Our treatmen
purely phenomenological based on an isospin invariant
tential model and we wish to clarify at the onset that th
approach relinquishes any pretense of being a theory de
oped from first principles in favor of a practicable calcul
tional scheme. The investigation has two parts. In part
we take as our input the values of thepN scattering lengths
determined previously from pionic hydrogen data and u
them in a microscopic calculation of thepd scattering
length. The latter has not been measured directly in a s
tering experiment but may be extracted from the pionic d
terium x-ray data by applying the formula of Deseret al.and
Trueman@11#. It is an empirical fact that thepN scattering
lengths are small as compared with the deuteron size an
has been a common practice@12# to use the multiple scatter
ing expansion for calculating thepd scattering length. Since
this series rapidly converges, what has been confirmed
early Faddeev calculations@13–15# in the past with the
poorly knownpd scattering length, there was little incentiv
to go beyond the second order~for a review, cf. Refs.@16–
18#!. At present, the experimental error for thepd scattering
length is at the level of 2% and the adequacy of the seco
order formula might be questionated. Strictly speaking
truncation of the multiple scattering series can really o
show its justification when we actually quantify the magn
tude of the higher-order terms to establish whether they
truly negligible. This question is examined in detail in th
paper and thepd zero-energy scattering problem is solve
exactly within a three-body formalism by introducing a zer
©2001 The American Physical Society05-1
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A. DELOFF PHYSICAL REVIEW C 64 065205
range model to simulate thepN s-wave interaction. One
advantageous feature of this model is that it allows us
obtain an analytic solution of the three-body problem in
static approximation. We demonstrate that the static solu
can be obtained by reduction of the Faddeev equations
imposing a suitable set of boundary conditions, or finally
performing a summation of Feynman diagrams. All thr
methods converge to the same analytic formula expres
the pd scattering length in terms of thepN scattering
lengths. Static solution in coordinate space is very appea
and helps us to develop an intuitive picture of how the in
vidual pN amplitudes contribute to build up thepd scatter-
ing length. By solving numerically the Faddeev equations
show that the accuracy of the static approximation is com
rable with the present experimental uncertainty onapd . In
order to find out what the pionic deuterium data can teach
about thepN scattering lengths, thepd scattering lengths
obtained as a solution of the Faddeev equations is comp
with experiment. It turns out that the three-body calculat
is in agreement with experiment only when the inputpN
scattering lengths belong to a relatively small subset of v
ues that are consistent with pionic hydrogen data. ThepN
scattering lengths that belong to this subset simultaneo
satisfy the constraints imposed by the pionic hydrogen
pionic deuterium data.

In part two of the present work we introduce explicitly
range parameter in order to examine the validity of the ze
range model. To achieve this goal it is essential to devis
simple and transparent representation of thepN interaction
in which the two-body scattering problem with and witho
Coulomb interaction admits an analytic solution and
show that a two-channel isospin invariant separable pote
lends itself to that end. Moreover, within this representat
the exact bound state condition appropriate for the pio
hydrogen problem takes also an analytic form. The la
being a single complex constraint, is equivalent to two r
equations that can be explicitly solved and as a result thepN
scattering lengths are obtained as functions of the range
rameter together with the 1s level shift and width in the
pionic hydrogen. In particular, when the level shift is sm
as compared with the Coulomb energy and the range of
interaction is small in comparison with the Bohr radius, fro
the exact bound state condition we retrieve the formula
Deseret al. and Trueman~independent of the range param
eter!. Regarding the range as a free parameter we are ab
extend the zero-range model and by varying this param
in physically reasonable limits we find the results to be
sensitive to the value of the range. The uncertainty on
pN scattering length caused by the lack of knowledge of
range is much smaller than that resulting from the exp
mental errors on the pionic hydrogen level shift and widt

The organization of this paper is as follows. In Sec. II w
develop a zero-range model and review various derivati
leading to the static solution of thepd scattering problem.
The accuracy of the static solution is examined by compa
it with the solution of the Faddeev equations. We infer is
scalar and isovectorpN scattering lengths that are consiste
with both pionic hydrogen and pionic deuterium data. In S
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III we lift the zero-range limitation by introducing a finite
range into our formalism. We present an exact treatmen
the pionic hydrogen and we derive the formula of Des
et al.and Trueman for that particular case. Thepd scattering
length obtained from the solution of the Faddeev equatio
compared with experiment. Finally, the results are summ
rized in Sec. IV.

II. ZERO-RANGE MODEL

The central issue we wish to address in this section is h
to construct a theoretical framework in which we can use
pionic deuterium data to gain information on thepN scatter-
ing lengths. The measurement of the shift and the width
the 1s level in pionic deuterium presents us with the value
pd scattering lengthapd . The latter quantity is defined a
the elasticpd scattering amplitude evaluated at zero kine
energy of the incident pion. This amplitude is necessa
complex because absorption reaction channels are open
at the very threshold. The most important of them is t
p2d→nn reaction, and to a lesser extent the radiative
sorption p2d→gnn channel. In principle, there would b
also the charge-exchange breakup channelp2d→p0nn that
is open at threshold but this process is strongly suppres
by the centrifugal barrier. Indeed, withs-wave pN interac-
tion there is no spin flip possible so that for the two neutro
the 1S0 state is not available, whereas the3S1 state is for-
bidden and they have to be produced in higher partial wav
On the whole, however, the absorptive effects are not larg
threshold, judging from the magnitude of the imaginary p
of the pd scattering length, which empirically constitute
only about a quarter of the real part ofapd . Strictly speak-
ing, the absorptive processes contribute to both the real
the imaginary part ofapd but in the following we are going
to ignore the absorptive corrections to the real part ofapd .
Disregarding the absorptive processes, we shall concen
our attention on a microscopic calculation ofapd and in
order to be able to solve the ensuing three-body problem
introduce a potential description of thepN interaction to be
used in the appropriate Faddeev equations.

In order to facilitate the discussion of the Faddeev a
proach, it is instructive to take the static model as our po
of departure. The attractive feature of the static model is t
it is much easier to develop and to compute since the fi
result for pion-deuteron scattering length takes the form o
single analytic formula that does not require off-shell info
mation. Moreover, in our case the latter model also happ
to be extremely good approximation to the full solution
the three-body problem. The earliest version of a sta
model, due to Brueckner@19#, was based on the fixed sca
terer concept and ignored all isospin complications. Here,
wish to make it somewhat more realistic introducing as o
dynamical framework a set of appropriate boundary con
tions, but on the other hand, we are prepared to be con
with a theory that has isospin-invariant pointlike interaction
Labeling the pion as 1 and the nucleons as 2 and 3,
boundary conditions representing the zero-rangep-N inter-
action taking place on nucleoni, wherei 52,3, may be writ-
ten as
5-2
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DETERMINATION OF pN SCATTERING LENGTHS FROM . . . PHYSICAL REVIEW C 64 065205
lim
x1→xi

ux12xi uC~x1 ,x2 ,x3!

5~m/m!~b01b1I•ti ! lim
x1→xi

d

dx1
ux12xi uC~x1 ,x2 ,x3!,

~1!

where the overbar denotes an average over directionx1
2xi , which is equivalent to projecting out thes-wave com-
ponent of the wave functionC, and the boundary condition
~1! is to be imposed for each of the two nucleons. The v
tors I and t are, respectively, the pion and the nucleon is
spin operators, whereasb0 and b1 denote the isoscalar an
isovector p-N scattering lengths,m is the p-N reduced
mass, andm is the pion mass. In the following we choose t
center of mass~c.m.! of the two nucleons as the origin of th
coordinate system, i.e., we setx25 1

2 r and x352 1
2 r with r

being the nucleon-nucleon separation vector. The pion ve
in this Jacobi coordinate system will be denoted asr. When
the wave functionC(r,r) describing thepNN system for
the case ofp2 scattered off the deuteron is known, the a
plitude leading to the final state with asymptotic wave fun
tion F f is 2^F f uVuC&, whereV denotes the potentials tha
have been taken out in the derivation ofF f . For elastic
scatteringF f(r,r)5exp(ı p8•r)cd(r) where p8 is the mo-
mentum of the outgoing pion,cd is the deuteron wave func
tion, andV is the sum of the twopN potentials as asymp
totically there is nop-deuteron interaction. Although in ou
formalism we never neededpN potentials and thepN inter-
action is represented by the boundary condition~1!, it is in
fact possible to give a formal expression for such poten
~cf. Ref. @20#! and for the operatorV we take

VC~r,r!52
2p

m H ~b01b1I•t2!d~r2 1
2 r!

d

dr
ur2 1

2 ru

1~b01b1I•t3!d~r1 1
2 r!

d

dr
ur1 1

2 ruJ C~r,r!.

~2!

Denoting the incident pion momentum asp and making use
of the boundary conditions~1! in Eq. ~2!, the p-d elastic
scattering amplitudef (p8,p) takes the form

f ~p8,p!5
n

mE e2ı p8•rcd
†~r!$d~r2 1

2 r!ur2 1
2 ru

1d~r1 1
2 r!ur1 1

2 ru%C~r,r!d3r d3r , ~3!

wheren is p-d reduced mass. Given the elasticp-d scatter-
ing amplitude~3!, the p-d scattering length follows imme
diately from

apd5 f ~0,0!. ~4!

