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The spectral function ofHe is extracted from a plane-wave approximation to t@/(p) reaction using a
fully relativistic formalism. We take advantage of both an algebraic “trick” and a general relativistic formalism
for quasifree processes developed earlier to arrive at transparent, analytical expressions for all quasifree
(e,e’'p) observables. An observable is identified for the clean and model-independent extraction of the spectral
function. Our simple relativistic plane-wave calculations provide baseline predictions for the recently mea-
sured, but not yet fully analyzed, momentum distributiorfeie by the Al Collaboration from Mainz. Yet in
spite of its simplicity, our approach predicts momentum distributions*fde that rival some of the best
nonrelativistic calculations to date. Finally, we highlight some of the challenges and opportunities that remain,
both theoretically and experimentally, in the extraction of quasifree observables.
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[. INTRODUCTION has recently been put into question. An analysis of world
data on inclusive quasielastic electron scattering on medium-
Electron scattering from nuclei is a common and powerfulmass nuclei seems to indicate that the presumed quenching
tool for studying the structure of nuclei. The method reliesof the longitudinal response is absent after[dl. Yet the
on our superior understanding of quantum electrodynamicssue continues to be controversial: A recent analysis seems
(QED) and the relative ease by which QED may be appliedo have reestablished the quenching of the longitudinal re-
to a variety of processes, at least in the one-photon-exchangponse, at least in medium and heavy nu@éi Fortunately,
approximation. In inclusive €,e’) electron scattering all the situation in light nuclei seems to be under better control,
nuclear-structure information is contained in two dynamicalprimarily due to the existence of exact Green's function
guantities: the longitudinal and transverse response fundvionte Carlo calculations of the inclusive Euclidean re-
tions. The longitudinal response is sensitive to the distribusponses ir*He and*He [2,9]. While the analytic continua-
tion of charge in the nucleus, while the transverse responsgion of these theoretical responses into real time is difficult,
samples the distribution of currents and magnetization. Meathe opposite is not true: Accurate experimental Euclidean
surement of these quantities in the quasielastic region is exesponses are now available from existent high-quality data.
pected to be particularly clean as the reactive content of th&wo of the main conclusions drawn from these comparisons
reaction is dominated by quasifree proton knockout. If soare as follows{a) The quenching in the L/T ratio iftHe is
“reduced” longitudinal and transverse response functionsgenerated as a consequence of a substantial enhancement of
obtained from the full nuclear responses by dividing out thethe transverse response due to two-body mechanisms rather
corresponding single-nucleon form factor, should be equakhan a quenching of the longitudinal respoitseo-body ef-
Yet a quenching of the longitudinal response relative to théects seem to have a small impact on the longitudinal re-
transverse one of 14% ifiHe and 50% if"®Pb has been sponsg and(b) the L/T ratio decreases significantly in going
reported from a quasielastie,@’) electron-scattering mea- from 3He to “He [2]. While it is undeniable that much
surement1]. Indeed, from a recent global analysis of the progress has been made, a considerable effort continues to be
world data on quasielastic electron scattering fréife this  devoted to the understanding of the mass- and momentum-
quenching appears to be even larger, approaching[209%  transfer dependence of the L/T ratio both in the inclusive
similar (20—40% quenching in*He has also been reported (e,e’) as well as in the semiexclusive,g’ p) reactionssee
in the semiexclusived,e’p) reaction at quasielastic kine- below).
matics [3]. In order to explain the longitudinal/transverse  The appeal of thede’p) reaction is due to the perceived
(L/T) discrepancy a variety of scenarios have been proposedensitivity of the process to the nucleon momentum distribu-
These include medium modifications to vacuum polarizatiortion. Interest in this reaction has stimulated a tremendous
[4], nucleon “swelling[5], and Brown-Rho scalin6]. Yet  amount of experimental work at electron facilities such as
most of these explanations attributed the discrepancy to thIKHEF, MIT/Bates, and Saclay, who have championed this
qguenching of the longitudinal response, one of the longeffort for several decades. While it is undeniable that this
standing problems in nuclear physics. However, this viewreaction involves the best understood theory in all of physics
(QED), many uncertainties remain due to the strongly inter-
acting character of the many-body system. It is hoped that
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and Mainz, some of the remaining open questions will beman’s trace techniqgues may be employed throughout the for-
answered. Indeed, in an attempt to elucidate the mass- amdalism.

