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Parametric resonance at the critical temperature in high energy heavy ion collisions
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Parametric resonance in soft modes at the critical temperaiyjeir{ high-energy heavy ion collisions is
studied in the case when the temperai{neof the system is almost constant for a long time. By dividing the
fields into three parts, a zero modeondensate soft modes, and hard modes, and assuming that the hard
modes are in thermal equilibrium, we derive the equation of motion for soft modes &t . Enhanced modes
are extracted by comparing with the Mathieu equation for the condensate oscillating along the sigma axis at
T=T,. Itis found that the soft mode af fields at about 174 MeV is enhanced.
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I. INTRODUCTION It is expected that the temperature may be almost constant
as a function of time at the critical temperatufie,Y because
It is expected that a new phase of matter will be formed inof the large difference of entropy density between QGP and
high energy heavy-ion collisions at Relativistic Heavy lonhadron phases. In particular, it may take some 10 fm for the
Collider (RHIC) and Large Hadron Collide(LHC). It is  phase transition to finish if the phase transition from quarks
called “quark-gluon plasma’(QGP, and in it the chiral and gluons to hadrons is of the first ord8f. A similar time
symmetry restoration occurs. Many signals of the chiral symdependence of the temperature may also occur in the second-
metry restoration have been proposed, but there is no dedprder chiral phase transition of a high-energy heavy-ion col-
sive one. One of the proposed signals is the disoriented chirdision. The parametric resonance by the oscillation of the
condensatéDCC) which is a misalignment phenomena in sigma condensate will occur at or nélyin such a case. A
the chiral space. The time development of the chiral condersimilar time dependence of the temperature is also expected
sate has been studied in terms of the DCC, and the possibMvhen the cooling of the system is slow. If the period of
ity of soft mode enhancement by parametric resonance wagne-dimensional scalind 0] is long enough, the temperature
suggestedl1]. Parametric resonance in the last stage of highis only slowly decreasing as a function of time in the last
energy heavy-ion collisions was discus$éet 7], and ampli-  stage of the expansion.
fied modes were extracted. A parametric resonance is ex- In this paper, we discuss the possibility of parametric
pected even in the chiral phase transition because theesonance at or nedr, in the framework of the linearr
oscillation of the chiral condensatemomentumk=0) may model and extract the amplified modes assuming that the
amplify nonzero k#0) modes. The motion of the conden- temperature is constant &t for a long time. The paper is
sate must be investigated in order to reveal this phenomenarganized as follows. In Sec. Il, the equation of motion is
As indicated in Ref[8], the motion of the chiral condensate derived in the case when the temperature is constaiit at
in high-energy heavy-ion collisions is expected to be almost=T,. In Sec. lll, the amplified modes and the time scale of
along the sigma axis in the linearmodel. The oscillation of the amplification are extracted by comparing with the
the condensate is just that of the sigma condensate. TheMathieu equation. The time scale is explicity shown by
may be a chance of the amplification of the fields by parasolving the Mathieu equation numerically. Section IV is as-
metric resonance if the sigma field oscillates for a long timesigned to conclusions.
The study of parametric resonance at finite temperature in
a chiral phase transition has never been examined, while that
at zero temperaturfl—7] has been performed. Parametric

resonance may occur even when the temperature is not zero The lineare model is a useful tool to describe the motion

if the condensates moves periodically like a sine functionof the condensate and soft modes below or near the critical
The motion of the condensates can be described by the equgmperature. The Lagrangian is

tion of motion with the effective potential if the system is not
far from thermal equilibrium. The effective potential depends
on the temperature of the system, which is a function of 1 “ N a2

. . . L= 53,4 ¢= 7 ($*—v")*+Hd, i
(propey time. If the temperature is constant for a long time,
the condensate will oscillate as it oscillates at zero tempera-
ture. The periodicity of the motion of the condensate depends _ _ > 2 <3 42 .
on the effective potential at finite temperature. It requires tha here¢=(¢o, b1, b2, bs) =(0,m), $"=2j_o4;j, andHis

the temperature must be almost constant in the period of th te et>r<1pI|C|t syrpr_netry-brealgmg tertrr?. The gedddlst_dmdeg
oscillation of the condensate. into three parts: zero modef(;, the condensation so

modes (js), and hard modesd;;):

II. EQUATION OF MOTION FOR SOFT MODES
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The bracke ), is used to describ® averaged over the Equation(6b) is the equation of motion fog, with a back-
hard modes. We apply the free-particle approximation for theground field ¢, .

