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Quantum collisions of finite-size ultrarelativistic nuclei
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We show that the boost variable, the conjugate to the coordinate rapidity, which is associated with the
center-of-mass motion, encodes the information about the finite size of colliding nuclei in a Lorentz-invariant
way. The quasielastic forward color-changing scattering between the quantum boost states rapidly grows with
the total energy of the collision and leads to an active breakdown of the color coherence at the earliest moments
of the collision. The possible physical implications of this result are discussed.
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I. INTRODUCTION we want to achieve, the larger must be the energy resources
of the microscope. In the textbook example of the electron
It is commonly accepted that on the scale of the strongrobed by the photon, the electron receives energy from the
interaction, which is responsible for nuclear integrity andhard photon. In nuclear collisions, both the kinetic energy of
compactness, the large nuclei have a macroscopically finitthe nuclei and the energy of the compression of the Lorentz-
size and a well-defined bounddryThis size can be physi- contracted nuclei are used for the purpose of a precise mea-
cally measured in the rest frame of a nucleus, and it undelsyrement of the coordinate. An internal observer that pen-
goes the Lorentz contraction in the moving frame withoutetrates the future of the collision with the nuclei will see a

any physical limitationgas is required by special relativity  y;olently expanding matter around him. The two viewpoints

In this paper, we suggest to take thig faCt, asa guideline,.an erfectly complement each other. The short scales of primary
explore the consequences of the finite size of the nuclei fo

; L T nteraction provide a sufficient motivation to use the wedge
the quantum processf their collision at ultrarelativistic en-

ergies. Of these consequences, the most important is tiﬂénamics that describes the fields inside the future domain of
. ) « w, 212 2 « : ”
change of the symmetry: The incoming nuclei are prepare e "wedge T .t z >0, and emplqys the *proper tlm_e

in a homogeneous space having a given energy and momeh-2° & Hamiltonian time of the evplunon and thg coordinate
tum. The fixed space-time point of the first interaction cor-'aPidity 7 @s a longitudinal coordinag,2]. The infamous

rupts the initial symmetry, and enforces a different choice of @Pidity plateau persistently observed in high-energy nuclear
the conserved quantum numbers for the later stages. Of trf@llisions strongly supports this picture. o
ten symmetries of the Poincageoup, only rotation around ~ TNhe approach advocated in this paper explicitly incorpo-
the collisionz axis, Lorentz transformation along it, and the fates the macroscopic finite size of the interacting objects
translations in the transverse and y directions survive. into the quantum theory of the earliest stage of the collision.
Therefore, it is profitable to choose, in advance, the set ofVe assume that there is no measurable gluon fields outside
normal modes that have the symmetry of the localized initiathe large stable nuclei. Consequently, the time moment and
interaction and carry quantum numbers adequate to this synthe z coordinate, along the collision axis, of the first interac-
metry. These quantum numbers are the transverse comptien are defined with the accuracy of at leas0.01 fm,
nentsp, of momentum and the boost,=p°z—p?, of the ~ Which is both the size of a Lorentz-contracted individual
particle (which is associated with the center-of-mass motionnucleon and the characteristic scale of color correlation in
and replaces the compongit of its momentun the z direction before the collision. The full size of the
These geometric considerations can be reinforced by theorentz-contracted gold nucleus at the energ$00 GeV
quantum mechanical arguments. Indeed, from the perspeper nucleon is~0.1 fm. We show, that despite an almost
tive of an external observer, the first thing that happens durinfinite Lorentz contraction and the quantum nature of the
ing the collision is a precise measurement, by means of thimteraction process, the information about the finite size of
strong interactions, of the collision coordinate within a verythe incoming nuclei does not fade away. It remains clearly
short time interval. Therefore, statistically, by the uncertaintyidentifiable in terms of the properly chosen Lorentz-invariant
principle, the secondaries with any conceivable momentunvariable,the boost which is associated with the center-of-
p, can be detected after collision. This is a well-knownmass motion. Thus, it is possible to describe the collision of
scheme of the Heisenberg microscope. The higher resolutiothe two nuclei staying on the same physical ground in any
reference frame, either in the reference frame of one of the
nuclei, or in the laboratory frame where both nuclei move
*Email address: makhlin@nscl.msu.edu almost at the speed of light.
1By the finite size, we mean the size that is measured by means of The fact that nuclei have finite size is intimately con-
the strong interaction of two nuclei. If the primary interaction were nected with the gauge nature of the strong interactions.
electromagneticas is in theep or eA processes then the whole  Therefore, when addressing the problem of interaction of the
concept of a finite size would become doubtful. two compact nuclei, we must refer to the properties of the
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vector gauge field$The colored sources of these fields mustfield.2 It seems to be the leading one at the earliest moments
be located inside the nuclei and they can be physically reef the collision of the two nuclei, and to result in the inten-
solved only after the two nuclei overlap. This is the only sive color exchanges even in quasielastic subprocesses.
assumption we make regarding the internal structure of &ventually, these exchanges must cause an active breakdown
nucleus. By all means, location of a material object inside af the fragile color coherence of the colliding nuclei and
nucleus implies that its center of mass should move with thistimulate intense color radiation. The ratg of these color
nucleus without crossing its boundary. Therefore, before thexchanges between the quantum boost states appears to be
collision, it is natural to characterize such an object by itslarge at the earliest moments of the collision, and it grows as
center of mass, i.e., by its boost The valence quarks are In’E with the total energyE. This major result of this paper

the first candidates to be considered in this manner. In thig given by Eq.(3.27. The I’E dependence of the rate on
sense, we follow the idea of McLerran-Venugopalan modethe total energy of the collision resembles the one obtained in
[3] in the form given by Kovchegov and Muellg4]. How-  the early 1960s estimate on the maximal rate at which the
ever, we do not try populate the nuclei with the wee partonstotal cross section may grow with the energy. It is known as
We think that they areggradually createdin the course of the Froissart bound, and a close dependence is indeed ob-
collision [5,6]. served in the proton-proton collisions.

The framework of wedge dynamics also offers a unique Originally, the Froissart bound was derived in the scope
opportunity to avoid various technical problems encountere®f the axiomatic field theory, a powerful approach based on
when the moving at the speed of light nuchgi,= *c, are the most general requirements, like Lorentz invariance, cau-
taken as the first approximatidi,5]. This state cannot be sality, unitarity, completen.e.ss of _thg basis of physical states
reached as a continuous limit @f—c and a significant effort and the cluster decomposition princifgiee Ref[10] for the
has been made to smooth out the singular behavior of quaif€tails. Since the perturbation theorusually in a given
tum fields atV=c [6—8]. The wedge form of Hamiltonian orden can lead to an anomalously large total cross section

dynamics is free of this difficulty. Furthermore, the gauge(and thu; to apparently viola_te unitabﬁt'u Is S".’“d _tha_t the
A"=0 of the wedge dynamics can be fixed7completely perturbative total cross section requires unitarization. Re-

L . cently, this problem received a vigorous attention in connec-
Hence, the transverse and longitudinal fields are well sepg; Y P g

. ion with the evolution equations for large nuclei at |
rated and the gluon propagators of wedge dynamics have a g oW

. X . ) ,11]. A physical protection from an excessive growth of
spurious poles that can stimulate a singular behavior of sca ross section due to collinear problems was offered in Ref.
tering amplidudeq?]. In this framework, one can use the

; A 6]. From this standpoint, one can infer that the re8U27)
same dynamics and the same gauge for the description f this paper indeed complies with the unitarity. Though this

both incoming nuclei and the products of their reacfi®/6],  issue has to be studied in more details, we suggest a plau-
thus avoiding all glitches of the “on-line” changing the sjple simple physical argument below.
gauge and redefinition the stafé. The axioms of unitarity and completeness clearly are not

Below, we concentrate on a specific interaction in the extruly independent. Discussion of any issue related to unitarity
panding system that emerges in ultrarelativistic nuclear colrequires that the spaces of the initial and final states are com-
lisions. It is mediated by the longitudinal part of the gluon pletely specified. Physically, this means that the measure-
ment is not accomplished until its products are analyzed.
What the particular states are, depends on the detectors that
5 ] ) ] ) o ) resolve these states. In nuclear collisions, one cannot rely on

Addressing the issue of interaction of finite-size nuclei, oneynq conyentional “external” distant detectors. The role of the
should keep in mind the source of the major difference betweeraetectors for the earliest subprocesgesich only very ten-

QED and QCD phenomena. The local gauge symmetry of QED Caj /o1 can be viewed as the independent acts of scatiering
be extended to a global gauge symmetry that generates the con-

served gauge-invariant global quantum number, the electric chargIs played by the subsequent interactions. The next-to-best

which can be sensed at a distance. The proper field of an electr?g1Ing one can do is to try to answer the following question.

charge is the main obstacle for the definition of its size. On thelLet the fields excited at the beginning of the collision be

other hand, the radiation field of QED appears as a result of thg)(panded over a system of states Ch"?lraCteriZEd by_some
changes in the extended proper fields of accelerated charges, aHHantum numbers. Let two such states interact. What is the

one can phys|ca||y create such an Object as a front of e|ectromad.ate of these interactions? The answer will be related to the

netic wave. In QCD’ the local gauge invariance of the color grouptWO ma'n pr0b|emS Of u|trare|atIVIStIC heaVy |On CO”'S'OnS
cannot be extended to is global version that would correspond to a

gauge-invariant conserved charge. Hence, we can readily define the

size of the colorless nucleus, but we cannot create a front of color *The division of the gauge field into the longitudinal and trans-
radiation in the gauge-invariant vacuum. Both these properties oferse parts can be done only with respect to the property of propa-
QCD work for us. They allow one to use the Lorenz contraction togation: transverse fields are emitted and then propagate being lim-
localize the primary domain of the collision and thus, to impose theéted in space-time by the light-cone boundaries, while the
classical boundary conditions on the color fields at later times. Théongitudinal fields are simultaneou terms of the Hamiltonian
existence of the collective propagating quark and gluon modes atme) with their sources. In QCD, this scheme can be practically
the later times is the conjecture that has to be verified by the studimplemented only in the framework of perturbation theory, which is
of heavy ion collisions. assumed throughout this paper.

