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Quantum collisions of finite-size ultrarelativistic nuclei
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We show that the boost variable, the conjugate to the coordinate rapidity, which is associated with the
center-of-mass motion, encodes the information about the finite size of colliding nuclei in a Lorentz-invariant
way. The quasielastic forward color-changing scattering between the quantum boost states rapidly grows with
the total energy of the collision and leads to an active breakdown of the color coherence at the earliest moments
of the collision. The possible physical implications of this result are discussed.
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I. INTRODUCTION

It is commonly accepted that on the scale of the stro
interaction, which is responsible for nuclear integrity a
compactness, the large nuclei have a macroscopically fi
size and a well-defined boundary.1 This size can be physi
cally measured in the rest frame of a nucleus, and it un
goes the Lorentz contraction in the moving frame witho
any physical limitations~as is required by special relativity!.
In this paper, we suggest to take this fact as a guideline,
explore the consequences of the finite size of the nuclei
the quantum processof their collision at ultrarelativistic en-
ergies. Of these consequences, the most important is
change of the symmetry: The incoming nuclei are prepa
in a homogeneous space having a given energy and mom
tum. The fixed space-time point of the first interaction c
rupts the initial symmetry, and enforces a different choice
the conserved quantum numbers for the later stages. O
ten symmetries of the Poincare´ group, only rotation around
the collisionz axis, Lorentz transformation along it, and th
translations in the transversex and y directions survive.
Therefore, it is profitable to choose, in advance, the se
normal modes that have the symmetry of the localized ini
interaction and carry quantum numbers adequate to this s
metry. These quantum numbers are the transverse com
nentspW t of momentum and the boost,n5p0z2pzt, of the
particle ~which is associated with the center-of-mass mot
and replaces the componentpz of its momentum!.

These geometric considerations can be reinforced by
quantum mechanical arguments. Indeed, from the pers
tive of an external observer, the first thing that happens d
ing the collision is a precise measurement, by means of
strong interactions, of the collision coordinate within a ve
short time interval. Therefore, statistically, by the uncertai
principle, the secondaries with any conceivable momen
pz can be detected after collision. This is a well-know
scheme of the Heisenberg microscope. The higher resolu

*Email address: makhlin@nscl.msu.edu
1By the finite size, we mean the size that is measured by mean

the strong interaction of two nuclei. If the primary interaction we
electromagnetic~as is in theep or eA processes!, then the whole
concept of a finite size would become doubtful.
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we want to achieve, the larger must be the energy resou
of the microscope. In the textbook example of the elect
probed by the photon, the electron receives energy from
hard photon. In nuclear collisions, both the kinetic energy
the nuclei and the energy of the compression of the Lore
contracted nuclei are used for the purpose of a precise m
surement of the coordinate. An internal observer that p
etrates the future of the collision with the nuclei will see
violently expanding matter around him. The two viewpoin
perfectly complement each other. The short scales of prim
interaction provide a sufficient motivation to use the wed
dynamics that describes the fields inside the future domai
the ‘‘wedge’’ t25t22z2.0, and employs the ‘‘proper time’
t as a Hamiltonian time of the evolution and the coordin
rapidity h as a longitudinal coordinate@1,2#. The infamous
rapidity plateau persistently observed in high-energy nuc
collisions strongly supports this picture.

The approach advocated in this paper explicitly incorp
rates the macroscopic finite size of the interacting obje
into the quantum theory of the earliest stage of the collisi
We assume that there is no measurable gluon fields out
the large stable nuclei. Consequently, the time moment
the z coordinate, along the collision axis, of the first intera
tion are defined with the accuracy of at least;0.01 fm,
which is both the size of a Lorentz-contracted individu
nucleon and the characteristic scale of color correlation
the z direction before the collision. The full size of th
Lorentz-contracted gold nucleus at the energy;100 GeV
per nucleon is;0.1 fm. We show, that despite an almo
infinite Lorentz contraction and the quantum nature of
interaction process, the information about the finite size
the incoming nuclei does not fade away. It remains clea
identifiable in terms of the properly chosen Lorentz-invaria
variable, the boost, which is associated with the center-o
mass motion. Thus, it is possible to describe the collision
the two nuclei staying on the same physical ground in a
reference frame, either in the reference frame of one of
nuclei, or in the laboratory frame where both nuclei mo
almost at the speed of light.

The fact that nuclei have finite size is intimately co
nected with the gauge nature of the strong interactio
Therefore, when addressing the problem of interaction of
two compact nuclei, we must refer to the properties of

of
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A. MAKHLIN PHYSICAL REVIEW C 64 064904
vector gauge fields.2 The colored sources of these fields mu
be located inside the nuclei and they can be physically
solved only after the two nuclei overlap. This is the on
assumption we make regarding the internal structure o
nucleus. By all means, location of a material object insid
nucleus implies that its center of mass should move with
nucleus without crossing its boundary. Therefore, before
collision, it is natural to characterize such an object by
center of mass, i.e., by its boostn. The valence quarks ar
the first candidates to be considered in this manner. In
sense, we follow the idea of McLerran-Venugopalan mo
@3# in the form given by Kovchegov and Mueller@4#. How-
ever, we do not try populate the nuclei with the wee parto
We think that they aregradually createdin the course of
collision @5,6#.

The framework of wedge dynamics also offers a uniq
opportunity to avoid various technical problems encounte
when the moving at the speed of light nuclei,Vz56c, are
taken as the first approximation@3,5#. This state cannot be
reached as a continuous limit ofV→c and a significant effort
has been made to smooth out the singular behavior of q
tum fields atV5c @6–8#. The wedge form of Hamiltonian
dynamics is free of this difficulty. Furthermore, the gau
At50 of the wedge dynamics can be fixed complete
Hence, the transverse and longitudinal fields are well se
rated and the gluon propagators of wedge dynamics hav
spurious poles that can stimulate a singular behavior of s
tering amplidudes@2#. In this framework, one can use th
same dynamics and the same gauge for the descriptio
both incoming nuclei and the products of their reaction@5,6#,
thus avoiding all glitches of the ‘‘on-line’’ changing th
gauge and redefinition the states@9#.

Below, we concentrate on a specific interaction in the
panding system that emerges in ultrarelativistic nuclear
lisions. It is mediated by the longitudinal part of the gluo

2Addressing the issue of interaction of finite-size nuclei, o
should keep in mind the source of the major difference betw
QED and QCD phenomena. The local gauge symmetry of QED
be extended to a global gauge symmetry that generates the
served gauge-invariant global quantum number, the electric cha
which can be sensed at a distance. The proper field of an ele
charge is the main obstacle for the definition of its size. On
other hand, the radiation field of QED appears as a result of
changes in the extended proper fields of accelerated charges
one can physically create such an object as a front of electrom
netic wave. In QCD, the local gauge invariance of the color gro
cannot be extended to is global version that would correspond
gauge-invariant conserved charge. Hence, we can readily defin
size of the colorless nucleus, but we cannot create a front of c
radiation in the gauge-invariant vacuum. Both these propertie
QCD work for us. They allow one to use the Lorenz contraction
localize the primary domain of the collision and thus, to impose
classical boundary conditions on the color fields at later times.
existence of the collective propagating quark and gluon mode
the later times is the conjecture that has to be verified by the s
of heavy ion collisions.
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field.3 It seems to be the leading one at the earliest mome
of the collision of the two nuclei, and to result in the inte
sive color exchanges even in quasielastic subproces
Eventually, these exchanges must cause an active breakd
of the fragile color coherence of the colliding nuclei an
stimulate intense color radiation. The rates1 of these color
exchanges between the quantum boost states appears
large at the earliest moments of the collision, and it grows
ln2E with the total energyE. This major result of this pape
is given by Eq.~3.27!. The ln2E dependence of the rate o
the total energy of the collision resembles the one obtaine
the early 1960s estimate on the maximal rate at which
total cross section may grow with the energy. It is known
the Froissart bound, and a close dependence is indeed
served in the proton-proton collisions.

Originally, the Froissart bound was derived in the sco
of the axiomatic field theory, a powerful approach based
the most general requirements, like Lorentz invariance, c
sality, unitarity, completeness of the basis of physical sta
and the cluster decomposition principle~see Ref.@10# for the
details!. Since the perturbation theory~usually in a given
order! can lead to an anomalously large total cross sec
~and thus to apparently violate unitarity! it is said that the
perturbative total cross section requires unitarization. R
cently, this problem received a vigorous attention in conn
tion with the evolution equations for large nuclei at lowxF
@9,11#. A physical protection from an excessive growth
cross section due to collinear problems was offered in R
@6#. From this standpoint, one can infer that the result~3.27!
of this paper indeed complies with the unitarity. Though th
issue has to be studied in more details, we suggest a p
sible simple physical argument below.