With thep-N interaction assumed to be isospin invaria
it will be convenient for us to adopt an isospin notation. F
the initial p2-d system, the isotopic spin wave function h
the form
06520
-
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-
-
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,
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xa5p2
1

A2
~p2n32n2p3!, ~5!

where the symbolsp,n,p2 in Eq. ~5! stand for the isospin
wave functions of the corresponding particles. The wa
function ~5! is antisymmetric in the nucleon labels, as app
priate for the state where the isospin of the two-nucleon s
systemI 23 equals zero. As a result of the interaction, the tw
nucleons can undergo a transition to a symmetric configu
tion corresponding toI 2351 and we shall need also a func
tion that is symmetric under two-nucleon permutation

xs5
1

2
p2~p2n31n2p3!2

1

A2
p0n2n3 . ~6!

Since our interest here is confined tos-wave interactions, no
spin flip is possible and therefore the spin part of the wa
function does not change. Regarding the nucleons as fi
scattering centers, we may anticipate that the wave func
C(r,r) for the full system of the target nucleons and t
meson will take the approximate form

C~r,r!5eıp•rud~r !xa

1A~r!Fexp~ ıpur2 1
2 ru!

ur2 1
2 ru

1
exp~ ıpur1 1

2 ru!

ur1 1
2 ru

Gxa

1X~r!Fexp~ ıpur2 1
2 ru!

ur2 1
2 ru

2
exp~ ıpur1 1

2 ru!

ur1 1
2 ru

Gxs ,

~7!

whereud is the spatial part of deuteron wave function th
includes also the deuteron spin and in particular may con
also theD component. The projectile enters with momentu
p and in the initial asymptotic region the pion and the targ
have separate wave functions@a plane wave andud(r ), re-
spectively# and the propagation from one scattering cente
another is described by a superposition of spherical wa
The hitherto unknown amplitudes denoted in Eq.~7!, respec-
tively, as A(r) and X(r) multiplying these outgoing wave
emitted by the two centers account for the multiple scatter
phenomena. They will be determined from the bound
conditions~1!. To satisfy the Pauli principle the wave func
tion ~7! must be antisymmetric in the two nucleon variable
This implies that we have to stipulate that the coefficie
A(r) andX(r) are even under permutation of the nucleon
i.e., they must be invariant under the reflectionsr→2r. For
zero-energy scattering considered in this work, however,
is always the case becauseA(r ) andX(r ) depend then only
upon the magnitude ofr. It is worth noting that the wave
function ~7! includes explicitly virtual charge exchange am
plitude X(r ). Since our interest here is confined to zer
energy scattering, in the following we takep50 in Eq. ~7!.
Equations for the functionsA(r ) andX(r ) may be obtained
by substituting Eq.~7! in Eq. ~1! for i 52 and equating the
coefficients multiplying the same isospin functions. With tw
different isospin functions we obtain two equations, and t
5-3
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A. DELOFF PHYSICAL REVIEW C 64 065205
procedure determinesA(r ) andX(r ) uniquely. Owing to the
proper antisymmetrization of our wave function the boun
ary condition for i 53 will be then automatically satisfied
The equations obtained from Eq.~1! are

A~r !5b̃0ud~r !1~ b̃0 /r !A~r !1A2~ b̃1 /r !X~r !, ~8a!

2X~r !5A2b̃1ud~r !1A2~ b̃1 /r !A~r !1~ b̃01b̃1!/rX~r !.
~8b!

In Eq. ~8! we introduced the abbreviationb̃ j5(1
1m/M )bj , whereM is the nucleon mass. Thep-d scatter-
ing length is given by the overlap integral

apd5~2n/m!E ud~r !†A~r !d3r , ~9!

whereA(r ) is the solution of Eq.~8!

A~r !5
b̃01~ b̃01b̃1!~ b̃022b̃1!/r

12b̃1 /r 2~ b̃01b̃1!~ b̃022b̃1!/r 2
ud~r !. ~10!

Using Eq.~10! in Eq. ~9! and expandingA(r ) in powers of
the pN scattering lengths, we retrieve the well-know
06520
-
second-order formula for thep-d scattering length~cf. Ref.
@18#!

apd
(2)5

2n

m F b̃01~ b̃0
222b̃1

2!K 1

r L G , ~11!

where the expectation value is taken with respect to the d
teron wave function. As advertised at the beginning of t
section, formula~10! provides a complete solution of th
problem. To examine the accuracy of the static formula
have to compare it with the exact solution of the three-bo
problem. The latter will be obtained by solving the Fadde
equations on which we now embark.

To solve the Faddeev equations it will be convenient
us to work in momentum space. Introducing the Fadde
partitions, we write the three-body wave function as

C5c (1)~q1 ,k1!1c (2)~q2 ,k2!1c (3)~q3 ,k3!, ~12!

where q1 denotes the relative momentum of the~2,3! pair
whereask1 is the c.m. momentum of particle 1 and cycl
permutations are implied. To obtain Faddeev equations
the amplitudes, the different partitions are written as~cf. Ref.
@13#!
m the

rite the
c (1)~q,k!5~2p!3f~q!d~k2p!xa1@F~q,k!xa1G~q,k!xs#/~E2q2/M2k2/2n!, ~13a!

c (2)~q,k!5@A~2q,k!xa2X~2q,k!xs#/~E2q2/2m2k2/2nN!, ~13b!

c (3)~q,k!5@A~q,k!xa1X~q,k!xs#/~E2q2/2m2k2/2nN!, ~13c!

wherenN is the reduced mass of the nucleon and that of thepN pair, E is the c.m. three-particle kinetic energy, andf(q) is
the deuteron wave function in the momentum space. In Eq.~13! we have introduced four scattering amplitudesF(q,k),
G(q,k), A(q,k), andX(q,k). However, the amplitudeG(q,k) to be nonzero requires at least ap-waveNN interaction, and
therefore it will be excluded from our considerations, while the three remaining amplitudes will be determined fro
Faddeev equations. It is evident from Eq.~13! that under theP23 permutationc (1)→2c (1) andc (2)↔2c (3), so that the total
wave function is, as required, antisymmetric in the nucleon labels. Assuming exact isospin conservation, we can w
Faddeev equations

F~q,k!5E d3k8

~2p!3

^qut~E2k2/2n!u 1
2 k1k8&1^qut~E2k2/2n!u2 1

2 k2k8&

E2~k1mk8/M !2/2m2k82/2nN

AS k1k8
m

M
,k8D , ~14a!

A~q,k!5 K qUt0S E2
k2

2nN
D Um

M
k1pL f~k1 1

2 p!1E d3k8

~2p!3

^qut0~E2k2/2nN!umk/M1k8&

E2~k1 1
2 k8!2/M2k82/2n

F~2k2 1
2 k8,k8!

1E d3k8

~2p!3

^qut0~E2k2/2nN!u2mk/m2k8&

E2~k1mk8/m!2/2m2k82/2nN

AS 2k2
m

m
k8,k8D

1A2E d3k8

~2p!3

^qut1~E2k2/2nN!u2mk/m2k8&

E2~k1mk8/m!2/2m2k82/2nN

XS 2k2
m

m
k8,k8D , ~14b!
5-4
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2X~k,k!5A2K kUt1S E2
k2

2nN
D Um

M
k1pL f~k1 1

2 p!1A2E d3k8

~2p!3

^kut1~E2k2/2nN!umk/M1k8&

E2~k1 1
2 k8!2/M2k82/2n

F~2k2 1
2 k8,k8!

1E d3k8

~2p!3

^ku@ t0~E2k2/2nN!2t1~E2k2/2nN!#u2mk/m2k8&

E2~k1mk8/m!2/2m2k82/2nN

XS 2k2
m

m
k8,k8D

1A2E d3k8

~2p!3

^kut1~E2k2/2nN!u2mk/m2k8&

E2~k1mk8/m!2/2m2k82/2nN

AS 2k2
m

m
k8,k8D , ~14c!
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where in Eq.~14! ^q8ut(E)uq& is theNN scatteringt matrix
for zero isospin and̂q8ut j (E)uq& are, respectively, the iso
scalar (j 50) and isovector (j 51) pN scatteringt matrices.
The elastic scattering amplitude is given by the expressi

f ~p8,p!5 lim
p8→p

p822p2

4p E f~q!†
F~q,p8!

E2q2/M2p82/2n

d3q

~2p!3

~15!

and the scattering length is obtained from Eq.~4!. We can
use Eq.~14a! to eliminateF(q,k) in Eq. ~15! in favor of the
amplitudeA(q,k). In theNN scattering matrices occurring i
Eq. ~14!, as a result of the limiting procedure, only the de
teron pole contributes and scattering length is given as
overlap integral:

apd52
n

pE f~k!†AS k
m

M
,kD d3k

~2p!3
. ~16!