momentum-transfer dependence of the L/T “anomaly” dis- The paper has been organized as follows. In Sec. Il some
cussed earlier, a systematic study of the longitudinal an®f the central concepts and ideas of the semiexclusive
transverse response functions frothle and “He is being  (&,€’p) reaction are reviewed. Special emphasis is placed on
conducted at the Mainz MicrotafMAMI ) facility by the A1~ defining the bound-state propagator and the simplifications
collaboration[10—15. Their extraction of “experimental” that this entails in the plane-wave limit. In Sec. Il we
spectral functions and of momentum distributions relies on #resent our results fofHe and discuss 4fairly) model-
plane-wave-impulse-approximatid®WIA). In such an ap- independent method for extracting the nucleon momentum
proximation the é,e’p) cross section is proportional to the distribution. Finally, a summary and conclusions are pre-
nucleon spectral function times an off-shell electron-protorsented in Sec. IV.

cross section €. ,). Experimental analyses of this reaction

employ, almost exclusively, the de Forestsl prescription Il. FORMALISM
for o¢p with both nucleon form factors unmodified from )
their free-space formiL6]. In Refs.[18,19 a general formalism has been developed

Stimulated by this new experimental thrust, we reportr the study of a variety of quasifree processes in the rela-
here relativistic plane-wave-impulse-approximatigiRP-  tivistic plane-wave impulse approximatioiRPWIA). This
WIA) calculations of the €,e’p) cross section in the quasi- formalism is now applied to thee(e’p) reaction in a mean-
elastic region. Our motivation for such a study is fourfold. field approximation to the Walecka mod@i7]. Although the
First, we employ an established RPWIA formalism, first in- Use of a mean-field approach for a nucleus as Smff"‘m's
troduced in Ref[17] and recently extended to the kaon- questlpnable, we _allow o_urselves this freedom_m. order to
photoproduction reactiofi8,19 for the study of the ¢,e’ p) establish a baseline against which more sophisticated ap-
reaction in the quasielastic region. Second, we use this foProaches may be compared. _
malism to compute the spectral function fle in anticipa- Following a standard procedure, an expression for the un-
tion of the recently measured, but not yet fully analyzed, A1polarized dlﬁgrentlal cross section per target nucleon for the
collaboration data from Maingl1—15. Third, we take ad- (&€'P) reaction is derived. We obtain
vantage of the L/T separation at Mainz to introduce what we
regard as the cleanest physical observable from which to d°c _4a2 k']
extract the nucleon spectral function. Lastly, we highlight dE'dOw,dO., _? Wlp
some of the challenges and opportunities that remain in the ek P lab
calculation of quasifree observables. . , , )

There is a vast amount of literature om ¢’ p) reaction in !N the above expressida k”, andp” denote the linear mo-
the quasifree region. Most relevant to our present discussioff€ntum of the incoming electron, outgoing electron, and
is the one pertaining to fully relativistic calculatiofgo—32. ~ Knocked-out proton, respectively. The four-momen’tum trans-
An extensive set of these relativistic studies has been cor{€" iS defined in terms of the energy loss < Etze_ Eg) ar;d
ducted by the “Spanish” group of Udias and collaboratorsthe three-momentum transfeqtk—k’) as Q“=q°— .
[22-28. These studies have shown that the many subtletieshe transition matrix element is given in a relativistic
intrinsic to the relativistic approach challenge much of themean-field picture by
“conventional wisdom” developed within the nonrelativistic

"[IM]2. (1)

framework and that, as a result, a radical revision of ideas |IMP=1#"W,,,,, (2a)
may be required. Relativistic effects originating from me-
dium modifications to the lower components of the Dirac [#7=[k"*k"+kMK'"—g*"(k-Kk")], (2b)

spinors and from the negative-energy part of the spectrum
seem to play an important role in the quasifree process. In-