The axioms of unitarity and completeness clearly are
truly independent. Discussion of any issue related to unita
requires that the spaces of the initial and final states are c
pletely specified. Physically, this means that the meas
ment is not accomplished until its products are analyz
What the particular states are, depends on the detectors
resolve these states. In nuclear collisions, one cannot rel
the conventional ‘‘external’’ distant detectors. The role of t
detectors for the earliest subprocesses~which only very ten-
tatively can be viewed as the independent acts of scatter!
is played by the subsequent interactions. The next-to-b
thing one can do is to try to answer the following questio
Let the fields excited at the beginning of the collision
expanded over a system of states characterized by s
quantum numbers. Let two such states interact. What is
rate of these interactions? The answer will be related to
two main problems of ultrarelativistic heavy ion collision
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3The division of the gauge field into the longitudinal and tran
verse parts can be done only with respect to the property of pro
gation: transverse fields are emitted and then propagate being
ited in space-time by the light-cone boundaries, while t
longitudinal fields are simultaneous~in terms of the Hamiltonian
time! with their sources. In QCD, this scheme can be practica
implemented only in the framework of perturbation theory, which
assumed throughout this paper.
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QUANTUM COLLISIONS OF FINITE-SIZE . . . PHYSICAL REVIEW C 64 064904
First, the known rate of the primary interaction will help
estimate the entropy production. At this point, the expli
knowledge of the final states is imperative, because the
tropy is the number of the excited degrees of freedom. S
ond, it will be directly connected to the total cross sectio
Indeed, if the fields change their colors during the time;1/E
with sufficient probability, then the nucleons will lose the
coherence and fall apart. A new composition of hadrons w
be created with the probability one, and it does not rea
matter how the interacting states are chosen. This argum
has been tested long ago: the total cross section of thee1e2

annihilation into hadrons coincides with the cross section
the processe1e2→qq̄. One of the recently studied ex
amples is the interaction of the eikonalized quarks or glu
@12#. In this paper, for the same purpose, we consider
‘‘natural’’ states of the wedge dynamics, deliberately leavi
the key question ofwhat interacts at the very beginning o
the collision open. We find that, because the states of we
dynamics carry internal currents in the coordinate rapid
direction, there exists a specific contact interaction of th
currents, which grows whent→0 and leads to the amplitud
of interaction, proportional to lnE. ~The contact term in the
gluon propagator has been singled out in the course of
complete fixing of the gaugeAt50, and its main effect is
confined to the nearest vicinity of the light wedge,t50,
where the boundary conditions that fix the gauge are
posed.! If the QCD indeed falls under a jurisdiction of th
axiomatic field theory~which by no means is self-evident!,
then our perturbative result, which exactly reaches the Fr
sart bound, may point to the major physical mechanism
triggers the scenario of ultrarelativistic heavy ion collision

The paper is organized as follows. In Sec. II we introdu
the variables of wedge dynamics and clarify the physi
meaning of the boost in classical and quantum contexts
Sec. III we use the boost states to estimate the amplitud
forward scattering with color transfer at the earliest mome
of the collision, paying attention to the contact interaction
the expanding system. In Appendix A, we demonstrate
the contact term has no counterparts, and that the stan
Coulomb-type terms are still there in the propagator. Th
are somewhat modified, just in a way that one could exp
on purely physical grounds. In Appendix B we show, that
contribution of the other terms into the forward scatteri
amplitude is subleading.

II. CLASSICAL AND QUANTUM PARTICLES IN WEDGE
DYNAMICS

In this section, we address the basic connection betw
the classical and quantum aspects of the interaction of c
pact relativistic objects, in order to prepare the stage fo
more involved analysis of the interaction picture. First,
discuss the role of the classical Lorentz boost as a nat
variable which, by its origin, is closely related to the fini
size. Second, we review the meaning of the boost as a q
tum number, and establish its connection with the class
boost. Finally, we show that the genuinely classical distri
tion of the boosts in stable nuclei before the collision play
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role as the initial data for the primary quantum interactio
between nuclei.

A. Introducing the variables

The wedge form of relativistic dynamics works inside t
future domain of the hyperplanet5z50 ~light wedge! were
the two finite-size ultrarelativistic objects touch each oth
for the first time. The natural coordinates inside this dom
are parametrized by the proper timet and the rapidity coor-
dinateh

t5t coshh, z5t sinhh. ~2.1!

In terms of these variables, the action for a classical p
ticle is

S5E Ldt52mE ds52mE A12v2dt

52mE dtA12t2ḣ22rẆ2, ~2.2!

wherev2[t2ḣ21rẆ2 is the spatial velocity squared, and th
dot means derivative over the~Hamiltonian! time t.4 The
canonical momenta of this particle,

ph[n5
]L

]ḣ
5

mt2ḣ

A12v2
, pW 5

]L

]rẆ
5

mrẆ

A12v2
, ~2.3!

are conserved by virtue of the equations of motion. T
Hamiltonian is of a standard relativistic form

H5nḣ1pW •rẆ2L5
m

A12v2
, ~2.4!

which, after excluding the velocities, can be rewritten
terms of the canonical momenta

H5Am21pW 21
n2

t2. ~2.5!

The useful relations of geometric origin, which will be ofte
referred to later on, are

4Following a tradition, we use the Greek indices for the fou
dimensional vectors and tensors in the curvilinear coordinates (h is
an exception, it always stands for the rapidity direction!, and the
Latin indices froma to d for the vectors in flat Minkowsky coordi-
nates. We use Latin indices fromr to w for the transversex andy
components (r , . . . ,w51,2), and the arrows over the letters

denote the two-dimensional vectors, e.g.,kW5(kx ,ky), ukW u5kt . The
Latin indices fromi to n ( i , . . . ,n51,2,3) will be used for the
three-dimensional internal coordinatesui5(x,y,h) on the hyper-
surfacet5const.
4-3
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A. MAKHLIN PHYSICAL REVIEW C 64 064904
ph52
1

t2 ph52S sinhh

t
p02

coshh

t
p3D

52
mt

t
sinh~h2u!,

H5coshh p02sinhh p35mt cosh~h2u!, ~2.6!

where mt
25m21pt

2 , p05mtcoshu, and p35mtsinhu are
the Cartesian momenta. Therefore, the boost

n5ph5tmt sinh~h2u!5x3p02x0p3[p0~z2Vzt !
~2.7!

is related to the center-of-mass coordinate. According to
~2.5!, the quantityn/t plays a role as a local longitudina
momentum.

The Hamilton-Jacobi equation for the classical action o
particle reads as

]S

]t
1A 1

t2 S ]S

]h D 2

1S ]S

]rW
D 2

1m250. ~2.8!

It allows for the separation of variables and has a solutio

S5nh1pW •rW2EAmt
21

n2

t2dt

5nh1pW •rW2Amt
2t21n21n sinh21

n

mtt
. ~2.9!

In a quantum context, this action serves as the phase
semiclassical wave function,c;eiS, with the quantum num-
bers n and pW , either whenn@tmt or when tmt>n. An
isolated solution with the not separated variables is

S5pW •rW2mtt cosh~h2u!. ~2.10!

It corresponds to a plane wave, and its parameter, the~mo-
mentum! rapidity u, is not a canonical momentum.

B. Classical trajectories. The physical meaning of the boostn

In order to understand the physical meaning of the bo
variablen, the canonical conjugate to the rapidityh, one has
to figure out how it enters the classical equations of moti
According to the Jacobi theorem, the actionS(xn ,an),
known as a function of coordinatesxn and arbitrary constant
an , allows one to find an additional set of the conserv
quantities, ]S/]an5bn . While the constantsan5]S/]xn
usually are the canonical momenta corresponding to the
clic coordinates and are conserved due to the equation
motion, as in Eq.~2.9!, the constantsbn appear to be the
initial coordinates. Applying the Jacobi theorem to the act
~2.9!, and choosing the constants in such a way that at
50 we havex5x0, and that att→` we haveh5u, we
obtain the equation of the particle trajectory
06490
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x~t!2x05
px

mt
2 ~At2mt

21n22unu!,

h~t!2u52sinh21
n

mtt
. ~2.11!

Despite their unusual appearance, these two equations
rametrize a straight line, as it should be for the free motion
a pointlike particle. Let us rewrite the second of equatio
~2.11! in two ways:

mtt sinh@h~t!2u#5n5zp02tpz→mtz* , ~2.12!

and

mtt cosh@h~t!2u#5tp02zpz5At2mt
21n2→mtt* ,

~2.13!

where the arrows point to the special choice of the refere
frame withu50.5 Then the first of the equations~2.11! be-
comes

x~t!2x05
px

mt
SAt21

n2

mt
22

unu
mt

D→ px

mt
~ t* 2uz* u!,

~2.14!

obviously satisfying the required boundary condition att
50. Now, it is easy to understand that the quantityn/mt is
the t-independent coordinatez* of the particle in the co-
moving frame. By the definition, this quantity is Loren
invariant: the boostn is the same in all Lorentz frames. Th
Cartesian form~2.14! of the trajectory is obviously continue
to all quadrants of thetz plane. This classical definition o
the boost is fairly operational but, as the reader may notic
requires that the base world line~plane! from which the co-
ordinatez* is measured is explicitly chosen. For the tw
colliding nuclei, it is natural that the base lines~correspond-
ing to the rapidities6Y) go through the pointt5z50,
where the nuclei touch each other by their surfaces. If
nuclei have radiusR and are built from the fragments of th
~transverse! massmt , then the boosts for the right-movin
nucleus will be in the range22mtR,n,0, and in the range
0,n,2mtR for the left-moving one. There is no contradic
tion with quantum mechanics at this point, since the nuc
aremacroscopicstable objects that can be kept under non
structive control~in their co-moving reference frames! be-
fore the collision. Asymptotically, they have the well-define
rapiditiesu56Y, which can be also measured classica
without any contradiction with the anticipated uncertain

5We consider the physical design of the nucleus as almost st
and neglect the possible velocityV

*
z of the nuclear constituent in

the nuclear rest frame. In any case, it cannot be large without
dermining the alleged stability of the nucleus. The origin of t
transverse mass may be different. It includes both the Lagran
mass and the ‘‘adjoint mass’’ due to the transverse moment
Inside a stable nucleus, the momenta most probably characteriz
standing waves that are not likely to be too short, if the nucleus i
the ground state.
4-4
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FIG. 1. Geometry of a nucleus-nucleus col
sion in the center-of-mass reference frame~left!
and in the rest frame of one of the nuclei~right!.
The dark gray lines correspond to a semiclassi
boost state in the right-moving nucleus before t
collision.
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relation, DnDh>1. Indeed, the boostsn'mtz* are mea-
sured inside the nuclei, while the measurements of the v
locities of the nuclei is performed by external devices. The
fore, the boost variable is indeed perfectly suited for
description of the finite size objects. If the relative boosts
all constituents do not change in the course of the interact
then the object remains unaltered in its~possibly new! rest
frame ~see Fig. 1!.