The above formula is analogous to Eq.~9!, and, in fact, the
static approximation results~9! and ~10! could have been
derived from the Faddeev formalism. In order to demonstr
that Eqs.~9! and ~10! follow from Eq. ~14! we note that
when the nucleons are static they are not supposed to sc
(t→0), and the amplitudeF(q,k) drops out in Eqs.~14b!
and ~14c! so that we are left with only two coupled integr
equations. When the underlying forces are of zero range
off-shell pN scattering amplitudes can be simplified, and
that case

^q8ut j~E!uq&52~2p/m!bj /~11kbj !, j 50,1,

wherek252mB andB is the binding energy of the deutero
The important consequence of the zero-range assump
apparent from the above formula, is that thet matrices be-
come independent of the off-shell momenta. Therefore,
amplitudesA(q,k) andX(q,k) will be functions of one vari-
able only and it will be convenient for us to introduce
notation that emphasizes that fact, settingA(q,k)
52(m/2p)A(k) andX(q,k)52(m/2p)X(k), whereA(k)
andX(k) are two, hitherto unknown amplitudes. With sta
nucleons, the energy denominators in Eqs.~14b! and ~14c!
become all equal to2B2(k81k)2/2m and we end up with
the following set of integral equations for the amplitud
A(k) andX(k):
06520
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te

tter
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e

A~k!5b̂0f~k!14pb̂0E d3k8

~2p!3

A~k8!

k21~k81k!2

1A24pb̂1E d3k8

~2p!3

X~k8!

k21~k81k!2
, ~17a!

2X~k!5A2b̂1f~k!14p~ b̂02b̂1!E d3k8

~2p!3

X~k8!

k21~k81k!2

1A2 4pb̂1E d3k8

~2p!3

A~k8!

k21~k81k!2
, ~17b!

where

b̂ j5bj~11m/M !/~11kbj !, j 50,1. ~18!

The above set of integral equations can be immedia
solved by introducing the Fourier transform

A~r !5E eık•rA~k!d3k ~19!

together with a similar relationship forX(k) and f(k) and
using the well-known formula

4p

k21~k1k8!2
5E e2ı(k1k8)•r

e2kr

r
d3r .

In order to solve Eq.~17! we multiply the latter equations by
eık•r and subsequently integrate them overk. As a result, we
obtain a set of two algebraic equations forA(r ) and X(r )
that differ from Eq.~8! only by exp(2kr)/r, replacing 1/r
and b̂ j replacingb̃ j . Since Eq.~16! goes over into Eq.~9!,
we are led to the extension of the static formula~10!

A~r !5
b̂01~ b̂01b̂1!~ b̂022b̂1!e2kr /r

12b̂1e2kr /r 2~ b̂01b̂1!~ b̂022b̂1!e22kr /r 2
ud~r !.

~20!

This formula is to be used in Eq.~9! but now accounts for
the binding energy correction.

Concluding our discussion of the static model we wish
recall that a closed form expression forpd scattering length
has been also obtained by effecting an explicit summation
5-5
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A. DELOFF PHYSICAL REVIEW C 64 065205
Feynman diagrams and the most complete treatment ca
found in Ref. @21#. The ultimate static formula forapd ,
which takes into account isospin degree of freedom, give
@21# is rather complicated and at first sight appears to
different from Eq.~20!. However, a closer inspection revea
that the authors of Ref.@21# apparently did not realize tha
their fractional formula forapd could have been significantl
simplified because a common factor equal to

11b̃1e2kr /r 2~ b̃01b̃1!~ b̃022b̃1!e22kr /r 2

may be pulled out both from the numerator and from
denominator and eventually drops out. Indeed, when the
dundant factor has been canceled, the resulting expressi
identical with Eq.~20!. Therefore, when binding correction
are disregarded, this approach reproduces the static m
result~10! and it is reassuring that in this case all three me
ods give the same answer.

To improve upon the static model one needs a numer
solution of the Faddeev equations and in the following, sim
larly as in the previous calculations@13–15#, in order to re-
duce the computational effort, all the pairwise interactio
invoked will be represented by rank-one separable potent
ThepN s-wave interaction is taken in the form of a standa
Yamaguchi potential with the same form factor in both is
spin states. Since the inverse range parameterb that enters
that form factor is not known, similarly as before, we co
sider the zero-range limit, i.e.,b→`. For an assigned valu
of b, the strength parameter of the potential may be eli
nated in favor of the scattering length, and the appropr
s-wave t matrices are

^kut j~E!uk8&

52
2p

m

1

11k2/b2

3
bj

12ıpbj~122ıp/b!~12ıp/b!22

1

11k82/b2
, ~21!

wherep5A2mE and j 50,1 and it is evident from Eq.~21!
that the zero-range limit can be effected. When the nucl
motion is taken into account, thep-wave pN interaction
gives contribution to thepd scattering amplitude even a
threshold. Therefore, in addition to thes wave, we are going
to include also thep-wave interaction, limiting ourselve
only to theP33 wave as in that case both the strength and
statistical weight are dominant, rendering the remainingp
waves negligible. The correspondingp-wave form factor of
the form

gD~k!5k/~k21bD
2 !

has been adopted from Ref.@14# with bD55.33 fm21,
where the depth of the separable potential can be adjuste
the experimentally known value of theP33 scattering vol-
ume taken to be 0.64 fm3. It is well known that with the
above form, the shape of the delta resonance cannot be
reproduced but this is less important here, the essential
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ture is to have theP33 amplitude at threshold correctly re
produced. Besides, thep-wave constitutes only a small cor
rection and using a more complicated model does not s
to be currently justified. For theNN interaction we use two
separable models: a simple Hulthen-Yamaguchi poten
with inverse range parameter equalbN56.01162AMB
whose strength is fixed by the deuteron binding energy,
the potential constructed in Ref.@22# ~which will be referred
to as the PEST potential! with a more sophisticated form
factor of the form

g~k!5(
i 51

6
Ci

k21b i
2

, ~22!

where the parametersCi andb i have been tabulated in Re
@22#. This potential has been devised in such a way that
correspondingNN half-off-shell T matrix has the same be
havior as that of the Paris potential@23#. This separable rep
lica of the Paris potential takes into account the short-ra
repulsion that is absent in the Yamaguchi potential yet reta
the simplicity of the latter.

Using standard partial wave projections, the Fadde
equations~14! can be reduced to a system of four coupl
inhomogeneous integral equations in a single variable
are amenable for numerical treatment. In the actual prac
in order to cross-check our numerical procedures, we u
two independent methods of solving these equations.
direct method introduces an integration mesh that allows
to replace integrals by sums so that the integral equat
take the form of a system of linear algebraic equations ea
solvable by standard methods. The second method solve
system of integral equations by successive iterations.
iterative procedure is equivalent to a power expansion inpN
scattering lengths, which allows tracing down the contrib
tion from the different orders. Since the scattering lengths
rather small, as compared with the deuteron size, the itera
sequence proves to be rapidly convergent.

It has been a common practice to extract the experime
p-d scattering length form the 1s level shift in pionic deu-
terium by using the formula of Deseret al. and Trueman
@11#. Therefore, the extracted quantity is in fact the Coulom
corrected scattering length, denoted hereafter asapd

c , but for
confronting the calculated pion-deuteron scattering len
with experiment one needs the value ofapd , i.e., of the
purely nuclear scattering length. Of course, the Coulomb c
rection could be anticipated to be very small but since
experimental errors are also small, it is of interest to g
some quantitative estimate of the Coulomb correction.
calculating properly the latter quantity one needs to know
pion-deuteron nuclear potentialVpd responsible for the leve
shift. This potential is not known but with the zero-rang
potential simulating thepN interaction in the first approxi-
mation it is reasonable to expect that the effective potentia
proportional to the nuclear densityrd(r ), and we choose to
parametrize it in the following form:

2mpdVpd~r !52ā~11mp /mN!2 rd~r !, ~23!

wherer is p2-d separation,mpd is the reduced mass of th
p2-d system,mN5938.9 MeV denotes the nucleon mas
5-6
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DETERMINATION OF pN SCATTERING LENGTHS FROM . . . PHYSICAL REVIEW C 64 065205
and the nuclear density is obtained from the deuteron w
function rd(r );ud(2r )2 @the normalization is adopted suc
thatrd(r )r 2 integrated from zero to infinity is equal to one#.
The complex parameterā of the dimension of length repre
sents the strength of the potential. The potential~23! linear in
rd(r ) is slightly different from the traditional pion-nucleu
potential in that the imaginary part of the latter is propo
tional to the square of the nuclear density. However, in
case the results turned out to be insensitive to the choic
the shape of the absorptive part ofVpd and we gave prefer
ence to the simple form~23!. The values of the 1s level shift
(ed) and width (Gd) measured in the pionic deuterium e
periment @9# are ed522.46060.048 eV andGd51.194
60.105 eV.~We wish to note thated has been defined in
such a way that a repulsive potential yields a negative s
and therefore oured has opposite sign than that in Ref.@9#.!
Given (ed ,Gd) values, we can try using a perturbative a
proach to obtain the first crude estimate ofā, and taking the
central values of (ed ,Gd) and the Hulthen wave function, w
get ā'(21.6371ı0.397)31022 fm. Since the total energy

in the pionic deuterium is known asE5ECoul2(ed1ı 1
2 Gd),

whereECoul is the Coulomb energy of the 1s level, and using
Eq. ~23! in the appropriate Schro¨dinger equation involving
Coulomb and strong interactions, we arrive at a comp
eigenvalue problem with respect toā. By solving numeri-
cally the eigenvalue problem, we obtain the ultimate va
of ā:

ā5~21.6761481ı0.4181578!31022 fm, ~24!

which is not far from the perturbative estimate. The nucl
potential ~23! is now completely specified and may be u
lized in the same Schro¨dinger equation as before for solvin
the zero-energy scattering problem. The resulting scatte
lengths are

apd
c 5~22.61931ı0.63603!31022/mp , ~25a!

apd5~22.66241ı0.64743!31022/mp . ~25b!