064904-2



QUANTUM COLLISIONS OF FINITE-SIE . .. PHYSICAL REVIEW C 64 064904

First, the known rate of the primary interaction will help to role as the initial data for the primary quantum interactions
estimate the entropy production. At this point, the explicitbetween nuclei.

knowledge of the final states is imperative, because the en-

tropy is the number of the excited degrees of freedom. Sec- A. Introducing the variables

ond, it will be directly connected to the total cross section.

Indeed, if the fields change their colors during the tim&/E future d i of the h larte-7—0 (light wedgs

with sufficient probability, then the nucleons will lose their tﬁe“rt\fvoofmgs‘?ze 3Itr£eelgii3isficcng'eclt% tov;’ihgea‘é"ﬁrgther

coherence and fall apart. A new composition of hadrons will . : 0] o . ;
or the first time. The natural coordinates inside this domain

be created with the probability one, and it does not reall e parametrized by the proper timand the rapidity coor-
matter how the interacting states are chosen. This argume ma?en y prop piaity

has been tested long ago: the total cross section of tiee
annihilation into hadrons coincides with the cross section of t=rcoshy, z=rsinhy. (2.1

the processe*e”—qqg. One of the recently studied ex-

amples is the interaction of the eikonalized quarks or gluons | terms of these variables, the action for a classical par-
[12]. In this paper, for the same purpose, we consider thgcle is

“natural” states of the wedge dynamics, deliberately leaving

the key question ofvhat interacts at the very beginning of

The wedge form of relativistic dynamics works inside the

the collision open. We find that, because the states of wedge s:f Ldr= —mf ds= —mf J1—védr
dynamics carry internal currents in the coordinate rapidity

direction, there exists a specific contact interaction of these —

currents, which grows when—0 and leads to the amplitude =- mJ drVi-729°—r? 2.2

of interaction, proportional to |E. (The contact term in the
gluon propagator has been singled out in the course of the .
complete fixing of the gaug&™=0, and its main effect is Wherev?=7°%°+? is the spatial velocity squared, and the
confined to the nearest vicinity of the light wedges0, dot means derivative over th@&lamiltonian time 7.% The
where the boundary conditions that fix the gauge are imcanonical momenta of this particle,
posed). If the QCD indeed falls under a jurisdiction of the
axiomatic field theory(which by no means is self-evident L mr
. . . n -

then our perturbative result, which exactly reaches the Frois- V== , p=—= . (23
sart bound, may point to the major physical mechanism that an 1-v? ar 1-v?
triggers the scenario of ultrarelativistic heavy ion collisions.

The paper is organized as follows. In Sec. Il we introduceare conserved by virtue of the equations of motion. The
the variables of wedge dynamics and clarify the physicaHamiltonian is of a standard relativistic form
meaning of the boost in classical and quantum contexts. In
Sec. Il we use the boost states to estimate the amplitude of
forward scattering with color transfer at the earliest moments H=vp+p- F—L= ,
of the collision, paying attention to the contact interaction in 1—v?
the expanding system. In Appendix A, we demonstrate that
the contact term has no counterparts, and that the standayghich, after excluding the velocities, can be rewritten in
Coulomb-type terms are still there in the propagator. The\erms of the canonical momenta
are somewhat modified, just in a way that one could expect
on purely physical grounds. In Appendix B we show, that the
contribution of the other terms into the forward scattering H= /m2+52+ V_z (2.5
amplitude is subleading. T

-

>

mr

B
—

(2.9

The useful relations of geometric origin, which will be often

Il. CLASSICAL AND QUANTUM PARTICLES IN WEDGE referred to later on, are
DYNAMICS

In this section, we address the basic connection betweemgqjiowing a tradition, we use the Greek indices for the four-
the classical and quantum aspects of the interaction of comtimensional vectors and tensors in the curvilinear coordinajés (
pact relativistic objects, in order to prepare the stage for &n exception, it always stands for the rapidity directicand the
more involved analysis of the interaction picture. First, weLatin indices froma to d for the vectors in flat Minkowsky coordi-
discuss the role of the classical Lorentz boost as a naturalates. We use Latin indices fromto w for the transversa andy
variable which, by its origin, is closely related to the finite components r(, . .. w=1,2), and the arrows over the letters to
size. Second, we review the meaning of the boost as a quagenote the two-dimensional vectors, erg_:,(kx,ky), |K|=k,. The
tum number, and establish its connection with the classicalatin indices fromi to n (i, ... ,n=1,2,3) will be used for the
boost. Finally, we show that the genuinely classical distributhree-dimensional internal coordinatas=(x,y,#) on the hyper-
tion of the boosts in stable nuclei before the collision plays aurfacer= const.
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1 sinhy coshp p
P7=——p,=— 0 p? X(7) = Xo= 3 (\Pmi+ 17~ v]),
T T T mt
=—ﬁsinr(1;—0) in1
T ! 7’](7')_(9—_S|nh m_t’T (211)

H=coshy p®—sinhy p®=m, cosip—6), (2.6 Despite their unusual appearance, these two equations pa-
rametrize a straight line, as it should be for the free motion of
where mf:m2+ pt2, p°=mcoshd, and p*=m,sinhd are @ pointlike particle. Let us rewrite the second of equations
the Cartesian momenta. Therefore, the boost (2.13) in two ways:

. _ o 0 N
v=p,=m, sinh( 77— 6)=x3p°— x°p3=p°(z—V,1) myrsin (7)—0]=v=zp —tp*—myz,, (2.12

2.7 and
is related to the.center-of-mass coordinate. Accord!ng jco Eq. m, 7 cosh 7(7)— 0]:tp°—zp2= /—szt2+ v2—>mtt* ,
(2.5), the quantityv/7 plays a role as a local longitudinal (2.13
momentum.
The Hamilton-Jacobi equation for the classical action of avhere the arrows point to the special choice of the reference
particle reads as frame with 6=0.% Then the first of the equatiori.11) be-
comes
&S+\/1 s 2+ s 2+ 2=0 (2.9) P [, v v} p
- | - m==0. . X X
JT ™\ ar X(T)—ona< TZJFHZ_H)_)E“*_'Z*')’
. . . (2.14
It allows for the separation of variables and has a solution
obviously satisfying the required boundary condition 7at
. , v =0. Now, it is easy to understand that the quantifyn, is
S=vyp+ p-r—f m; + ?dT the 7-independent coordinate, of the particle in the co-
moving frame. By the definition, this quantity is Lorentz
B SN — gV invariant: the boost is the same in all Lorentz frames. The
=vptp-r—ymirtrttesinht ——. (29 cartesian forni2.14) of the trajectory is obviously continued

to all quadrants of théz plane. This classical definition of

In a quantum context, this action serves as the phase of §€ Poost s fairly operational but, as the reader may notice, it
semiclassical wave function;~e'S, with the quantum num- '€quires that the base world lirjplane from which the co-
ordinatez, is measured is explicitly chosen. For the two

colliding nuclei, it is natural that the base lineorrespond-
ing to the rapidities+=Y) go through the point=z=0,
. - where the nuclei touch each other by their surfaces. If the
S=p-r—mrcoshi7—0). (210 nuyclei have radiu® and are built from the fragments of the
(transversg massm;, then the boosts for the right-moving
It corresponds to a plane wave, and its parameter(tf®  npycleus will be in the range 2m,R< »<0, and in the range
mentun) rapidity ¢, is not a canonical momentum. 0< v<2mR for the left-moving one. There is no contradic-
tion with quantum mechanics at this point, since the nuclei
B. Classical trajectories. The physical meaning of the boost aremacroscopicstable objects that can be kept under nonde-
tructive control(in their co-moving reference framebe-
re the collision. Asymptotically, they have the well-defined
rapidities 6= =Y, which can be also measured classically,
without any contradiction with the anticipated uncertainty

bers v and 5 either whenv>rm; or when rm;=v. An
isolated solution with the not separated variables is

In order to understand the physical meaning of the boo
variablev, the canonical conjugate to the rapidify one has
to figure out how it enters the classical equations of motion
According to the Jacobi theorem, the acti@{x,,a,),
known as a function of coordinateg and arbitrary constants
a,, allows one to find an additional set of the conserved

quanltlltles, ashlaan:bn; V|Vhlle the constantsanfaslaxﬂ and neglect the possible velocit of the nuclear constituent in
usually are the canonical momenta corresponding to the Cype nclear rest frame. In any case, it cannot be large without un-

clic coordinates and are conserved due to the equations Qbrmining the alleged stability of the nucleus. The origin of the
motion, as in Eq(2.9), the constantd, appear to be the ransverse mass may be different. It includes both the Lagrangian
initial coordinates. Applying the Jacobi theorem to the actionmass and the “adjoint mass” due to the transverse momentum.
(2.9), and choosing the constants in such a way that at |nside a stable nucleus, the momenta most probably characterize the
=0 we havex=x,, and that atr—o~ we haven=46, we  standing waves that are not likely to be too short, if the nucleus is in
obtain the equation of the particle trajectory the ground state.