hard modes. Consequently;,) and<¢j3h> are zero if the We would like to calculate the critical temperature. In a
distribution of hard modes is thermal. Substituting E2).  realistic case, the critical temperature cannot be defined ex-
into Eq. (1) and taking the thermal average of hard modesactly sinceH is not zero. Nevertheless, one can estimate the

we obtain the following effective Lagrangians: critical temperaturd . by requiring that one false minimum
disappears at=T,:
(L)=(Lx)+{Lv), (33 B
. . ($pt6F(Te)—v2) o~ HIN=0, (78)
(L)=50,P0" bt 5 ,Ps0" P+, P b _
S bne=0 (n=123), (7h)
! hereg . is th d ion which is th i |
+§<5u¢h3“¢h>, (3b)  whereg,. is the condensation which is the expectation value

of the field ¢; at the minimum of the effective potential at
T=T. [Eq. (7a]. T. can be obtained by the condition that

(Ly)=— %(¢§+ G2+ 2 ps— 022+ H(boet bos) two solutions of Eq(7a) are the same:
v? 1(4H)\?3
A A f(T)z———(—> €)
— S (DB PEt 20 b= 0P~ (D)%) ©6 B
3 We introduce the fluctuation fieldsp;., defined by
N2 (bict B (), (39 —
j:0 JC JS Jh 5¢]C:¢]C_¢JC. (9)
Whesre the dot implies the inner product defined ¢y s  Substituting Eq.(9) into Eq. (6a), and using Eq(7a), we
=2j:0¢jc¢js . have
If (O) terms have n@). andd¢. dependences, the Euler- o
Lagrange equation fog;. obtained from( L) is D(5¢jc)+>\[(5¢)2+ 2(6¢)- Pl poct (8ic)]
D¢t Odjst N Be+ de+2¢c ds—v”) (et o) +(H/ o) (8jc) =0. (10
—H 8,0+ M@t (bic+ bis) + 2N b7 ) djc+ ¢js) =0. Ignoring O( %) and higher terms, we obtain
4
@ (O+m)(560) =0, (1

An equation of the same form fop;s is obtained if(O) def def

terms have nas and d¢s. Here it is assumed thaps)  where m2=(H/po)+2\da. and m2=(H/¢o) (N
e

= F(T) is j independent. The meaning of this assumption™ 1,2,3). Itis easily found from Eq11) that the condensate
becomes apparent when the concrete expressigh(of is oscillates around the minimum of the potentialTat In the
obtained in Sec. IIl. We introduce the effective potential de-S2Me way, Eq(6b) becomes

fined by Olebis+ (Hidhoe) dis+ N b2+ 2 o) it 2N[ o (5be)
A _
V(‘;bad’o;T):Z(¢§+6-7:(T)_02)2_H¢0c- (5 +¢s'(5¢c)]¢js+)\(5¢c)2¢js+)\[Z(ﬁc'¢s+¢§

+2(6¢.)- .=0. 12
Note that the order of the phase transition described by this (0c): bl 12

potential is second. . o Since we are interested in the amplification by the oscillation
Since we are interested in the amplification of the softof the condensate, we consider the small and discard

mode with small amplitude, we first consider Ed) with 542} andO(43) terms. The equation fob.. [Ea. (12)]in
¢;s=0 for all j. This is the zeroth order equation of soft su(cq?f)a case (ig)S) a o5 [Ea. (12)]

modes:

3
Djct+aVIdgic=0. (62 Oojs+ajdjs+ 2 Bjidis=0, (13

The equation for soft modes with small amplitudes is ob- (ii;cj))

tained by substituting Eq6a) into Eq. (4):
Opjs+ N d2+ do+2hc s+ 6F(T)—v?) s
+N(2¢¢- hs+ $3) hjc=0. (6b)

where

def __ — — —
aj= H/¢oct+ 2N e (8¢c)+(¢jc)2+2¢jc( 5¢jc)],
(14a
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def - —
Bji =2\ dicdic T djc(8dic) + bic(ddi) 1=Bi; (1 #1),
(14b

and O(5?) terms have been ignored. Singg.#0 and ¢,
=0(n=1,2,3) in the lineaw model, the coefficients; and
Bji have the following relations:

B12= B13= B21= Boz= B31= B32=0.
(15

a1= ar= g,

PHYSICAL REVIEW &4 064903

TABLE |I. Amplified modes ino and = fields for variousA,,
andA .