1 _
deed, the much debated issue of short-range correlations aW”“”=m > US| Un(P) ]

large missing momentfi33—39 can now be attributed, at s'm

least in part, to contributions arising from the negative- _ 1

energy statef2s,36. X[UP', 8" Uam(P)]" =7 TH(P"+M)[#Sa(p)]"]-
The power of the theoretical approach employed here lies

in its simplicity. Analytic expressions for the response of a (20

mean-field ground state may be provided in the plane-wave

limit. The added computational demands placed on such Berel(p’,s’) is the free Dirac spinor for the knocked-out
formalism, relative to that from a free on-shell proton, areproton, normalized according to the conventions of Bjorken
minimal. The formalism owes its simplicity to an algebraic and Drell[38], while I/,,(p) is the Fourier transform of the
trick, first introduced by Gardner and PiekarewjdZ], that  relativistic spinor for the bound proton. Note thatdenotes
enables one to define a “boundfn direct analogy to the the collection of all quantum numbers necessary to specify
free) nucleon propagator. Indeed, the Dirac structure of thehe single-particle orbital, except for the magnetic quantum
bound nucleon propagator is identical to that of the freenumber(m) which is indicated explicitly. We have also in-
Feynman propagator. As a consequence, the power of Feytroduced a “bound-state propagator”
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1 _
SulP)= 5757 2 Uen(P)lam(P), 3
normalized according to
d°p d°p
T °S.(p)]= ! =1.
f Y Su(P)] J oy e Pean(P)
(4)

Herej is the total angular momentum quantum number an
2j+1 is the multiplicity of protons in the struck shell. It

follows from simple kinematical arguments that the missing

momentump=p’ —q is, in a mean-field picture, identical to

the momentum of the struck proton. It is the possibility of
mapping the nucleon momentum distribution that makes th

(e,e’p) reaction so appealing.
We now invoke an algebraic trick first introduced in Re
[17] to simplify the expression for the hadronic ten¥ut".

f.

This technique is useful in quasifree processes as it enabl

one to cast the bound-state propagator of Bfinto a form
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with MATHEMATICA 2.0 to calculate all the necessary traces.
For a general electromagnetic current operator for the proton,
the output from these symbolic manipulations is transparent
enough so that the sensitivity of the cross section to the
various quantities in the problem may be assessed. Indeed,
such a simplification will prove useful later in identifying the
optimal observable from which to extract the spectral func-
tion. It is important to note, however, that this enormous
simplification would have been lost had distortions been in-
Ocluded in the formalism. Even so, the plane-wave approach
discussed here, and used in most experimental extractions of
the spectral function, is qualitatively useful. Moreover, if the
main effect of distortions is to induce an overall suppression
of the cross section without affecting significantly the distri-
gution of strength, the plane-wave formalism provides solid
quantitative predictions for a variety of spin observables
[18,19.

Yet an important open question remains: What constitutes
& suitable form for the nucleon electromagnetic current? A
u%iquitous form given in the literature is

identical in structure to that of the free Feynman propagator.

That is,

Sa(P)=(BatMy), ©)

where we have defined mass- and four-momentumflie
=(E,,p,)] quantities according to

™ a2 my_f2
M,= pz)[ga(p) fa(P)], (6a)
a2 2
E. pz)[ga(p)Jrfa(p)], (6b)
o ~
pa=(—2)[29a(p)fa(p)p]- (60)
p
Moreover, they satisfy the “on-shell relation”
pa=EL—pi=M;. (7)

In these expressiorg,(p) andf,(p) are the Fourier trans-

q,

oM ©)

“(a)=F1(a®)y*+iF(a®)a*”

While this form is certainly general, as only two form factors
are required to fully specify the electromagnetic current for
an on-shell nucleon, the form is not unique. Indeed, many
other forms—all of them equivalent on-shell—may be used.
For example, through a Gordon decomposition of the current
one arrives at

(p"+p)*

M@= (FitF)yi—Fposr—. (10

However, as soon as one of the nucleons goes off its mass
shell, an off-shell choice must be made. This decision is
crucial, as various on-shell equivalent choices may yield
vastly different results. This off-shell ambiguity remains one
of the most serious obstacles in the field. Several attempts

forms of the upper and lower components of the bound-statBave been made in the literature to overcome this hurdle.