SWe consider the physical design of the nucleus as almost static,
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FIG. 1. Geometry of a nucleus-nucleus colli-
sion in the center-of-mass reference fraftedt)
and in the rest frame of one of the nuc(eght).
The dark gray lines correspond to a semiclassical
boost state in the right-moving nucleus before the
collision.

relation, AvAn=1. Indeed, the boosts~m,z, are mea- In the field-theory formulation, the boost operator is given
suredinside the nuclei, while the measurements of the ve-by the generator of the Lorentz rotations in tizeplane. In
locities of the nuclei is performed by external devices. Therethe internal geometry of wedge dynamics, the boost operator
fore, the boost variable is indeed perfectly suited for theis given by thery component of the energy-momentum ten-
description of the finite size objects. If the relative boosts ofsor. The boost of the quantum field at the proper time

all constituents do not change in the course of the interaction,

then the object remains unaltered in (ossibly new rest R

frame (see Fig. 1 V=f T”’(X)Tdﬂdzf=f d3 , M#%(x) (2.17)

As a matter of fact, the boosts provide iawariant mea- Toonst
sure of the distribution of the constituents of the compact .
objects. The picture of rectilinear trajectories holds outsiddWNer® Mumn=X,T,n=xT,, Sy, is the usual angular
the light wedge also. Therefore, the classically prepared dig’omentum tensoiis the mtegral of motion corresponding to
tribution of the boosts is resolved as the distribution of thelN€ translation symmetrfL.orentz rotation in  direction.
further interacting quantum states with the given boostszThe quantum states with the given boesdre the eigenstates

when two such objects collide. Though E@.12 expresses of the operato(2.15 and their eigenfunctions depend an
the boostr via the invariantm, and distance, , in a quan- ase'””. The full wave function of a scalar particle with the

tum picture, the boost is an independent conserved additive boostv and the transverse momentymis the solution of

quantum number. Klein-Gordon equation with the separated variabtess,
For isolated pointlikgand thus, structurelesebjects, the and Ft,

practical measurement of the boost requires that the rapidity

n(7) is measured at two time moments along the same tra- e ™2

jectory. Then, solving the system of two equatid@sl?), 111(”( X) = . ——H@

one findsv and 6, the boost and the asymptotic rapidity of 2

the particle. It is unrealistic to perform such measurements

with sufficient accuracy in the asymptotic domain of thelt is normalized on the hypersurfaces- const,

macroscopically large. Unlike the case of the macroscopic

finite-size object, this kind of measurement does meet g

quantum-mechanical obstacles. f tl/f,,, /()i = t//a s(X)rd7d?r=5(6—0")S(p—p').

T=CO0Nns

(2.19

(mr)e"7 P (2,18

C. The boostw in quantum context

This equation normalizes the measurements performed by an
grray of the detectors moving with all possible velocities. At
any particular time of the Lorentz observer, this array even
does not cover the whole space.

N 9 At large v>1, andv>m;7, which is relevant to the ear-

v=—i % (2.19 liest stage, the asymptotic of this solution is semiclassical

The guantum-mechanical measurement of the bodst
very similar to the measurement of a usual momentum an
relies on the definition of the operator of the boost

ei77/4 eiv7]+i|5r‘

as the operator of translations in thge direction. Then it ¢%+3(x)’~v > lmexp:—i \/th7-2+ v?
becomes evident, that a simultaneous measurement of coor- Am® [mi7o+ 7]
lcgtrilg;en and momentunv is limited by the uncertainty re- +ivsinh L(v/mr)]<e'S, (2.20

clearly indicating that at the small timethe quantum par-
AvAn=1. (2.16 ticle with the finite boostv continues to follow its classical
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trajectory, since its classical action is large. Indeed, the sur- Ill. SCATTERING IN WEDGE DYNAMICS
face of the light wedge, everywhere except for its vertex,
corresponds toy—oo.

The wave functiong2.18 are connected, by means of
Fourier transform, with the plane-wave solutions

The nuclei meet each other at the two-dimensional plane
t=z=0, where the first interaction take place. This interac-
tion resolves the nuclei constituer(es.g., the “partons,” or
“color dipoles”) with the boostr~0, and excite the quan-
tum states with the boost~=0. The wave functions of these
v g states do not depend on the rapidity coordinateand they
w(f)(x):f v e—ivﬁw(fr)(x) evenly fill in the interior of the light wedge. At the same

k.0 — (27) Y% ko time, the two precursors, which are most likely to be the
fronts of the propagating gluon field, begin their way in the
lightlike directions, t=z=0, thus creating the physical
boundaries of the light wedger?=t?2—z?=0. Passing
through the nuclei, the precursors resolve the elements with

(2.2 the finite boosts, which are negative for the right-moving
nucleus and positive for the left-moving one, and initiate a
transient process of interaction between the nuclei. These
interactions excite the quantum states with positive and
negative boosts, which depend grase'””. In this way, the
classical boostsy,;=m;z, , are transformed into the quan-
um numbers of the wave functions that have the period

- 2/ v in the 7 direction, and occupy the entire future domain
and have a usual momentuor the rapidityf) as a quantum of the pointt=z=0. Before the collision the nuclei as a

number. These states become localized in rapigigt later whole are the coherent states of QCD and thterlor) co-

times,7m>1, and these states are most likely to be deteCteﬂerence cannot be destroyed immediately.7A¢ +0, the
by the expanding collective system. _ resolved boost states have the same phases they had in the
The key element of the suggested approach is that thgclei: the decomposition of the nuclei in terms of the boost
Lorentz-invariant boost states, which are independently presiates s still a coherent superpositfoRurthermore, since
pared in the two approaching nuclei, begin to interact as theghe classical action of the states with the finite boosts is large,
quantum states only when the nuclei overlap. At this mo-eyen the resolved partons continue to move along their rec-
ment, the positions of the nuclei constituenislassical tjlinear classical trajectories. The character of the further
boosts, which describe the elementary constituents of the nigyolution crucially depends on the subsequent interactions.
clei even outside the light wedpare translated into the Below, we study the quasielastic forward scattering of the
quantum numbers, which define the periodicity of the wavesolored quarks prepared and detected in the given boost
functions in the coordinate rapidity direction. It is evident states. This scattering is mediated by the gluon field and
that at the earliest times the distortion of the initial geometricresuns in the color exchange that alone is Capab|e of destroy_
picture should be only minimal. Therefore, it will be a suf- |ng the coherence of the nuclear wave function.
ficient approximation to study the transitions into other boost The propagators of the gauge fields in wedge dynamics
states, and we Stay within this apprOXimation until the end OtNere studied |r[1,2] In Appendix A, we review their prop-
this paper. The rate at which these early distortions develogrties with the emphasis on the needs of the present study.
appears to be quite large. The leading contribution comes from the spatially local
The dynamics of boost states preservesitivariant in-  «“contact term” of the longitudinal part of the propagator. In
formationabout the finite size of the nuclei both in the labo- grder to give a flavor of its origin, we have to emphasize,
ratory frame when each of the two nuclei is contracted up tqhat we study the phenomenon where the finite charge den-
a negligible small size, and in the rest frame of one of thesjty is formed as a result of the interaction, and the proper
nuclei (targed when the second onéprojectile passes fields of the gradually created and yet delocalized charges
through it as a seemingly infinitely sharp shock front. Onephysically overlap with their sources. Thus, aiming at the
cannot assign a finite width to the moving in thie direction  gynamic picture, we have to give the priority to the currents,
front, neither in thez direction, nor in thex™ direction, with- expressing the charge densjift) via the divergence of the
out a conflict with the special relativity. On the other hand, in
the framework of the wedge dynamics that operates with the———
boost states, it is safe to consider the limit of the infinite the poundary conditiom,(7=0)=0 imposed on the gauge

momentum frame at the end of the calculatibns. fields in the wedge dynamics, together with the gauge condition
A,=0, makes it impossible that the fields of precursors immedi-
ately modify the phasesotate the color charggalong the lightlike
5This, however, leaves open the question of what is detected iplanesx™=0 and x~=0. This property, which allows one to
high-energy collision. The answer crucially depends on what kind‘switch on” the interaction between the nuclei without an artificial
of the quantum-mechanical ensemble is involved in a particulacolor-changing “shock wave,” is in contrast with the case of the
measurement. null-plane dynamics with the gaugés =0.