A, A, k, (MeV) k, (MeV)
1 - 174.0
4 0 440.1
9 521.9 682.7
16 808.5 920.5

As stated in Sec. |, the condensate moves and oscillatés easily found from the definition off ;. Therefore, the

almost along the sigma axis. Théi®,.,~0 for n=1,2, and
3. Consequently alB’s any zero. In such a case, E4.3) is
diagonalized:

Oost[Mo+BNoe Sboc) 1dos=0, (162
O s+ [Ma+ 2N oc( Sboc) | ¢ns=0. (16D

The solution of Eq(11) for j=0 is
Spo.= —B cogmpt + 6), (17

where B and 6 in Eq. (17) are determined by the initial
condition of 8¢ . This solution,[Eq. (17)], is substituted
into Egs.(16a and (16b) and the transformation frorhto

f

de
&= (mpt+ 6)/2 is applied. The equations of motion now be-

come
d? ) 24\ 0B B,
[d_:§2+m_§(k2 mg)_TSCOS{ZS)]%s(&kFO,
(183
2 . 8\ ¢oB *
L T R2em?)— By —
[d§2+m§(k m; - 60325)}¢ns(§,k) 0,
(18b)

WhereqSoS(g;IZ) and ¢ns(§;|2) are the Fourier transformation

of pos(&;X) and ¢ne(€;X), respectively.

IIl. AMPLIFIED MODES

masses are obtained X and H are given. The amplified
modes corresponding té\,,A,=1,4,9,16 are shown in
Table | forx=20 andH3=119 MeV, which generaten,,
=135 MeV, m,=600 MeV, andf ,=92.5 MeV atT=0
for v==87.4 MeV.

The amplification ofr fields is determined b . and the
factor (2Q,) in the presence of cosine in the Mathieu equa-
tion. This factor is given by

_ 8\¢hocB

2
Mg

2Q, , (20)

where B is the amplitude of zero mode introduced in Eq.
(17). Its numerical value for the previous parameters of the
linear o model is about 0.051 (MeW})XxB. For example,
2Q, is —1.53 forB=—30 MeV. The solutionw(¢) of the
Mathieu equation fow(0)=1,dw/dé(0)=0, has the prop-
erty w(é+m) =e'""w(§), wherev is called “the character-
istic exponent” which has a relation

cogvm)=w(m). (21

The time periodr in & corresponds to about 2.65 fm init
is obtained thate'"”|~3.1[11] for A,=1 and—2Q /A,
=1.53. The numerical solutions foB=*30 MeV for
w(0)=1,dw/dt(0)=0 are shown in Fig. lw(é=m) is
about —1.71, which corresponds te'’”|~3.1. It is found
that the fieldsw are strongly amplified in a fewfive or
more fm.

There are several amplified modes in the Mathieu equa-
tions[Egs.(189 and(18b)]. However, modes larger than
cannot actually be amplified modes because we assume that
hard modes are thermal. Therefore, the cut&ff)(between

_ Equations(189 and (18 are just Mathieu equations. To ot and hard modes is important in order to know whether
investigate the amplified modes, we define the following,e amplified modes extracted from Eq48a and (18b)

guantities:

4 4
A,=— (K2 +mf), A =—(K*+m)). (19

Mg Mg

The amplified modes are obtained from the above coeffi-
cients by the help of a knowledge of Mathieu equation. The

amplified modes ofr field for nonzero modesk@ 0) corre-
sponds toA,=9,16 ... becauseA, >4 apparently, while
that of 7 field corresponds t&\,=1,4,9,16.... (A,=1is
not satisfied for some parameters of the lineamodel)

Then the masses @f and 7 fields are needed to determine

such modes. The condensaﬁ,g) atT.is (4H/\)Y3, which

belong to soft modes or not. In this paplky, is determined
as follows. SinceF(T) is a function ofk,, the latter is
obtained from Eq(8), in which T, is related tok, . That is,
ky is fixed if T, is given. The density operator pffield for

hard mode$ p},(T)] is assumed as

pL(T)=exp(—T—1E wjaj*(lz)aj(ﬁ))/

[K[=kn

Tr

exp(—TlE wjajf(lz)aj(lZ)”, (22

[K[=ky

where w! = K2+ m?. We find
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FIG. 1. The solutiorw(t) of the Mathieu equation forr fields
with A_=1 with the initial amplitudeB= 330 MeV andw(0)
=1 anddw/dt(0)=0. The thick and dotted lines are f8r=—30
and 30 MeV, respectively. The dashed line is fot.71, which is
the value of cos(é) at é= 7. The arrow with the string “2r/m;”
shows the time corresponding &= .