Dirac spinor, respectivelyl7]. Using this form of the bound-
state propagator the hadronic tensor simplifies to

1
W =ZTH(B 4+ M) (bt M) ). ®)

Perhaps the most celebrated treatment is due to de Forest
who uses physical constraints, such as current conservation,
to reduce this ambiguity16]. He imposes this condition on
the two forms of the electromagnetic current given above
[Egs.(9) and 10 and produces what are known in the litera-
ture as thecc2 and theccl forms, respectively. Although

The obvious similarity in structure between the free andnoteworthy, this effort does not resolve the ambiguity. For
bound propagators results in an enormous simplificationexample, there is no unique way to impose current conserva-
powerful trace techniques developed elsewhere may now hbion; one may eliminate either the time component or the

employed here to compute ab,g’p) observables. Although
the focus of this paper is the unpolarized cross sedtiim

longitudinal component of the three-vector currg2f]. Al-
ternatively, one may adopt some guiding principle, such as

(1)], the formalism may be extended without difficulty to the vector-meson dominance, to go off the mass shell. Here we
case in which the electron, the outgoing proton, or both, ar@dopt the “natural” choice by simply extrapolating off the
polarized. Yet, in order to automate this straightforward butmass shell thecc2 form, without imposing further con-

lengthy procedure, we rely on tieYNCALC 1.0[39] package

straints on the single-nucleon current.
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As de Forest has done in the past, we now attempt to (1)

impose some approximate form of gauge invariance. Yet
rather than concentrating on the nucleon current, we focuBlowever, this procedure is problematic. First, the quasifree
directly on the nuclear responses. First, however, we addressoss sectiorfthe numerator in Eq(11)] suffers from the
some important issues in this regard. For any mean-fiel®ff-shell ambiguity; different on-shell equivalent forms for
treatment of the &,e’p) reaction to be gauge invariant, the the single-nucleon current yield different results. Second, the
mean-field potential for the bound proton must be identicaproblem gets compounded by the use of an elementary
to the distorting potential for the emitted proton. This repre-electron-proton cross section{y) evaluated at off-shell ki-
sents a challenging task. Indeed, mean-field approximationsematicq 16]. Finally, the projection of the bound-state wave
to the nuclear ground state give rise to real, local and energyunction into the negative-energy sector as well as other rela-
independent potentials that are in contradiction to the comtivistic effects spoil the assumed factorization of the cross
plex and energy-dependent potentials that are needed to deection derived in the nonrelativistic lin{i25].
scribe the propagations of the outgoing proton. Thus, Insights into the role of relativistic corrections, particu-
present-day calculations ofe’p) observables are pre- larly those concerned with negative-energy states, may be
sented with a dilemma. Calculations that use the saea  gained by introducing the completeness relation in terms of
and energy-independeninean fields to generate both the free (plane-wave spinors:
bound single-particle wave function and the distorted wave
satisfy gauge invariance but miss some of the important
physics, such as absorption, which is known to be present in
the outgoing channel. On the other hand, calculations that
incorporate the correct physics via a phenomenological optiNaively, one would expect that the projection of a positive-
cal potential are known to violate current conservafi2@l. energy bound state into a negative-energy plane-wave state
We offer here no solution to this complicated problem.would be vanishingly small. This, however, it is not the case
Rather, we impose gauge invariance “ad hoc” by adjusting[36]. At the very least one must recognize that the positive-
the effective nucleon mass of the emitted proton so that thenergy plane-wave states, by themselves, are not complete.
“gauge-variance” termg,,q,W*”, be minimized. This pro- Moreover, it has been shown that the projection of the
cedure, with perhaps its unexpected outcome, is displayed inound-state spinors into the negative-energy states dominate
Fig. 1. It shows that by decreasing the proton mass by abouwt large missing momenta and may mimic effects perceived
20 MeV, one can restore gauge invariance in the calculatioas “exotic” from the nonrelativistic point of view, such as an
0,9, W*"=0. Although by no means fundamental, this asymmetry in the missing-momentum distributighiz] or
“poor-man” distortion ensures the conservation of gauge in-short-range correlatior86]. Indeed, Caballero and collabo-
variance without compromising the clarity of the formalism. rators have confirmed that these contributions can have a
The essence of the experimental extraction of the spectralignificant effect on various observables, especially at large
function is based on a nonrelativistic plane-wave relLj: missing moment@25].

g[u<p,s>ﬁ<p,s>—v<p,s>9(p.s>]=1. (12)
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To “resolve” the off-shell ambiguity it has become ubig- situation by adopting thec2 form in the evaluation of both.
uitous in the field to use the de Forestl prescription for  Yet significant differences remain; while the off-shell ambi-
evaluating the elementary cross sectigi—irrespective of  guity has been reduced, it has not been fully eliminated.
the form of the electromagnetic current adopted to comput@loreover, the factorization assumption is only approximate,
the quasifree cross section. This is the standard proceduiss it neglects the projection of the relativistic wave function
used in comparing theoretical calculations of the spectrapnto the negative-energy spectrum and other relativistic ef-
function to experiment. We may elect here to conform tofects.
tradition and use the de Forest1 prescription to compute  \hjle a consistent relativistic treatment seems to have

oen in Eq. (11), but at a cost. A price must be paid becausegyijed the factorization picture obtained from a nonrelativ-
of the inconsistency in using one prescription for evaluating gy analysis, and with it the simple relation between the

the single-nucleon currentey and a different oneqc2) 10 yoqq.section ratio and the spectral funct[@. (11)], the

