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Determination of @zN scattering lengths from pionic hydrogen and pionic deuterium data
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The N swave scattering lengths have been inferred from a joint analysis of the pionic hydrogen and the
pionic deuterium x-ray data using a nonrelativistic approach in whichnateinteraction is simulated by a
short-ranged potential. This potential is assumed to be isospin invariant and its range, the same fol isospin
=3/2 andl =1/2, is regarded as a free parameter. The proposed model admits an exact solution of the pionic
hydrogen bound state problem, i.e., th&l scattering lengths can be expressed analytically in terms of the
range parameter and the shi#) (and width (") of the 1s level of the pionic hydrogen. We demonstrate that
for small shifts and short ranges from the exact expression, one retrieves the standard range independent
Deser-Trueman formula. Thed scattering length has been calculated exactly by solving the Faddeev equa-
tions and also by using a static approximation. It has been shown that the same very accurate static formula for
md scattering length can be derivéd from a set of boundary conditionsij) by a reduction of Faddeev
equations; andiii) through a summation of Feynman diagrams. By imposing the requirement thatdthe
scattering length, resulting from the Faddeev-type calculation, be in agreement with pionic deuterium data, we
obtain bounds on theN scattering lengths. The dominant source of uncertainty in the deduced values of the
7N scattering lengths are the experimental errors in the pionic hydrogen data.
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[. INTRODUCTION ues of the low-energyrN scattering parameters is essential
for further development of the theory.
The determination of low-energy pion-nucleonN) pa- The purpose of this work is to extract tteewave 7N

rameters has been the focus of much theoretical and expeseattering lengths using exclusively the pionic hydrogen and
mental efforts. Thes-wave 7N scattering lengths are of par- pionic deuterium x-ray data. The key reason for proceeding
ticular importance serving as testing ground for variousalong this route is that the low-energy regime can be thereby
theoretical considerations. In addition to that, their isovectoinvestigated without recourse to scattering data and there is
combination provides input in the Goldberger-Miyazawa-no danger that the low-energy parameters have been largely
Oehme[1] sum rule to be used to extract tadNN coupling  determined by the data at high energies. Our treatment is
constant. In recent years major advances have been madeparely phenomenological based on an isospin invariant po-
the experimental and theoretical investigation of #ié¢ sys-  tential model and we wish to clarify at the onset that this
tem. With the advent of meson factoridsAMPF, PSI, and approach relinquishes any pretense of being a theory devel-
TRIUMF) and the corresponding influx of the new high- oped from first principles in favor of a practicable calcula-
accuracymN scattering data, considerable progress has beetional scheme. The investigation has two parts. In part one
achieved in therN phase shift analys¢2—4], providing the  we take as our input the values of thé\ scattering lengths
means to examine even such subtleties as isospin symmettgtermined previously from pionic hydrogen data and use
breaking effect$3,5,6]. Recently,mN scattering experiments them in a microscopic calculation of thed scattering
have been complemented by high quality pionic x-ray meatength. The latter has not been measured directly in a scat-
surements performed both on pionic hydrod@8] and on  tering experiment but may be extracted from the pionic deu-
pionic deuterium[9]. The measurements of the shifts andterium x-ray data by applying the formula of Destral. and
widths in the & levels in these atomic systems, resulting Trueman[11]. It is an empirical fact that therN scattering
from strongzrN interaction, allows us to extract directly the lengths are small as compared with the deuteron size and it
corresponding scattering lengths, i, anda,q, respec- has been a common practicE2] to use the multiple scatter-
tively. Therefore, the new x-ray data constitute an indepening expansion for calculating thed scattering length. Since
dent source of information on the low-energi\ scattering this series rapidly converges, what has been confirmed by
parameters. On the theoretical side, the physical quantitiezarly Faddeev calculationgl3—-15 in the past with the
bearing on the low-energyN interaction have now become poorly knownsrd scattering length, there was little incentive
accessible to calculationslO] conducted within quantum to go beyond the second ordédor a review, cf. Refs[16—
chromodynamic$QCD). Since QCD is known to be highly 18]). At present, the experimental error for thel scattering
nonperturbative at low energies, its low-energy implementalength is at the level of 2% and the adequacy of the second-
tion has been based instead on a chiral perturbation theory order formula might be questionated. Strictly speaking, a
which the effective Lagrangian is expanded in increasingruncation of the multiple scattering series can really only
powers of derivatives in meson fields and quark masses. Thighow its justification when we actually quantify the magni-
approach in practice involves a Taylor expansion in the metude of the higher-order terms to establish whether they are
son four-momenta and therefore it may be expected that thieuly negligible. This question is examined in detail in this
lower the energy, the more accurate are the predictions. Ipaper and therd zero-energy scattering problem is solved
this context, the precise knowledge of the experimental valexactly within a three-body formalism by introducing a zero-
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range model to simulate theN swave interaction. One Il we lift the zero-range limitation by introducing a finite
advantageous feature of this model is that it allows us tg@nge into our formalism. We present an exact treatment of
obtain an analytic solution of the three-body problem in theth® Pionic hydrogen and we derive the formula of Deser
static approximation. We demonstrate that the static solutiofit &-and Trueman for that particular case. Tié scattering
can be obtained by reduction of the Faddeev equations, b ngth obtam_ed from t.he solut!on of the Faddeev equation is
imposing a suitable set of boundary conditions, or finally by _ompgred with experiment. Finally, the results are summa-
> . . rized in Sec. IV.
performing a summation of Feynman diagrams. All three
methods converge to the same analytic formula expressing
the 7d scattering length in terms of therN scattering Il. ZERO-RANGE MODEL
lengths. Static solution in coordinate space is very appealing g central issue we wish to address in this section is how
and helps us to develop an intuitive picture of how the indi-y, constryct a theoretical framework in which we can use the
vidual wN amplitudes contribute to build up thed scatter-  pionjc deuterium data to gain information on thél scatter-
ing length. By solving numerically the Faddeev equations Weng |engths. The measurement of the shift and the width of
show that the accuracy of the static approximation is compaghe 1s level in pionic deuterium presents us with the value of
rable with the present experimental uncertaintyaoy. In 7d scattering lengtta.4. The latter quantity is defined as
order to find out what the pionic deuterium data can teach ughe elasticrd scattering amplitude evaluated at zero kinetic
about thewN scattering lengths, therd scattering lengths energy of the incident pion. This amplitude is necessarily
obtained as a solution of the Faddeev equations is comparegmplex because absorption reaction channels are open even
with experiment. It turns out that the three-body calculationat the very threshold. The most important of them is the
is in agreement with experiment only when the inptil 7 d—nn reaction, and to a lesser extent the radiative ab-
scattering lengths belong to a relatively small subset of valsorption 7~ d— ynn channel. In principle, there would be
ues that are consistent with pionic hydrogen data. e  also the charge-exchange breakup chamried— 7°nn that
scattering lengths that belong to this subset simultaneouslig open at threshold but this process is strongly suppressed
satisfy the constraints imposed by the pionic hydrogen antby the centrifugal barrier. Indeed, withwave 7N interac-
pionic deuterium data. tion there is no spin flip possible so that for the two neutrons
In part two of the present work we introduce explicitly a the 'S, state is not available, whereas tA8, state is for-
range parameter in order to examine the validity of the zerobidden and they have to be produced in higher partial waves.
range model. To achieve this goal it is essential to devise ®n the whole, however, the absorptive effects are not large at
simple and transparent representation of #h¢ interaction  threshold, judging from the magnitude of the imaginary part
in which the two-body scattering problem with and without of the wd scattering length, which empirically constitutes
Coulomb interaction admits an analytic solution and weonly about a quarter of the real part @fy. Strictly speak-
show that a two-channel isospin invariant separable potentiahg, the absorptive processes contribute to both the real and
lends itself to that end. Moreover, within this representatiorthe imaginary part o4 but in the following we are going
the exact bound state condition appropriate for the pionido ignore the absorptive corrections to the real paragf.
hydrogen problem takes also an analytic form. The latteDisregarding the absorptive processes, we shall concentrate
being a single complex constraint, is equivalent to two reabur attention on a microscopic calculation afy and in
equations that can be explicitly solved and as a resulirfie  order to be able to solve the ensuing three-body problem we
scattering lengths are obtained as functions of the range p#troduce a potential description of theN interaction to be
rameter together with thesllevel shift and width in the used in the appropriate Faddeev equations.
pionic hydrogen. In particular, when the level shift is small  In order to facilitate the discussion of the Faddeev ap-
as compared with the Coulomb energy and the range of thproach, it is instructive to take the static model as our point
interaction is small in comparison with the Bohr radius, fromof departure. The attractive feature of the static model is that
the exact bound state condition we retrieve the formula oft is much easier to develop and to compute since the final
Deseret al. and Truemar(independent of the range param- result for pion-deuteron scattering length takes the form of a
ete). Regarding the range as a free parameter we are able fingle analytic formula that does not require off-shell infor-
extend the zero-range model and by varying this parametanation. Moreover, in our case the latter model also happens
in physically reasonable limits we find the results to be in-to be extremely good approximation to the full solution of
sensitive to the value of the range. The uncertainty on théhe three-body problem. The earliest version of a static
7N scattering length caused by the lack of knowledge of themodel, due to Brueckndr 9], was based on the fixed scat-
range is much smaller than that resulting from the experiterer concept and ignored all isospin complications. Here, we
mental errors on the pionic hydrogen level shift and width. wish to make it somewhat more realistic introducing as our
The organization of this paper is as follows. In Sec. || wedynamical framework a set of appropriate boundary condi-
develop a zero-range model and review various derivationsons, but on the other hand, we are prepared to be content
leading to the static solution of thed scattering problem. with a theory that has isospin-invariant pointlike interactions.
The accuracy of the static solution is examined by comparind.abeling the pion as 1 and the nucleons as 2 and 3, the
it with the solution of the Faddeev equations. We infer iso-boundary conditions representing the zero-ramgl inter-
scalar and isovectarN scattering lengths that are consistentaction taking place on nucleanwherei=2,3, may be writ-
with both pionic hydrogen and pionic deuterium data. In Secten as
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lim X, —%;| W (Xq,X2,%3) 1
X1 =X Xa= T E(pzns_nzF’s% 6)
. d
=(r/m)(bo+byl-7) lim - X1 = Xi| W' (Xq,%2,X3), where the symbolp,n, 7~ in Eq. (5) stand for the isospin
xpx S0 wave functions of the corresponding particles. The wave