As a matter of fact, the boosts provide aninvariant mea-
sure of the distribution of the constituents of the compa
objects. The picture of rectilinear trajectories holds outs
the light wedge also. Therefore, the classically prepared
tribution of the boosts is resolved as the distribution of
further interacting quantum states with the given boo
when two such objects collide. Though Eq.~2.12! expresses
the boostn via the invariantmt and distancez* , in a quan-
tum picture, the boostn is an independent conserved additi
quantum number.

For isolated pointlike~and thus, structureless! objects, the
practical measurement of the boost requires that the rap
h(t) is measured at two time moments along the same
jectory. Then, solving the system of two equations~2.12!,
one findsn andu, the boost and the asymptotic rapidity
the particle. It is unrealistic to perform such measureme
with sufficient accuracy in the asymptotic domain of t
macroscopically larget. Unlike the case of the macroscop
finite-size object, this kind of measurement does m
quantum-mechanical obstacles.

C. The boostn in quantum context

The quantum-mechanical measurement of the boostn is
very similar to the measurement of a usual momentum
relies on the definition of the operator of the boost

n̂52 i
]

]h
, ~2.15!

as the operator of translations in theh direction. Then it
becomes evident, that a simultaneous measurement of c
dinateh and momentumn is limited by the uncertainty re
lation

Dn Dh>1. ~2.16!
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In the field-theory formulation, the boost operator is giv
by the generator of the Lorentz rotations in thetz plane. In
the internal geometry of wedge dynamics, the boost oper
is given by theth component of the energy-momentum te
sor. The boost of the quantum field at the proper timet

n5E
t5const

Tth~x!tdhd2rW5E dSmMm03~x! ~2.17!

~where Mmnl5xnTml2xlTmn1Smnl is the usual angular
momentum tensor! is the integral of motion corresponding t
the translation symmetry~Lorentz rotation! in h direction.
The quantum states with the given boostn are the eigenstate
of the operator~2.15! and their eigenfunctions depend onh
aseinh. The full wave function of a scalar particle with th
boostn and the transverse momentumpW is the solution of
Klein-Gordon equation with the separated variablest, h,
and rW t ,

cpW ,n
(1)

~x!5
e2pn/2

25/2p
H2 in

(2) ~mtt!einh1 ipW rW. ~2.18!

It is normalized on the hypersurfacest5const,

E
t5const

cu8,pW 8
* ~x!i

]J

]t
cu,pW~x!tdhd2rW5d~u2u8!d~pW 2pW 8!.

~2.19!

This equation normalizes the measurements performed b
array of the detectors moving with all possible velocities.
any particular time of the Lorentz observer, this array ev
does not cover the whole space.

At large n@1, andn.mtt, which is relevant to the ear
liest stage, the asymptotic of this solution is semiclassica

cpW ,n
(1)

~x!'
eip/4

4p2

einh1 ipW rW

@mt
2t21n2#1/4

exp@2 iAmt
2t21n2

1 in sinh21~n/mtt!#}eiS, ~2.20!

clearly indicating that at the small timet the quantum par-
ticle with the finite boostn continues to follow its classica
4-5
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A. MAKHLIN PHYSICAL REVIEW C 64 064904
trajectory, since its classical action is large. Indeed, the
face of the light wedge, everywhere except for its vert
corresponds toh→`.

The wave functions~2.18! are connected, by means o
Fourier transform, with the plane-wave solutions

vkW ,u
(1)

~x!5E
2`

1` dn

~2p!1/2i
e2 inuckW ,n

(1)
~x!

5
1

4p3/2kt

exp@2 iktt cosh~u2h!1 ikW rW#.

~2.21!

The saddle point of the Fourier transform~2.21! ~or its in-
verse! is located at the value ofn ~or u) defined by the
relation, n5tmt sinh(u2h), corresponding to the classica
definition ~2.7! of the boost. One can easily see that the
wave functions also are semiclassical with the action~2.10!,
and have a usual momentum~or the rapidityu) as a quantum
number. These states become localized in rapidityh at later
times,tmt@1, and these states are most likely to be detec
by the expanding collective system.

The key element of the suggested approach is that
Lorentz-invariant boost states, which are independently p
pared in the two approaching nuclei, begin to interact as
quantum states only when the nuclei overlap. At this m
ment, the positions of the nuclei constituents~classical
boosts, which describe the elementary constituents of the
clei even outside the light wedge! are translated into the
quantum numbers, which define the periodicity of the wa
functions in the coordinate rapidity direction. It is evide
that at the earliest times the distortion of the initial geome
picture should be only minimal. Therefore, it will be a su
ficient approximation to study the transitions into other bo
states, and we stay within this approximation until the end
this paper. The rate at which these early distortions deve
appears to be quite large.

The dynamics of boost states preserves theinvariant in-
formationabout the finite size of the nuclei both in the lab
ratory frame when each of the two nuclei is contracted up
a negligible small size, and in the rest frame of one of
nuclei ~target! when the second one~projectile! passes
through it as a seemingly infinitely sharp shock front. O
cannot assign a finite width to the moving in thex1 direction
front, neither in thez direction, nor in thex2 direction, with-
out a conflict with the special relativity. On the other hand,
the framework of the wedge dynamics that operates with
boost states, it is safe to consider the limit of the infin
momentum frame at the end of the calculations.6

6This, however, leaves open the question of what is detecte
high-energy collision. The answer crucially depends on what k
of the quantum-mechanical ensemble is involved in a partic
measurement.
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III. SCATTERING IN WEDGE DYNAMICS

The nuclei meet each other at the two-dimensional pl
t5z50, where the first interaction take place. This intera
tion resolves the nuclei constituents~e.g., the ‘‘partons,’’ or
‘‘color dipoles’’! with the boostn'0, and excite the quan
tum states with the boostn'0. The wave functions of thes
states do not depend on the rapidity coordinateh, and they
evenly fill in the interior of the light wedge. At the sam
time, the two precursors, which are most likely to be t
fronts of the propagating gluon field, begin their way in t
lightlike directions, t6z50, thus creating the physica
boundaries of the light wedge,t25t22z250. Passing
through the nuclei, the precursors resolve the elements
the finite boosts, which are negative for the right-movi
nucleus and positive for the left-moving one, and initiate
transient process of interaction between the nuclei. Th
interactions excite the quantum states with positive a
negative boosts, which depend onh aseinh. In this way, the
classical boosts,ncl5mtz* , are transformed into the quan
tum numbers of the wave functions that have the per
2p/n in theh direction, and occupy the entire future doma
of the point t5z50. Before the collision the nuclei as
whole are the coherent states of QCD and their~color! co-
herence cannot be destroyed immediately. Att→10, the
resolved boost states have the same phases they had i
nuclei: the decomposition of the nuclei in terms of the bo
states is still a coherent superposition.7 Furthermore, since
the classical action of the states with the finite boosts is la
even the resolved partons continue to move along their
tilinear classical trajectories. The character of the furth
evolution crucially depends on the subsequent interactio
Below, we study the quasielastic forward scattering of
colored quarks prepared and detected in the given b
states. This scattering is mediated by the gluon field a
results in the color exchange that alone is capable of dest
ing the coherence of the nuclear wave function.

The propagators of the gauge fields in wedge dynam
were studied in@1,2#. In Appendix A, we review their prop-
erties with the emphasis on the needs of the present st
The leading contribution comes from the spatially loc
‘‘contact term’’ of the longitudinal part of the propagator. I
order to give a flavor of its origin, we have to emphasiz
that we study the phenomenon where the finite charge d
sity is formed as a result of the interaction, and the pro
fields of the gradually created and yet delocalized char
physically overlap with their sources. Thus, aiming at t
dynamic picture, we have to give the priority to the curren
expressing the charge densityr(t) via the divergence of the

in
d
r

7The boundary conditionAh(t50)50 imposed on the gauge
fields in the wedge dynamics, together with the gauge condi
At50, makes it impossible that the fields of precursors imme
ately modify the phases~rotate the color charges! along the lightlike
planes x150 and x250. This property, which allows one to
‘‘switch on’’ the interaction between the nuclei without an artifici
color-changing ‘‘shock wave,’’ is in contrast with the case of t
null-plane dynamics with the gaugesA650.
4-6
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QUANTUM COLLISIONS OF FINITE-SIZE . . . PHYSICAL REVIEW C 64 064904
current,] tr52“• j , which eventually generates the conta
term in the propagator. The effect of the evolving cha
density r(t) becomes fully included into the Hamiltonia
Hint5 j•A, which is the only form compatible with thecom-
pletely fixedgaugeAt50. This evolution of the color charg
density is the result of the interference between various
tial waves, and it is not connected with the motion of t
physically resolved pointlike color charges. Without an int
action, these partial waves would coherently sum and fo
the stable nuclei. Of those interactions that take place w
the nuclei intersect, the most important are the ones that
to the largest transition amplitudes.

