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Parametric resonance at the critical temperature in high energy heavy ion collisions
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~Received 27 June 2001; published 14 November 2001!

Parametric resonance in soft modes at the critical temperature (Tc) in high-energy heavy ion collisions is
studied in the case when the temperature~T! of the system is almost constant for a long time. By dividing the
fields into three parts, a zero mode~condensate!, soft modes, and hard modes, and assuming that the hard
modes are in thermal equilibrium, we derive the equation of motion for soft modes atT5Tc . Enhanced modes
are extracted by comparing with the Mathieu equation for the condensate oscillating along the sigma axis at
T5Tc . It is found that the soft mode ofp fields at about 174 MeV is enhanced.
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I. INTRODUCTION

It is expected that a new phase of matter will be formed
high energy heavy-ion collisions at Relativistic Heavy I
Collider ~RHIC! and Large Hadron Collider~LHC!. It is
called ‘‘quark-gluon plasma’’~QGP!, and in it the chiral
symmetry restoration occurs. Many signals of the chiral sy
metry restoration have been proposed, but there is no d
sive one. One of the proposed signals is the disoriented c
condensate~DCC! which is a misalignment phenomena
the chiral space. The time development of the chiral cond
sate has been studied in terms of the DCC, and the poss
ity of soft mode enhancement by parametric resonance
suggested@1#. Parametric resonance in the last stage of hi
energy heavy-ion collisions was discussed@1–7#, and ampli-
fied modes were extracted. A parametric resonance is
pected even in the chiral phase transition because
oscillation of the chiral condensate~momentumk50) may
amplify nonzero (kÞ0) modes. The motion of the conden
sate must be investigated in order to reveal this phenom
As indicated in Ref.@8#, the motion of the chiral condensa
in high-energy heavy-ion collisions is expected to be alm
along the sigma axis in the linears model. The oscillation of
the condensate is just that of the sigma condensate. T
may be a chance of the amplification of the fields by pa
metric resonance if the sigma field oscillates for a long tim

The study of parametric resonance at finite temperatur
a chiral phase transition has never been examined, while
at zero temperature@1–7# has been performed. Parametr
resonance may occur even when the temperature is not
if the condensates moves periodically like a sine functi
The motion of the condensates can be described by the e
tion of motion with the effective potential if the system is n
far from thermal equilibrium. The effective potential depen
on the temperature of the system, which is a function
~proper! time. If the temperature is constant for a long tim
the condensate will oscillate as it oscillates at zero temp
ture. The periodicity of the motion of the condensate depe
on the effective potential at finite temperature. It requires t
the temperature must be almost constant in the period of
oscillation of the condensate.
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It is expected that the temperature may be almost cons
as a function of time at the critical temperature (Tc) because
of the large difference of entropy density between QGP a
hadron phases. In particular, it may take some 10 fm for
phase transition to finish if the phase transition from qua
and gluons to hadrons is of the first order@9#. A similar time
dependence of the temperature may also occur in the sec
order chiral phase transition of a high-energy heavy-ion c
lision. The parametric resonance by the oscillation of
sigma condensate will occur at or nearTc in such a case. A
similar time dependence of the temperature is also expe
when the cooling of the system is slow. If the period
one-dimensional scaling@10# is long enough, the temperatur
is only slowly decreasing as a function of time in the la
stage of the expansion.

In this paper, we discuss the possibility of paramet
resonance at or nearTc in the framework of the linears
model and extract the amplified modes assuming that
temperature is constant atTc for a long time. The paper is
organized as follows. In Sec. II, the equation of motion
derived in the case when the temperature is constantT
5Tc . In Sec. III, the amplified modes and the time scale
the amplification are extracted by comparing with t
Mathieu equation. The time scale is explicitly shown
solving the Mathieu equation numerically. Section IV is a
signed to conclusions.

II. EQUATION OF MOTION FOR SOFT MODES

The linears model is a useful tool to describe the motio
of the condensate and soft modes below or near the cri
temperature. The Lagrangian is

L5
1

2
]mf]mf2

l

4
~f22v2!21Hf0 , ~1!

wheref5(f0 ,f1 ,f2 ,f3)5(s,pW ), f25( j 50
3 f j

2 , andH is
the explicit symmetry-breaking term. The fieldf is divided
into three parts: zero mode (f jc , the condensation!, soft
modes (f js), and hard modes (f jh):

f j5f jc1f js1f jh . ~2!
©2001 The American Physical Society03-1
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The bracket̂ O&, is used to describeO averaged over the
hard modes. We apply the free-particle approximation for
hard modes. Consequently,^f jh& and ^f jh

3 & are zero if the
distribution of hard modes is thermal. Substituting Eq.~2!
into Eq. ~1! and taking the thermal average of hard mod
we obtain the following effective Lagrangians:

^L&5^LK&1^LV&, ~3a!