Having determinedapd
c for asigned values of (ed ,Gd) gives

us the opportunity to check the accuracy of the formula
Deseret al. and Trueman by calculating (ed ,Gd) from it.
Writing

ed1ı 1
2 Gd52mpd

2 a3apd
c ,

wherea is the fine structure constant, and using Eq.~25a!,
the above formula of Deseret al. and Trueman give
(ed ,Gd)5(22.461,1.195) eV, which is indeed very clos
to the input values (ed ,Gd)5(22.460,1.194) eV that have
been used to pin downā and therefore should have bee
reproduced if the formula of Deseret al. and Trueman had
been exact. In order to shed some light on the role of abs
tion, we repeated the computations of the scattering len
but this time we removed the absorption completely, by s
ting the imaginary part ofā equal to zero. Thus, forā
521.676 14831022 fm, we obtain
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c 522.615331022/mp , ~26a!

apd522.658531022/mp . ~26b!

and comparing Eq.~25b! with Eq. ~26b! we can see that the
contribution to the real part ofapd that can be attributed to
absorption is at the level of 0.14%, which is by an order
magnitude less than the Coulomb correction. In view of t
result, the exclusion of absorptive processes from our mic
scopic calculation ofapd does not appear to be a serio
omission.

When the experimental uncertainties are accounted
the scattering lengths extracted from the measured value
(ed ,Gd), are

apd
c 5@~22.61960.051!1ı~0.63660.056!#31022/mp ,

~27a!

apd5@~22.66260.052!1ı~0.64760.057!#31022/mp ,
~27b!

where the errors reflect only the experimental uncertainti
Since the potential~23! is rather week, the Coulomb cor

rection can be quite reliably estimated by calculating
ratio apd

c /apd and keeping only terms linear inVpd . As in

this case the potential depthā drops out, we are led to the
general formula

apd
c

apd
5

E
0

`

ud~2r !2f0~0,r !2dr

E
0

`

ud~2r !2r 2dr

, ~28!

wheref l(k,r ) denotes the regular Coulomb wave functio
that for zero-momentum (k50) and zero orbital momentum
( l 50), simplifies to the form

f0~0,r !5r J1~2A2mpdar !/A2mpdar , ~29!

whereJ1(x) is the Bessel function. Expanding Eq.~28! in
powers ofa, we obtain quite adequate first-order formu
apd

c /apd512ampd^r & where the expectation value is wit
respect to the deuteron wave function. We have checked
for a variety of deuteron wave functions the calculated ra
~28! has been very stable and its numerical value is 0.9
@from Eq. ~26! we obtain 0.984 to all orders inVpd#.

Adopting the zero-range model of thepN interaction, for
calculating thepd scattering length one needs as input ju
the isoscalar and the isovectorpN scattering scattering
lengths. The values ofb0 and b1 that have been extracte
from the pionic hydrogen data in Ref.@8# are

b052~0.2260.43!31022/mp ,

b152~9.0560.42!31022/mp , ~30!

where the quoted uncertainty comprises the experimenta
rors together with the uncertainty introduced by applying
specific procedure that allows us to deduceb0 andb1 from
the measured x-ray spectra. The theoretical uncertaint
5-7
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TABLE I. pd scattering length obtained from the static model and from a Faddeev calculation i
zero-range model for differentb0 andb1. For theNN forces we used PEST and Yamaguchi potentials,
results for the latter case are presented here in parentheses. All entries are in 1022/mp units.

b1

b0 Model 29.47 29.05 28.63
Second order 24.22 (24.87) 23.97 (24.57) 23.74 (24.28)
Static ~10! 23.89 (24.21) 23.69 (23.98) 23.49 (23.77)

20.65 Static~20! 23.44 (23.77) 23.29 (23.58) 23.10 (23.39)
Faddeev 23.97 (24.27) 23.76 (24.04) 23.55 (23.81)

Faddeev withD 23.59 (23.97) 23.37 (23.73) 23.16 (23.50)
Second order 23.30 (23.96) 23.06 (23.66) 22.82 (23.37)
Static ~10! 22.99 (23.32) 22.78 (23.09) 22.58 (22.87)

20.22 Static~20! 22.53 (22.87) 22.36 (22.68) 22.19 (22.49)
Faddeev 23.07 (23.37) 22.85 (23.14) 22.65 (22.92)

Faddeev withD 22.68 (23.08) 22.46 (22.85) 22.25 (22.62)
Second order 22.38 (23.04) 22.14 (22.74) 21.90 (22.45)
Static ~10! 22.08 (22.42) 21.87 (22.19) 21.68 (21.97)

0.21 Static~20! 22.62 (21.97) 21.45 (21.77) 21.28 (21.59)
Faddeev 22.16 (22.47) 21.95 (22.24) 21.74 (22.02)

Faddeev withD 21.76 (22.20) 21.54 (21.96) 21.34 (21.73)
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4

quoted to be about twice as large as the experimental e
Besides, the errors onb0 and onb1 are strongly correlated.

Using Eqs.~30! as our input, we have calculated thepd
scattering length and the results are presented in Table I
entries are doubled because we employ two models ofNN
interaction: the numbers without brackets have been obta
using the PEST wave function and, respectively, the bra
eted quantities correspond to the Yamaguchi potential.
each set of input values of (b0 ,b1) we computedapd using
five different methods discussed before, beginning from
simplest second-order formula~11!, through the static mode
~10! and~20!, up to the full Faddeev calculation without an
with D, respectively. The results of the Faddeev calculat
with the s-wave interaction only~without D) constitute a
benchmark for the various approximations. Contrary to w
has been often claimed in the literature, the second-o
formula is insufficient as the error incurred is roughly fo
times bigger than the present experimental uncertainty
apd . It is apparent from Table I that the model closest to
Faddeev result is in all cases the static model~10!. The ac-
curacy of the latter is very good, the error being alwa
below 2%. By contrast, the performance of the implemen
tion ~20! of static model is rather disappointing, especia
that from formula~20! containing the binding energy correc
tion, one might expect further improvement. Neverthele
the numbers show just the opposite, that in fact the inclu
corrections go in the wrong direction, worsening the resu
so much that even the second-order formula proves to
more accurate. Of course, it is not just the binding ene
correction that is responsible for the difference between
static model and the Faddeev result, as only the latter p
erly accounts for the nucleon recoil. However, the bulk of
recoil correction seems to be canceled with the binding
ergy correction and this cancellation explains the succes
the static formula~10! containing neither of these correc
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tions. An explicit demonstration that, at least to the seco
order, such a mechanism is at work can be found in R
@24#.

Since the static model~10! proves to be so accurate fo
Yamaguchi and PEST models of theNN interaction, we took
advantage of this fact, using it to examine more realisticNN
potentials containing also theD-wave part. The results of ou
computations are displayed in Table II where we compare
two separable models~Hulthen-Yamaguchi and PEST!, used
in Faddeev calculations, with two popular local potentia
~Paris @23# and Bonn@25#!. As expected, the PEST wav
function results are indeed very close to those obtained w
Paris wave function despite the lack of theD component in
the PEST wave function. Therefore, neglecting theD wave
in the Faddeev calculation does not appear to be a ser
omission. It is also gratifying that the PEST, Paris, and Bo
models give very similar results.

In Table III we present the values ofpd scattering length
obtained in result of iterative solution of the Faddeev eq
tions. Since for zero-rangepN interaction there is no addi
tional suppression due to thepN form factor, the rate of

TABLE II. The expectation values ofr, 1/r , and the values of
pd scattering length calculated for differentNN wave functions.
For pN scattering lengths we have adopted their central values,
b0520.22 andb1529.05. All scattering lengths are given i
1022/mp units.