An apparent complexity of the formulas in the wedge d
namics is caused by the curvature of the hypersurfaces o
constantt. The hypersurfacet510 is the one where the
initial data are naturally set, and it has an infinite curvatu
An explicit dependence of the internal metric ont makes the
vector differential operators more cumbersome and lead
an interplay between the longitudinal and transverse field

A. Choosing the observable

Wedge dynamics deals only with the fields that emerg
from the localized collision of two macroscopic objects. Th
collision is considered as a precise measurement of the
tons coordinates at the finite time momentt→10. There-
fore, it is impossible to pose a formal scattering proble
with the asymptotic initial states. Instead, we take an
proach based on the calculation of the Heisenberg observ
@5,13#,

N~18,28!5^1,2un̂~18!~ n̂~28!2d1828!u1,2&

5^0ua2a1S†a28
† a18

† a18a28Sa1
†a2

†u0&, ~3.1!

which is the inclusively measured number of pairs of t
final state field excitations with quantum numbers8
5( i 18 ,k18) and 285( i 28 ,k28) (k includes the transverse mo
mentum and boost,i color!. This observable is evolved from
the initial state of the two interacting field excitations wi
quantum numbers 15( i 1 ,k1) and 25( i 2 ,k2). This quantity
is closely related to thetotal cross section. Indeed, we as-
sume that the measurement is an impulse process that fre
decomposition of the colliding nuclei in terms of the eige
functions of the corresponding operator. This decomposi
can become incoherent only due to real interaction, wh
will either excite the new states, or just break the phase
ance between the initial ones. All this will contribute to th
probability that the initial state is altered, i.e., to the ima
nary part of the forward scattering amplitude. The color e
changes take place at the earliest possible timetmin;1/As,
and create a new color composition that must eventu
~with the probability one! evolve into a new composition o
hadrons. We emphasize that a particular choice of the b
of the interacting att.0 boost states is important only a
long as we are interested in the rate at which the color
herence is broken. The color transfer between the bo
states seems to be extremely intensive at the beginning o
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collision. The geometry of the collective modes that will b
the actual final states can be quite different@14#.

Expression~3.1! is bilinear with respect to the evolutio
operatorS and thus it cannot be treated according to t
Feynman rules. For its evaluation one should use the
called Schwinger-Keldysh technique@15# in the form ad-
justed for the calculation of inclusive amplitudes@13#. The
evolution operator for the problem of evolution of the o
servable~3.1! is of a usual form

S5T expH i E Hint~x!d4xJ ~3.2!

with the Hamiltonian

Hint~x!5 j m~x!Am~x!

5 j m~x!FAm
[ tr ]~x!1E dzDmn

[ long]~x,z! j n~z!G ,
~3.3!

where the second term in brackets is the longitudinal fi
Am

[ long] (x). The propagatorDmn
[ long] (x,z) implicitly contains

u(x02z0). For the sake of definiteness, consider the ferm
color current

j m~x!a5g C̄ i~x!t i j
a gmC j~x!, ~3.4!

and commute the final-state Fock operators withS and S†

using the commutators

ai~k!S2Sai~k!5E dzc̄k
(1)~z!

dS

dC̄ i~z!
,

S†ai
†~k!2ai

†~k!S†5E dz
dS†

dC i~z!
ck

(1)~z!. ~3.5!

In this equation,ck
(1)(z) is the one-particle wave function

from the decomposition of the field operator

C i~x!5(
k

@ai~k!ck
(1)~x!1bi

†~k!ck
(2)~x!#. ~3.6!

These commutations result in~disconnected pieces ar
omitted!

N~18,28!5E dx1dx2dy1dy2c̄k
28

(1)
~y2!c̄k

18
(1)

~y1!

3^0ua2a1

d2S†

dC i
28
~x2!dC i

18
~x1!

3
d2S

dC̄ i
18
~y1!dC̄ i

28
~y2!

a1
†a2

†u0&ck
28

(1)
~x2!ck

18
(1)

~x1!.

~3.7!

Here, the functional derivatives overC act from the left, and
the derivatives overC̄ act from the right. Next, we comput
the functional derivatives retaining the terms up to the or
g2. This yields
4-7
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N~18,28!5g4E dx1dx2dy1dy2c̄k
28

(1)
~y2!c̄k

18
(1)

~y1!^0uai 2
~k2!ai 1

~k1!

3T†@2C̄ l 2
~x2!gmC̄ l 1

~x1!gnAm
[ tr ]a~x2!An

[ tr ]b~x1!1 i C̄ l 2
~x2!gmDmn

[ long]ab~x2 ,x1!C̄ l 1
~x1!gn

2 i C̄ l 1
~x1!gmDmn

[ long]ba~x1 ,x2!C̄ l 2
~x2!gn#t l 2i

28
a

t l 1i
18

b
t i

28 j 2

a8 t i
18 j 1

b8

3T@C j 2
~y2!gmC j 1

~y1!gnAm
[ tr ]a8~y2!An

[ tr ]b8~y1!

2 igmC j 2
~y2!Dmn

[ long]a8b8~y2 ,y1!gnC j 1
~y1!

1 igmC j 1
~y1!Dmn

[ long]b8a8~y1 ,y2!gnC j 2
~y2!#ai 1

† ~k1!ai 2
† ~k2!u0&ck

28
(1)

~x2!ck
18

(1)
~x1!. ~3.8!
fe
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The calculations are accomplished as follows. The
mion operators are contracted with the remaining Fock
erators of the initial state, producing the final-state wa
functions, and making the final adjustment of the color in
ces. This can be done in two ways, which differ by a f
interchange of the quantum numbers of the one-particle
tial states. The vacuum average of the products of the tr
verse gluon field operators gives the transverse part of
T-ordered propagatorD [00](y2 ,y1) and of theT†- ordered
propagator D [11](x2 ,x1).8 The two terms, with
D [ long] (y2 ,y1) and D [ long] (y1 ,y2) cover two complemen-
tary domains,y2

0.y1
0 and y2

0,y1
0, respectively. Together

they form the longitudinal part of theT-ordered propagato
D [00](y2 ,y1). Finally, the transition probability can be ca
in the form

N~18,28!5g4U E dx1dx2@c̄k2

(1)~x2!gmck
28

(1)
~x2!c̄k1

(1)~x1!

3gnck
18

(1)
~x1!Dmn

[00]~x2 ,x1!t i 2i
28

a
t i 1i

18
a

2the same~k1 ,i 1↔k2 ,i 2!#U2

. ~3.9!

B. Scattering of scalar quarks with the given boostsn

The observable number of couples,N(18,28), can be re-
written by introducing the full set of the intermediate sta
into Eq. ~3.1!,

N~18,28!5(
X

^0ua2a1S†a28
† a18

† uX&^Xua18a28Sa1
†a2

†u0&

5(
X

^Xua18a28Sa1
†a2

†u0&u2. ~3.10!

8In this paper, we use the Keldysh-Schwinger formalism@15# in
its modified form developed earlier with the view of application
the inclusive and transient processes. We employ the notation
in Refs. @5,6,13#. The indices of the field correlators with th
Keldysh contour ordering of the field operators~e.g.,D [AB] ) as well
as the labels of their linear combinations~e.g.,D [ ret] ) are placed in
square brackets.
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In the lowest order of the perturbation theory there is
additional emissions and only the vacuum stateuX&5u0&
contributes:

N~18,28!5uM1,2→18,28u
2. ~3.11!

In the lowest order, the inclusive transition probability~3.10!
is just the squared modulus of the matrix element depic
on Fig. 2.

1. Scattering amplitude

Consider the matrix element of the scattering amplitud

M1,2→18,285g2E dx1dx2 j k2 ,k
28

m
~x1! j k

18 ,k
18

n
~x2!Dmn

[00]~x1 ,x2!,

~3.12!

where we exchange the spinor quarks for the scalar ones
accordingly replace

j k,k8
m

~x!5c̄k
(1)~x!gm~x!ck8

(1)
~x!

→gmn~x!c̄k
(1)~x!i ]Jnck8

(1)
~x!,

using the states of scalar quarks with the quantum num
k5(kW ,n), transverse momentum and boost. In this case,
wave functions are of the form

ed

FIG. 2. Forward~a! and backward~b! amplitudes of theqq
scattering.
4-8
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ckW ,n
(1)

~x!5
e2pn/2

25/2p
H2 in

(2) ~mtt!einh1 ikW rW,

c̄kW ,n
(1)

~x!5
e2pn/2

25/2p
Hin

(1)~mtt!e2 inh2 ikW rW. ~3.13!

Using the propagator in the mixed representation

Dlm
[00]~x1 ,x2!5E dzdqW

~2p!3
Dlm

[00]~t1 ,t2 ;z,qW !

3exp@2 i z~h12h2!2 iqW ~rW12rW2!#,

~3.14!

and integrating over the spatial coordinates, we obtain

M1,2→18,285
g2

27p
d~n11n22n182n28!d~kW11kW22kW182kW28!

3E
0

`

t1dt1E
0

`

t2dt2Hin
18

(1)
~m18t1!Hin1

(2)~m1t1!

3Hin
28

(1)
~m28t2!Hin2

(2)~m2t2!gll ~t1!gmm~t2!

3~k11k18! l~k21k28!mDlm
[00]~t1 ,t2 ;z,qW !,

~3.15!

wherez5n12n185n22n28 , qW 5kW12kW185kW22kW28 , and we in-

troduced three-vectors,gll (t)pl5(2pW ,2n/t2), as well as a

short-hand notation,mi
25m21kW i

2 , mi8
25m21kW

i

82
.

Computing the transition amplitude~3.12!, we will be in-
terested in the states with the large boostsunu@1, n.mtt,
un12n2u@1 . In this case, the asymptotic of the Hank
functions reads as

pe2pn/2H2 in
(2) ~mtt!5@pe2pn/2Hin

(1)~mtt!#*

'
A2p i

@mt
2t21n2#1/4

exp@2 iAmt
2t21n2

1 in sinh21~n/mtt!#. ~3.16!