. C o . Nituation is not without remedy. Having evaluated all matrix
we display in Fig. 2 the proton momentum distribution de'elements of the electromagnetic current analytically in the
fined by - .
plane-wave limit, the source of the problem can be readily
identified. Upon evaluating the coincidence cross section,
pz(D)Zf S(E,p)dE. (13 one learns that the off-shell ambiguity is manifested in the
form of several ambiguous “kinematical” factors. For ex-
Note that the subscript “2” inp, stands for two-body ample, one must decide what value to use for the energy of
breakup. The graph displays the “canonical” momentum dis-the struck proton. Should it be the binding-energy of the
tribution (solid line) obtained from the Fourier transform of struck proton or should it be the on-shell value? This is not
the 1S¥2 proton wave functiorisee Eq(6b)]. Note that this an easy question to answer. Energy conservation demands
canonical momentum distribution has been normalized, as that the energy be equal to the binding enery{= E,’J
is done experimentally, to the total number of protons in the- w), yet the equivalence between the various forms of the
shell (2 for the case*He). The other two curves were ex- electromagnetic current is derived assuming the on-shell dis-
tracted from the quagifree cross section _by adopting eithgpersion relation E,= Jp?+M?). This is one of the many
the de Forestcl choice foro.y (dashed ling or the cc2 manifestations of the off-shell ambiguity: Kinematical terms
prescription (dot-dashed line In both cases the quasifree that are well defined for on-shell spinors become ambiguous
cross section has been computed using the “vector-tensordff-shell. In Ref.[16] de Forest resolves the ambiguity, by
form of the electromagnetic current, as given in ). The fiat, using the on-shell choice. Perhaps a better option may
inset on the graph shows the integrand from which the occube looking for an observable, that even though might be
pancy of the shell may be computed. It is evident that themore difficult to isolate experimentally, it may display a
conventionalccl prescription of de Forest greatly overesti- weaker off-shell dependence than the unpolarized cross sec-
matesp, (it integrates to 3.6 We attribute this deficiency to tion. To do so we examine the various components of the
the lack of consistency: The quasifree cross section has bedradronic tensor. We find, perhaps not surprisingly, that the
evaluated using thec2 form of the current, while the el- longitudinal component of the hadronic tensor could be such
ementary amplitude uses thel form. One can improve the a model-independent observable. Ignoritfgr now) the
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anomalous part of the electromagnetic current, the Dirac- 1 Ip|
Dirac component of the longitudinal tendsee Eq(8)] be- 90 |free= Ff(EF’)Jr M) E(Ep+ M) 1t(E Y
comes p
2
p'|

(16b)

bo=FiMM—p,-p’+2EEf] E)+M

- F%[M oM+ EaEF,)+ PaP']- 149 The+ sign in the above expressions corresponds to a miss-
ing momentump either parallel or antiparallel tp’. We
) ) ) , ) observe that up to second-order corrections in the small
This expression depends exclusivelympandp’, which are  (jo\yer.to-uppey ratios, the hadronic tensor is proportional to
unambiguous. Note that fo_r scattering from a free on-shel{he energylike(or masslikg quantity given in Eqg6b). Yet
nucleon the above expression becomes this energylike quantitf,, is nothing but the Fourier trans-
form of the bound-state nucleon density. Thus we conclude
that, in a mean-field treatment, the nucleon spectral function
is proportional to the longitudinal response. ThatSéE,p)
%0 % E,. Thus, the(Dirac-Dirac component of thdon-
=FM?+ E,Ept+p-p'l. (150 gitudinal hadronic tensor is, up to second-order corrections
in the lower-to-upper ratios, proportional to the nucleon
spectral function. Indeed, the nucleon momentum distribu-