(1)  function(5) is antisymmetric in the nucleon labels, as appro-
priate for the state where the isospin of the two-nucleon sub-

where the overbar denotes an average over directigns systeml ,; equals zero. As a result of the interaction, the two
—X;i, which is equivalent to projecting out tlsewave com-  nucleons can undergo a transition to a symmetric configura-
ponent of the wave functio®, and the boundary condition tion corresponding td,;=1 and we shall need also a func-
(1) is to be imposed for each of the two nucleons. The vection that is symmetric under two-nucleon permutation
tors | and 7 are, respectively, the pion and the nucleon iso-
spin operators, wheredg, and b, denote the isoscalar and 1 1
isovector 7-N scattering lengthsu is the 7-N reduced Xs=5 7 (P2N3tN2P3) — Eﬂonzns- (6)
mass, anan is the pion mass. In the following we choose the
center of mas¢c.m) of the two nucleons as the origin of the Since our interest here is confinedgavave interactions, no

i i Sef=1 =—1r wi L . i
coprdmate system, 1.e., we sef=3r andx, Al W.'th r spin flip is possible and therefore the spin part of the wave
being the nucleon-nucleon separation vector. The pion Veth[}J)nction does not change. Regarding the nucleons as fixed

'?] this Jac<f3b| cpor:\;ifmate deStembW'” bhe dﬁln,\(l)teq)as{vh?n scattering centers, we may anticipate that the wave function
the wave urlCt'O (r.p) describing t el system for W (p,r) for the full system of the target nucleons and the
the case ofr~ scattered off the deuteron is known, the am- ason will take the approximate form

plitude leading to the final state with asymptotic wave func-
tion @ is —(®¢[V[¥), whereV denotes the potentials that  (p,r)=e'PPuy(r) y,

have been taken out in the derivation @f. For elastic i i
scattering®(p,r) =exp( p’ - p) ¥4(r) wherep’ is the mo- exp(1p|p—3r]) expip|p+3r|)
mentum of the outgoing pion/y is the deuteron wave func- +A(r) 1 1 Xa
tion, andV is the sum of the twarN potentials as asymp- lp—zr] o+ 21]
totically there is nom-deuteron interaction. Although in our

1 1
formalism we never neededN potentials and therN inter- +X(r) expiplp—3rl) _ expiplp+ 1) Xe»
action is represented by the boundary conditidy it is in |p— 31| |p+ 31|
fact possible to give a formal expression for such potential i
(cf. Ref.[20]) and for the operatov we take @

20 d whereuy is the spatial part of deuteron wave function that
V¥ (p,r)=——1(bo+byl-7)8(p—3r)=—|p—3r| includes also the deuteron spin and in particular may contain
M dp also theD component. The projectile enters with momentum
d p and in the initial asymptotic region the pion and the target
+(bg+bql-73) 5(p+%r)d—|p+%r| V(p,r). have separate wave functiofes plane wave andg(r), re-
p spectivelyl and the propagation from one scattering center to
(2 another is described by a superposition of spherical waves.
. o . ] The hitherto unknown amplitudes denoted in Ef), respec-
Denoting the incident pion momentum peind making use tively, asA(r) and X(r) multiplying these outgoing waves
of the boundary conditiongl) in Eq. (2), the 7-d elastic  gmijtted by the two centers account for the multiple scattering

scattering amplitudé(p’,p) takes the form phenomena. They will be determined from the boundary
; conditions(1). To satisfy the Pauli principle the wave func-

f(p',p)= _f e ' P ryl(n{s(p—ir)|p—ir| tion (7) must be antisymmetric in the two nucleon variables.

m This implies that we have to stipulate that the coefficients

3) A(r) and X(r) are even under permutation of the nucleons,
i.e., they must be invariant under the reflections—r. For
wherev is 7-d reduced mass. Given the elastied scatter-  Z€ro-e€nergy scattering considered in this work, however, this

ing amplitude(3), the 7-d scattering length follows imme- IS @lways the case becausér) andX(r) depend then only
diately from upon the magnitude of. It is worth noting that the wave

function (7) includes explicitly virtual charge exchange am-
a,q="F(0,0). (4) plitude X(r). Since our interest here is confined to zero-
energy scattering, in the following we take=0 in Eq. (7).
With the 77-N interaction assumed to be isospin invariant, Equations for the function&(r) andX(r) may be obtained
it will be convenient for us to adopt an isospin notation. Forby substituting Eq(7) in Eqg. (1) for i=2 and equating the
the initial 7~ -d system, the isotopic spin wave function has coefficients multiplying the same isospin functions. With two
the form different isospin functions we obtain two equations, and this

+8(p+30)|p+ 3t} ¥(p,ndp dr,
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procedure determines(r) andX(r) uniquely. Owing to the second-order formula for the-d scattering lengthcf. Ref.
proper antisymmetrization of our wave function the bound-[18])
ary condition fori=3 will be then automatically satisfied.

The equations obtained from E@.) are

a%’:z—nf Bo+<”6§—25%><§>}, (11)
A(r)=boug(r)+ (Be/MA(r) +2(by /NX(r), (82

where the expectation value is taken with respect to the deu-

—X(r)=+2byug(r)+v2(b, /1)A(r) + (B +by)/rX(r). teron wave function. As advertised at the beginning of this

(8b)  section, formula(10) provides a complete solution of the

5 problem. To examine the accuracy of the static formula we

In Eqg. (8 we introduced the abbreviationb;=(1 have to compare it with the exact solution of the three-body

+m/M)b;, whereM is the nucleon mass. The-d scatter-  problem. The latter will be obtained by solving the Faddeev

ing length is given by the overlap integral equations on which we now embark.
To solve the Faddeev equations it will be convenient for
—(2 tA 3 us to work in momentum space. Introducing the Faddeev
A= V/m)J Ug(r) AT AT, © partitions, we write the three-body wave function as
whereA(r) is the solution of Eq(8) W=y (qy k) + (0, ko) + (s, ks),  (12)
bo+ (bo+by)(by—2b,)/r i i
A(r)= ot (bo+by)(bg 1) zud(f)- (10 where q; denotes the relative momentum of tf&3) pair

whereask; is the c.m. momentum of particle 1 and cyclic
permutations are implied. To obtain Faddeev equations for
Using Eq.(10) in Eq. (9) and expandingA(r) in powers of  the amplitudes, the different partitions are writter(efs Ref.

the w#N scattering lengths, we retrieve the well-known [13])

" 1-B,/r—(Bo+b,)(Bo— 2By)/r

¢ P(a,k)=(2m)° () 8(k—p) xat [F(qK) xat G(aK) xs)/(E— g/ M —K?/2v), (133
¢ B (a,k)=[A(— k) xa= X(— 4K xsl/(E—a?/2u—K*/2vy), (13b)
¢ 30,0 =[A(QK) xat X(0,K) xsJ/(E— 0?12 —K*/2vy), (139

wherewy is the reduced mass of the nucleon and that ofithepair, E is the c.m. three-particle kinetic energy, a#q) is

the deuteron wave function in the momentum space. In(E8). we have introduced four scattering amplitudeg,k),

G(q,k), A(q,k), andX(qg,k). However, the amplitud&(q,k) to be nonzero requires at leaspavave NN interaction, and
therefore it will be excluded from our considerations, while the three remaining amplitudes will be determined from the
Faddeev equations. It is evident from Ef3) that under thé®,; permutationy*)— — ) and {2 — (3, so that the total

wave function is, as required, antisymmetric in the nucleon labels. Assuming exact isospin conservation, we can write the
Faddeev equations