We have mentioned already, that in this limit, we ha
ckW ,n

(1)(x)}exp(iScl), whereScl is the classical action, found in
Sec. II. In the limit ofun i u@mit, we have

n sinh21
n

mt
5n lnFA n2

m2t2 111
n

mtG
'unu ln~2unu!2n ln~mt!,

and the product of the four Hankel functions in the integra
of Eq. ~3.15! becomes
06490
l

d

4~m1!2 in1~m2!2 in2~m18! in18~m28! in28

p2un1n2n18n28u
1/2

3exp@2 i ~ un1u1un2u2un18u2un28u!#

3exp$2 i @ un1u ln~2un1u!1un2u ln~2un2u!2un18u ln~2un18u!

2un28u ln~2un28u!#%S t1

t2
D 2 i z

. ~3.17!

The last factor here is the most significant for future analy
The rest is just the phase factor.

In what follows, we compute the leading term corr
sponding to the contact part of the gluon propagator@see Eq.
~A26! in Appendix A#:

@Dhh
[00]~t1 ,t2 ;h,rW !#contact52

ut1
22t2

2u
2

d~h!d~rW !.

~3.18!

It is local in h and rW, and the modulus accounts for bo
terms with D [ long] in Eq. ~3.8!. In this approximation, the
matrix element~3.15! becomes

M1,2→18,285
g2

2~2p!3d~n11n22n182n28!

3d~kW11kW22kW182kW28!
~n11n18!~n21n28!

4un1n2n18n28u
1/2

eiaI ,

~3.19!

wherea is an inessential real phase. In the approximat
given by Eq. ~3.17! it absorbs all the dependence on t
transverse momenta. Now, it remains to compute the inte

I 5E
0

`

t1dt1E
0

`

t2dt2ghh~t1!ghh~t2!

3@Dhh
[00]~t1 ,t2!#contactS t1

t2
D 2 i z

5E
t0

T

dt1E
t0

T

dt2

ut1
22t2

2u
2t1t2

S t1

t2
D 2 i z

, ~3.20!

where the cutoffs are introduced in order to isolate the p
sible singular behavior. Computation is straightforward,

2I 5E
t0

T

tdtE
t0 /t

1

dx@xi z 1x2 i z#S 1

x
2xD

5
T2

z214 H 4S 11
t0

2

T2D sin@z ln~T/t0!#

z

22S 12
t0

2

T2D ~11cos@z ln~T/t0!# !J . ~3.21!

The cutoffstmin5t0 and tmax5T in this formula are the
external physical input. Making a choice fort0 and T it is
4-9
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A. MAKHLIN PHYSICAL REVIEW C 64 064904
useful to keep in mind that the interaction~3.18! is due to a
nonstationary part of the longitudinal~Coulomb! field of the
charges resolved att50. Similar cutoffs are needed in
stationary part. A proper choice leads to the Coulomb lo
rithm in the collision term in the QED plasma, and we follo
this example.

The only fieldAh that contributes the contact term~3.18!
vanishes att50 and its effect on the charges resolved at
50 cannot be instantaneous. Therefore, the lower limitt0 is
related to the earliest time when the boost states belongin
the incoming nuclei are resolved by means of the stro
interaction. Practically, this is the time that the two nuc
take to overlap completely. Therefore, this minimal time
defined by the velocities of the incoming nuclei in the lab
ratory frame,t0;1/As. At this time, the stationary phase o
partial waves~2.21!, vkW ,u

(1)(x), corresponding to the particle
with the given rapiditiesu, are stretched over the wide
rapidity intervalDh;2 ln(As/m'). This estimate coincides
with the well-known kinematically allowed width 2Y of the
rapidity plateau, 2Y' ln(s/mchar

2 ). ~See Ref.@1# for further
details.!

The upper limitT has to be set because at some timetmax
the picture of the independent collisions breaks up. The
nal’’ state fields are not emitted into the free space any m
~which affects even the QCD evolution equations@6#!.
Therefore,T corresponds to the time when subsequent in
actions begin to erase the memory about the origin of
boost states from the compact nuclei. By this time, the s
tem must develop collective interactions that result in
effective masses of the plasmonlike modes in a dense
dium. It is clear that these masses can emerge only gradu
@1,6#. An attempt to evaluate this gradual process in
scope of wedge dynamics has been undertaken in R
@6,14#. This calculation relies on the following physica
mechanism: The low-pt mode of the radiation field acquire
a finite effective mass as a result of its forward scattering
the strongly localized~and formed earlier! particles withqt
@pt . Regardless of what the exact value of this ‘‘screen
mass’’mD is, it seems reasonable to takeT;1/mD , which is
consistent with the semiclassical approximation,TmD!n.

The two limits of the Eq.~3.21! are of special interest. Le
As→`, while z is kept finite. Then

I;
T2

z214
$2pd~z!21%, ~3.22!

the amplitude is strongly confined near the forward reg
and the corresponding cross section diverges.

Next, let us consider the physical limit of the forwa
scattering,z→0, while keepingAs finite. In this case, we
have

I;T2@ ln~TAs!21#, ~3.23!

the inclusive amplitude is proportional to the maximal wid
of the rapidity plateau,Y} ln(As), which is the only geomet-
ric factor that can accompany the contact interaction~3.18!.
Its square naturally sets the upper bound for the scatte
probability.
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The second term in the forward scattering amplitude~3.9!,
which corresponds to the complete exchange of the two
tial states~backward scattering!, is obviously small. Indeed
this case corresponds ton1'n28 , andn2'n18 . In this case,

uzu5un12n18u'un12n2u@1,

and the function~3.21! is small.

2. Scattering probability

Since we consider the processes that develop in the co
of a single collision, the notion of the cross section is n
well defined. In order to deal with the quantity that is
close as possible to the standard cross section, let us in
duce the ‘‘normalization volume’’V5pR2Y, the product of
the transverse area and the length of the rapidity interval o
which the nuclei become expanded by the first measurem
of the collision coordinates. The wave functions of all sta
begin to occupy this volume when the two nuclei have co
pletely overlapped, i.e., by the timetmin;1/As. The wave
functionsckW ,n , given by Eq.~3.13!, in the matrix element
~3.9! thus acquire an additional factor (2p)3/2V21/2. The
quantity r5V21 will play the same role as the flux facto
j 51/ST5v rel /V in the case of the standard 2→n scattering
~see, e.g. Ref.@16#!. Multiplying the squared modulus of th
matrix element~3.19! by the densities of the final state
Vd2kW8dn8/(2p)3/2, and replacing one of thed functions by
V/(2p)3, we arrive at the differential inclusive probability

dw5
d~n11n22n182n28!d~kW11kW22kW182kW28!

V

3
as

2

2p

~n11n18!2~n21n28!2

16un1n2n18n28u
I 2d2kW18dn18d

2kW28dn28 .

~3.24!

Dividing dw by the densityr5V21, we obtain the closes
analog of the cross section that can be introduced in orde
characterize asingle event,

ds15d~n11n22n182n28!d~kW11kW22kW182kW28!

3
as

2

2p

~n11n18!2~n21n28!2

16un1n2n18n28u
I 2d2kW18dn18d

2kW28dn28 .

~3.25!

SinceI 2 has the dimension@L#4, the quantitys1 also has the
dimension of area. The upper limittmax5T in Eqs.~3.20!–
~3.23! can be estimated from the conditiontmD'1!n, and
is related to the formation of the~final! states as they are
detected by the subsequent interactions at the later perio
the evolution. In the limit of a nearly forward scattering, a
integratingd2kW28dn28 with the aid of thed functions, we ar-
rive at
4-10



um
r

r.

-

le
h
n
e
n

nc
p
th

ge
k
p-
al
ite
ol
ro
u
th

th
r

s,
e
y
ike

a
itia
th
tro

m-
of
er-

e
nly

ten-

me
e
in

the
ted
e
lear

lli-
r-
e
are

g
ding
ill

y a
un-

ents
l
ry
n
er

of
ns-
y to

C
l be
ally
do
in
e

that
ated
we
m

mo-
arks
re

us
re-

QUANTUM COLLISIONS OF FINITE-SIZE . . . PHYSICAL REVIEW C 64 064904
ds1

d2kW t8dz
5

as
2

2p

2

9

~2n11z!2~2n22z!2

16un1n2~n11z!~n22z!u
1

mD
4 S 2

z214D 2

3H sin@z ln~As/mD!#

z
2

11cos@z ln~As/mD!#

2 J 2

.

~3.26!

In the limit of the forward scattering it becomes

F ds1

d2qW tdz
G

z→0

5
as

2

8p

2

9

1

mD
4 ln2A s

mD
, ~3.27!

where qW t'kW t8 is considered as the transverse moment
transfer. Our basic approximation implies that this transfe
small,qt,mD . The color trace

2

9
5

1

3
3

1

3
3S 6

4
1

2

4D
accounts for the processes with and without color transfe

IV. SUMMARY

The main result of this paper is given by Eq.~3.27!. The
logarithmic character of the answer@the color-changing am
plitude }as ln(tmin/tmax)'as ln(As/mD)] is due to the di-
mensionlessness of the rapidity and the boost variab
rather than due to the Coulomb nature of the interaction. T
answer indicates that we may expect a massive breakdow
the color balance in the colliding nuclei at the earliest tim
t;1/As. The rate at which the intensity of this breakdow
grows with the energy is proportional to ln2 s.

The key assumption that led to this result is the existe
of a sharp boundary of the colliding nuclei. If this assum
tion is not correct, then there is no reason to consider
problem of the nuclear collision in the framework of wed
dynamics, and the whole picture of the collision will loo
differently. This would also undermine alternative a
proaches to the problem, such as the McLerran-Venugop
model @3,4#. An immediate logical consequence of the fin
size is the absence, inside the stable nuclei, of the finite c
charge density, which could significantly fluctuate and p
duce the long-range fields. Only under this assumption co
we safely discard the static component of the gauge field
would correspond to the finite charge density att50 and
consider the creation of color charges in the course of
nuclear collision as a transient process. The currents in
pidity direction, which we relied upon in our calculation
appear as a result of the phase shifts in the system of d
calized fields~and thus propagating with the phase velocit!,
rather than due to the motion of the resolved pointl
charges.