1 .
= ————ex{d —ikircosi 08— n)+ikr].
2o L ik oSt 0= ) + KT

The saddle point of the Fourier transfor@®.21) (or its in-
versg is located at the value of (or 6) defined by the
relation, v=rm, sinh(#— %), corresponding to the classical
definition (2.7) of the boost. One can easily see that thes
wave functions also are semiclassical with the act@i0),
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current,d;p=—V -j, which eventually generates the contactcollision. The geometry of the collective modes that will be
term in the propagator. The effect of the evolving chargethe actual final states can be quite differgh4].
density p(t) becomes fully included into the Hamiltonian ~ Expression(3.1) is bilinear with respect to the evolution
Hine=]- A, which is the only form compatible with theom- ~ operatorS and thus it cannot be treated according to the
p|ete|y fixe(gaugeATzo_ This evolution of the color Charge Feynman rules. For its evaluation one should use the so-
density is the result of the interference between various pacalled Schwinger-Keldysh techniqué5] in the form ad-
tial waves, and it is not connected with the motion of thejusted for the calculation of inclusive amplitudgk3]. The
physically resolved pointlike color charges. Without an inter-evolution operator for the problem of evolution of the ob-
action, these partial waves would coherently sum and forngervable(3.1) is of a usual form
the stable nuclei. Of those interactions that take place when
the nuclei intersect, the most important are the ones that lead S=T exp[ i J Hint(X)d4X]
to the largest transition amplitudes.

An apparent complexity of the formulas in the wedge dy-with the Hamiltonian
namics is caused by the curvature of the hypersurfaces of the
constantr. The hypersurface=+0 is the one where the Hint(X) = J#(X)AL(X)
initial data are naturally set, and it has an infinite curvature.
An explicit dependence of the internal metric emakes the =j#(x)
vector differential operators more cumbersome and leads to
an interplay between the longitudinal and transverse fields. 3.3

(3.2

3

A0+ [ azDle o

where the second term in brackets is the longitudinal field
A. Choosing the observable Aﬂong](x). The propagatoDElg”gl(x,z) implicitly contains
G&(xo—zo). For the sake of definiteness, consider the fermion

Wedge dynamics deals only with the fields that emerge
color current

from the localized collision of two macroscopic objects. This
collision is .c0n3|dered as a precise measurement of the par- i(X)a=g ‘I’i(X)tﬁ P (X), (3.4)
tons coordinates at the finite time moment- +0. There-

fore, it is impossible to pose a formal scattering problemand commute the final-state Fock operators v@tand S
with the asymptotic initial states. Instead, we take an apusing the commutators

proach based on the calculation of the Heisenberg observable

[5,13], 5S

a(ks-sak- | a2
5St
oVi(2)

N(1',2")=(1,2n(1')(n(2") = 81/5:)|1,2)

=(0|aa;S'a},a} 5.2, Salal|0), (3.1) s'af(k)—a/(k)S'= f dz ¥(2. (39

L . . . In this equation, (t)(2) is the one-particle wave function
which is the inclusively measured number of pairs of the a i (2) P

) ' . : f the d iti f the field t
final state field excitations with quantum numbers 1 rom the decomposition of the Tield operator
=(i1,ky) and 2=(i;,k3) (k includes the transverse mo-

(X)= . (+) t (—)
mentum and boost,color). This observable is evolved from Wi(x) ; [ai(K) g " (x) b (K) i "] (3.6)
the initial state of the two interacting field excitations with
quantum numbers % (i, ,k;) and 2=(i,, k). This quantity These commutations result ifdisconnected pieces are

is closely related to théotal cross sectionindeed, we as- omitted
sume that the measurement is an impulse process that freezes
decomposition of the colliding nuclei in terms of the eigen- N(l’,2’):j dxlddeyldyzl(kf)(yz)ﬂf)(yl)
functions of the corresponding operator. This decomposition 2 1
can become incoherent only due to real interaction, which

2t
will either excite the new states, or just break the phase bal- X (0|aya, oS

ance between the initial ones. All this will contribute to the é‘\lfié(xz)&lfii(xl)
probability that the initial state is altered, i.e., to the imagi-

nary part of the forward scattering amplitude. The color ex- 5%S

changes take place at the earliest possible tipe~ 1/4/s, X= = aIaHOWﬁT)(XzWS)(Xl)-
and create a new color compositi OWii(yr) oWiy(y2) ? '

position that must eventually 1 2
(with the probability ongevolve into a new composition of (3.7
hadrons. We emphasize that a particular choice of the basis
of the interacting at>0 boost states is important only as Here, the functional_derivatives ovir act from the left, and
long as we are interested in the rate at which the color cothe derivatives oveW act from the right. Next, we compute
herence is broken. The color transfer between the booghe functional derivatives retaining the terms up to the order
states seems to be extremely intensive at the beginning of thg. This yields
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N1 2= gt [ dxaddyadyaats (v 9L (v 0fa (Ko, (k)
XTI =W (X)W (%) Y ALT3(x0) ALTP(xy) +iW (%) DL, x0) Wy (X1) "

o | b — a ,b .,a b’
_|q;|1(x1)y“DL?,”g] a(Xl,Xz)‘l’|2(xz)?’V]tlziétlliitiéjztiijl

XT[W, (y2) YW (y1) y" AL (y) ALY (y)
—iy W (y)DLOMI Y (v, y1) v W ()

+iy* Wy (Yo DU (y1.2) vV (v2)a (Kn)al (ko) [0) (o)t (). (38)

The calculations are accomplished as follows. The ferin the lowest order of the perturbation theory there is no
mion operators are contracted with the remaining Fock opadditional emissions and only the vacuum stgte=|0)
erators of the initial state, producing the final-state wavecontributes:
functions, and making the final adjustment of the color indi-
ces. This can be done in two ways, which differ by a full N(l’,2’)=|M1,2_,1/'2,|2. (3.1D
interchange of the quantum numbers of the one-patrticle ini-
tial states. The vacuum average of the products of the transn the lowest order, the inclusive transition probabili/10

verse gluon field operators gives the transverse part of thg just the squared modulus of the matrix element depicted
T-ordered propa atoD[OO]gyz,yl) and of theT'- ordered  on Fig. 2.

propagator DIY(x,,x;).® The two terms, with

D[Iong](yz,}’l) a})nd [g[long](y&,)/z% cover two complemen- 1. Scattering amplitude

tary domains,y,>y; and y,<y;, respectively. Together, ) ) i )
they form the longitudinal part of th&-ordered propagator Consider the matrix element of the scattering amplitude
DI%l(y,,y,). Finally, the transition probability can be cast

in the f . -
In the form Ml,Zﬂl’,Z’:gz\f dxldlef;,ké(xﬂlki,ki(xz)DE?,?](Xl,Xz),
’ ! 1
N7 2= [ a7 00 vl Ok o) (3.2
() (00} a a where we exchange the spinor quarks for the scalar ones, and
X 7”%1 (x1)D,,, (XZle)tiziétilii accordingly replace

—the samek; ,i;—kz,ip)] 2. (3.9 i 0= 0000y, (%)

—g" )YV 0i T, 940 (0,
B. Scattering of scalar quarks with the given boosty
The observable number of couplég(1’,2'), can be re- Using the states of scalar quarks with the quantum numbers
written by introducing the full set of the intermediate statesk=(k,v), transverse momentum and boost. In this case, the
into Eq. (3.2), wave functions are of the form

. 2 1 > r
N(1',2 )=§X‘, (0laa;S'al,al,|X)(X|a; @, Sajah|0)

:; (X|ay a, Sala}|0)|2. (3.10

8In this paper, we use the Keldysh-Schwinger formal[dr] in
its modified form developed earlier with the view of application to
the inclusive and transient processes. We employ the notation use
in Refs. [5,6,13. The indices of the field correlators with the (a) (b)
Keldysh contour ordering of the field operatgesg.,Dag)) as well
as the labels of their linear combinatiofesg.,D ;) are placed in FIG. 2. Forward(a) and backwardb) amplitudes of theqq
square brackets. scattering.
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—7TV/2

(+)(X)— £2i)y(mt7)eivn+ikr’

771'1//2

_(+)( )_ Hi(i)(mt,r)efivnfilzra.

(3.13

25/2

Using the propagator in the mixed representation

dedq .
[00 (X1,%2) = f (277)3 Dl[r?w()](Tl:TZ;qu)

-1y,
(3.19

Xexg —i¢(n—7,)—iq(ry

and integrating over the spatial coordinates, we obtain

2
g , , o N -, =,
Mio.1r 2 :_27775(V1+ vo—v1—v,)8(KiHKy— ki —Kp)

XJO 71d7'1J0 TZdTZHi(ii(miTl)Hi(si(mlTl)
XH(1)(szz)H(2)(m27'2)9”(7'1)9mm(72)

X (ky+ k) (ko ky)mDIRA (71,753 £,0),
(3.15

wherel=v,—vi=v,— v}, q=K,— kl k,—kj, and we in-

troduced three-vectorg!' (7)p,=(— p, —vl7?), as well as a
'2

short-hand notatiorm?=m?+k?, m/?=m?+k. .