NN wave function
Hulthen PEST Paris Bonn

^r & ~fm! 3.1345 3.2309 3.2685 3.2536
^1/r & (fm21) 0.55501 0.45507 0.44864 0.4631
Second orderapd 23.66 23.06 23.04 23.13
Staticapd 23.09 22.78 22.78 22.82
5-8
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DETERMINATION OF pN SCATTERING LENGTHS FROM . . . PHYSICAL REVIEW C 64 065205
convergence is somewhat slower but the converged resu
obtained in less than ten iterations. We giveapd values cal-
culated with and withoutp-wave pN interaction, which al-
lows to evaluate thep-wave contribution in each order. Fo
the YamaguchiNN interaction thep-wave correction in the
first order is quite large and contributes 0.4731022/mp .
The p-wave contribution to the second order~called thesp
term in Ref. @12#! has opposite sign and equals20.35
31022/mp . In general, the net effect of thep-wave interac-
tion on the converged result is reduced owing to the dest
tive interference between repulsives waves and attractivep
waves, amounting in total only 0.2931022/mp . Similar fea-
tures are observed for the PEST model but since the con
gence rate is faster, the higher-order corrections are
pressed and the interference effects seem to be smaller
the first-orderp-wave correction is 0.4531022/mp while the
corresponding correction to the converged result is 0
31022/mp .

It is apparent from Table I that the calculatedpd scatter-
ing length values are rather sensitive to the input values
(b0 ,b1) and therefore it is not so easy to see when the
culation agrees with experiment. To facilitate the comparis
with experiment the values ofapd resulting from Faddeev
calculation ~PEST with D) and displayed in Table I hav
been represented analytically using bilinear interpolation
a grid in the (b0 ,b1) plane. Then, given the interpolatin
polynomial, we equated it to the experimental value ofapd ,
adding or subtracting the experimental error. This proced
gave us two constraints of algebraic form in the (b0 ,b1)
variables, readily solvable with respect to one of these v
ables. The two functions obtained this way may be plotted
the (b0 ,b1) plane where, as shown in Fig. 1 they set t
boundary of the tilted band representing the one stand
deviation constraint imposed by thepd scattering length de
duced from pionic deuterium data. The rectangle in Fig
represents the experimental values of (b0 ,b1) to within one
standard deviation inferred from pionic hydrogen data. T
ultimate (b0 ,b1) values that are consistent with both the p
onic hydrogen and the pionic deuterium data fill the area
the black strip.

TABLE III. pd scattering lengths calculated from consecut
iterations of the Faddeev equations. All entries are in 1022/mp

units.

PEST PEST Yamaguchi Yamaguchi
Order noD with D no D with D

1 21.66 21.21 21.70 21.23
2 22.98 22.66 23.42 23.30
3 22.89 22.44 23.20 22.77
4 22.85 22.48 23.11 22.91
5 22.85 22.45 23.14 22.82
6 22.46 23.15 22.87
7 22.46 23.14 22.84
8 23.14 22.86
9 22.85
10 22.85
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III. FINITE-RANGE APPROACH

Thus far our treatment of the pion-deuteron scatter
problem has been carried out exclusively within the ze
range model. Although this model has served us well, i
based on certain idealization whose validity and con
quences need to be examined. We therefore turn now to
question of formulating a finite-range version of the a
proach presented in the preceding section. Relaxing the z
range limitation has of course itsquid pro quo in that we
have to worry now about the off-shell extension of thepN
scattering amplitude, and this means that the pionic hydro
problem has to be consideredab intitio in order to provide
the necessary input for thepd calculation. Anticipating the
application in the Faddeev type calculation, it will be conv
nient for us to work with separable potentials. To get insig
into the pionic hydrogen problem, let us consider a tw
channel situation, where the upper channel labeled as 1
responds to the neutralp0n system and the lower channe
labeled as 2 refers to thep2p system. We assume that th
two-channel interaction respects isospin invariance and
isospin symmetry is broken only by the Coulomb potent
operative in channel 2 and by the mass splitting within is
spin multiplets. Since we wish to consider an atomic syst
it is essential to treat the Coulomb interaction exactly.
meet this requirement, we choose the two-chan
Lippmann-Schwinger equation as our dynamical framew
that in coordinate representation takes the form

FIG. 1. Constraints on the isoscalar and isovector scatte
lengths imposed by pionic deuterium data. The black strip co
sponds to the one standard deviation region. The rectangle c
sponds to the values obtained from pionic hydrogen data in Ref.@7#.
5-9
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A. DELOFF PHYSICAL REVIEW C 64 065205
u1~r !5E
0

`

^r uG1
1~W!ur 8&@V11~r 8,r 9!u1~r 9!

1V12~r 8,r 9!u2~r 9!#dr8 dr9, ~31a!

u2~r !5E
0

`

^r uG2
1~W!ur 8&@V21~r 8,r 9!u1~r 9!

1V22~r 8,r 9!u2~r 9!#dr8 dr9, ~31b!

where we have assumed spherical symmetry of the prob
anduj (r ) denotes zero orbital momentum radial wave fun
tion in channelj. The strongpN interaction is adopted her
in the form of a nonlocal potential matrixVi j . In Eq.~31! we
have introduced the Green matrix whose only nonvanish
diagonal elements are

^r uG1
1~W!ur 8&52~2m1 /p1!exp~ ıp1r .!sin~p1r ,!

~32!

for the neutral channel, while in the charged channel we h
to take into account the Coulomb interaction, and the ex
Green’s function in this case reads

^r uG2
1~W!ur 8&52~2m2 /p2!@G0~h,p2r .!

1ı F0~h,p2r .!#F0~h,p2r ,!, ~33!

wherer ,5min(r,r8),r .5max(r,r8). In Eqs.~31!–~33! W de-
notes the total c.m. energy~including the rest mass!, m j are
the reduced masses in the two channels, andpj are the chan-
nel momenta,pj56A2m j (W2Ej ) with Ej being the thresh-
old energies and the sign ambiguity will be resolved in
moment. All masses here are assumed to take their phy
values. In Eq.~33! h52am2 /p2 and G0 ,F0 denote the
standard Coulomb wave functions for orbital momentuml
50, defined in Ref.@26#. Finally, it should be noted tha
there is no ingoing wave in Eq.~31!, as appropriate for a
bound state problem.

As mentioned above, to simplify matters, we assume
the interaction is separable, i.e., that the potential matrix

Vi j ~r ,r 8!52v~r !si j v~r 8!, ~34!

where the functionv(r ) represents the shape of the potent
and the dimensionless parameterssi j are the measure of th
strength of the potential. Time reversal impliessi j 5sji . With
separable potentials, the system of integral equations~31!
can be solved analytically. To this end it is sufficient to m
tiply each of the equations byv(r ) and integrate overr. This
gives a system of two homogeneous algebraic equations
the two unknown quantities

Xj5E
0

`

v~r !uj~r !dr, j 51,2

and the latter will have a nontrivial solution if and only if th
determinant of the systemD(W) vanishes. Expanding th
determinant, we are led to the explicit bound state condit
06520
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D~W!5@11s11̂ vuG1
1~W!uv&#@11s22̂ vuG2

1~W!uv&#

2s12
2 ^vuG1

1~W!uv&^vuG2
1~W!uv&

50, ~35!

where we have introduced the abbreviation

^vuGj
1~W!uv&5E

0

`

v~r !^r uGj
1~W!ur 8&v~r 8!dr dr8.

The determinant can vanish only at some particular value
the energyW5EB that will be interpreted as the bound sta
energy. Normally, knowing the underlying interaction, b
solving Eq.~35! one obtains the binding energy. However,
the problem at issue we have a reversed situation: we k
the binding energy from experiment and it is the interact
that we are after. In the case of the pionic hydrogen atom
have an unstable bound state in the charged channel an
binding energy will be a complex number. We set

EB5E21E1s2~e1ı 1
2 g!, ~36!

whereE1s52m2a2/2 is the purely Coulombic 1s state bind-
ing energy. Since in our formalism there is no room for t
radiative decay of the pionic hydrogen the partial widthg is
a fraction of the total widthG given by the formulag
5G/(11P21) where P is the Panofsky ratio. It has bee
shown in Ref.@27# that the effect of the (p2,g) reaction on
the accounted for hadronic channels is negligible. The
perimental values fore,G ~cf. Ref. @7#!, andP ~cf. Ref. @28#!
adopted in this work are

e57.10860.013~stat!60.034~syst! eV,

G50.86860.040~stat!60.038~syst! eV,

P51.54660.009,

and in the following we shall takee57.10860.047 eV and
g50.52760.047 eV as the input values. It must be imm
diately explained here that in this work we have definede in
accordance with a different convention, so that oure has
opposite sign than that used in Ref.@7#. In our approach we
have tacitly assumed that under perturbative treatment
electromagnetic corrections contribute the same amoun
the purely Coulombic level and to the level shifted by stro
interaction. More precisely, we are going to ignore the sm
effects caused by the distortion of the wave function. A
cordingly, the electromagnetic corrections need not conc
us here and they have been left out altogether but, of cou
they would be indispensable for calculating the total d
placement of the level from its Coulombic position.