The wedge dynamics was conceived as a tool that is
equate for the earliest stage of the collision, where the in
color coherence becomes broken. It is not applicable to
ep DIS, where the electron probes the long-range elec
magnetic fluctuations in the proton@5,6#. In its turn, the evo-
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lution equations that describe QCD fluctuations that acco
panyep DIS do not seem to be relevant to the collisions
the finite-size nuclei. The primary breakdown of color coh
ence in a nuclear collision~in terms of the states of the
wedge dynamics, it is indeed the earliest process! must result
in color radiation that can exist only for a short period~in
proper time!, only before the fields begin to build up th
collective modes of the expanding continuous media. O
these collective effects can bring in the scale (mD) to the
entire process and serve as a feedback that limits the in
sity of the primary emissions@6,14#. Later on, the dynamics
of the process must become local on this scale.

The transient process of the plasma formation will co
to its saturation at the moment when the growing with tim
~and density! effective masses of the collective modes beg
to screen all emission, from the evolving sources, at
scales below the one given by the dynamically genera
effective masses@6,14#. Being unable to radiate, thes
sources must pass through and form the receding nuc
remnants. Thus, it is likely that the total energy of the co
sion is responsible only for the time scale of the initial inte
action and the full width of the rapidity plateau, while th
parameters of the final state in the central rapidity region
universal and independent of the initial energy~above a cer-
tain threshold!. Eventually, the total energy of the collidin
nuclei is shared by the newly born matter and these rece
remnants. It is not clear yet if the quark-gluon matter w
have time to sufficiently thermalize and be described b
single parameter, the temperature. However, it seems
avoidable that the entropy created at the earliest mom
must result in thepressure, which is the first thing we shal
try to theoretically estimate. A success at this point will ve
much simplify the whole scenario by allowing incorporatio
of the hydrodynamic picture from a sufficiently early prop
time.

Our preliminary estimates show that the boost states
wedge dynamics do not effectively scatter with large tra
verse momentum transfer. Further analysis is necessar
verify this estimate, which~being correct! could explain the
absence of high-pt jets observed in the first available RHI
data. The jets are not strongly quenched, they can wel
absent at all. Does this mean that perturbative QCD is tot
unrelated to the ultrarelativistic heavy ion collisions? We
not think so. It just has to be used in a different way than
ep DIS or pp collisions. The major source of this differenc
has been first outlined in Ref.@6#: in nuclear collisions, the
final states that saturate the unitary cut in the ladders
correspond to QCD evolution equations cannot be satur
by quark and gluon states in free space. In this paper,
point to the fact that the initial states can be different fro
the free massless wee partons with the given light-cone
menta. They can well be the boost states of valence qu
that are explicitly confined inside the finite-size nuclei befo
the collision.
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APPENDIX A: THE GLUON PROPAGATOR

In order to study the interaction of the two charged sta
with the given boostsn, one needs to have an explicit form
of the gauge field propagator. Particularly, since the boo
are additive and obey the conservation law, one need
know what the quanta of radiation that carry the boost qu
tum numbers are? It is also necessary to know the form
the proper~longitudinal! fields produced by the charged pa
ticles. In this section, we present a detailed analysis of
gluon propagator in wedge dynamics, which has been
rived in Ref.@2#. The main purpose is to carefully trace th
origin of the new contact term. At first glance, it may loo
abnormal since it neither shows up in the field of a mov
static charge, nor has it any properties associated with
propagation. We want to show that all Coulomb-type ter
still exist in the propagator. They are somewhat modified
a way that one could expect on purely physical groun
Namely, the Coulomb fields vanish outside the future dom
of the point where the charge was created. Our analysis
dicates that the other parts of the propagator cannot
anything similar to the exclusive contact part that is sol
responsible for the final result, Eq.~3.27!, of this paper.

1. The field of a static source

The field of a static source in wedge dynamics is fou
@2# when one solves the linearized~Maxwell! equations of
motion without the external current, imposing the gauge c
dition At50. An additional boundary condition, which a
lows one to fix the gauge completely, isAh(t50)50. In
fact, this condition brings nothing new, since the hypers
facet50 is lightlike, and thet andh directions are degen
erate there. In this way, one findsthreemodes, of which two,
VnkW

(TE)(x) andVnkW
(TM)(x) are the transverse fields. The mod

V(TE) andV(TM) are normalized according to a usual defin
tion of the scalar product in the functional space of the
lutions of the Maxwell equations

~V,W!5E
2`

`

dhE d2rWtgikVi* i ]JtWk , ~A1!

and satisfy the Gauss law without the charge. The third m
V(stat) has zero norm, and its definition is accomplished w
the aid of Gauss law with thestaticsource.~In the absence o
any currents, the source can be only static.! The electric and
magnetic fields of this mode are

El
[stat]~t,rW,h!

5E dnd2kW

~2p!3

einh1 ikW rW

ikt
2 F krt

21s1,in~ktt!

nkt
2ts21,in~ktt!

G
l

r~kW ,n!,

~A2!
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[stat]~t,rW,h!

5E dnd2kW

~2p!3

einh1 ikW rW

kt
2 F ky

2kx

0
G

l

n ṡ21,in~ktt!r~kW ,n!,

~A3!

where sm,in(x) is the Lommel function, a solution of the
inhomogeneous Bessel equation withxm21 as the external
source,

f 91
1

x
f 81S 11

n2

x2D f 5xm21.

There exists an extremely important relation between
two Lommel functions,9

s1,in~ktt!1n2s21,in~ktt!51. ~A5!

First of all, it is necessary in order to verify that the elect
field of a static charge distribution~A2! indeed satisfies
Gauss law10

1

t
]hEh1t] rEr5t j t5r. ~A6!

Second, it is precisely the unit on the right side of Eq.~A5!
that will give rise to the contact term in the full propagato

The Fourier component of the vector potential of t
static field is

Al
[stat]~kW ,n;t!5

r~kW ,n!

~2p!3ikt
2 FkrQ21,in~ktt!

nQ1,in~ktt!
G

l

, ~A7!

where we introduced the functions

Qm,in~x!5E
0

x

xms2m,in~x!dx.

In spite of an unusual appearance, this is nothing else
Coulomb’s law in the framework of wedge dynamics. In o
der to see this explicitly, let us consider the system of po
like charges located at the pointsrW i in the transverse plane
and moving with rapiditiesu i ,

r5t j t5(
i

qid~h2u i !d~rW2rW i !. ~A8!

9It is useful to keep in mind the integral representation

s1,in~ktt!512
n

sinhpnE0

p

cos~ktt sinf!coshnfdf, ~A4!

which indicates that the functionss1,in(x) and n2s21,in(x)
are regular atn50.

10In terms of the physical components,E m5A2ggmnEn

5A2ggmn]tAn , the Coulomb law reads exactly as in Cartesi
coordinates,]mE m5r.
4-12
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For a single charge, the explicit form of the electric fie
components is

El
[stat]~t,rW,h!5

q

4pF rW cosh~h2u!

t2sinh~h2u!
G

l

u~t2r t!

R3

1F rW/r t
2

tanh~h2u!
G

l

d~t2r t!, ~A9!

whereR5@rW21t2sinh2(h2u)#1/2 is the distance between th
points (0W ,u) and (rW,h) in the internal geometry of the sur
face t5const. On can obtain the first term in this formu
taking the usual~gauge-independent! expression for the elec
tric field of the moving charge, transforming it to the ne
coordinates, and multiplying it by theu(t2r t), which elimi-
nates the field outside the light cone of the point where
charge had emerged. The second term~with the light-coned
function! corresponds to the wave front that accompanies
process of the charge creation att50.11

Since the electric field isEl5]tAl , the vector potential is
recovered by means of integration,

Al~t!5E
0

t

El~t8!dt8→E
r t

t

El~t8!dt8. ~A10!

Now, whenr t is taken as the actual lower limit, the result
the integration explicitly coincides with the Fourier tran
form of Eq. ~A7!. The Fourier transform of the Lomme
functions appears to be discontinuous in an exactly relati
tic way ~the details of its calculation are in the followin
section!.

One may ask how the Coulomb mode could be fou
from Maxwell’s equations of motion that do not includ
Gauss’s law. The answer is simple and natural: the Coulo
field outside the static charge distribution must satisfy
equations of motion for a free field.

There are two surprises connected with the static solut
of the wedge dynamics. First,the source is static if it ex-
pands in such a way that its physical componentJ t

5t j t(t,h,rW) does not depend ont. Indeed, the charge con
servation has its physical form,]mJ m50, only in terms of
the physical componentsJ m5A2ggmn j n of the electric cur-
rent. The second surprise is the light-cone boundary of
static field in Eq.~A9!.

Finally, let us consider the conservation of the charge o
fundamental field in full QCD. Now, the equation of char
conservation reads as

]mJ a
m1gf abcAm

b J c
m50. ~A11!

Let only the j a
t component of the current differ from zero

Then for the chargeQa5*tdhd2rW j t, we have

11This is not a true radiation. The real Coulomb modeAl
[stat] is

orthogonalto the complex propagating modesVl
(TE) andVl

(TM) .
06490
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a

]tQa1gf abcAt
bQc50. ~A12!