Also note, as a consequence of the lower component of théon may now be easily extracted from the longitudinal re-
bound-state spindf,(p) being substantially smaller than the sponse. It becomes

upper componerd,(p), that|p,|<E, while M ,=E_ . This )

isptF?ue ever? though [zhe Iow|§r—lto-upper ratip/g,, has been p2=2(2j+1)(Ep+M)(WEp/ Wl o) (17)
enhanced considerably in the nuclear medium relative to its o o o
free-space value. This is an important step towards isolatinge momentum distribution fofHe is displayed in Fig. 3
an observable sensitive to the spectral function. Indeed, if theSing various methods for its extraction. The solid line gives
longitudinal component of the hadronic tensor is computedh€ “canonical” momentum distribution, obtained from the
in parallel (' =q) kinematics, Eqs(14) and (15) reduce to Fourier transform of the_S ~proton wave functiorisee Eq. _
the following simple expressions: (6b)]. The momentum distribution extracted from the longi-

tudinal response as defined in Eq7) (dot-dashed lingis
practically indistinguishable from the canonical momentum
T (fa(p))
— 1=+
g 1= (2

W — F2[M?—p-p’ +2E,E]

free

distribution. While it appears that a suitable observable has
been found from which to extract the nucleon momentum
distribution, it may be argued, and justifiably so, tWﬁ% is
(163 not a physical observablasF, has been neglectgdHence,

Ip’
Ep+M

b= Fi(E,lg"'M)
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the merit of such an extraction may be put into question. To In summary, the longitudinal response appears to be a
show that the above procedure is still robust, we display irrobust observable from which to extract the nucleon momen-
the figure (with a dotted liné the momentum distribution tum distribution. Experimentally, one should proceed as fol-
extracted from the full longitudinal response, namely, ondows: Perform a Rosenbluth separation of tleee(p) cross
that also includes the anomalous component of the currensection so that the longitudinal respon$g £ W) may be
This result remains indistinguishable from the canonical moextracted. This expression should then be divided by the cor-
mentum distribution. Although this behavior is general, it isresponding single-nucleon response. Up to a simple and un-
most easily understood by limiting the discussion to the casambiguous kinematical factor this yields, at least in the
of parallel kinematics. In this case the longitudinal responselane-wave limit, the nucleon momentum distribution:
becomes equal tl7]

_ R
- B p2=2(2j+1)(Ep+ M) RTLEE) (20)
RLEWOO:(E;')"'M) Ega(p) (F1—&,0F2) L
¢ 2 Note that up to second order corrections in various small
i(E’FlJraFg)(ﬂ (18  Quantities, this form is independent of the small components
P 9u(P) of the Dirac spinors and also of the negative-energy states.

Moreover, it is also free of off-shell ambiguities. Indeed, we
The contribution from the anomalous form factes to the  could have used thecl form of the electromagnetic current
longitudinal response is small because it appears multipliednd the results would have remained unchanged. We regard
by two out of three “small” quantities in the problem: the the outlined procedure as much more robust than the conven-
lower-to-upper ratio,&,=|p'|/(E,+M), and q=|q|/2M. tional one given in Eq(11) because the transverse compo-
Thus, up to second order corrections in these small quantfent of the hadronic tensor is strongly dependent on the
ties, the longitudinal response is given by small components of the wave function and also sensitive to
off-shell extrapolation$17].
In Fig. 4 a comparison is made between our results and
o~ Fi(E;’ﬂL M)E,. (19 nonrelativistic state-of-the-art calculations of the momentum
distribution of “He. The solid line displays, exactly as in Fig.
3, the canonical momentum distribution. We see no need to
The last calculation displayed in Fig. 3 corresponds to a moinclude the momentum distribution extracted from the longi-
mentum distribution extracted from the factorization ap-tudinal responséEq. (20)] as it has been shown to give
proximation using thec2 form for the electromagnetic cur- identical results. In addition to our own calculation, we have
rent (long dashed line The momentum distribution also included the variational results of Schiavilla and col-
extracted in this manner overestimates the canonical mometeborators[41], for both the Urband42] (dashed ling and
tum distribution over the whole range of missing momentathe Argonne[43] (long-dashed linepotentials, with both of
and integrates to 2.9 rather than 2; this represents a discretitem using Model VII for the three-nucleon interaction. The
ancy of 45%. variational calculation of Wiringa and collaborat¢¢gt —46