Computing the transition amplitud8.12), we will be in-
terested in the states with the large bodsts>1, v>m;7,
[vi—vo|>1 .
functions reads as

me” ™PH®) (myr)=[me” "PH(my7)]*

o

[m = +V2]1/4exp[ iVmir2+ 2
+ivsinh Y(v/m7)]. (3.16

We have mentioned already, that in this limit, we have
z//ffv)(x)ocequsc,), whereS,, is the classical action, found in

Sec. Il. In the limit of| »;|>m;7, we have

N v? v
vsinh *—=vin| \/ 5 +1+—
mr mer mr

~|v|In(2|v|)—vIn(m7),

and the product of the four Hankel functions in the integrandThe cutoffs 7,;,=

of Eq. (3.15 becomes

In this case, the asymptotic of the Hankel

PHYSICAL REVIEW C 64 064904

4(my) " 11(my) ~¥2(my) i(my) 2

772| V1V2V1V§| v

e =il vl 1] )

xexp{ il In2] ) + i)~ 2]
: kA

~ualnczlon| 2| 817

The last factor here is the most significant for future analysis.
The rest is just the phase factor.

In what follows, we compute the leading term corre-
sponding to the contact part of the gluon propaghtee Eqg.
(A26) in Appendix Al:

|- 7]

(D (71,7271 Teontac= — — 5 S(m)3(1).

(3.18
It is local in » andr, and the modulus accounts for both

terms with DI'°"9 in Eq. (3.9). In this approximation, the
matrix element3.15 becomes

2
g / /
Mio.1r o 2—2(27r)35( vitv,— v —vy)

. s (vt (vat )
X 8(ky+ky—ki—k3) PPIETT e'“l,
4| vivyvivy|

(3.19

where « is an inessential real phase. In the approximation
given by Eq.(3.17 it absorbs all the dependence on the
transverse momenta. Now, it remains to compute the integral

|:f TldTlf 7,d7,977(71)g7"(7)
0 0

A
00 1
X[D[my]( T1, TZ)]contact( 7,_2)

T TI— T il
:f dTlf |73 1= 2|(7'1) ,
TO T

2 27'17'2
where the cutoffs are introduced in order to isolate the pos-
sible singular behavior. Computation is straightforward,

T 1 , (1
2I=f Tdrf dx[x'¢ +x"5](——x)
) TolT X

(3.20

72

T2 72\ sin ¢ In(T/ 7o) ]
~ 7 4( +?) ¢
2
-2 ?‘; (1+cos{§|n(T/¢0)])] (3.21)

7o and 7,,,,=T in this formula are the
external physical input. Making a choice feg and T it is
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useful to keep in mind that the interacti¢®.18 is due to a The second term in the forward scattering amplit(@i6),
nonstationary part of the longitudin@Coulomb field of the  which corresponds to the complete exchange of the two ini-
charges resolved at=0. Similar cutoffs are needed in a tial states(backward scatteringis obviously small. Indeed,
stationary part. A proper choice leads to the Coulomb logathis case corresponds ig~v5, andv,~v; . In this case,
rithm in the collision term in the QED plasma, and we follow
this example.

The only fieldA,, that contributes the contact ter(.18
vanishes atr=0 and its effect on the charges resolvedrat ) )
—0 cannot be instantaneous. Therefore, the lower liis ~ @nd the functior(3.21) is small.
related to the earliest time when the boost states belonging to
the incoming nuclei are resolved by means of the strong 2. Scattering probability
interaction. Practically, this is the time that the two nuclei  sjnce we consider the processes that develop in the course
take to overlap completely. Therefore, this minimal time isof 5 single collision, the notion of the cross section is not
defined by the velocities of the incoming nuclei in the labo-\ye|l defined. In order to deal with the quantity that is as
ratory frame, 7o~ 1/\/s. At this time, the stationary phase of close as possible to the standard cross section, let us intro-
partial waveg2.21), w({g(x), corresponding to the particles duce the “normalization volumef) = 7R?Y, the product of
with the given rapiditiesﬁ, are stretched over the widest the transverse area and the length of the rapidity interval over
rapidity intervalA ~2 In(y/s/m,). This estimate coincides Which the nuclei become expanded by the first measurement
with the well-known kinematically allowed width2 of the  Of the collision coordinates. The wave functions of all states
rapidity plateau, ¥~In(sng,,). (See Ref.[1] for further begin to occupy this volume when the two nuclei have com-
details) pletely overlapped, i.e., by the timg,;,~1/\/s. The wave

The upper limitT has to be set because at some tijg, ~ functions i ,, given by Eq.(3.13, in the matrix element

. . o e ; P 3/2(y— 112
the picture of the independent collisions breaks up. The “fi-(3.9) thus acquire an additional factor 2”9~ "< The
nal” state fields are not emitted into the free space any mor@uantity p=Q =" will play the same role as the flux factor
(which affects even the QCD evolution equatiof@]). |=1/ST=uv/V in the case of the standard-2n scattering
Therefore,T corresponds to the time when subsequent inter{see, e.g. Re{.16]). Multiplying the squared modulus of the
actions begin to erase the memory about the origin of thénatrix element(3.19 by the densities of the final states,
boost states from the compact nuclei. By this time, the sys€d2k’d»’/(24)%2 and replacing one of thé functions by
tem must develop collective interactions that result in theQ)/(2)2, we arrive at the differential inclusive probability
effective masses of the plasmonlike modes in a dense me-
dium. It is clear that these masses can emerge only gradually
[1,6]. An attempt to evaluate this gradual process in the

[Z|=[vi—vi|=|vi—vy>1,

S(v1+ vo— v — 1) 8(Ky+Ko— K —Kp)

scope of wedge dynamics has been undertaken in Refs. Q
[6,14]. This calculation relies on the following physical 2 , ,
. e . aZ (vi+v) (vt vh)?
mechanism: The lowp, mode of the radiation field acquires wos 7t 1 2772 12d2K dv! d2k.d v .
a finite effective mass as a result of its forward scattering on 27 16wy e e
the strongly localizedand formed earligrparticles withq; 32
>p;. Regardless of what the exact value of this “screening (3.249
mass” up is, it seems reasonable to taKe- 1/up, which is o ) . .
consistent with the semiclassical approximatidp,,<v. Dividing dw by the densityp=("", we obtain the closest
The two limits of the Eq(3.21) are of special interest. Let analog of the cross section that can be introduced in order to
Js—, while ¢ is kept finite. Then characterize single event
2 » »” Wi Wi
|~§2T4{2775(§)_1}’ (3.22 doy=8(vi+vy,—vi—vy) 8(ky+ky— ki —kj3)

al (vi+ ) (vo+ vh)?

the amplitude is strongly confined near the forward region > — 12d2k; d v d?k,d vy,
and the corresponding cross section diverges. T 16vivovi vy

Next, let us consider the physical limit of the forward (3.25
scattering,,—0, while keepingy/s finite. In this case, we
have

Sincel? has the dimensiofl_]*, the quantityor; also has the

[ ~T2[In(T+s)—1], 392 dimension of area. The upper limit,,,=T in Egs.(3.20—

[in( \/—) ] 3.23 (3.23 can be estimated from the conditiep~1<v, and
the inclusive amplitude is proportional to the maximal widthis related to the formation of théfinal) states as they are
of the rapidity plateaty =In(+s), which is the only geomet- detected by the subsequent interactions at the later period of
ric factor that can accompany the contact interact@ig. the evolution. In the limit of a nearly forward scattering, and
Its square naturally sets the upper bound for the scatterin@tegratingdzlzéd v, with the aid of thes functions, we ar-
probability. rive at
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doy o 2 (2V1+§)2(2V2_§)2 1 2 \2 lution equations that describe QCD fluctuations that accom-
TZZ_S 916 " i b panyep DIS do not seem to be relevant to the collisions of
d?%kidg  2m 9 18 viva(vit O)(va= )| up ¢ the finite-size nuclei. The primary breakdown of color coher-

wedge dynamics, it is indeed the earliest progessst result

in color radiation that can exist only for a short period
(3.26 proper time, only before the fields begin to build up the
collective modes of the expanding continuous media. Only