Since the gauge condition isAt50, we conclude thatQa
5const. In the framework of wedge dynamics, the notion
static charge is well defined even if the individual charg
move with respect to each other~in a specific way!. A similar
result can be obtained in the system with the Hamilton
time t5x0 with the gauge conditionA050. If all ~color!
charges are at rest, their proper static field does not ‘‘rota
their color. However, this will not be the case if we chose
different gauge condition, e.g.,A350 or divA50, which
would require thatA0Þ0.

Finally, it is easy to understand, that since the pro
gluon field of the static fundamental color charge does
affect the charge itself, this gluon field cannot be a carrier
the color charge. This fully agrees with the fact, that t
norm of the Coulomb mode equals zero, because its fiel
real ~contrary to the complex fields of the transverse mod
that represent gluons!. An additional reason to pay specia
attention to the static field configuration is that the field c
responding to the charge densityr(t50) is an isolated ex-
ceptional static field. It was necessary to describe it in de
in order to have a reference point for a more involved ana
sis of the fields created by the charged currents.

2. The full longitudinal field

The gluon propagator, which we review and analyze
some detail below, was found as a~retarded! response func-
tion between the potential and the current for the lineariz
~Maxwell! equations of motion. The potential is represent
as a sum of three terms,

A5A[ tr ]1A[L]1A[ inst]5A[ tr ]1A[ long] .

The second and the third terms constitute the longitudinal~in
a sense of the Gauss’s law! field. The goal of this somewha
technical analysis is to demonstrate that the longitudinal p
of this propagator indeed includes a new contact term. At
same time we want to show, that the standard Coulomb fie
are still present in the propagator, almost unchanged and
modified only by the relativistic causal boundaries that o
would expect to appear for the fields of the emergi
charges.

The transverse part of the retarded propagator is trivia
is built from the partial solutions of the homogeneous wa
equations,

Al
[ tr ]~x1!5E d4x2u~t12t2!D lm

(tr )~x1 ,x2! j m~x2!,

~A13!

where

D lm
(tr )~x,y!52 i E

2`

`

dnE d2kW (
l5TE,TM

@VnkW ; l
(l)

~x!VnkW ;m
(l)* ~y!

2VnkW ; l
(l)* ~x!VnkW ;m

(l)
~y!#, ~A14!
4-13
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A. MAKHLIN PHYSICAL REVIEW C 64 064904
which can be easily recognized as the Riemann function
the original homogeneous hyperbolic system. The Riem
function solves the boundary value problem for the evolut
of the free radiation field. It is obtained immediately as
bilinear expansion over the full set of solutions of the hom
geneous system.

The name of the instantaneous part is motivated by
explicit form

Al
[ inst]~kW ,n;t1!5

r~kW ,n,t1!

~2p!3ikt
2 FkrQ21,in~ktt1!

nQ1,in~ktt1!
G

l

,

~A15!

the potential Al
[ inst] is simultaneous with the charge dens

r5t j t . Formally, it can be obtained by adding the tim
dependence to the charge density in the expression for
static potential~A7!. However, this form is inconvenient a
long as we have to useAm j m5Al j

l as the basic form of the
interaction Hamiltonian. Therefore, we have to eliminate
charge densityr completely, and replace it by the spati
componentsj n of the current. The replacement follows a
evident prescription

r~t1 ,n,kW !2r~0,n,kW !5E
0

t1
dt2

]r

]t2

52 i E
0

t1
t2dt2@ksj

s~t2 ,n,kW !

1n j h~t2 ,n,kW !#. ~A16!

The effect of the initial charge densityr05r(0,n,kW ) would
correspond to the clearly visible static pattern in the long
dinal part of the field. In the framework of perturbativ
QCD, this pattern is not active, since it cannot transmit
color charge. Furthermore, as we have argued previousl
nuclear collisions, the initial density of the color charges
t50 is zero. This leads to

Al
[ inst]~t1 ,n,kW !52E

0

t1 t2dt2

~2p!3kt
2

3FkrQ21,in~ktt1!

nQ1,in~ktt1!
G

l

Fks

n
G

m

j m~t2 ,n,kW !.

~A17!

In this form, the three remaining~in the gaugeAt50) spatial
componentsAl of the vector potential are expressed via t
spatial components of the current.

The dynamical longitudinal fieldA(L) is of the form

Al
[L]~t1 ,n,kW !

5E
0

t1 t2dt2

~2p!3kt
2 Fkr

n
G

l

FksQ21,in~ktt2!

nQ1,in~ktt2!
G

m

j m~t2 ,n,kW !.

~A18!
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It also does not allow for the bilinear expansion with tw
temporal arguments. Its electric and magnetic field is sim
taneous with the currentj m also. In what follows immedi-
ately, we intend to single out the contact part of the pro
gator, which shows up only in theDhh component and
connectsAh with j h .

In order to set the stage, it is instructive to start with t
electric and magnetic fields of these two modes,Em5Å m ,
E m5A2ggmnÅ n , and B m52(2A2g)21emlnFln . Since
the potentialAl

[L] is the three-dimensional gradient, we im
mediately see thatB l

[L]50. ~Note, thatAl
[L] is the gradient

of a time-dependentfunction, and thus is not a pure gauge!
Starting from the expression forA[ inst] , and using the rela-
tion @2#,

Q21,in~ktt!2Q1,in~ktt!52
t

n2

]

]t
s1,in~ktt!

5t
]

]t
s21,in~ktt!, ~A19!

we obtain by a straightforward calculation that

B l
[ inst]~t,n,kW !

5E
0

t t2dt2n

~2p!3ikt
2F ky

2kx

0
G

l

F kx

ky

n
G

m

ṡ21,in~ktt! j m~t2 ,n,kW !,

~A20!

i.e., the longitudinal part of the magnetic field has only t
azimuthal component~the magnetic field circulates aroun
the current flowing in theh direction!, which is natural for
the distribution of charges that experience expansion iz
direction. Note, that the magnetic field exists even whenr is
t independent.

In the same way, we compute the electric fields

El
[L]~t,n,kW !5

t

~2p!3kt
2 Fkr

n
G

l

FksQ21,in~ktt!

nQ1,in~ktt2!
G

m

j m~t,n,kW !,

~A21!

and

El
[ inst]~t,n,kW !5

2 i

~2p!3kt
2 H FkrQ21,in~ktt!

nQ1,in~ktt!
G

l

ṙ~t,n,kW !

1F krt
21s1,in~ktt!

kt
2nts21,in~ktt!

G
l

r~t,n,kW !J . ~A22!

Once again, in the static limit,j m50, andṙ50; thus,E[L]

50 and only the second term inE[ inst] survives and be-
comes the previously foundE[stat] . Notice that the time in-
tegration in expressions for potentials looks as retardedt1
.t2. This has nothing to do with causal~and the only one
meaningful! retardation. This inequality is due to the boun
ary conditions imposed onAl ~to fix the gauge! whenAl is
4-14
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QUANTUM COLLISIONS OF FINITE-SIZE . . . PHYSICAL REVIEW C 64 064904
being rebuilt from El , which is simultaneous with the
sources. The same inequality appears when we shall reb
the charge densityr(t) via j m(t) at the previous time.

Now, leaving the vanishing effect ofr(t50) aside, we
can move to the fields produced by the currents. We wan
present the propagator in its general tensor form, which
plies that

Al
[ long]~x1!5E d4x2Dlm

[ long]~x1 ,x2! j m~x2!.

Let us begin with the electric fields produced by the co
ponentj h of the current:

Eh
[L]~t1 ,n,kW u j h!5

1

~2p!3F t1
2

2
2E

0

t1
s1,in~ktt !tdtG

3t1 j h~t1 ,n,kW !, ~A23!

Eh
[ inst]~t1 ,n,kW u j h!5

1

~2p!3H 2t1@12s1,in~ktt1!#

3E
0

t1
t2dt2 j h~t1 ,n,kW !

2F t1
2

2
2E

0

t1
s1,in~ktt !tdtG

3t1 j h~t1 ,n,kW !J . ~A24!

We see, that theEh
[L] cancel out the second term inEh

[ inst] ,

originating, in its turn, from the term withṙ in Eq. ~A22!. In
this way, we obtain the full form of theh component of the
longitudinal field

Eh
[ long]~t,n,kW u j h!5@2t1ts1,in~ktt!#E

0

t t2dt2

~2p!3 j h~t2 ,n,kW !,

Ah
[ long]~t1 ,n,kW u j h!5E

0

t1t2dt2

~2p!3 F t2
22t1

2

2
2E

t2

t1
s1,in~ktt !tdtG

3 j h~t2 ,n,kW !, ~A25!

where the first term is independent ofn andkW , and yields the
contact part of the propagator, which~in the coordinate rep-
resentation! reads as

Dhh
[contact]~t1 ,t2 ;h12h2 ;rW12rW2!

52
t1

22t2
2

2
d~h12h2!d~rW12rW2!. ~A26!

The first line of Eq.~A24! clearly illustrates its origin: We
started in Eq.~A22! with the productns21,in(ktt)r(t,n,kW ).
Then, sincer(t) is developed dynamically, we expressedr
via ]h j h→n j h, gaining an extra power ofn. This allows us
to use the relation between two Lommel functions, Eq.~A5!,
06490
ild

to
-

-

and replace~in fact, after integrating by parts! n2s21,in→1
2s21,in , which is equivalent to a straightforward accou
for the Gauss law. Then- andkt-independent unit gives Eq
~A26!.12

The second integral term in Eq.~A25! can also be Fourier
transformed into the coordinate representation. We wan
do that here, in order to verify that the contact term is n
singled out artificially and that it is not canceled by som
thing hidden in the second term. To compute the integr
from the functions1,in it can be conveniently decomposed
the following way:

s1,in~x!5S1,in~x!2hin~x!,

hin~x!5
e2pn/2

2

pn/2

sinh~pn/2!
@Hin

(1)~x!1H2 in
(2) ~x!#.