^LK&5
1

2
]mfc]

mfc1
1

2
]mfs]

mfs1]mfc]
mfs

1
1

2
^]mfh]mfh&, ~3b!

^LV&52
l

4
~fc

21fs
212fc•fs2v2!21H~f0c1f0s!

2
l

2
^fh

2&~fc
21fs

212fc•fs2v2!2
l

4
^~fh

2!2&

2l(
j 50

3

~f jc1f js!
2^f jh

2 &, ~3c!

where the dot implies the inner product defined byfc•fs

5( j 50
3 f jcf js .

If ^O& terms have nofc and]fc dependences, the Eule
Lagrange equation forf jc obtained from^L& is

hf jc1hf js1l~fc
21fs

212fc•fs2v2!~f jc1f js!

2Hd j 01l^fh
2&~f jc1f js!12l^f jh

2 &~f jc1f js!50.

~4!

An equation of the same form forf js is obtained if ^O&
terms have nofs and ]fs . Here it is assumed that^f jh

2 &

5
def

F(T) is j independent. The meaning of this assumpt
becomes apparent when the concrete expression ofF(T) is
obtained in Sec. III. We introduce the effective potential d
fined by

V~f,f0 ;T!5
l

4
~fc

216F~T!2v2!22Hf0c . ~5!

Note that the order of the phase transition described by
potential is second.

Since we are interested in the amplification of the s
mode with small amplitude, we first consider Eq.~4! with
f js50 for all j. This is the zeroth order equation of so
modes:

hf jc1]V/]f jc50. ~6a!

The equation for soft modes with small amplitudes is o
tained by substituting Eq.~6a! into Eq. ~4!:

hf js1l~fc
21fs

212fc•fs16F~T!2v2!f js

1l~2fc•fs1fs
2!f jc50. ~6b!
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Equation~6b! is the equation of motion forfs , with a back-
ground fieldfc .

We would like to calculate the critical temperature. In
realistic case, the critical temperature cannot be defined
actly sinceH is not zero. Nevertheless, one can estimate
critical temperatureTc by requiring that one false minimum
disappears atT5Tc :

~f̄0c
2 16F~Tc!2v2!f̄0c2H/l50, ~7a!

f̄nc50 ~n51,2,3!, ~7b!

wheref̄ jc is the condensation which is the expectation va
of the field f j at the minimum of the effective potential a
T5Tc @Eq. ~7a!#. Tc can be obtained by the condition th
two solutions of Eq.~7a! are the same:

F~Tc!5
v2

6
2

1

8 S 4H

l D 2/3

. ~8!

We introduce the fluctuation fieldsdf jc , defined by

df jc5f jc2f̄ jc . ~9!

Substituting Eq.~9! into Eq. ~6a!, and using Eq.~7a!, we
have

h~df jc!1l@~df!212~df!•f̄#@f̄0c1~df jc!#

1~H/f̄0c!~df jc!50. ~10!

Ignoring O(d2) and higher terms, we obtain

~h1mj
2!~df jc!50, ~11!

where m0
25

def
(H/f̄0c)12lf̄0c

2 and mn
25

def
(H/f̄0c) (n

51,2,3). It is easily found from Eq.~11! that the condensate
oscillates around the minimum of the potential atTc . In the
same way, Eq.~6b! becomes

hf js1~H/f̄0c!f js1l~fs
212f̄c•fs!f js12l@f̄c•~dfc!

1fs•~dfc!#f js1l~dfc!
2f js1l@2f̄c•fs1fs

2

12~dfc!•fs#f jc50. ~12!

Since we are interested in the amplification by the oscillat
of the condensate, we consider the smallfs and discard
O(fs

2) andO(fs
3) terms. The equation forf js @Eq. ~12!# in

such a case is

hf js1a jf js1 (
( iÞ j )
i 50

3

b j i f is50, ~13!

where

a j5
def

H/f̄0c12l@f̄c•~dfc!1~f̄ jc!212f̄ jc~df jc!#,
~14a!
3-2
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b j i 5
def

2l@f̄ jcf̄ ic1f̄ jc~df ic!1f̄ ic~df jc!#[b i j ~ j Þ i !,
~14b!

andO(d2) terms have been ignored. Sincef̄0cÞ0 andf̄nc
50(n51,2,3) in the linears model, the coefficientsa j and
b j i have the following relations:

a15a25a3 , b125b135b215b235b315b3250.
~15!