(k) J d%’ (o[t(E—K?/2v)|3k+K')+(qlt(E—K?/2v)[ - 3k—K)

o
A k+k’—,k’), 14
(2m)3 E—(k+ uk//M)22u— K220y ( M (143

kK2 \| > d3k’ (qlto(E—k?2vy)| ukIM +K")
A(g,k) = t(E——) —k+ k+3 )+f F(—k—3k',k")
(k) <q ° 2vy/ M p)#lk+zp (2m)® E—(k+3ik' )M —k'?/2v ( ?
d3k’ (qlto(E—K?/2vy)|— ukim—Kk’
o (alto( E—K*120)| — >A(_k_gk,,k,)
(27m)° E—(k+ uk'Im)?2u—Kk'2[2vy m
d3k’ (q|ty(E—K?/2vy)| — ukim—k’
ff talta i~ >x(—k—ﬁk',k'), (14b)
(27)% E—(k+ uk'Im)?12u—K'?/2vy m
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d3k’ (K|ty(E—k?2v\)| uk/M +K')
(27)® E—(k+ik' )M —k'?/2v

F(—k— k' k)

—X(k,k)z\/§<k

k2
tl( E- Z—VN) ﬁk+p> ¢(k+3zp)+ ﬁf

+f A3k’ (K|[to(E—k%2vy) —t1(E—K2/2v\)]|— mk/m—K’) ( P k,)
(2m)® E— (k+ uk'/m)22u—k'%2vy ’

d3k’ (k|ty(E—K?/2 — uk/im—k’
+\/§f (Klta( )| — >A(—k—ﬁk',k’), (140
(27)% E—(k+ uk'Im)?/2u—Kk'?12vy
|
where in Eq.(14) (q'|t(E)|qg) is the NN scatteringt matrix A A a3k’ AK)
for zero isospin andq’|t;(E)|q) are, respectively, the iso- A(k)=b0¢(k)+4rrb0f TR
scalar (=0) and isovectorj(=1) 7N scatteringt matrices. (2m)° K+ (K +k)
The elastic scattering amplitude is given by the expression 3
Ak Ak
R .. ara
, : . F@p) d’q (2m)3 K2+ (K +k)
f(p',p)= lim f 4G A r—ry 2m)?
p'—p q p v w d3k/ X(k,)

(19— (k)= yZbyb(K) + 4m(Bo—By) f

and the scattering length is obtained from E4). We can

use Eq.(14a to eliminateF(q,k) in Eq. (15) in favor of the N d3k’ A(k")
amplitudeA(q,k). In theNN scattering matrices occurring in 2 47Tb1f (2m)% K2+ (K + k)2’ (170
Eq. (14), as a result of the limiting procedure, only the deu-

teron pole contributes and scattering length is given as afhere

overlap integral:

(2m)% K2+ (K +k)?

, b=bj(1+m/M)/(1+«b), j=01. (18

14
Ang=— ;J ¢(k)TA( km,k) et (16) The above set of integral equations can be immediately
(2) solved by introducing the Fourier transform

The above formula is analogous to Ef), and, in fact, the

static approximation resulté9) and (10) could have been A(r)=f e’ TA(K) d3k (19
derived from the Faddeev formalism. In order to demonstrate

that Egs.(9) and (10) follow from Eq. (14) we note that together with a similar relationship fot(k) and ¢(k) and
when the nucleons are static they are not supposed to scatiging the well-known formula

(t—0), and the amplitudé-(q,k) drops out in Eqs(14b

and(14¢ so that we are left with only two coupled integral A —kr
equations. When the underlying forces are of zero range, the ﬁ—J AL DAL, L'
off-shell 7N scattering amplitudes can be simplified, and in x“+(k+k') r

that case

In order to solve Eq(17) we multiply the latter equations by
1k-r ;

"Nt (BE)ay= — (27l w)b: /(1 +kb:), (=01, e'“" and subsequently integrate them okeAs a result, we
(@16 ap== (2l )by /(1 +xby), ] obtain a set of two algebraic equations f¢r) and X(r)
wherex?=2uB andB is the binding energy of the deuteron, that differ from Eq.(8) only by exp(-«r)/r, replacing 1
The important consequence of the zero-range assumptiodndb; replacingb; . Since Eq.(16) goes over into Eq(9),
apparent from the above formula, is that thmatrices be- We are led to the extension of the static form(14)
come independent of the off-shell momenta. Therefore, the

amplitudesA(q,k) andX(q,k) will be functions of one vari- . bo+ (bo+by)(bo—2b;)e™ "y
able only and it will be convenient for us to introduce a (r= 1—Bye “"/r— (Bo+by)(hg— 2D, e 2<7/r2 Ua(r)-
notation that emphasizes that fact, setting(q,k) (20)

=—(m/2m) A(K) andX(q,k) =—(m/27) X(k), where A(k)
and X(k) are two, hitherto unknown amplitudes. With static This formula is to be used in Eq49) but now accounts for
nucleons, the energy denominators in Edsth) and (140  the binding energy correction.

become all equal to- B— (k' +k)?/2m and we end up with Concluding our discussion of the static model we wish to
the following set of integral equations for the amplitudesrecall that a closed form expression fod scattering length
A(k) and X(k): has been also obtained by effecting an explicit summation of
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Feynman diagrams and the most complete treatment can Ilbere is to have thd>33 amplitude at threshold correctly re-
found in Ref.[21]. The ultimate static formula fom, 4, produced. Besides, thewave constitutes only a small cor-
which takes into account isospin degree of freedom, given itiection and using a more complicated model does not seem
[21] is rather complicated and at first sight appears to bdo be currently justified. For thBIN interaction we use two
different from Eq.(20). However, a closer inspection reveals separable models: a simple Hulthen-Yamaguchi potential
that the authors of Ref21] apparently did not realize that Wwith inverse range parameter equiy=6.01162/MB

their fractional formula for.,4 could have been significantly Whose strength is fixed by the deuteron binding energy, and
simplified because a common factor equal to the potential constructed in R¢22] (which will be referred

to as the PEST potentjalvith a more sophisticated form
1+b.e */r —(by+by)(by—2b,)e~2<"/r2 factor of the form

6

may be pulled out both from the numerator and from the g(k):E Ci ,
denominator and eventually drops out. Indeed, when the re- =1 K2+ B3
dundant factor has been canceled, the resulting expression is )
identical with Eq.(20). Therefore, when binding corrections Where the parametes; and ; have been tabulated in Ref.
are disregarded, this approach reproduces the static mode2]- This potential has been devised in such a way that the
result(10) and it is reassuring that in this case all three meth-correspondingNN half-off-shell T matrix has the same be-
ods give the same answer. havior as that of the Paris potent[&3]. This separable rep-

To improve upon the static model one needs a numericdica of the Paris potential takes into account the short-range
solution of the Faddeev equations and in the following, simi-'épulsion that is absent in the Yamaguchi potential yet retains
larly as in the previous calculatiofi$3—15, in order to re-  the simplicity of the latter. o
duce the computational effort, all the pairwise interactions Using standard partial wave projections, the Faddeev
invoked will be represented by rank-one separable potential§quations(14) can be reduced to a system of four coupled
The 7N swave interaction is taken in the form of a standardinhomogeneous integral equations in a single variable that
Yamaguchi potential with the same form factor in both iso-are amenable for numerical treatment. In the actual practice,
spin states. Since the inverse range paramgtérat enters N order to cross-check our numer'lcal procedures,_ we used
that form factor is not known, similarly as before, we con- tWo independent methods of solving these equations. The
sider the zero-range limit, i.e4— . For an assigned value direct methpd introduces an integration me_zsh that aIIows_ us
of B, the strength parameter of the potential may be elimifo replace integrals by sums so that the.mtegral_ equat|o_ns
nated in favor of the scattering length, and the appropriatéake the form of a system of linear algebraic equations easily

(22)

swavet matrices are solvable by standard methods. The second method solves the
system of integral equations by successive iterations. The
(k|t,—(E)|k’> iterative procedure is equivalent to a power expansiofiih
scattering lengths, which allows tracing down the contribu-
2 1 tion from the different orders. Since the scattering lengths are
- 7 m rather small, as compared with the deuteron size, the iterative
sequence proves to be rapidly convergent.
b; 1 It has been a common practice to extract the experimental
= =3 (21 7-d scattering length form thesllevel shift in pionic deu-
1-1pby(1—21p/B)(1—1p/B) " 1+K'“IB terium by using the formula of Desast al. and Trueman

[11]. Therefore, the extracted quantity is in fact the Coulomb
corrected scattering length, denoted hereafte’gs but for
Qonfronting the calculated pion-deuteron scattering length
with experiment one needs the value &f,, i.e., of the
purely nuclear scattering length. Of course, the Coulomb cor-

t0 include also th int i limit | rection could be anticipated to be very small but since the
0 Include aiso thep-wave interaction, {iMiing OUrselves experimental errors are also small, it is of interest to give

only to theP33 wave as in that case both the strength and thgome quantitative estimate of the Coulomb correction. For

statistical V\{e!ght are dominant, rgndenng the remairpng calculating properly the latter quantity one needs to know the
waves negligible. The correspondipgvave form factor of pion-deuteron nuclear potentil_y4 responsible for the level
the form shift. This potential is not known but with the zero-range
9a(K) =K/ (K2+ B2) potential simulating therN interaction in the first approxi-
A A mation it is reasonable to expect that the effective potential is
has been adopted from Refl4] with B,=5.33 fm 2, proportional to the nuclear densipg(r), and we choose to

where the depth of the separable potential can be adjusted pgrametrize it in the following form:

the experimentally known value of the33 scattering vol- 20V ()= —all+m_/ma2 oalr 23
ume taken to be 0.64 fimlt is well known that with the PV () ( =/ )2 palF), 3
above form, the shape of the delta resonance cannot be welherer is 7~ -d separationu .4 is the reduced mass of the
reproduced but this is less important here, the essential fear -d system,my=938.9 MeV denotes the nucleon mass,

wherep=y2uxE andj=0,1 and it is evident from Eq21)
that the zero-range limit can be effected. When the nucleo
motion is taken into account, the-wave 7N interaction
gives contribution to therd scattering amplitude even at
threshold. Therefore, in addition to tisevave, we are going
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and the nuclear density is obtained from the deuteron wave as,=—2.6153 102/m,,, (263
function p4(r)~ug(2r)? [the normalization is adopted such
that p4(r)r? integrated from zero to infinity is equal to dne a,q=—2.6585<10 2/m._,. (26b)