~A27!

The functionhin(x) obeys the homogeneous Bessel equat
and thus can describe only the field outside the domain of
source influence. In the course of calculations, we use
following integral representation for the Hankel functions

e2pn/2H
7 in
(
2
1)

~ktt!5
6 i

p E
2`

`

exp@7 iktt coshu#e6 inudu.

~A28!

The Lommel functionS1,in has a similar representation

S1,in~x!5xE
0

`

coshu cosnue2x sinhudu, ~A29!

which allows one to compute the integraldn exactly,

E
2`

`

S1,in~ktt!einhdn5pktt coshhe2ktt sinhuhu,

~A30!

12One may wonder, why the same type contact term does
show up in other dynamics~and gauges, such asA050). The
propagators of these gauges are constructed in such a way tha
translation invariance and the possibility of a simple moment
representation are preserved. The price for this apparent simpl
is the spurious poles in the propagator without a physically m
vated prescription to handle these poles. These poles reflect a
trinsic uncertainty in the way one can approach the limit of t
static field. In order to fix the gaugeA050 completely, one has to
impose some boundary condition on the gauge fields at some timt,
thus corrupting the translation invariance and gaining additio
terms in the propagator, which, in fact, are of the same origin as
contact term in the gaugeAt50. At larget1 andt2, and locally in
the coordinate rapidityh ~when the curvature of the hypersurface
the constantt becomes negligible!, the gaugeAt50 can be ap-
proximated locally by the gaugeA050 @2#, provided the boundary
conditions att50 are released. In this domain, the contribution
the contact term is suppressed by the two small curvature fac
ghh(t1)ghh(t2)5t1

22t2
22. Therefore, if a usual scattering proce

between the asymptotic states takes place at larget, wedge dynam-
ics will treat it according to the standard scattering theory.
4-15
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and from Eq.~A28! it follows

E
2`

`

dneinhhin~ktt!5E
2`

`

d u
sin@ktt coshu!]

cosh2~u1h!

5E
2`

`

d u
sin@ktt cosh~u2h!#

cosh2u
.

~A31!

Next we may write the full Fourier transforms. From E
~A30!, we have

E d2kW

~2p!3
eikW rWE

2`

`

S1,in~ktt!einhdn

52
t coshh

4p
¹'

2 E
0

`

J0~kr !exp@2ktt sinhuhu#dk

52
t coshh

4p
¹'

2 F 1

~rW21t2sinh2h!1/2G . ~A32!

Starting from Eq.~A31!, we continue by introducingkz

5ktsinhu andk05ktcoshu5uku and changingd2kWdu for the
three-dimensional integrationd3k. With t5t coshh, r
5(x,y,t sinhh), this leads to

E d2kW

~2p!3
eikW•rWE

2`

`

dneinhhin~ktt!

52¹'
2 E d2kW

2i ~2p!3
eikW•rW

3E
2`

` dkz

k0
3 @eik0t2 ikzz2e2 ik0t1 ikzz#

5E d3k

~2p!3

eik•r

uku3
sink0t

52
¹'

2

4pFu~r 22t2!
t coshh

~r 21t2sinh2h!1/2
1u~t22r 2!G .

~A33!

Adding Eqs.~A32! and ~A33! we indeed find that thehh
component of the longitudinal propagator vanishes at the
tancesr t exceedingt, i.e., outside the light cone of the po
sition of the current which creates the field. Finally,
06490
s-

Eh
[ long]~t,h1 ,rW1u j h!

5E dh2drW2E
0

t t2dt2

~2p!3 j h~t2 ,h2 ,rW2!

3H 2td~h!d~rW !2
¹'

2

4p

3F u~t2r t!S t2sinhh

~r t
21t2sinh2h!1/2

21D G J ,

~A34!

where,h5h12h2 and rW5rW12rW2.
The first ~contact! term in this formula is indeed very

special. It is not limited by the light-cone boundary. Th
second term, does have these boundaries, which are jus
posed on the Coulomb-type fields rewritten in terms of
natural coordinates of wedge dynamics. It also includes
radiation fields propagating along the light conet5r t .
Therefore, only this term can interfere with the radiati
fields of the transverse modes. This is clear evidence tha
cancellation between the contact term and the nonlocal p
of the propagator is impossible. As it was demonstrated
Ref. @2#, the transverse electric field is governed by a us
relativistic wave equation. Integrating Eq.~A34! overt from
zero tot1, we recover the potential, and thehh component
of the propagator,

Dhh
[ long]~t1 ,t2 ;h,rW !52

t1
22t2

2

2
d~h!d~rW !2

¹'
2

4p

3E
t2

t1
tdtu~ t2r t!F t coshh

R~ t !
21G .

~A35!

The remaining components of the propagatorD lm
[ long] are

Drs
[ long]~t1 ,t2 ;h,rW !5

] r]s

4p E
t2

t1dt

t
u~ t2r t!F t coshh

R~ t !
11G ,

~A36!

Drh
[ long]~t1 ,t2 ;h,rW !5

] r

4p H u~ t2r t!

3F E
0

t1r t
2sinhh dt

R3~ t !
2E

t2

t1t2sinhh dt

R3~ t !
G

1tanhhE
0

t2
d~ t2r t!dtJ

5Dhr
[ long]~t2 ,t1 ;2h,rW !, ~A37!

where R(t)5@r t
21t2sinh2h#1/2. The propagator identically

vanishes atr t.t, and the derivatives of the step function a
4-16



r
s

la

m

-

E

ral

g,

s
the
rals,
e

st
r-

on-

QUANTUM COLLISIONS OF FINITE-SIZE . . . PHYSICAL REVIEW C 64 064904
confined to the light cone corresponding to the transient
diation that accompanies the creation of the color charge

APPENDIX B: SUBLEADING TERMS IN FORWARD
SCATTERING OF THE BOOST STATES

In the limit of the forward scattering, the general formu
~3.15! can be rewritten in the following form:

M1,2→18,285
g2

27p
d~n11n22n182n28!d~kW11kW22kW182kW28!

3E
0

`

t1dt1E
0

`

t2dt2Hin
18

(1)
~m18t1!Hin1

(2)~m1t1!

3Hin
28

(1)
~m28t2!Hin2

(2)~m2t2!

3F n11n18

t1
2

Dhh
[00]~t1 ,t2 ;z,qW !

n21n28

t2
2

2qrDrs
[00]~t1 ,t2 ;z,qW !qs

1
n11n18

t1
2

Dhs
[00]~t1 ,t2 ;z,qW !qs

2qrDrh
[00]~t1 ,t2 ;z,qW !

n21n28

t2
2 G , ~B1!

where we took the initial transverse momentapW 15pW 250,
and correspondingly, the final state momenta,pW 2852pW 18

5qW . By its design, the fullT-ordered propagatorDlm
[00] is a

sum of the longitudinal part and two terms originating fro
the transverse electricV(TE) and transverse magneticV(TM)

modes of the radiation field

D [00]5D [00,long]1D [00](TE)1D [00](TM).

The hh component of the longitudinal part of the propa
gator can be read out from the Eq.~A25!,

Dhh
[ long]~t1 ,t2 ;z,qW !5

1

2p F2
t1

22t2
2

2
2E

t2

t1
s1,i z~qtt !tdtG ,

~B2!

where the first term on the right has already been used in
~3.20! to obtain the main estimate~3.27!. The second term
yields

I 15E
t0

Tdt1

t1
E

t0

Tdt2

t2
S t1

t2
D 2 i z

sgn~t12t2!E
t2

t1
s1,i z~qtt !tdt.

~B3!
06490
a-
.

q.

The behavior of the Lommel function in the limitz→0 can
be found from the integral representation~A4!

s1,i0~qtt!5
1

pE0

p

@12cos~ktt sinf!#df512J0~qtt!.

~B4!

Expanding the Bessel functionJ0(qtt) at smallqt , and inte-
grating, we arrive at

2I 15
qt

2T4

z2116H S 11
t0

4

T4D sin@z ln~T/t0!#

z

2S 12
t0

4

T4D11cos@z ln~T/t0!#

4 J . ~B5!

This term vanishes in the limit of the forward scattering,qt
→0.

The rs component of the longitudinal field propagator

Drs
[ long]~t1 ,t2 ;z,qW !5

1

2p

qrqs

qt
2 E

t2

t1
s1,i z~qtt !

dt

t
~B6!

brings in the term

I 25qt
2E

t0

T

t1dt1E
t0

T

t2dt2S t1

t2
D 2 i z

3sgn~t12t2!E
t2

t1
s1,i z~qtt !

dt

t
. ~B7!

At z→0 and at smallqt , it can be represented as the integ

2I 25
qt

4T6

8 E
t0 /T

1

y5dyE
t0 /Ty

1

@xi z1x2 i z#~12x2!dx,

~B8!

which also vanishes in the limit of the forward scatterin
qt→0.

The contribution of the componentsDrh
[ long] and Dhs

[ long]

into the matrix element~B1!, as well as of all component
Dlm

(TM) of the transverse propagator is estimated exactly in
same way. All these components are defined as the integ
from zero totqt , of the functions that are regular at th
origin. Therefore, at smallqt , all these terms have at lea
one factorqt

2 and vanish in the limit of the forward scatte
ing.

The only exception from this scheme is the piece c
nected with the transverse partD (TE) of the propagator. This
part is the bilinear formDrs

(TE) that has onlyrs components
and includes the projectord rs2qrqs /qt

2 . Since this projector

is orthogonal to the vectorqW t , the contribution of this mode
to the matrix element~B1! identically vanishes.
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