As stated in Sec. I, the condensate moves and oscill
almost along the sigma axis. Thendfnc;0 for n51,2, and
3. Consequently allb ’s any zero. In such a case, Eq.~13! is
diagonalized:

hf0s1@m0
216lf̄0c~df0c!#f0s50, ~16a!

hfns1@mn
212lf̄0c~df0c!#fns50. ~16b!

The solution of Eq.~11! for j 50 is

df0c52B cos~m0t1u!, ~17!

where B and u in Eq. ~17! are determined by the initia
condition of df0c . This solution,@Eq. ~17!#, is substituted
into Eqs.~16a! and ~16b! and the transformation fromt to

j5
def

(m0t1u)/2 is applied. The equations of motion now b
come

H d2

dj2
1

4

m0
2 ~kW21m0

2!2
24lf̄0cB

m0
2

cos~2j!J f0s~j;kW !50,

~18a!

H d2

dj2
1

4

m0
2 ~kW21mn

2!2
8lf̄0cB

m0
2

cos~2j!J fns~j;kW !50,

~18b!

wheref0s(j;kW ) andfns(j;kW ) are the Fourier transformatio
of f0s(j;xW ) andfns(j;xW ), respectively.

III. AMPLIFIED MODES

Equations~18a! and~18b! are just Mathieu equations. T
investigate the amplified modes, we define the followi
quantities:

As5
4

m0
2 ~kW21m0

2!, Ap5
4

m0
2 ~kW21mn

2!. ~19!

The amplified modes are obtained from the above coe
cients by the help of a knowledge of Mathieu equation. T
amplified modes ofs field for nonzero modes (kÞ0) corre-
sponds toAs59,16, . . . becauseAs.4 apparently, while
that of p field corresponds toAp51,4,9,16, . . . . (Ap51 is
not satisfied for some parameters of the linears model.!
Then the masses ofs andp fields are needed to determin
such modes. The condensate (f̄0c) at Tc is (4H/l)1/3, which
06490
es
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is easily found from the definition ofTc . Therefore, the
masses are obtained ifl and H are given. The amplified
modes corresponding toAs ,Ap51,4,9,16 are shown in
Table I for l520 andH1/35119 MeV, which generatemp

5135 MeV, ms5600 MeV, andf p592.5 MeV atT50
for v587.4 MeV.

The amplification ofp fields is determined byAp and the
factor (2Qp) in the presence of cosine in the Mathieu equ
tion. This factor is given by

2Qp5
8lf̄0cB

m0
2

, ~20!

where B is the amplitude of zero mode introduced in E
~17!. Its numerical value for the previous parameters of
linear s model is about 0.051 (MeV21)3B. For example,
2Qp is 21.53 forB5230 MeV. The solutionw(j) of the
Mathieu equation forw(0)51,dw/dj(0)50, has the prop-
erty w(j1p)5einpw(j), wheren is called ‘‘the character-
istic exponent’’ which has a relation

cos~np!5w~p!. ~21!

The time periodp in j corresponds to about 2.65 fm int. It
is obtained thatueinpu;3.1 @11# for Ap51 and22Qp /Ap

51.53. The numerical solutions forB5730 MeV for
w(0)51,dw/dt(0)50 are shown in Fig. 1.v(j5p) is
about21.71, which corresponds toueinpu;3.1. It is found
that the fieldsp are strongly amplified in a few~five or
more! fm.

There are several amplified modes in the Mathieu eq
tions @Eqs.~18a! and~18b!#. However, modes larger thankL

cannot actually be amplified modes because we assume
hard modes are thermal. Therefore, the cutoff (kL) between
soft and hard modes is important in order to know whet
the amplified modes extracted from Eqs.~18a! and ~18b!
belong to soft modes or not. In this paper,kL is determined
as follows. SinceF(T) is a function of kL , the latter is
obtained from Eq.~8!, in which Tc is related tokL . That is,
kL is fixed if Tc is given. The density operator ofj field for
hard modes@rh

j (T)# is assumed as

rh
j ~T!5expS 2T21 (

ukW u>kL

v jaj
†~kW !aj~kW !D Y

TrFexpS 2T21 (
ukW u>kL

v jaj
†~kW !aj~kW !D G , ~22!

wherev j
25kW21mj

2 . We find

TABLE I. Amplified modes ins and p fields for variousAs

andAp .

As ,Ap ks ~MeV! kp ~MeV!

1 – 174.0
4 0 440.1
9 521.9 682.7
16 808.5 920.5
3-3
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F~T![^f jh
2 ~x!&

5Tr„rh
j ~T!f jh

2 ~x!…

5
1

2V (
ukW u>kL

v j
211

1

V (
ukW u>kL

1

@exp~v j~kW !/T!21#v j~kW !
.

~23!