The complex paramete?of the dimension of length repre- ) )
sents the strength of the potential. The poteri@d) linear in ~ @nd comparing Eq25b) with Eq. (26b) we can see that the

pa(r) is slightly different from the traditional pion-nucleus contribution to the real part Giwdothat can be attributed to
potential in that the imaginary part of the latter is propor-aPsorption is at the level of 0.14%, which is by an order of
tional to the square of the nuclear density. However, in oufmagnitude less tr_lan the Coulomb correction. In view of _thls
case the results turned out to be insensitive to the choice (gfasul_t, the exclgsmn of absorptive processes from our micro-
the shape of the absorptive part\éf4 and we gave prefer- SCOPiC calculation ofaq does not appear to be a serious
ence to the simple forrt23). The values of the 4 level shift ~ OMISSIon.

(eq) and width () measured in the pionic deuterium ex- When the experimental uncertainties are accounted for,
periment [9] are ey=—2.460+0.048 eV andl 4=1.194 the scattering lengths extracted from the measured values of

+0.105 eV.(We wish to note thaky has been defined in (€d:1'a), are

such a way that a repulsive potential yields a negative shift ¢ _ - _ -2

and therefore ougy has opposite sign than that in RE3].) 8rg=[(~2.61920.05)+1(0.636-0.056]> 10 /nz;?a)
Given (eq,1"y) values, we can try using a perturbative ap-

proach to obtain the first crude estimateagfand taking the a,q=[(—2.662+0.052 +1(0.647+0.059]%x 10 %/m,,
central values of4,I"y) and the Hulthen wave function, we (27b

—(— -2 i
.geta~(. 1.'637+ '0'_397)?( 1077 fm. Since the total 1energy where the errors reflect only the experimental uncertainties.
in the pionic deuterium is known &= Ecq— (€41 131q), Since the potential23) is rather week, the Coulomb cor-
whereEc, is the Coulomb energy of theslevel, and using  rection can be quite reliably estimated by calculating the
Eq. (23) in the appropriate Schdinger equation involving  ratio a® /a4 and keeping only terms linear M, 4. As in
Coulomb and strong interactions, we arrive at a compleXp caqe the potential depthdrops out, we are led to the
eigenvalue problem with respect & By solving numeri-  general formula
cally the eigenvalue problem, we obtain the ultimate value

of a: o f Ug(2r)2¢(0,r)2dr
_ i 0
a=(—1.676148-10.4181578x10°2 fm, (24 —md_ — : (28)
. . . 8rd f ug(2r)2r2dr
which is not far from the perturbative estimate. The nuclear 0

potential (23) is now completely specified and may be uti-

lized in the same Schdinger equation as before for solving Where ¢(k,r) denotes the regular Coulomb wave function
the zero-energy scattering problem. The resulting scatterinthat for zero-momentumk( 0) and zero orbital momentum
lengths are (1=0), simplifies to the form

a%y=(—2.6193+10.63603 <10 2/m,, (253 do(0r)=r1J1(2V2urgar) N2 p qar, (29

a_4=(—2.6624+10.64743X 10"2/m_. (25b) where J;(x) is the Bessel function. Expanding E@8) in
powers of«, we obtain quite adequate first-order formula
Having determined, for asigned values ofejy,I'y) gives — a54/a@,q=1—au,q(r) where the expectation value is with
us the opportunity to check the accuracy of the formula ofrespect to the deuteron wave function. We have checked that
Deseret al. and Trueman by calculatingef,I'y) from it.  for a variety of deuteron wave functions the calculated ratio

Writing (28) has been very stable and its numerical value is 0.985
[from Eq.(26) we obtain 0.984 to all orders M 4]
eqt13Tg=2p2 0%y, Adopting the zero-range model of theN interaction, for

calculating therrd scattering length one needs as input just
where « is the fine structure constant, and using EZpa, the isoscalar and the isovectaerN scattering scattering
the above formula of Deseetal. and Trueman give lengths. The values db, and b, that have been extracted
(€4.I'g)=(—2.461,1.195) eV, which is indeed very close from the pionic hydrogen data in RdB] are
to the input valuesdy,I"y) =(—2.460,1.194) eV that have L,
been used to pin dowa and therefore should have been bo=—(0.22-0.43 X10"%/m,,
reproduced if the formula of Deset al. and Trueman had _ 2
been exact. In order to shed some light on the role of absorp- b;=~(9.05+0.42x107%/m,, (30)
tion, we repeated the computations of the scattering lengthghere the quoted uncertainty comprises the experimental er-
but this time we removed the absorption completely, by setrors together with the uncertainty introduced by applying a
ting the imaginary part ofa equal to zero. Thus, fom  specific procedure that allows us to dedigeand b, from
=—1.67614% 10 2 fm, we obtain the measured x-ray spectra. The theoretical uncertainty is
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TABLE |I. wd scattering length obtained from the static model and from a Faddeev calculation in the
zero-range model for differerity andb,. For theNN forces we used PEST and Yamaguchi potentials, the
results for the latter case are presented here in parentheses. All entries aré/im 10nits.

by

bo Model —-9.47 —9.05 —8.63
Second order —4.22 (—4.87) —3.97 (—4.57) —3.74 (—4.28)
Static (10) —3.89 (—4.21) —3.69 (—3.98) —3.49 (-3.77)
—0.65 Static(20) —3.44 (-3.77) —3.29 (—3.58) —3.10 (—-3.39)
Faddeev —3.97 (-4.27) —3.76 (—4.04) —3.55 (-3.81)
Faddeev withA —3.59 (-3.97) —3.37 (-3.73) —3.16 (—3.50)
Second order —3.30 (—3.96) —3.06 (—3.66) —2.82 (—3.37)
Static (10) —2.99 (-3.32) —2.78 (—3.09) —2.58 (—2.87)
-0.22 Static(20) —2.53 (—2.87) —2.36 (—2.68) —2.19 (-2.49)
Faddeev —3.07 (—3.37) —2.85(-3.14) —2.65(-2.92)
Faddeev withA —2.68 (—3.08) —2.46 (—2.85) —2.25(-2.62)
Second order —2.38 (—3.04) —2.14 (—2.74) —1.90 (—2.45)
Static (10) —2.08 (—2.42) —1.87 (-2.19) —1.68 (—1.97)
0.21 Static(20) —2.62 (-1.97) —1.45 (=1.77) —1.28 (—1.59)
Faddeev —2.16 (—2.47) —1.95 (-2.24) —1.74 (-2.02)
Faddeev withA —1.76 (—2.20) —1.54 (-1.96) —1.34 (-1.73)

guoted to be about twice as large as the experimental erraiions. An explicit demonstration that, at least to the second
Besides, the errors do, and onb, are strongly correlated. order, such a mechanism is at work can be found in Ref.
Using Eqgs.(30) as our input, we have calculated thel [24].
scattering length and the results are presented in Table I. All Since the static modell0) proves to be so accurate for
entries are doubled because we employ two modeldf Yamaguchi and PEST models of theN interaction, we took
interaction: the numbers without brackets have been obtaineaddvantage of this fact, using it to examine more realisti¢
using the PEST wave function and, respectively, the brackpotentials containing also tlig-wave part. The results of our
eted quantities correspond to the Yamaguchi potential. Fotomputations are displayed in Table Il where we compare the
each set of input values obg,b;) we computeda,.4 using two separable model$iulthen-Yamaguchi and PE$Tused
five different methods discussed before, beginning from thén Faddeev calculations, with two popular local potentials
simplest second-order formu{1), through the static model (Paris[23] and Bonn[25]). As expected, the PEST wave
(10) and(20), up to the full Faddeev calculation without and function results are indeed very close to those obtained with
with A, respectively. The results of the Faddeev calculatiorParis wave function despite the lack of thecomponent in
with the s-wave interaction only(without A) constitute a the PEST wave function. Therefore, neglecting thevave
benchmark for the various approximations. Contrary to whain the Faddeev calculation does not appear to be a serious
has been often claimed in the literature, the second-ordeymission. It is also gratifying that the PEST, Paris, and Bonn
formula is insufficient as the error incurred is roughly four models give very similar results.
times bigger than the present experimental uncertainty on In Table Il we present the values afd scattering length
a,q. Itis apparent from Table | that the model closest to theobtained in result of iterative solution of the Faddeev equa-
Faddeev result is in all cases the static mddé€). The ac- tions. Since for zero-rangeN interaction there is no addi-
curacy of the latter is very good, the error being alwaystional suppression due to theN form factor, the rate of
below 2%. By contrast, the performance of the implementa-
tion (20) of static model is rather disappointing, especially
that from formula(20) containing the binding energy correc-
tion, one might expect further improvement. Nevertheless
the numbers show just the opposite, that in fact the include
corrections go in the wrong direction, worsening the results
so much that even the second-order formula proves to be
more accurate. Of course, it is not just the binding energy

TABLE II. The expectation values af, 1/, and the values of
md scattering length calculated for differeNtN wave functions.
For 7N scattering lengths we have adopted their central values, i.e.,
o=—0.22 andb,;=—9.05. All scattering lengths are given in
0 2/m,, units.