FT)=(hin(x))

=Tr(ph(T) p5,(x))
1 .1 1

R T4 — = = .
2V \'EEK\ “i v MgkA [Equj(k)/T)_l]wi(k)

(23
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TABLE Il. The relation betwee. andk, .

T. (MeV) ky (MeV)
89.5 0
130 150.5
140 192.3
150 235.7
160 280.5
170 326.8
180 379.3

MeV except for T,<130 MeV, we conclude thatk,
~174 MeV is an amplified mode at least whé&g is ad-
justed above 130 MeV. Other modes are irrelevant, since
these modes belong to hard modds,440.1 MeV may
be a soft mode in this sense.

The amplified mode of the field is not directly related to
the observed modes since the mass af meson aff #0 is
different from that aif =0. Then we must know the effect of
the difference of two masses. In quantum field theory, the
relation between these two masses can be described by a
Bogoliubov transformation. We can estimate the effect by
evaluating the coefficients of this transformation. The ampli-
fied mode is not changed essentially, because the difference
of the masses between zero temperature and critical tempera-
ture is small enough forr fields in this model. The peak
coming from the parametric resonance Tat T, will be
found neak,,~174 MeV if the peak is not smeared out by
scattering, absorption, and so on.

IV. CONCLUSIONS

The parametric resonance at critical temperature in high-
energy heavy-ion collisions is studied in the case when the

The first term is the vacuum Contribution, and the second i%mperature of the System is Constanf_ratfor a |Ong time.
the thermal contribution. The vacuum contribution can bewe consider the case in which the condensate oscillates
discarded in the following calculation, since it is the well- glong the sigma axis at the critical temperature of the second-
known |nf|n|ty which is removed by the redefinition of the order phase transition in the framework of the linear

energy including the contribution from the soft modesb-
traction of the vacuum energyEquation(8) is rewritten by

model.
The enhancement of a soft mode at about 174 MeV in the

the massless particle approximation and the integration of; field is found at varioud .'s above 140 MeV. Other modes

the angle:

1foo g u 1(0)2 1 (4H)2’3
— U————=5|=| ———=| ]| -
w2l expu)=1 31T/ 4721 N

(29)

are irrelevant as amplified modes because these modes be-
long to the hard modes which are assumed to be in thermal
equilibrium in the present study. Conversely, there is no en-
hanced soft mode in the field. The amplified modé174
MeV) at T=T, is softer than thatfor example, about 265
MeV in the one-dimensional expansion c45@ at T=0 in

This approximation is valid nedF,, because the masses of the = field because the difference between sigma and pion
o and m mesons become small. These masses are z€fo atmasses af = T, is smaller than that af=0. It takes a short

=T, in the chiral limit. Note tha{O) terms have no depen- time for the soft modes to be amplified. This implies that an

dence o ¢g, dg,dds, andgpg becauser(T) is independent

of j in the massless particle approximation.
Table 1l showsk, obtained by solving Eq(24) for vari-
ous T.’s with A=20, HY®*=119 MeV, andv=87.4 MeV.

amplification of the soft mode by the parametric resonance at
T. is possible in real collisions at high energies. The en-
hancement by parametric resonance in the present study may
be observed experimentally if the smearing effects are weak

T. is about 123 MeV in the chiral limit. It has been estimatedenough.
from lattice QCD and some other methods. It is between 140 It has been pointed out that there may be a parametric

and 190 MeV in lattice QCD12,13. Sincek, is above 190

resonance at zero temperature in the last stage of heavy-ion
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collisions. Then the pion momentum distribution caused byEq. (12) are negligible. The resonance structure may change
the parametric resonance at finite temperatures may be ttie smallH cases.
initial distribution of the subsequent parametric resonance at We have not shown the strength of the peak in the present
zero temperature. If so, some peaks which correspond to thstudy. If we wish to obtain it, we must know the time interval
enhanced modes may appear in the final momentum distrin which the temperature iG@lmosj) constant and consider
bution. the evolution of the QGP. The nonlinear effects and back
The explicit symmetry-breaking terni(¢,) plays impor-  reaction are also ignored in this investigation. These prob-
tant roles for the parametric resonanceTat T., because lems will be answered in the future studies.

this term makes the condensatg, nonzero and generates

masses ai=T,.. The condensatesgqc) and massesnf;) at
T, are exactly zero in the chiral limit{=0). Note that Egs. I would like to thank F. Takagi for a number of helpful
(163 and (16b) are valid whenO(¢2) andO(¢3) terms in  suggestions.
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