The first term is the vacuum contribution, and the secon
the thermal contribution. The vacuum contribution can
discarded in the following calculation, since it is the we
known infinity which is removed by the redefinition of th
energy including the contribution from the soft modes~sub-
traction of the vacuum energy.! Equation~8! is rewritten by
the massless particle approximation and the integration
the angle:

1

p2EkL /Tc

`

du
u

exp~u!21
5

1

3 S v
Tc

D 2

2
1

4Tc
2 S 4H

l D 2/3

.

~24!

This approximation is valid nearTc , because the masses
s andp mesons become small. These masses are zeroT
5Tc in the chiral limit. Note that̂ O& terms have no depen
dence on]f0 ,f0 ,]fs , andfs becauseF(T) is independent
of j in the massless particle approximation.

Table II showskL obtained by solving Eq.~24! for vari-
ous Tc’s with l520, H1/35119 MeV, andv587.4 MeV.
Tc is about 123 MeV in the chiral limit. It has been estimat
from lattice QCD and some other methods. It is between
and 190 MeV in lattice QCD@12,13#. SincekL is above 190

FIG. 1. The solutionw(t) of the Mathieu equation forp fields
with Ap51 with the initial amplitudeB5730 MeV andw(0)
51 anddw/dt(0)50. The thick and dotted lines are forB5230
and 30 MeV, respectively. The dashed line is for21.71, which is
the value of cos(nj) at j5p. The arrow with the string ‘‘2p/m0’’
shows the time corresponding toj5p.
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MeV except for Tc<130 MeV, we conclude thatkp

;174 MeV is an amplified mode at least whenTc is ad-
justed above 130 MeV. Other modes are irrelevant, si
these modes belong to hard modes. (kp;440.1 MeV may
be a soft mode in this sense.!

The amplified mode of thep field is not directly related to
the observed modes since the mass of ap meson atTÞ0 is
different from that atT50. Then we must know the effect o
the difference of two masses. In quantum field theory,
relation between these two masses can be described
Bogoliubov transformation. We can estimate the effect
evaluating the coefficients of this transformation. The amp
fied mode is not changed essentially, because the differe
of the masses between zero temperature and critical temp
ture is small enough forp fields in this model. The peak
coming from the parametric resonance atT5Tc will be
found nearkp;174 MeV if the peak is not smeared out b
scattering, absorption, and so on.

IV. CONCLUSIONS

The parametric resonance at critical temperature in hi
energy heavy-ion collisions is studied in the case when
temperature of the system is constant atTc for a long time.
We consider the case in which the condensate oscill
along the sigma axis at the critical temperature of the seco
order phase transition in the framework of the linears
model.

The enhancement of a soft mode at about 174 MeV in
p field is found at variousTc’s above 140 MeV. Other mode
are irrelevant as amplified modes because these mode
long to the hard modes which are assumed to be in ther
equilibrium in the present study. Conversely, there is no
hanced soft mode in thes field. The amplified mode~174
MeV! at T5Tc is softer than that~for example, about 265
MeV in the one-dimensional expansion case@5#! at T50 in
the p field because the difference between sigma and p
masses atT5Tc is smaller than that atT50. It takes a short
time for the soft modes to be amplified. This implies that
amplification of the soft mode by the parametric resonanc
Tc is possible in real collisions at high energies. The e
hancement by parametric resonance in the present study
be observed experimentally if the smearing effects are w
enough.

It has been pointed out that there may be a parame
resonance at zero temperature in the last stage of heavy

TABLE II. The relation betweenTc andkL .

Tc ~MeV! kL ~MeV!

89.5 0
130 150.5
140 192.3
150 235.7
160 280.5
170 326.8
180 379.3
3-4
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collisions. Then the pion momentum distribution caused
the parametric resonance at finite temperatures may be
initial distribution of the subsequent parametric resonanc
zero temperature. If so, some peaks which correspond to
enhanced modes may appear in the final momentum di
bution.

The explicit symmetry-breaking term (Hf0) plays impor-
tant roles for the parametric resonance atT5Tc , because
this term makes the condensatef̄0c nonzero and generate
masses atT5Tc . The condensates (f̄ jc) and masses (mj ) at
Tc are exactly zero in the chiral limit (H50). Note that Eqs.
~16a! and ~16b! are valid whenO(fs

2) andO(fs
3) terms in
06490
y
he
at
he
ri-

Eq. ~12! are negligible. The resonance structure may cha
in small-H cases.

We have not shown the strength of the peak in the pres
study. If we wish to obtain it, we must know the time interv
in which the temperature is~almost! constant and conside
the evolution of the QGP. The nonlinear effects and ba
reaction are also ignored in this investigation. These pr
lems will be answered in the future studies.
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