NN wave function

correction that is responsible for the difference between the Hulthen PEST Paris _ Bonn
static model and the Faddeev result, as only the latter prog+) (fm) 3.1345 3.2309 3.2685 3.2536
erly accounts for the nucleon recoil. However, the bulk of the(1/r) (fm~1) 0.55501 0.45507 0.44864 0.46314
recoil correction seems to be canceled with the binding ensecond ordea,y —3.66 —3.06 —-3.04 -3.13
ergy correction and this cancellation explains the success Gftatica_, ~3.09 ~-2.78 _278 —282

the static formula(10) containing neither of these correc-
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TABLE Ill. 7rd scattering lengths calculated from consecutive 12
iterations of the Faddeev equations. All entries are in21,
units. 11 +
PEST PEST Yamaguchi Yamaguchi e 107
Order noA with A noA with A E
>~ 0T
1 —1.66 —-1.21 —1.70 -1.23 |
2 ~298  —2.66 ~3.42 ~3.30 S st
3 —-289  —2.44 -3.20 ~2.77 o
4 -285  —2.48 -3.11 —-2.91 S 7T
5 —2.85 —2.45 —-3.14 —2.82 ! 6+
6 —2.46 —-3.15 —2.87
7 —2.46 —-3.14 —2.84 5+
8 —3.14 —2.86
9 —2.85 4T
10 —2.85
3 -+
24
convergence is somewhat slower but the converged result is
obtained in less than ten iterations. We ga/g, values cal- 1+
culated with and withoup-wave 7N interaction, which al-
lows to evaluate th@-wave contribution in each order. For 0 t
the YamaguchNN interaction thep-wave correction in the 0 1 _9 2
first order is quite large and contributes 0470 2/m_,. — by [107%/m,]

The p-wave contribution to the second ord@alled thesp FIG. 1. Constraints on the isoscalar and isovector scattering
term in Ref. [12]) has opposite sign and equals0.35 lengths imposed by pionic deuterium data. The black strip corre-

72 . _
>.< 107%/m,. In general, the n.et effect of t@wave Interac sponds to the one standard deviation region. The rectangle corre-
tion on the converged result is reduced owing to the destruc

o . . Sponds to the values obtained from pionic hydrogen data in[REef.
tive interference between repulsigavaves and attractivp

waves, amounting in total only 0.2910"2/m,.. Similar fea-

tures are observed for the PEST model but since the conver- Il FINITE-RANGE APPROACH

gence rate is faster, the higher-order corrections are sup- s far our treatment of the pion-deuteron scattering

Fhresf.setd agd the mterferen(t:-e eﬁegtzgsj?girg/to behs_lm?rl]ler, I'f)‘r’oblem has been carried out exclusively within the zero-
€ first-orceip-wave correction 1S ©. M, W€ €~ range model. Although this model has served us well, it is

corresponding correction to the converged result is 0.3 ased on certain idealization whose validity and conse-

x10"%/m_,. i
:LI?is/arlTr])Barent from Table | that the calculated scatter-  J-cNc®S need to be _examlnfaq. we thereforg turn now fo the
ing length values are rather sensitive to the input values Oguestlon of formu]atmg a flnlt.e-range. version 9f the ap-
alproach presented in the preceding section. Relaxing the zero-

(bg,by) and therefore it is not so easy to see when the ¢ limitation h f isuid in th
culation agrees with experiment. To facilitate the comparisoﬁange imitation has of course Iquid pro quoin that we
have to worry now about the off-shell extension of thbl

with experiment the values &4 resulting from Faddeev - ) ' S
calculation (PEST withA) and displayed in Table | have scattering amplitude, anq this means t_hat the pionic hydrogen
been represented analytically using bilinear interpolation ofProblem has to be consideret intitio in order to provide

a grid in the py,b;) plane. Then, given the interpolating the necessary input for thed calculation. Anticipating the
polynomial, we equated it to the experimental valueof, application in the Faddeev type calculation, it will be conve-
adding or subtracting the experimental error. This procedur@ient for us to work with separable potentials. To get insight
gave us two constraints of algebraic form in the, ({,) into the pionic hydrogen problem, let us consider a two-
variables, readily solvable with respect to one of these varichannel situation, where the upper channel labeled as 1 cor-
ables. The two functions obtained this way may be plotted irresponds to the neutrat’n system and the lower channel
the (bg,b4) plane where, as shown in Fig. 1 they set thelabeled as 2 refers to the™ p system. We assume that the
boundary of the tilted band representing the one standartivo-channel interaction respects isospin invariance and the
deviation constraint imposed by thal scattering length de- isospin symmetry is broken only by the Coulomb potential
duced from pionic deuterium data. The rectangle in Fig. loperative in channel 2 and by the mass splitting within iso-
represents the experimental values lof,0,) to within one  spin multiplets. Since we wish to consider an atomic system
standard deviation inferred from pionic hydrogen data. Thet is essential to treat the Coulomb interaction exactly. To
ultimate (bg,b,) values that are consistent with both the pi- meet this requirement, we choose the two-channel
onic hydrogen and the pionic deuterium data fill the area ot.ippmann-Schwinger equation as our dynamical framework
the black strip. that in coordinate representation takes the form
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D(W)=[1+515(v|G1 (W)[v)][1+,5v|G5 (W)[v)]

Uy(r)= fw<r|Gf(W)|r’)[Vll(r’,r”)ul(r”)
° —s30|G1 (W)[v)(v]|G5 (W)|v)

+ V(1 r")uy(r”)]dr’ dr”, (313 -0, (35
(1) = JO <r|G2+(W)|r’>[V21(r’,r”)u1(r") where we have introduced the abbreviation
Va1 ]dr Gt (I8 [ o1G] Wleo(rdrar

where we have assumed spherical symmetry of the problenhe determinant can vanish only at some particular value of
andu;(r) denotes zero orbital momentum radial wave func-the energyw=Eg that will be interpreted as the bound state
tion in channej. The strongmN interaction is adopted here energy. Normally, knowing the underlying interaction, by
in the form of a nonlocal potential matri; . In Eq.(31) we  solving Eq.(35) one obtains the binding energy. However, in
have introduced the Green matrix whose only nonvanishinghe problem at issue we have a reversed situation: we know

diagonal elements are the binding energy from experiment and it is the interaction
. , . that we are after. In the case of the pionic hydrogen atom we
(rIGy (W)[r")=—=(2pu1/py)exp(1par =) sin(par <) have an unstable bound state in the charged channel and the

(32 pinding energy will be a complex number. We set

for the neutral channel, while in the charged channel we have
to take into account the Coulomb interaction, and the exact
Green’s function in this case reads

Eg=Ey+Eis—(e+137y), (36)

whereE = — u,a?/2 is the purely Coulombicd state bind-

N N ing energy. Since in our formalism there is no room for the

(r|G2 (W)|r")=—(242/P2)[Go(7,P2r ) radiative decay of the pionic hydrogen the partial wigtis
F1Fo(m.por ) Fo(mpor.), (33 @ fraction of the total widthl’ given by the formulay

ol 7.P2 ) IFol7.Pr <), (33) =T/(1+P~1) whereP is the Panofsky ratio. It has been

wherer _=min(r,r'),r~ =max¢,r’). In Egs.(31)—(33) W de- shown in Ref[27] that the effect of the £, y) reaction on
notes the total c.m. energjncluding the rest magsy,; are the accounted for hadronic channels is negligible. The ex-
the reduced masses in the two channels,@rafe the chan- perimental values foe,I" (cf. Ref.[7]), andP (cf. Ref.[28])

nel momentap; =+ v2u;(W—E;) with E; being the thresh- adopted in this work are

old energies and the sign ambiguity will be resolved in a _ +

moment. All masses here are assumed to take their physical €=7.108-0.013sta) = 0.034sysh eV,
values. In Eq.(33) n=—au,/p, and Gy,F, denote the
standard Coulomb wave functions for orbital momentum
=0, defined in Ref[26]. Finally, it should be noted that
there is no ingoing wave in Eq31), as appropriate for a

bound state problem. o and in the following we shall take=7.108+0.047 eV and
As mentioned above, to simplify matters, we assume thary:o'527L_F 0.047 eV as the input values. It must be imme-
the interaction is separable, i.e., that the potential matrix isdiately explained here that in this work we have defiedd
, , accordance with a different convention, so that euhas
Vii(r,r) = —o(n)sju(r’), (34 opposite sign than that used in RET]. In our approach we
have tacitly assumed that under perturbative treatment all
electromagnetic corrections contribute the same amount to
the purely Coulombic level and to the level shifted by strong
interaction. More precisely, we are going to ignore the small
effects caused by the distortion of the wave function. Ac-

can be solved analytically. To this end it is sufficient to mul- ¢4 gingly, the electromagnetic corrections need not concern
tiply each of the equations by(r) and integrate over. This 5 here ‘and they have been left out altogether but, of course,

gives a system of two homogeneous algebraic equations fQpey would be indispensable for calculating the total dis-
the two unknown quantities placement of the level from its Coulombic position.