X[sir{z IN(Vs/p)] _1+cog ¢ In(s/puo)]
{ 2

]2 ence in a nuclear collisiofin terms of the states of the

In the limit of the forward scattering it becomes these collective effects can bring in the scajey] to the
entire process and serve as a feedback that limits the inten-
doy ai 21 , [s sity of the primary emissioni6,14]. Later on, the dynamics
27 879 A" N o (3.2 of the process must become local on this scalt_a. _
d*q.d¢ {—0 Ko The transient process of the plasma formation will come

o to its saturation at the moment when the growing with time
where q,~k{ is considered as the transverse momentun{and density effective masses of the collective modes begin
transfer. Our basic approximation implies that this transfer iso screen all emission, from the evolving sources, at the
small,g;<up. The color trace scales below the one given by the dynamically generated
effective masseq6,14]. Being unable to radiate, these
sources must pass through and form the receding nuclear
remnants. Thus, it is likely that the total energy of the colli-
sion is responsible only for the time scale of the initial inter-
accounts for the processes with and without color transfer. action and the full width of the rapidity plateau, while the
parameters of the final state in the central rapidity region are
universal and independent of the initial enefgpove a cer-
tain thresholgl Eventually, the total energy of the colliding

The main result of this paper is given by H8.27). The  nuclei is shared by the newly born matter and these receding
logarithmic character of the answighe color-changing am- remnants. It is not clear yet if the quark-gluon matter will
plitude o ag IN(7oin/ Tma) ~ s IN(VS/ 1p)] is due to the di- have time to sufficiently thermalize and be described by a
mensionlessness of the rapidity and the boost variablesingle parameter, the temperature. However, it seems un-
rather than due to the Coulomb nature of the interaction. Thigvoidable that the entropy created at the earliest moments
answer indicates that we may expect a massive breakdown 8fust result in thepressure which is the first thing we shall
the color balance in the colliding nuclei at the earliest timelry to theoretically estimate. A success at this point will very
7~1/\/s. The rate at which the intensity of this breakdown Much simplify the whole scenario by allowing incorporation
grows with the energy is proportional to?la Qf the hydrodynamic picture from a sufficiently early proper

The key assumption that led to this result is the existencdMe- o ]
of a sharp boundary of the colliding nuclei. If this assump- Our preliminary estimates show that the boost states of
tion is not correct, then there is no reason to consider th¥edge dynamics do not effectively scatter with large trans-
problem of the nuclear collision in the framework of wedge Verse momentum transfer. Further analysis is necessary to
dynamics, and the whole picture of the collision will look Verify this estimate, whictibeing correct could explain the
differently. This would also undermine alternative ap-2absence of highp, jets observed in the first available RHIC
proaches to the problem, such as the McLerran-Venugopald#ata. The jets are not strongly quenched, they can well be
model[3,4]. An immediate logical consequence of the finite absent at all. Does this mean that perturbative QCD is totally
size is the absence, inside the stable nuclei, of the finite cold¢nrelated to the ultrarelativistic heavy ion collisions? We do
charge density, which could significantly fluctuate and pro-not think so. It just has to be used in a different way than in
duce the long-range fields. Only under this assumption coul@P DIS or pp collisions. The major source of this difference
we safely discard the static component of the gauge field th4tas been first outlined in Reff6]: in nuclear collisions, the
would correspond to the finite charge densityrat0 and final states that saturate the unltary cut in the ladders that
consider the creation of color charges in the course of th&orrespond to QCD evolution equations cannot be saturated
nuclear collision as a transient process. The currents in rd2y quark and gluon states in free space. In this paper, we
pidity direction, which we relied upon in our calculations, Point to the fact that the initial states can be @fferent from
appear as a result of the phase shifts in the system of deldbe free massless wee partons with the given light-cone mo-
calized fieldand thus propagating with the phase velogity menta. They can well be the boost states of valence quarks
rather than due to the motion of the resolved pointlikethat are explicitly confined inside the finite-size nuclei before
charges. the collision.

The wedge dynamics was conceived as a tool that is ad-
equate for the earliest stage of the collision, where the initial
color coherence becomes broken. It is not applicable to the
ep DIS, where the electron probes the long-range electro- The author is indebted to Edward Shuryak for continuous
magnetic fluctuations in the prot¢h,6]. In its turn, the evo- support, many conversations, and constructive critical re-

IV. SUMMARY
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2m)® K _ka vs_q1,(ke7)p(k,v),
I

In order to study the interaction of the two charged states (A3)
with the given boosts, one needs to have an explicit form
of the gauge field propagator. Particularly, since the boostwhere s, ;,(x) is the Lommel function, a solution of the
are additive and obey the conservation law, one needs tmhomogeneous Bessel equation with~! as the external
know what the quanta of radiation that carry the boost quansource,
tum numbers are? It is also necessary to know the form of
the proper(longitudina) fields produced by the charged par-
ticles. In this section, we present a detailed analysis of the
gluon propagator in wedge dynamics, which has been de-
rived in Ref.[2]. The main purpose is to carefully trace the ~ There exists an extremely important relation between the
origin of the new contact term. At first glance, it may look two Lommel functions,
abnormal since it neither shows up in the field of a moving
static charge, nor has it any properties associated with the

propagation. We want to show that all Coulomb-typg .temﬁ:irst of all, it is necessary in order to verify that the electric

. ield of a static charge distributiofA2) indeed satisfies
a way that one could expect on purely physical groundsGauss lad?
Namely, the Coulomb fields vanish outside the future domain

of the point where the charge was created. Our analysis in- 1

dicates that the other parts of the propagator cannot hide —d,E,+ 79, E;=7]"=p. (AB)
anything similar to the exclusive contact part that is solely T

responsible for the final result, E(3.27), of this paper.

_f ddelz eivr]+il2|: ky

APPENDIX A:  THE GLUON PROPAGATOR

1 -
+ —
X2

f=xm"1,

1
fre S fr 4
X

sl,i V( kt T) + st— 1, v( ktT) =1 (AS)

Second, it is precisely the unit on the right side of E&5)
that will give rise to the contact term in the full propagator.
1. The field of a static source The Fourier component of the vector potential of the

The field of a static source in wedge dynamics is foundStatIC field is

[2] when one solves the linearizéMaxwell) equations of (IZ ) [KQ 1y (k)
motion without the external current, imposing the gauge con- AlSRI(K v )= p—'_2 e LA } . (A7)
dition A"=0. An additional boundary condition, which al- (2m)3ikel vQuiu(keT) ||

lows one to fix the gauge completely, #s,(7=0)=0. In ] )

fact, this condition brings nothing new, since the hypersurWhere we introduced the functions

face 7=0 is lightlike, and ther and » directions are degen- «

erate there. In this way, one finttieemodes, of which two, Qmi,(X)=| xMs_.i,(x)dx.
) (TM) - m,iv 0 m,iv

Vi (x) andV 77(x) are the transverse fields. The modes

VB andvV(™) are normalized according to a usual defini-

tion of the scalar product in the functional space of the so

lutions of the Maxwell equations

In spite of an unusual appearance, this is nothing else but
Coulomb’s law in the framework of wedge dynamics. In or-
der to see this explicitly, let us consider the system of point-

o T like charges located at the poirﬁsin the transverse plane
(V,W)= J 7 f dr rg"Vii g Wy, (A1) and moving with rapidities; ,
and satisfy the Gauss law without the charge. The third mode P=Tj,= Z qi8(n—6;)8(r—r;). (A8)

V(513 has zero norm, and its definition is accomplished with
the aid of Gauss law with thetaticsource (In the absence of
any currents, the source can be only stafihie electric and

9 . . . . .
L . It is useful to keep in mind the integral representation
magnetic fields of this mode are P d P

Sti(ke) =1 sinhwv

R f cogk;rsin gp)coshvpde,  (A4)
E|[Stat](7',l’ , 77) 0
which indicates that the functions,;,(x) and vzs_lyiv(x)
are regular a=0.
p(k,v), n terms of the physical componentst™=—gg™"E,
! =\=gg™.A,, the Coulomb law reads exactly as in Cartesian
(A2) coordinatesg,&™=p.

J dvd?K e‘“’?“k-f[ K7 ts15,(ke7)
) em® ik [ vkfrs_g (k)
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For a single charge, the explicit form of the electric field 9.Q,+ gfabCAtT’Qc:()_ (A12)
components is

Since the gauge condition i8.=0, we conclude thaQ,

(stag, = _ d|rcosiin—0)| 6(7—ry) =const. In the framework of wedge dynamics, the notion of
E N (rr,m)= o 2sinh( 7— 6) R3 static charge is well defined even if the individual charges
! move with respect to each oth@n a specific way. A similar
F/rtz result can be obtained in the system with the Hamiltonian
+ S(r—ry), (A9)  time t=x° with the gauge conditioA°=0. If all (color)
tanh(7—6) | charges are at rest, their proper static field does not “rotate”

their color. However, this will not be the case if we chose a
whereR=[r2+ r%sint?(7— 6)]"? is the distance between the different gauge corgdition, e.gA*=0 or divA=0, which
points (4 6) and {,7) in the internal geometry of the sur- Would require thai\”+0. .
face r=const. On can obtain the first term in this formula Fma_lly, It Is easy to understand, that since the proper
taking the usualgauge-independenexpression for the elec- gluon field of the static fundamental color charge does not
tric field of the moving charge, transforming it to the new affect the charge itself, this gluon field cannot be a carrier of
coordinates, and multiplying it by thé(7—r,), which elimi- the color charge. This fully agrees with the fact, that the

nates the field outside the light cone of the point where thé'%™™M of the Coulomb mode equals zero, because its field is
charge had emerged. The second téwith the light-cones real (contrary to the complex fields of the transverse modes

function) corresponds to the wave front that accompanies thg;?t rt?prisi?]t gltuc;_ms?\r} daddltfl_onal t(eagorlr;[ot f;ﬁly f_spigmal
process of the charge creationzat 0. attention to the static field configuration is that the field cor-

Since the electric field i§,= d.A,, the vector potential is responding to the charge denspiy7=0) is an isolated ex-
recovered by means of integration ceptional static field. It was necessary to describe it in detalil
' in order to have a reference point for a more involved analy-

sis of the fields created by the charged currents.