The pole of theT matrix that corresponds to the solutio
of Eq. ~35! can be located on one of the four Riemann she
as appropriate for a two-channel problem. This is also ap
ent from the above-mentioned sign ambiguity in the defi
tion of the channel momenta in Eq.~33!. The right choice of
the Riemann sheet is essential, and this can be accompli
by proper adjustment of the signs of the imaginary parts
5-10
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DETERMINATION OF pN SCATTERING LENGTHS FROM . . . PHYSICAL REVIEW C 64 065205
the channel momentapj . We are using here the standa
enumeration of the Riemann sheets introduced in Ref.@29#,
i.e.,

sheet I: Imp1.0, Imp2.0,

sheet II: Imp1,0, Imp2.0,

sheet III: Imp1,0, Imp2,0,

sheet IV: Imp1.0, Imp2,0.

In the pionic hydrogen case, with an unstable bound stat
channel 2, we have to enforce the pole to be located on
second sheet.

To proceed further we need some concrete shape fa
v(r ) and our choice here is the exponential shape, i.e., we

v~r !5Ab3/m exp~2b r !, ~37!

where m is the reduced pion-nucleon mass in the case
exact isospin symmetry~we take average mass for each is
spin multiplet! andb is the inverse range parameter. With t
exponential form~37!, the potential~34! is identical to the
familiar Yamaguchi potential, and the Green’s function m
trix elements can be obtained in an analytic form. The fi
result is

^vuG1
1~W!uv&52

m1

m

1

~12ıp1 /b!2
~38!

for the neutral channel, while the corresponding formula
the charged channel reads

^vuG2
1~W!uv&

52
m2

m

1

~12ıp2 /b!2

2F1~1,ıh;ıh12;z2!

ıh11
~39!

with z5(b1ıp2)/(b2ıp2). The last fraction in Eq.~39!
accounts for the Coulomb interaction and the sym
2F1(a,b;c;z) denotes the hypergeometric function defin
in Ref. @26#. The computation of the hypergeometric functio
entering Eq.~39! is greatly simplified owing to the fact tha
the first parameter is equal to unity in which case the con
ued fraction representation of2F1(1,b;c;z) discovered by
Gauss@30# proves to be useful. The continued fraction su
mation converges in the whole of the complexz plane away
from the branch cut on the real axis running from one
infinity.

With exact isospin symmetry the three strength para
eterss11,s12,s22 are not independent and can be expresse
terms of isospin 1/2 and isospin 3/2 strengths denoted h
after ass1 ands3, respectively. In the bound state conditio
~35! both the real and the imaginary part ofD(EB) have to
vanish simultaneously and that gives us two real equatio
Since the bound state energy is known@cf. Eq. ~36!#, we put
s115(s112s3)/3, s225(2s11s3)/3, s125A2(s32s1)/3 in
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Eq. ~35!, and regardings1 ands3 as our two unknowns, we
arrive at two algebraic equations that can be solved ana
cally:

s1
2 Im ac* 1s1 Im~ab* 2c!2Im b50, ~40a!

s352~11s1Rea!/~Reb1s1Rec!, ~40b!

where a5(^vuG1
1(EB)uv&12^vuG2

1(EB)uv&)/3, b
5(2^vuG1

1(EB)uv&1^vuG2
1(EB)uv&)/3, and c

5^vuG1
1(EB)uv&^vuG2

1(EB)uv&. With s1 ands3 in hand, the
corresponding scattering lengths (a2I with I 51/2 and 3/2!
are obtained from

a2I5
2

b

s2I

12s2I
. ~41!

For local potentials the method outlined above could
also applied but in such case it would be more convenien
use instead of Eq.~31! an equivalent set of two couple
Schrödinger equations. For fixed energy and the prop
choice of the Riemann sheet, these differential equations
be integrated numerically, and the bound state equatio
obtained from the requirement of vanishing of the Wronsk
determinant. The latter is again a function of the isospin
and isospin 3/2 strength parameters, or if one prefers,
corresponding potential depths. Although the bound s
condition is defined then only numerically but from it on
can get two real equations that can be solved numeric
using standard procedures. With a local potential, howe
the solution of the three-body problem becomes much m
complicated and this is the main reason why we preferred
work with a separable potential.

Our calculational scheme is now complete and we sh
present our results. Using as our input the experimental
ues of the pionic hydrogen level shift and width, the bou
state equation has been solved analytically by adoptin
number of ‘‘reasonable’’ values forb and in our computa-
tions we have used the values from 2 fm21 to 10 fm21.
Although we do not know the precise value of the range
there is no physical mechanism known that might gene
long range forces in thepN system, the longest range
unlikely to be bigger than 0.5 fm and this sets the lower lim
of acceptableb values. In principle, there is no upper lim
for b but for b.10 fm21 we have in practice reached th
limit of the zero-range forces and things change very lit
above that limit. The exact solutions of the bound state eq
tion are presented in Table IV, where the errors reflect o
the experimental uncertainty of our input, i.e.,e, G, and the
Panofsky ratio. Our isoscalar and isovector scattering leng
are in good agreement with the values extracted in Ref.@7#.
This has been illustrated in Fig. 2 where we have compa
a representative sample of our computations with the va
obtained by Sigget al. @7#. The solutions corresponding tob
spanning the range 2 –10 fm21 are located very close to
each other in the (b1 ,b0) plane, and putting more than thre
points on the plot might have obscured the picture. The e
bars reflect only the experimental uncertainty of our inp
As mentioned above, the bound state equation~35! yields a
5-11
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A. DELOFF PHYSICAL REVIEW C 64 065205
second-order equation fors1 ands3, and therefore we have
always two solutions@cf. Eq. ~40!#. Only one of them is
presented in Table IV, whereas the second solution lead
bothb0 andb1 positive and has had to be rejected. When
two strength parameterss1 ands3 are known, we can calcu
late not only the scattering lengths but also the effect
ranges in each of the two isospin states and these value
presented in Table IV. Instead of the effective range we

FIG. 2. The values of isoscalar and isovector scattering len
obtained by solving the bound state equation~35! for b equal, re-
spectvely, 2.0 fm21, 6.0 fm21, and 10.0 fm21 ~indicated on the
plot!. The point marked as ‘‘Deser’’ has been obtained from E
~50!. The rectangle corresponds to the values obtained in Ref.@7#.
06520
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the parameterB2I that is defined from the expansion of th
real part of thes-wave scattering amplitude in powers of th
c.m. momentum k, i.e., close to threshold, we hav
Re f 2I(k)5a2I1B2Ik

21•••. For comparison, at the bottom
of Table IV we give the values of all parameters inferr
from a recent phase shift analysis@4#. The calculated scatter
ing lengths, listed in Table IV, are almost independent up
b, in contrast with the slope parametersB2I , which change
quite a bit whenb is varied in the interval 2 –10 fm21. In
addition to this, ourB3 values turn out to be always positiv
and therefore have opposite sign than those deduced
phase shift analysis@3,4#. Actually, the pionic hydrogen data
provide a strong constraint only for the scattering lengt
and sticking to a simplepN Yamaguchi potential it is not
possible to getB3 negative just by varyingb. Indeed, for
fixed a2I the slope parameter B2I is given by the exact for-
mula

B2I52a2I
3 F11

1

2ba2I
S 31

4

ba2I
D G

and since the expression in the square brackets is neces
positive the sign of B2I is bound to be opposite to that o
a2I . To obtain a negativeB3 a more sophisticated potentia
involving both repulsion and attraction would have been
quired @3#. There is no need for such extension, howev
because our model has been devised for describing only
near threshold phenomena and is quite adequate at that
panding the phase shift close to threshold in powers ofk, we
haved2I5a2Ik1O(k3), and it is apparent that a model pro
viding merely the scattering length reproduces satisfacto
the phase shift in the neighborhood of zero, whered2I ex-
hibits a linear behavior. In our case this is all that matters
we never deal with higher energies. This means that the
termination of the slope parameters is out of reach within
model since the appropriate energy scale has been set b
Coulomb energy in the pionic hydrogen, in which case ter
proportional toB2I make negligible contribution. For an as
signed value ofb the slope parameters may be calculated

s

.

d
TABLE IV. pN scattering lengths inferred from pionic hydrogen data (B2I are slope parameters define
in the text!.

b a1 a3 B1 B3

(fm21) (mp
21) (1021 mp

21) (1022mp
23) (1022mp

23)

1.0 0.179660.0047 20.964960.0867 221.98 8.76
2.0 0.176760.0046 20.937760.0852 26.63 1.96
3.0 0.176060.0046 20.930660.0846 23.60 0.81
4.0 0.175760.0046 20.926360.0841 22.46 0.43
5.0 0.175660.0046 20.922860.0837 21.90 0.27
6.0 0.175660.0046 20.919760.0834 21.57 0.18
7.0 0.175660.0046 20.916760.0830 21.37 0.14
8.0 0.175660.0046 20.913860.0827 21.23 0.11
9.0 0.175660.0047 20.911060.0823 21.12 0.09
10.0 0.175760.0047 20.908260.0820 21.05 0.08
Deser 0.176060.0046 20.925860.0857
Ref. @4# 0.167960.0059 20.78560.034 27.2463.06 24.0861.46
5-12
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DETERMINATION OF pN SCATTERING LENGTHS FROM . . . PHYSICAL REVIEW C 64 065205
they are of no physical significance and comparing th
with those resulting from phase shift analysis does not m
much sense.