. The pole of thel matrix that corresponds to the solution
X;= f v(ru(ndr, j=1,2 of Eq. (35) can be located on one of the four R"ie'mann sheets

0 as appropriate for a two-channel problem. This is also appar-

ent from the above-mentioned sign ambiguity in the defini-

and the latter will have a nontrivial solution if and only if the tion of the channel momenta in E@3). The right choice of
determinant of the syster® (W) vanishes. Expanding the the Riemann sheet is essential, and this can be accomplished
determinant, we are led to the explicit bound state conditiorby proper adjustment of the signs of the imaginary parts of

I'=0.868+0.04( stay = 0.038 sysh eV,

P=1.546+0.009,

where the function (r) represents the shape of the potential
and the dimensionless parametsgsare the measure of the
strength of the potential. Time reversal impl&@s=s;; . With
separable potentials, the system of integral equati@is
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the channel momentg;. We are using here the standard Eq. (35), and regarding; ands; as our two unknowns, we
enumeration of the Riemann sheets introduced in R, arrive at two algebraic equations that can be solved analyti-

ie., cally:
sheetl: Imp;>0, Imp,>0, s? Imac* +s; Im(ab* —c)—Imb=0, (403
sheetll: Imp;<0, Imp,>0, s3=—(1+s;Rea)/(Reb+s;Rec), (40b)
sheetlll: Imp;<0, Imp,<O0, where  a=((v|Gy (Eg)|v)+2(v|G; (Eg)|v))/3, b
=(2(v|G1 (Eg)|v)+(v|G; (Eg)|v))/3, and c
sheetlV: Imp;>0, Imp,<O. =(v|G; (Eg)|v){(v|G; (Eg)|v). With s; ands; in hand, the

corresponding scattering lengtha,( with 1 =1/2 and 3/2
In the pionic hydrogen case, with an unstable bound state iare obtained from
channel 2, we have to enforce the pole to be located on the
second sheet. 2 sy
To proceed further we need some concrete shape factor aZ'_E 1-sy° (42)
v(r) and our choice here is the exponential shape, i.e., we set
For local potentials the method outlined above could be
v(r)= \/,le,u exp—pBr), (37 also applied but in such case it would be more convenient to
use instead of Eq(31) an equivalent set of two coupled
where u is the reduced pion-nucleon mass in the case oBchralinger equations. For fixed energy and the proper
exact isospin symmetrgwe take average mass for each iso-choice of the Riemann sheet, these differential equations can
spin multiple} and 3 is the inverse range parameter. With the be integrated numerically, and the bound state equation is
exponential form(37), the potential(34) is identical to the obtained from the requirement of vanishing of the Wronskian
familiar Yamaguchi potential, and the Green’s function ma-determinant. The latter is again a function of the isospin 1/2
trix elements can be obtained in an analytic form. The finaland isospin 3/2 strength parameters, or if one prefers, the
result is corresponding potential depths. Although the bound state
condition is defined then only numerically but from it one

i 1 can get two real equations that can be solved numerically
(W|Gi(W)|v)=———""— (38)  using standard procedures. With a local potential, however,
# (1=1p:/B) the solution of the three-body problem becomes much more

complicated and this is the main reason why we preferred to

for the neutral channel, while the corresponding formula forwork with a separable potential.

the charged channel reads Our calculational scheme is now complete and we shall
N present our results. Using as our input the experimental val-
(v[Gz (W)v) ues of the pionic hydrogen level shift and width, the bound

. 2 state equation has been solved analytically by adopting a
_k2 ! ARG AL AR (399  humber of “reasonable” values fof and in our computa-
MHo(1—1p,/B)2 i+l tions we have used the values from 2 fito 10 fm L.
Although we do not know the precise value of the range but
with z=(B+1p,)/(B—1py). The last fraction in Eq(39  there is no physical mechanism known that might generate
accounts for the Coulomb interaction and the symbolong range forces in therN system, the longest range is
oF1(a,b;c;z) denotes the hypergeometric function definedunlikely to be bigger than 0.5 fm and this sets the lower limit
in Ref.[26]. The computation of the hypergeometric function of acceptable3 values. In principle, there is no upper limit
entering Eq(39) is greatly simplified owing to the fact that for g but for 8>10 fm ! we have in practice reached the
the first parameter is equal to unity in which case the contintimit of the zero-range forces and things change very little
ued fraction representation ofF;(1,b;c;z) discovered by above that limit. The exact solutions of the bound state equa-
Gausq30] proves to be useful. The continued fraction sum-tion are presented in Table IV, where the errors reflect only
mation converges in the whole of the compleglane away the experimental uncertainty of our input, i.e,,I’, and the
from the branch cut on the real axis running from one toPanofsky ratio. Our isoscalar and isovector scattering lengths
infinity. are in good agreement with the values extracted in R@f.
With exact isospin symmetry the three strength paramThis has been illustrated in Fig. 2 where we have compared
eterss;,S;,,Sy, are not independent and can be expressed i representative sample of our computations with the values
terms of isospin 1/2 and isospin 3/2 strengths denoted hergbtained by Siggt al.[7]. The solutions corresponding ®
after ass; andss;, respectively. In the bound state condition spanning the range 2—10 frh are located very close to
(35) both the real and the imaginary part D{Eg) have to  each other in thel(; ,by) plane, and putting more than three
vanish simultaneously and that gives us two real equationgoints on the plot might have obscured the picture. The error
Since the bound state energy is knojef Eqg.(36)], we put  bars reflect only the experimental uncertainty of our input.
S11=(S1+253)/3, Sp=(25,+53)/3, S1,=12(S3—5;)/3 in  As mentioned above, the bound state equatBB) yields a
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12 the parameteB,, that is defined from the expansion of the
_ real part of theswave scattering amplitude in powers of the
1 c.m. momentumk, i.e., close to threshold, we have
— 104 =T Re f, (k)=a, + B, k?+ - - -. For comparison, at the bottom
g of Table IV we give the values of all parameters inferred
= 41 from a recent phase shift analy$#. The calculated scatter-
i ing lengths, listed in Table 1V, are almost independent upon
S g 4 B, in contrast with the slope parametds, , which change
— quite a bit wheng is varied in the interval 2—10 fir. In
_8 7T . addition to this, ouB; values turn out to be always positive
| 1|20 and therefore have opposite sign than those deduced from
6T = =|.|]8_‘E er phase shift analysis,4]. Actually, the pionic hydrogen data
provide a strong constraint only for the scattering lengths,
5T H —1 10. and sticking to a simplerN Yamaguchi potential it is not
a1 possible to geB; negative just by varyings. Indeed, for
fixed a,, the slope parameter Bis given by the exact for-
34 mula
24 - 3 4
N B, ay| 1+ 2 fay, 3+Ba2,
0 . and since the expression in the square brackets is necessarily

5 positive the sign of B is bound to be opposite to that of
— by [10—2/m7r] ay; . Tp obtain a neggtiv83 a more .sophisticated potential
involving both repulsion and attraction would have been re-
FIG. 2. The values of isoscalar and isovector scattering length§uired [3]. There is no need for such extension, however,
obtained by solving the bound state equati8B) for 8 equal, re- because our model has been devised for describing only the
spectvely, 2.0 fm?, 6.0 fm %, and 10.0 fm? (indicated on the near threshold phenomena and is quite adequate at that. Ex-
plot). The point marked as “Deser” has been obtained from Eq.panding the phase shift close to threshold in powels @fe
(50). The rectangle corresponds to the values obtained in[Ref.  have 8, =a, k+ O(k®), and it is apparent that a model pro-
viding merely the scattering length reproduces satisfactorily
second-order equation fa; ands;, and therefore we have the phase shift in the neighborhood of zero, whésg ex-
always two solutiondcf. Eqg. (40)]. Only one of them is hibits a linear behavior. In our case this is all that matters as
presented in Table IV, whereas the second solution leads wwe never deal with higher energies. This means that the de-
bothb, andb; positive and has had to be rejected. When thetermination of the slope parameters is out of reach within our
two strength parametess ands; are known, we can calcu- model since the appropriate energy scale has been set by the
late not only the scattering lengths but also the effectiveCoulomb energy in the pionic hydrogen, in which case terms
ranges in each of the two isospin states and these values geoportional toB,, make negligible contribution. For an as-
presented in Table IV. Instead of the effective range we ussigned value of3 the slope parameters may be calculated but

0 1

TABLE IV. 7N scattering lengths inferred from pionic hydrogen dda, (are slope parameters defined

in the tex}.