A|(T)=f E|(T')dT,4>J‘ E/(7)d7’. (A10)
0 "t 2. The full longitudinal field

Now, whenr, is taken as the actual lower limit, the result of ~ The gluon propagator, which we review and analyze in
the integration explicitly coincides with the Fourier trans- some detail below, was found agratarded response func-
form of Eq. (A7). The Fourier transform of the Lommel tion between the potential and the current for the linearized
functions appears to be discontinuous in an exactly relativistMaxwell) equations of motion. The potential is represented
tic way (the details of its calculation are in the following as a sum of three terms,

section.

One may ask how the Coulomb mode could be found
from Maxwell’s equations of motion that do not include
Gauss’s law. The answer is simple and natural: the CoulomBhe second and the third terms constitute the longitudinal
field outside the static charge distribution must satisfy thea sense of the Gauss’s Iafield. The goal of this somewhat
equations of motion for a free field. technical analysis is to demonstrate that the longitudinal part

There are two surprises connected with the static solutiongf this propagator indeed includes a new contact term. At the
of the wedge dynamics. Firsthe source is static if it ex- Same time we want to show, that the standard Coulomb fields
pands in such a way that its physical componenit  are still present in the propagator, almost unchanged and are
=7j7(r, 77,;) does not depend on Indeed, the charge con- modified only by the relativistic cau;al boundaries that one
servation has its physical ford, 7#=0, only in terms of would expect to appear for the fields of the emerging

i [y pr : harges.
the physical component$* =\ —gg*”j, of the electric cur- ¢ S
rentl.O Tyhe secondpsurprise is thggligrjlt-cone boundary of the 1€ transverse part of the retarded propagator is trivial. It
static field in Eq.(A9) IS built from the partial solutions of the homogeneous wave

quations,

A=Altrl 1 aAlLl 4 alinst] — altr] 4 allong]

Finally, let us consider the conservation of the charge of g
fundamental field in full QCD. Now, the equation of charge

conservation reads as .
vat A0 = [ @50 AR 0 X700,

9, Jh+gfaPeAd 7r=0. (A11) (A13)

Let only thej’ component of the current differ from zero. Where

Then for the charg®?= [ rdd?rj”, we have

. « - N N
ooy =i [ av[ @ S Voo
UThis is not a true radiation. The real Coulomb mo&e'®! is - o
orthogonalto the complex propagating mod¥§= and V(™. —Vier OV (], (A14)
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which can be easily recognized as the Riemann function olt also does not allow for the bilinear expansion with two
the original homogeneous hyperbolic system. The Riemantemporal arguments. Its electric and magnetic field is simul-
function solves the boundary value problem for the evolutiontaneous with the currerjt” also. In what follows immedi-

of the free radiation field. It is obtained immediately as aately, we intend to single out the contact part of the propa-

bilinear expansion over the full set of solutions of the homo-gator, which shows up only in th®,, component and

geneous system. connectsA, with j .
The name of the instantaneous part is motivated by its In order to set the stage, it is instructive to start with the
explicit form electric and magnetic fields of these two modes=A,,,

Em=\-gg™A,, and B™=—(2{/-g) 'e™"F,,. Since
the potentialA{"! is the three-dimensional gradient, we im-
mediately see thaB["'=0. (Note, thatA['! is the gradient
(A15) of atime-dependeriunction, and thus is not a pure gauge.
Starting from the expression fa&!!"s1, and using the rela-
the potential A" is simultaneous with the charge density tion [2],
p=17j,.. Formally, it can be obtained by adding the time

KrQ_1;,(Ki71)
VQl,i J(KiT1)

i - IZ; ]
AP, ;7= 22T
(27'r)3|kt

dependence to the charge density in the expression for the Q_1;,(kem)—Qy; (k)= — lz—Sliy(ktT)

static potentialA7). However, this form is inconvenient as ' ' ve T

long as we have to us@Mjl‘:A,j' as the basic form of the J

interaction Hamiltonian. Therefore, we have to eliminate the =7-Sq J(ke), (A19)

charge densityp completely, and replace it by the spatial J
componentg " of the current. The replacement follows an

evident prescription we obtain by a straightforward calculation that

. i 71 0-'p Bl[inSt](Tayllz)
P =0~ | Porg & 1 [
(7 TdTov _k o . .
. 1 . =, - 3,2 X y S—l,iv(ktT)J (TZ,V,k),
:_IJ Tszz[kst(Tz,V,k) 0(277) Ikt 0 v
0 | m

+ v "(15,v,K)]. (A16) (A20)

N i.e., the longitudinal part of the magnetic field has only the
The effect of the initial charge densipp=p(0,»,k) would  azimuthal componentthe magnetic field circulates around
correspond to the clearly visible static pattern in the longituthe current flowing in they direction, which is natural for
dinal part of the field. In the framework of perturbative the distribution of charges that experience expansioz in
QCD, this pattern is not active, since it cannot transmit thedirection. Note, that the magnetic field exists even whés
color charge. Furthermore, as we have argued previously, ia independent.
nuclear collisions, the initial density of the color charges at In the same way, we compute the electric fields
7=0 is zero. This leads to

N T K | [KsQ-1,(K¢7) o
EM(r,v, k)= —— ' i"™(r,v,k),
A[inst](T1 » E):_Jrl 7207, I ) (277)3kt2 v vQq;,(ki72) mJ ( )
krcé_lli(ylikn)l) .
vQq, (KT v .
Lin\&eT) [l V] £ ) —i KiQ-1in(keT) | . (roB)
T! V! =T 4 5 7-1 Vl
(A7) ! (271')3kt2 vQq;,(ki7) |p
In this form, the three remainingn th_e gaugeA™=0) spat_ial k.7 sy, (ke7) )
componentsA; of the vector potential are expressed via the 2 ' p(r,v,K) . (A22)
spatial components of the current. Kiv7s_y1j,(ker) |

The dynamical longitudinal fiel&(") is of the form .
Once again, in the static limif™=0, andp=0; thus,E!"!
AN (7, v,K) =0 and only the second term iB™sY survives and be-
comes the previously founB[S'2l. Notice that the time in-

1 17y | K| [ KsQ—1;,(KiT2) . . tegration in expressions for potentials looks as retarded,
:f a2 -k j"™(72,v.K). >z, This has nothing to do with causé&nd the only one
o (2m)3kZL v |l vQuiulke2) | : . o )
meaningfu) retardation. This inequality is due to the bound-

(A18) ary conditions imposed oA, (to fix the gaugewhenA, is
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being rebuilt from E;, which is simultaneous with the and replacedin fact, after integrating by par)tsvzs_lyivel

sources. The same inequality appears when we shall rebuilds_,;,, which is equivalent to a straightforward account

the charge densitg() via j™(7) at the previous time. for the Gauss law. The- andk;-independent unit gives Eq.
Now, leaving the vanishing effect gf(7=0) aside, we (A26).*?

can move to the fields produced by the currents. We want to The second integral term in EGA25) can also be Fourier

present the propagator in its general tensor form, which imtransformed into the coordinate representation. We want to

plies that do that here, in order to verify that the contact term is not
singled out artificially and that it is not canceled by some-
[long] _ | 44y pllond ‘m thing hidden in the second term. To compute the integrals

AT ) f Dm0, %) 1 7(X2) from the functions, ;, it can be conveniently decomposed in

L . the following way:
Let us begin with the electric fields produced by the com-

ponentj” of the current: S1ju(X) = S1j,(X) —hj(x),

N 1 7'2 T —mvl2 /2
ELL ,,wvz———i—f sy, (kt)tdt )= T (1) 2)
o (1w, K[ (2wﬁ{2 . 1iv(Kit) hi ()= — mnnwymﬂ Dix)+HB) (x)].