As noted in Refs.@7,27#, at the energy value close to th
unstable bound state in channel 2, the scattering amplitud
the open channel 1 shows a strong resonant behavior. F
separable potential, thes-wave scattering amplitudef (W) in
channel 1 may be easily calculated analytically and take
simple form

f ~W!5eıd sind/p1

5
m1

m

2

b

s111~s11s222s12
2 !^vuG2

1~W!uv&

~11p1
2/b2!2D~W!

, ~42!

where d is the corresponding phase shift that for realW
below thep2p threshold is a real number. The resonance
not of a Breit-Wigner shape but its positionEr may be easily
established from Eq.~42! as the energy at which the pha
shift is equal to1

2 p. Close to the resonant energy, i.e., f

W'Er we have cotd'(W2Er)/(
1
2Gr), and this allows us to

infer the value of the widthG r of the resonance. In Ref.@7#
the values of (e,g) have been calculated by identifying the
with (E21E1s2Er ,G r). In principle, the values of (e,g)
obtained that way do not have to be identical to those de
mined from the position of the bound state pole. To che
that point, we have repeated the procedure of Ref.@7# but by
using our separable potentials whose depths have been
justed to reproduce the values of (e,g) obtained in Ref.@7#.
We found that the two methods give nearly identical resu
and the differences in (e,g) did not exceed 1 meV. For il-
lustration, in Fig. 3 we show the behavior of sind close to
the resonance for the case ofb53 fm21, where the strength
parameters inferred from the pole location weres1
50.271820 ands3520.245868.

FIG. 3. sind vs energy close to the resonance calculated fr
Eq. ~42! for b53 fm21.
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Before concluding our discussion of the pionic hydrog
we wish to mention one last thing, namely, we are going
show how from Eq.~35! one can retrieve the formula o
Deseret al. and Trueman~cf. Ref. @11#!. This task will be
accomplished by obtaining an approximate solution of E
~35! and to this end Eq.~35! is cast in the form

11seff~W!^vuG2
1~W!uv&50, ~43!

where we have introduced an effective energy depend
complex strength parameterseff , defined as

seff~W!5s222s12
2 ^vuG1

1~W!uv&/@11s11̂ vuG1
1~W!uv&#.

~44!

The complexp2p scattering lengthapp can be expressed in
terms ofseff(W) evaluated at threshold,

app5
m2 2

m b

seff~E2!

12seff~E2!
, ~45!

and the Coulomb correctedp2p scattering length, denote
as app

c , can be obtained from the exact formula derived
Ref. @31#:

1/app
c 5ej/app12m2a Ei~j!, ~46!

where j54am2 /b and Ei(j) is the exponential integra
function defined in Ref.@26#. It should be noted here that th
zero-range limit (b→`) does not exist in Eq.~46! because
the function Ei(j) for j50 has a logarithmic singularity. Fo
the case ofb53 fm21 just considered, we obtain

app50.120811ı 0.004 441 fm,

app
c 50.120681ı 0.004 458 fm,

so that the Coulomb corrections do not exceed a fraction
percent. However, in general, the Coulomb correction
model dependent, and, in particular, it is rather sensitive
the range of the nuclear potential what can be seen when
result above is juxtaposed with thepd case where the rang
of the potential was comparable with the size of the deute
and, accordingly, the Coulomb correction topd scattering
length was much bigger (1.5%).

Since we wish to obtain an approximate solution of E
~43! that is located not far from the Coulomb bound state,
setW5E21E1s1dE, wheredE is a small displacement. To
calculatedE and derive the formula of Deseret al.and True-
man from Eq.~43!, we have to assume that~i! the complex

energy shiftdE52e2ı 1
2 g is small in comparison with the

Coulomb energy (udE/E1su!1) and ~ii ! the range of the
strong interaction is small as compared with the Bohr rad
(b@m2a). Introducing a complex momentumpc

5A2m2E1s5ım2a corresponding to the Coulomb boun
state, we can see that whenp2→pc then ıh→21 and the
Green’s function~39! occurring in Eq.~43! becomes singu-
lar. This singularity is of paramount importance since it i
duces a zero in the nuclearS matrix that is necessary to
cancel the bound pole in the CoulombS matrix. As a result
5-13
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A. DELOFF PHYSICAL REVIEW C 64 065205
of this cancellation, the fullSmatrix in the charged channe
which is a product of the CoulombS matrix and the nuclea
S matrix, remains finite atp25pc . In compliance with the
small shift assumption, we setp25pc1dp, wheredp is sup-
posed to be a small correction, and since the most ra
variation in Eq.~39! arises on account of the pole term, w
approximate 11ıh by dp/pc . Apart from that, elsewhere
we replacep2 by pc . The hypergeometric function forıh
521 reduces to a polynomial 12z2, and neglecting smal
terms of the order ofpc /b, from Eq. ~43! we obtain

dp'24ı~pc
2/b!~m2 /m!seff~E2!'22ı pc

2app , ~47!

where we have used Eq.~45!, retaining only linear term in
app . The above result gives the formula of Deseret al. and
Trueman@11# in its standard form,

dE'pcdp/m2'22m2
2a3app , ~48!

where, in view of the above discussion, it does not rea
matter whether we takeapp or app

c . It is perhaps in order to
recall that although the formula~48! of Deseret al.and True-
man has been derived here for a specific choice of the
derlying interaction, its validity is quite general. To exami
the accuracy of the formula of Deseret al. and Trueman we
turn again to our previous example whenb53 fm21 and by
computingapp from Eq. ~45! and inserting in Eq.~48!, we
obtain (e,g)5(7.024,0.516) eV, to be compared with o
input values equal (e,g)5(7.108,0.527) eV that ought to
have been reproduced if formula~48! had been exact. It is a
remarkable property of the formula of Deseret al. and True-
man that it is independent of the range of the underly
interaction and therefore the error in this formula must be
the same size as the uncertainty in the exact result cause
varying b. If one is prepared to tolerate such uncertain
formula ~48! could be used to infera1 anda3. Introducing a
two-channelK matrix, isospin invariance can be invoked
pin down its elements at the single unsplit threshold,

K5S 1

3
a11

2

3
a3

A2

3
~a32a1!

A2

3
~a32a1!

2

3
a11

1

3
a3

D ,

and the complexp2p scattering length takes the form

app5K221ıptK12
2 /~12ıptK11!, ~49!

wherept is the momentum in thep0n channel evaluated a
the p2p threshold. The scattering length~49!, unlike Eq.
~45!, does not depend upon the range. Inserting Eq.~49! in
~48! and separating the real and the imaginary parts, we
up with two real equations for the two unknownsa1 anda3.
To more than sufficient accuracy, the explicit solutions ar

a15@x6y~122pty!/A2pty#/~12pty!, ~50a!

a35@x7y~22pty!/A2pty#/~12pty!, ~50b!
06520
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where x5e/2m2
2a3, y5 1

2 g/2m2
2a3, and the double sign in

Eq. ~50! stems the fact that Eq.~49! is quadratic ina2I . If
(e,g) have been obtained in a model independent way, t
the results~50! are also model independent. As seen fro
Table IV the uncertainty ona1 anda3 (3% and 9%, respec
tively! induced by experimental errors on (e,g) is much big-
ger than the uncertainty caused by varyingb ~about1%).
Under these circumstances it is perfectly justified to infer
pN scattering lengths via the formula of Deseret al. and
Trueman, and their numerical values obtained from Eq.~50!
are displayed in Table IV, whereas the correspondingb0 and
b1 are presented in Fig. 2.

It is apparent from Table IV that to improve upon th
formula of Deseret al. and Trueman we need some add
tional clues concerningb, and it becomes something of
challenge to find ways to ferret out more precisely the va
of b. So far in our considerations we have not yet mention
the pionic deuterium data, and at this stage it is logical to
whether this additional information might not help to p
down the range parameter of thepN potential. Therefore, in
the next step, we use the values given in Table IV as in
for a three-body calculation, i.e., we use the separable po
tial ~37! in the Faddeev equations for calculating thepd
scattering length. The results of our computations are p
sented in Fig. 4 where we have plotted thepd scattering
length versusb. The full circles represent the results o
tained by the including thep-wave interaction~more pre-
cisely, just theP33 wave!, while the open circles correspon
to a situation whereD has been left out. For reasons
clarity of the presentation these two sets of points have b
given at differentb values. The indicated error bars refle
the uncertainty in the input values~cf. Table IV!. For com-
parison, the experimental value ofpd scattering length to
within one standard deviation is given in Fig. 4 as the a
between the two horizontal lines. The striking feature app

FIG. 4. pd scattering length vs the inverse range parameterb of
the pN potential. Full~open! circles correspond to a Faddeev ca
culation with ~without! p-wavepN interaction.
5-14
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DETERMINATION OF pN SCATTERING LENGTHS FROM . . . PHYSICAL REVIEW C 64 065205
ent from Fig. 4 is that the results are almost independen
the range parameterb. Furthermore, the calculated scatteri
lengths are consistent with experiment for allb no matter
whetherD has been included or not. This result may come
a disappointment since the deuteron data give no illum
tion how to bracket the value ofb.