B Q as B, Bs
(fm™4) (m, ") (10t m.? (10°m_?) (10°m_?®)
1.0 0.1796:0.0047 —0.9649+0.0867 —21.98 8.76
2.0 0.17670.0046 —0.9377:0.0852 —-6.63 1.96
3.0 0.1760:0.0046 —0.9306+0.0846 —-3.60 0.81
4.0 0.17570.0046 —0.9263+0.0841 —2.46 0.43
5.0 0.1756:-0.0046 —0.9228+0.0837 —-1.90 0.27
6.0 0.1756:-0.0046 —0.9197+-0.0834 —-1.57 0.18
7.0 0.1756:-0.0046 —0.9167-0.0830 -1.37 0.14
8.0 0.1756:0.0046 —0.9138+0.0827 -1.23 0.11
9.0 0.1756:0.0047 —0.9110+0.0823 -1.12 0.09
10.0 0.175%0.0047 —0.9082+0.0820 —-1.05 0.08
Deser 0.1768 0.0046 —0.9258+0.0857

Ref.[4] 0.1679+0.0059 —0.785+0.034 —7.24+3.06 —4.08+1.46
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1.0 - Before concluding our discussion of the pionic hydrogen
we wish to mention one last thing, namely, we are going to
show how from Eq.(35) one can retrieve the formula of
Deseret al. and Trueman(cf. Ref. [11]). This task will be
0.8 | ] accomplished by obtaining an approximate solution of Eq.
(35 and to this end Eq35) is cast in the form

1+ e W)(v|G3 (W)[v) =0, (43)
2=}
& 08 ¢ where we have introduced an effective energy dependent
complex strength parametsg;, defined as
Seit( W) = S0~ ST4v|G1 (W) [v)/[ 1+ 5150 |G (W)[v)].
04 (44)
The complexr ™ p scattering lengtla,, can be expressed in
terms ofs.z(W) evaluated at threshold,
0.2 -
3241 3242 3243 M22  Se(Ey)

-m{m)- A= T —, 45

m(p)-m(x)-W [cV] P~ L B 1-s.4(Ey) (45)

FIG. 3. siné vs energy close to the resonance calculated from _ .
Eq. (42) for B=3 fm L. and the Coulomb correctest™ p scattering length, denoted

asa;,, can be obtained from the exact formula derived in

they are of no physical significance and comparing thenfRef- [31]:
with those resulting from phase shift analysis does not make
much sense.

As noted in Refs[7,27], at the energy value close to the where £=4a ey s

] ; X ! =4au,/B and Ei§) is the exponential integral

unstable bound state in channel 2, the scattering amplltude Winction definefj in Ref[26]. It should be noted here that the
the open channe_l 1 shows a strong_resonan_t behawqr. Forz%ro-range limit B—oc) does not exist in Eq(46) because
separable potential, triewave scattering amplitudg(W) in the function Ei¢) for £=0 has a logarithmic singularity. For

channel 1 may be easily calculated analytically and takes fhe case of3=3 fm~* just considered, we obtain
simple form ’

1/a,=etla,,+2ua Ei(), (46)

a,p=0.1208110.004 441 fm,
f(W)=¢e'? sinéd/p,
agp=0.12068l-l 0.004 458 fm,

p1 2 Spt+ (511520~ 53, (0] G5 (W)[v) _ _
=7 B (14 p2 35 2D(W) , (42 sothatthe Coulomb corrections do not exceed a fraction of a
1 percent. However, in general, the Coulomb correction is
model dependent, and, in particular, it is rather sensitive to
where § is the corresponding phase shift that for résl the range of the nuclear potential what can be seen when the
below thes p threshold is a real number. The resonance igesult above is juxtaposed with thed case where the range
not of a Breit-Wigner shape but its positiei may be easily  of the potential was comparable with the size of the deuteron
established from Eq42) as the energy at which the phase and, accordingly, the Coulomb correction 4@ scattering
shift is equal to3 . Close to the resonant energy, i.e., for length was much bigger (1.5%).
W~E, we have co~(W—E,)/(iI,), and this allows us to Since we wish to obtain an approximate solution of Eq.
infer the value of the widtH, of the resonance. In Reff7] (43) that is located not far from the Coulomb bound state, we

the values of ¢,v) have been calculated by identifying them StW=Ez+Eys+ 6E, wheredE is a small displacement. To
with (E,+E;—E,,I';). In principle, the values of ) calculateSE and derive the formula of Deset al.and True-
obtained that way do not have to be identical to those detefM@n from Eq.(43), we have to assume thé) the complex
mined from the position of the bound state pole. To checkenergy shiftSE=—e—13y is small in comparison with the
that point, we have repeated the procedure of R@fout by  Coulomb energy |$E/E;{<1) and (ii) the range of the
using our separable potentials whose depths have been agirong interaction is small as compared with the Bohr radius
justed to reproduce the values af, ¢) obtained in Ref[7].  (B>u-,). Introducing a complex momentump.
We found that the two methods give nearly identical results= 2u,E;s=1u,a corresponding to the Coulomb bound
and the differences ine(y) did not exceed 1 meV. For il- state, we can see that whea—p, theni1p— —1 and the
lustration, in Fig. 3 we show the behavior of girtlose to  Green’s function(39) occurring in Eq.(43) becomes singu-
the resonance for the case®t3 fm~!, where the strength lar. This singularity is of paramount importance since it in-
parameters inferred from the pole location wegsg duces a zero in the nucle& matrix that is necessary to
=0.271820 and;= —0.245868. cancel the bound pole in the Coulor8matrix. As a result

065205-13



A. DELOFF PHYSICAL REVIEW C 64 065205

of this cancellation, the fulb matrix in the charged channel, -1.5
which is a product of the Coulom® matrix and the nuclear T
S matrix, remains finite ap,=p.. In compliance with the _ - =T
small shift assumption, we spy=p.+ Sp, wheredp is sup- o0l
posed to be a small correction, and since the most rapid |
variation in Eq.(39) arises on account of the pole term, we TIT .
approximate 1% by dp/p.. Apart from that, elsewhere *
we replacep, by p.. The hypergeometric function fary 25 |
=—1 reduces to a polynomial-1z?, and neglecting small
terms of the order op./B, from Eq.(43) we obtain

8p~—41(PYB) (12 WSen(E)~—21 Play, (47 L1+

a, [10°/m,]

where we have used E@5), retaining only linear term in | -
a,p. The above result gives the formula of Deserl. and
Trueman[11] in its standard form,

SE~pcopl uo~ —2pu5aa,,, (48 -4.0

1 3 5 7 9 11
where, in view of the above discussion, it does not really B [1/fm]

matter whether we take, or a7, . It is perhaps in order to FIG. 4. wd scattering length vs the inverse range paramgtef
recall that although the formul@8) of Deseret al.and True-  the =N potential. Full(open circles correspond to a Faddeev cal-
man has been derived here for a specific choice of the urculation with (without) p-wave =N interaction.

derlying interaction, its validity is quite general. To examine

the accuracy of the formula of Deset al. and Trueman we where x= e/2u3a°, y=13vy/2u5a®, and the double sign in
turn again to our previous example whge=3 fm~t and by  Eq. (50) stems the fact that Eq49) is quadratic ina,, . If
computinga,, from Eq. (45 and inserting in Eq(48), we  (e,y) have been obtained in a model independent way, then
obtain (,y)=(7.024,0.516) eV, to be compared with our the results(50) are also model independent. As seen from
input values equal €, y)=(7.108,0.527) eV that ought to Table IV the uncertainty oa; anda; (3% and 9%, respec-
have been reproduced if formuld8) had been exact. It is a tively) induced by experimental errors oa, ¢) is much big-
remarkable property of the formula of Desaral. and True-  ger than the uncertainty caused by varyjdgabout1%).
man that it is independent of the range of the underlyingunder these circumstances it is perfectly justified to infer the
interaction and therefore the error in this formula must be ofzN scattering lengths via the formula of Desefral. and
the same size as the uncertainty in the exact result caused yueman, and their numerical values obtained from (&)
varying B. If one is prepared to tolerate such uncertainty,are displayed in Table IV, whereas the correspontiiggnd
formula (48) could be used to infes; andas. Introducing a b, are presented in Fig. 2.

two-channelK matrix, isospin invariance can be invoked to It is apparent from Table IV that to improve upon the

pin down its elements at the single unsplit threshold, formula of Deseret al. and Trueman we need some addi-
tional clues concerningd, and it becomes something of a
1 2 V2 challenge to find ways to ferret out more precisely the value
§a1+ §a3 ?(33_31) of B. So far in our considerations we have not yet mentioned
K= \/5 5 1 , the pionic deuterium data, and at this stage it is logical to ask
oag—ay) =ayt-ag whether this additional information might not help to pin
3 3 3 down the range parameter of thé\ potential. Therefore, in
the next step, we use the values given in Table IV as input
and the complexr ™ p scattering length takes the form for a three-body calculation, i.e., we use the separable poten-
tial (37) in the Faddeev equations for calculating the
=Ko+t 1pK/ (1= 1pK 1), (49 scattering length. The results of our computations are pre-