. (A27)
X 1) "(71,v,K), (A23)

The functionh;,(x) obeys the homogeneous Bessel equation

[inst . 1 and thus can describe only the field outside the domain of the

BV (7, v k[j7) = 2n)7 —7[1=s1;,(ki71)] source influence. In the course of calculations, we use the
following integral representation for the Hankel functions:

1 N
Xf o075 7(74,7,K) 2 +j [ A
o ZF e ™2HW (k.7)= 7J exd Fik,rcosh#le*'"’de.

+lv

2
T T A28
“[Zf'__[ 1sliv(kﬁ)tdt} (28
0 The Lommel functionS;;, has a similar representation

©

S1i,(X)= xf coshu cosvue *sMMudy,  (A29)

xmwﬁM@y (A24)
0

We see, that th&l cancel out the second term i)"Y,

originating, in its turn, from the term witb in Eg. (A22). In

this way, we obtain the full form of theg component of the o0 _ ks
longitudinal field f ‘Sl,iy(ktr)e'””d v= 1k, coshpe k7 sinfi7]

which allows one to compute the integidd exactly,

| N 7'7'2dT2 N (ASO)
B, R ) == 7+ 7503, 060)] | 2570,

120ne may wonder, why the same type contact term does not
B T:LS (kb)tdt show up in other dynamicsand gauges, such a°=0). The
2 72 1iv(Ke propagators of these gauges are constructed in such a way that the
translation invariance and the possibility of a simple momentum
i " representation are preserved. The price for this apparent simplicity
j(7y,v,K), (A25)
is the spurious poles in the propagator without a physically moti-

where the first term is independentmhndlz and yields the vated prescription to handle these poles. These poles reflect an in-

contact part of the propagator, whiéin the coordinate rep- trinsic uncertainty in the way one can approach the limit of the
resentation reads as static field. In order to fix the gauga®=0 completely, one has to

impose some boundary condition on the gauge fields at some,time
pleontact . -7 T ) thus corrupting the translation invariance and gaining additional
7 Lt 2t 2 terms in the propagator, which, in fact, are of the same origin as the
22 contact term in the gaugk™= 0. At larger; and r,, and locally in
17 72 S - . -7
=— (1= m2)8(ri—r5).  (A26) the coordinate rapidityy (when the curvature of the hypersurface of
2 the constantr becomes negligible the gaugeA™=0 can be ap-
S . . . proximated locally by the gaug&®=0 [2], provided the boundary
The f.'rSt line of Eq:(A24) clearly illustrates its Ongm;we conditions atr=0 are released. In this domain, the contribution of
started in Eq(A22) with the productvs_s;,(k7) p(7,7,K).  the contact term is suppressed by the two small curvature factors
Then, sincep(7) is developed dynamically, we expressed g77(r,)g”"(r,) =7, >7, 2. Therefore, if a usual scattering process
via d,j7—wvj”, gaining an extra power of. This allows us  between the asymptotic states takes place at largeedge dynam-
to use the relation between two Lommel functions, &®), ics will treat it according to the standard scattering theory.

nrdr, | 75— 74
[long] 1 — 1TUT2 | T2 71
AL (v, K] 7) fo 2m)?
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and from Eq.(A28) it follows E[rlong](,r, 7]1,;1“ ”)

—fd d_) fTTZdTZ'” N
o ) o Sir{ktTCOShg)] - 72072 0(2,”_)3] (721772:r2)
f dve'””hi,,(ktr):f do—o 72

cost( 6+ 7) V2
-~ L
fw sin k7 cosh{6— 7;)] {_75(77)5“)_477
= d o
—w cosite

(A31)

«| o )( ?sinhy 1)
_r J— s
T (r2+ 72sint? )12

(A34)

Next we may write the full Fourier transforms. From Eq. I
(A30), we have where, n=n1— 7, andr=r,—r,.
The first (contac} term in this formula is indeed very
special. It is not limited by the light-cone boundary. The

42K . second term, does have these boundaries, which are just im-
f ean‘f S, (ke d posed on the Coulomb-type fields rewritten in terms of the
(2m)3 " natural coordinates of wedge dynamics. It also includes the

radiation fields propagating along the light comer,.

rcoshy _, Therefore, only this term can interfere with the radiation
T 4n v j olkr)exfl — k7 sinf{ 7| Jdk fields of the transverse modes. This is clear evidence that the
cancellation between the contact term and the nonlocal parts

Tcoshy _, 1 of the propagator is impossible. As it was demonstrated in

ST am V(P peing) ) (A32)  Ref.[2], the transverse electric field is governed by a usual

relativistic wave equation. Integrating E@34) over 7 from
zero torq, we recover the potential, and thgy component
of the propagator,

Starting from Eq.(A31), we continue by introducing,
- 2_ 2 2
=k.sinh@ andk,=k.cosh#=|k| and changingli*kd  for the (ong T - Vi
three-dimensional integratiord®k. With t=rcoshz, r D (r1,m2im,1) = 8(m) &(r) 41
oshy }

=(X,y,7sinh7), this leads to
1
><J tdto(t— ){
- IR

The remaining components of the propagahh'ﬁ“g] are

_ e f K s
1 . T h
2I(27T)3 [long] L2 :ar(gs 1% tcoshy
DI’S (7'117'2177!r) 47T 7-2 t '[) R(t) 1
% fm %[eikot—ikzz_ e~ fkot+ikzz] (A36)
e kS
d’k e DO (7, 7 ) = Bt =1
J’ ——=sinkqt 1,72, 7 ype t
(2m)* |k[?
T 2 i T 2gj
_ _f o) 7coshy o) X“ 1r15|r;h77dt_J 1t S|r13h7;dt
. (r2+ 2sint?y) V2 : o R n  R(1)
A33
(A33) +tanh7;f 5(t—r)dt]
_nl : >
Adding Egs.(A32) and (A33) we indeed find that the;» =DM ( 7y, 71— 1), (A37)

component of the longitudinal propagator vanishes at the dis-
tancesr, exceedingr, i.e., outside the light cone of the po- where R(t) =[rZ+t?sint?7]*2 The propagator identically
sition of the current WhICh creates the field. Finally, vanishes at,> 7, and the derivatives of the step function are
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confined to the light cone corresponding to the transient raThe behavior of the Lommel function in the limjt—=0 can
diation that accompanies the creation of the color charges.be found from the integral representatioh4)

1 (=
APPENDIX B:  SUBLEADING TERMS IN FORWARD S (O :_J 1—cogk.rsind)ldd=1—J(a.7).
SCATTERING OF THE BOOST STATES o @) =7 ] 1 tkirsing)1dg ol ™)
B4
In the limit of the forward scattering, the general formula B4
(3.15 can be rewritten in the following form: Expanding the Bessel functialy(q;t) at smallg;, and inte-
5 grating, we arrive at
9 ’ ’ " " M "~
Ml,2ﬂl’,2’=ﬂ5( vyt vo—vi—vp) ok +ka— Ky —ks) ol qtzT4 N Té sin ZIn(T/7g)]
U r2+16 T L
oo oo (1) ,
Xf TldTlf TszzHiVr(mlTl)Hi(si(mlTl) TO 1+C05{§|H(T/To)]
0 0 1 B5
T 4 ' (B5)
1),
XHE (M) HE) (my ) | o |
2 This term vanishes in the limit of the forward scattering,
’ ! —>0
Vl;vl D[,?S](H,Tz;é,ﬁ) V2+2V2 Thers component of the longitudinal field propagator
1 72
- 1 g9s(m dt
[long] . . 1ris ) _
00](7_1 oy gq)q Drs (11,72;4,0) om qtz frz Sl,l{(Qtt)t (B6)
v+ brings in the term
2 001(7-117-21§ q)q —i¢
n =2 [ rdr, [ radry 2
2=0y | md7y | 7072 — -
- [00] . V2+Vé To T 2
_q Dr77 (TliTZ;qu) 2 ’ (Bl) m dt
2 XSngl_Tz)f Sl,i{(qtt)T- (B7)
72

where we took the initial transverse momenig= p,=
and correspondingly, the final state momenfg=—p;
=q. By its design, the fullT-ordered propagatdd[°” is a qrTe (1 . - ,
sum of the longitudinal part and two terms originating from 2= 3 TO/T dyJ [x'£+x 1(1—x?)dx,

the transverse electri¢(™® and transverse magnetid™) (B8)
modes of the radiation field

At {—0 and at smalty;, it can be represented as the integral

which also vanishes in the limit of the forward scattering,
0;—0.

The contribution of the componenB{'>"9 and DU
into the matrix elemen(B1), as well as of all components
D(TM) of the transverse propagator is estimated exactly in the

D[00] = pl00jong] | [00](TE) 4 [00](TM)_

The 7 component of the longitudinal part of the propa-
gator can be read out from the Ed\25),

Ti— Tg " same way. All these components are defined as the integrals,
[Iong (71,72.0,0) = T—f slyig(qtt)tdt}, frqm zero torq;, of the functions that are regular at the
2 origin. Therefore, at smaly,, all these terms have at least

B2 one factorg? and vanish in the limit of the forward scatter-

where the first term on the right has already been used in E#9-
(3.20 to obtain the main estimat(.27). The second term The only exception from this scheme is the piece con-

yields nected with the transverse p@t'™® of the propagator. This

_ part is the bilinear foranE) that has onlyrs components

Tdry (Tdrp( 7| "¢ 1 and includes the projectd;s—q,qs/q2. Since this projector
1—f f <_ Sgr(rl—rz)f sy/(qit)tdt. . prol rs™ Ars TG Lo p. )

70 70 is orthogonal to the vectar,, the contribution of this mode

(B3)  to the matrix elementB1) identically vanishes.
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