In order to understand how the above result comes ab
we shall invoke again the static model, taking advantage
the fact that with the Yamaguchi potential representing
pN interaction the static solution of the Faddeev equati
may be readily obtained~cf. Ref.@32#!. Thus, introducing the
Yamaguchi form factors and going to the static limit we c
repeat the procedure outlined in the preceding section.
static solution of the Faddeev equations may be then so
in the form

A~q,k!52
m

2p

b2

q21b2
A~k!,

X~q,k!52
m

2p

b2

q21b2
X~k!,

and the above ansatz used in the Faddeev equations yie
set of two integral equations that differ from Eq.~17! in that
the appropriate kernels contain now an extra factor 1@1
1(k1k8)2/b2#2. Despite this additional complication, th
Fourier transform of this extended kernel still can be effec
and leads to a simple analytic expression

4p

k21~k1k8!2

b4

@b21~k1k8!2#2

5S 12
k2

b2D 22E e2ı(k1k8)•r
d3 r

r

3H e2kr2e2brF11
br

2 S 12
k2

b2D G J .

Using the above formula, similarly as before, we end up w
a system of two algebraic equations forA(r ) andX(r ). Ne-
glecting the binding energy correction (k→0), the resulting
equations differ from Eq.~8! in that the zero-range pion
propagator 1/r has to be multiplied by the functiong(r )
given by the formula

g~r !512e2br~11 1
2 br !. ~51!

Therefore, the desired solution forA(r ) follows from Eq.
~10! after replacing 1/r by g(r )/r . Formula~51! proves to be
quite useful for estimating the size of theb dependent cor-
rection, and to this end we need to evaluateg(r ) at some
average value ofr and a plausible candidate for such avera
value is the deuteron radiusr d5 1

2 A^r 2&'2 fm. Indeed,
with this choice the second-order formula~11! that provides
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for a major contribution toapd will be little affected since by
settingr 5r d , we get^1/r &50.5 fm21, not far from the val-
ues listed in Table II. Whenb is varied in the range
2 –10 fm21, we haver db.4 in the exponential damping
factor in Eq. ~51!, so that theb dependent terms make
contribution tog(r ) at the level of a few percent and th
resultingpd scattering length is almost independent uponb.
This feature, sustained in the full Faddeev solution, is a c
sequence of the fact that the adopted range of thepN forces
was small as compared with the deuteron radius.

In conclusion, we have seen that the uncertainty in
calculateda1 anda3, as well as inapd , connected with the
lack of knowledge of the range parameter, constitutes on
small fraction of the uncertainty resulting from the expe
mental errors on the pionic hydrogen data. The results ab
may be viewed as ana posteriori justification of our zero-
range model developed in Sec. II: introducing a finite ran
would be merely a fine tuning which is not yet affordable
the current state of affairs.

IV. DISCUSSION

Assuming that the underlyingpN interaction is isospin
invariant, we have analyzed the recent pionic hydrogen
pionic deuterium data with the purpose to extract from th
pN s-wave scattering lengthsa2I for I 51/2 andI 53/2. It is
an empirical fact that the complex energy shift in either
these two atomic systems is small when compared with
corresponding Coulomb energy and with the appropri
Bohr radii setting the length scale, thep-p andp-d interac-
tions are of a short range. Under these circumstances
formula of Deseret al. and Trueman provides an extreme
good approximation, relating in a model independent w
the 1s level shifts and widths in the pionic hydrogen an
pionic deuterium to the complex scattering lengthsapp and
apd , respectively. However, to infera2I from the latter quan-
tities is a nontrivial dynamical problem and to be able
solve it we introduced a simple and transparent poten
representation of thepN interaction. Within this model we
obtain explicit solution of thep2p bound state problem an
also of the related three-bodypd scattering problem at zero
energy.

We have assumed throughout this work that thepN
forces are of a very short range and this supposition follo
from a particle exchange picture: there is no sufficiently lig
particle presently known that might be capable of genera
forces whose range would exceed 0.3–0.4 fm~which
roughly corresponds to a vector meson exchange!. In this
situation it was logical to take the zero-range limit as o
point of departure. In order to find out what the deuteron d
can teach us aboutpN scattering lengths, we calculated th
pd scattering length by solving the appropriate three-bo
pNN problem. This task was accomplished both within t
static approximation and also by using the Faddeev form
ism. We demonstrated that the same static formula forapd
can be derived from~i! a set of boundary conditions,~ii ! a
static solution of Faddeev equations, and~iii ! a summation of
Feynman diagrams. The static formula expressingapd in
terms ofpN scattering lengths was found to be surprising
5-15
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accurate: the error, estimated by comparing the static re
with the full Faddeev solution, was at the level of 2%, i.e.,
the same size as the experimental error onapd . The standard
second-order formula was shown to be insufficient: the
curred error was three times bigger than the present exp
mental uncertainty onapd . Using as input thepN scattering
lengths that had been inferred earlier@7# from pionic hydro-
gen data, we obtainedapd by solving the Faddeev equation
for zero-rangepN forces. The requirement that the calc
lated apd be in agreement with experiment to within on
standard deviation imposes bounds on the isoscalar
isovectorpN scattering lengths. The values of thepN scat-
tering lengths determined that way, consistent with both
pionic hydrogen and the pionic deuterium data, are prese
in Fig. 1.

In the next stage of this investigation we lifted the ze
range limitation introducing a range parameter. The pio
hydrogen bound state problem was solved afresh for a v
ety of range values. We derived the appropriate bound s
condition, and taking the 1s level shift and width of the
pionic hydrogen as input, we used this condition to de
mine thes-wave pN potentials. This was possible since
complex condition is equivalent to two real equations, wh
for an assigned range, can be exactly solved for theI 51/2
and I 53/2 depth parameters entering thepN potentials.
Knowing the potentials, it was a trivial matter to calcula
the correspondings-wave scattering amplitudes. As can b
seen from Table IV, the resultingpN scattering lengths are
rather insensitive to the adopted value of the range par
eter.

The analysis of the pionic hydrogen presented in t
work parallels that given in Ref.@7#. We differ, however, in
the adopted dynamical frameworks: in Ref.@7# the Klein-
Gordon equation together with a localpN potential has been
used, whereas we consider a nonrelativistic Lippma
Schwinger equation~equivalent to a Schro¨dinger equation!
with a separablepN potential. As may be seen from Fig. 2
the pN scattering lengths inferred in this paper are in go
agreement with those deduced in Ref.@7#. This is a direct
consequence of the fact that the formula of Deseret al. and
Trueman provides such a good approximation that we
make considerable progress in deducing thepN scattering
lengths without committing ourselves in great deal to
nature of thepN dynamics. Since the formula of Deseret al.
and Trueman depends neither upon the shape of thepN po-
tential nor upon its range, the small changes in thepN scat-
y,
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tering lengths caused by varying the range parameter mus
attributed to the differences between the approximate
mula of Deseret al.and Trueman and the exact range dep
dent solutions of the bound state equation. Thus, Fig. 2 ill
trates the accuracy of the formula of Deseret al. and
Trueman.

For an assigned range value, the pionic hydrogen d
specify completely thepN potentials, so that they may b
used in the Faddeev equations in order to obtain thepd
scattering length. The latter quantity was shown to be alm
independent of the range parameter~cf. Fig. 4! but was rather
sensitive to the values of thepN scattering lengths used a
input in the Faddeev equations. The above finding, supp
ing the zero-range approach, could be explained by the
that the range of thepN interaction that was considere
physically justified was small in comparison with the de
teron size.

We conclude that the lack of knowledge of the range
thepN interaction is responsible for some uncertainty in t
deducedpN scattering lengths but this uncertainty is rath
small, at the level of 1%. The main source of error is still t
experimental uncertainty in the pionic hydrogen data~past
measurements determined the 1s level shift with an accuracy
better than 1%, but the width with an accuracy of9%).
Future experiments plan to directly measure the width of
pionic hydrogen 1s level with an accuracy of 1%@33#.

It is rather obvious that the presented model contains s
eral omissions but we think that they are not too seve
especially as the investigation has been confined to n
threshold phenomena. As in all nonrelativistic models ba
on static potentials virtual particle production, crossing sy
metry, retardation, and relativistic effects have not been e
touched upon. Besides that, a separable potential is not
sidered to have a strong theoretical basis and has b
adopted here merely for convenience as it simplifies con
erably the solution of the Faddeev equations. There are
limitations on the completeness of the Faddeev appro
such that by restriction to three-body channels, we w
forced to leave out a wealth of inelastic features. The abso
tion channels leading to two-nucleon states are not ea
incorporated in a Faddeev theory and require consider
enlargement of the present model, which does not seem t
currently justified. While cognizant of the above deficienci
we wish to believe that they are outweighted by the merits
the model.
nd
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