sented in Fig. 4 where we have plotted thel scattering
wherep; is the momentum in ther’n channel evaluated at |ength versusg. The full circles represent the results ob-
the 7~ p threshold. The scattering lengt#9), unlike Eq.  tained by the including the-wave interaction(more pre-
(45), does not depend upon the range. Inserting B@) in  cisely, just theP33 wave, while the open circles correspond
(48) and separating the real and the imaginary parts, we engh a situation where\ has been left out. For reasons of
up with two real equations for the two unknowasandas.  clarity of the presentation these two sets of points have been
To more than sufficient accuracy, the explicit solutions are given at differentg values. The indicated error bars reflect
the uncertainty in the input valudsf. Table IV). For com-
a;=[x*y(1-2py)/V2pyl/(1=py), (508  parison, the experimental value afd scattering length to
within one standard deviation is given in Fig. 4 as the area
az=[XFy(2—py)/V2py ]/ (1—piy), (50b) between the two horizontal lines. The striking feature appar-
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ent from Fig. 4 is that the results are almost independent ofor a major contribution t@ .4 will be little affected since by
the range paramet@. Furthermore, the calculated scattering settingr =r4, we get(1/ry=0.5 fm 1, not far from the val-
lengths are consistent with experiment for glino matter ues listed in Table Il. Wherg is varied in the range
whetherA has been included or not. This result may come a2-10 fm !, we havery8>4 in the exponential damping
a disappointment since the deuteron data give no illuminafactor in Eq.(51), so that theg dependent terms make a
tion how to bracket the value ¢8. contribution tog(r) at the level of a few percent and the
In order to understand how the above result comes abouesultingsd scattering length is almost independent ugbn
we shall invoke again the static model, taking advantage ofhis feature, sustained in the full Faddeev solution, is a con-
the fact that with the Yamaguchi potential representing theequence of the fact that the adopted range ofstNeforces
7N interaction the static solution of the Faddeev equationsvas small as compared with the deuteron radius.
may be readily obtaine@f. Ref.[32]). Thus, introducing the In conclusion, we have seen that the uncertainty in the
Yamaguchi form factors and going to the static limit we cancalculateda,; andas, as well as im,4, connected with the
repeat the procedure outlined in the preceding section. Thiack of knowledge of the range parameter, constitutes only a
static solution of the Faddeev equations may be then sougkimall fraction of the uncertainty resulting from the experi-

in the form mental errors on the pionic hydrogen data. The results above
may be viewed as aa posteriorijustification of our zero-
m B2 range model developed in Sec. IlI: introducing a finite range
A(gq,k)=— 77 2A(k), would be merely a fine tuning which is not yet affordable in
Ta+B the current state of affairs.
m 2
X(@k)=~ o 2B (K, IV. DISCUSSION
o0*+p

Assuming that the underlyingrN interaction is isospin
invariant, we have analyzed the recent pionic hydrogen and
and the above ansatz used in the Faddeev equations yieldi@nic deuterium data with the purpose to extract from them
set of two integral equations that differ from E47) in that 7N swave scattering lengttes, for | =1/2 andl =3/2. It is
the appropriate kernels contain now an extra factgi 1/ an empirical fact that the complex energy shift in either of
+(k+k')?/B%]?. Despite this additional complication, the these two atomic systems is small when compared with the
Fourier transform of this extended kernel still can be effectedorresponding Coulomb energy and with the appropriate
and leads to a simple analytic expression Bohr radii setting the length scale, thep and#-d interac-

tions are of a short range. Under these circumstances the
4 formula of Deseret al. and Trueman provides an extremely
am B good approximation, relating in a model independent way
K>+ (k+k")2 [ B2+ (k+k")?]? the 1s level shifts and widths in the pionic hydrogen and
. pionic deuterium to the complex scattering lengéhs and
K2> f d3r a,q, respectively. However, to infex,, from the latter quan-

1- = e i(kik)r md L > :
52 r tities is a nontrivial dynamical problem and to be able to

solve it we introduced a simple and transparent potential
Br K2 representation of therN interaction. Within this model we
1+ —|1-—
2 B?

obtain explicit solution of ther ™~ p bound state problem and
also of the related three-bodyd scattering problem at zero
energy.

Using the above formula, similarly as before, we end up with  We have assumed throughout this work that thl

a system of two algebraic equations fofr) andX(r). Ne-  forces are of a very short range and this supposition follows
glecting the binding energy correctior{-0), the resulting from a particle exchange picture: there is no sufficiently light
equations differ from Eq(8) in that the zero-range pion particle presently known that might be capable of generating
propagator I/ has to be multiplied by the functiog(r)  forces whose range would exceed 0.3-0.4 fmhich
given by the formula roughly corresponds to a vector meson exchange this
situation it was logical to take the zero-range limit as our
point of departure. In order to find out what the deuteron data
can teach us aboutN scattering lengths, we calculated the
7d scattering length by solving the appropriate three-body
Therefore, the desired solution fé(r) follows from Eq.  «NN problem. This task was accomplished both within the
(10) after replacing ¥/ by g(r)/r. Formula(51) proves to be  static approximation and also by using the Faddeev formal-
quite useful for estimating the size of tiedependent cor- ism. We demonstrated that the same static formulaafgy
rection, and to this end we need to evalugfe) at some can be derived fronii) a set of boundary conditionsij) a
average value af and a plausible candidate for such averagestatic solution of Faddeev equations, diid a summation of
value is the deuteron radius;=3\(r?)~2 fm. Indeed, Feynman diagrams. The static formula expressing in
with this choice the second-order formylel) that provides terms of7N scattering lengths was found to be surprisingly

><[e""—e‘ﬁr

g(r)=1—e A (1+3pr). (51)
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accurate: the error, estimated by comparing the static resulering lengths caused by varying the range parameter must be
with the full Faddeev solution, was at the level of 2%, i.e., ofattributed to the differences between the approximate for-
the same size as the experimental erroagg. The standard mula of Deseet al. and Trueman and the exact range depen-
second-order formula was shown to be insufficient: the indent solutions of the bound state equation. Thus, Fig. 2 illus-
curred error was three times bigger than the present expefirates the accuracy of the formula of Deseral. and
mental uncertainty oa 4. Using as input therN scattering  Trueman.

lengths that had been inferred earli@t from pionic hydro- For an assigned range value, the pionic hydrogen data
gen data, we obtaineal 4 by solving the Faddeev equations specify completely therN potentials, so that they may be
for zero-rangermN forces. The requirement that the calcu- ,seq in the Faddeev equations in order to obtain e

lated a4 be in agreement with experiment to within one gcattering length. The latter quantity was shown to be almost
standard deviation imposes bounds on the isoscalar an dependent of the range parameftefr Fig. 4) but was rather

|so_vector7-rN scattenng lengths. The valut_as of “”f‘?* scal-  sensitive to the values of theN scattering lengths used as
tering lengths determined that way, consistent with both th?

S . . put in the Faddeev equations. The above finding, support-
mOF”i'g hlydrogen and the pionic deuterium data, are presentelﬁg the zero-range approach, could be explained by the fact

In the next stage of this investigation we lifted the zero-hat the range of therN interaction that was considered

range limitation introducing a range parameter. The pioni®hysically justified was small in comparison with the deu-
hydrogen bound state problem was solved afresh for a varf€on Size.
ety of range values. We derived the appropriate bound state e conclude that the lack of knowledge of the range of
condition, and taking the <l level shift and width of the the 7N interaction is responsible for some uncertainty in the
pionic hydrogen as input, we used this condition to deterdeducedmN scattering lengths but this uncertainty is rather
mine thes-wave 7N potentials. This was possible since a small, at the level of 1%. The main source of error is still the
complex condition is equivalent to two real equations, whichexperimental uncertainty in the pionic hydrogen dégast
for an assigned range, can be exactly solved foritad/2  measurements determined treldvel shift with an accuracy
and 1=3/2 depth parameters entering theN potentials. better than 1%, but the width with an accuracy 3%).
Knowing the potentials, it was a trivial matter to calculate Future experiments plan to directly measure the width of the
the corresponding-wave scattering amplitudes. As can be pionic hydrogen & level with an accuracy of 1%33].
seen from Table 1V, the resultingN scattering lengths are It is rather obvious that the presented model contains sev-
rather insensitive to the adopted value of the range paranmeral omissions but we think that they are not too severe,
eter. especially as the investigation has been confined to near
The analysis of the pionic hydrogen presented in thisghreshold phenomena. As in all nonrelativistic models based
work parallels that given in Ref7]. We differ, however, in  on static potentials virtual particle production, crossing sym-
the adopted dynamical frameworks: in RET] the Klein-  metry, retardation, and relativistic effects have not been even
Gordon equation together with a locaN potential has been touched upon. Besides that, a separable potential is not con-
used, whereas we consider a nonrelativistic Lippmannsidered to have a strong theoretical basis and has been
Schwinger equatiorfequivalent to a Schdinger equation  adopted here merely for convenience as it simplifies consid-
with a separablerN potential. As may be seen from Fig. 2, erably the solution of the Faddeev equations. There are also
the N scattering lengths inferred in this paper are in goodiimitations on the completeness of the Faddeev approach
agreement with those deduced in Rgf]. This is a direct such that by restriction to three-body channels, we were
consequence of the fact that the formula of Desteall. and  forced to leave out a wealth of inelastic features. The absorp-
Trueman provides such a good approximation that we cation channels leading to two-nucleon states are not easily
make considerable progress in deducing #¢ scattering incorporated in a Faddeev theory and require considerable
lengths without committing ourselves in great deal to theenlargement of the present model, which does not seem to be
nature of therN dynamics. Since the formula of Dessdral.  currently justified. While cognizant of the above deficiencies,
and Trueman depends neither upon the shape ofrt@o-  we wish to believe that they are outweighted by the merits of
tential nor upon its range, the small changes in#thscat-  the model.
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