R =FI(E,+M)

v
ngxp)
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(dashed-dottedhas also been included; this uses the Ar-some of the most sophisticated nonrelativistic predictions to
gonne v18 potentidld7] supplemented with the Urbana IX date. These calculations attempt to provide theoretical sup-
three-nucleon interactio8]. Figure 4 also shows NIKHEF port to the recently measured, but not yet fully analyzed, Al
data by van den Brand and collaboratp49,50 as well as  collaboration data from Mainz. The final experimental re-
preliminary data from MAINZ by Florizone and collabora- ports are expected to be pub|ished Shorﬂy_

tors[11,12 for three different kinematical setting&Results We have also demonstrated that a more robust procedure,
in final form will be submitted shortly.Comparisons to the rg|ative to the conventional factorization prescription, exists
preliminary Mainz data of Kozlov and collaborat¢@8—15 o extracting the spectral function. This procedure uses the
have also been mad@lthough the data are not shown 44 of quasifree to single-nucleon longitudinal responses,
These measurements are consistent, in the region Whefgi,or than the ratio of cross sections, to isolate the momen-
comparisons are possible, to the experimental data of bo um distribution. We have shown that the longitudinal ratio is

van den Brand and Florizone. Thus, high-quality data for th(?airly insensitive to off-shell ambiguities and to the negative-

momentum distribution ofHe is now available up to a miss- ener art of the spectrum. as both of these effects appear
ing momentum of about 200 MeV. We find the results of Fig. ay gd rder rf tion t «canonical” moment mde:
4 quite remarkable. It appears that a simple relativistic mean2> S€cond-order corrections to a “canonical” momentu s

field calculation of the momentum distribution rivals—and in 1iPution. This ceases to be true in the case of the ratio of
some cases surpasses—some of the most sophisticated nGF2SS Sections because the transverse response is sensitive to
relativistic predictions. The mean-field calculations reportecPOth €ffects. While this procedure relies on a Rosenbluth
here, with the scalar mass adjusted to reproduce the rootl/T) separation of the quasifree cross section, and thus pre-
mean-square charge radius Hfle, provide a good descrip- Sents the experimentalist with a more demanding task, the
tion of the experimental data. Still, theoretical predictions ofexperimental field has evolved to such a level of maturity
the momentum distribution overestimate the experimentaihat L/T separations are now almost routine. Indeed, in a
data by up to 50—60%. Part of the discrepancy is attributedecent publication[52] a Rosenbluth separation of the

to distortion effects which are estimated at about 12%°He(e,e’p) cross sections was made in order to extract
[11,51. However, distortions are not able to account for the“longitudinal” and “transverse” spectral functions in the
full discrepancy. We have argued earlier that an additionahope of resolving the anomaly in the longitudinal-transverse
source of error may arise from the factorization approxima-ratio alluded to in the introduction. We speculate that the
tion [see Eq(11)] used to extract the spectral function from sensitivity of the transverse response to more complicated
the experimental cross section. The use of an off-shell pregynamical processes might be partially responsible for the
scription, such as thecl prescription foroey, combined  quenching of the longitudinal—transverse ratio.

with the in-medium changes in the lower-component of the ' Finally, although in this article we focused exclusively on
I_3|rac spinors contaminate the extraction of the spectral_fur_wcfhe spectral function, the formalism presented here may be
tion. One could estimate the source of the off-shell ambiguitysytended in a straightforward fashion to the calculation of
by monitoring the variations in the spectral function as otherspin observables in quasifree electroproduction processes.

on-shell equivalent forms for the single-nucleon current argdeed, we speculate that, because the ratio of quasifree

useq. While suph an approach is gseful for gst!matlng a theéross sections are fairly insensitive to distortion effects, spin
oretical error, it is clearly not sufficient to eliminate it. We

) bservables may be a more fruitful testing ground for our
are confident that the approach suggested here, based on reTativistic plane-wave model. Moreover, our formalism ma
extraction of the spectral function from the longitudinal re- P ' ’ y

sponse, is robust. While the method adds further experimerp-e easily extended to neutrino-induced reactions. It has been
tal demands, as a Rosenbluth separation of the cross sectigf99ested that a measurement of the ratio of neutral to
is now required, the extracted spectral function appears to bg'arge-changing neutrino-nucleon scattering may provide a
weakly dependent on off-shell extrapolations and relativisticc/éan signature of the strange-quark content of the nucleon
effects. If deviations between experiment and theory still perl53]. This measurement is believed to be free from most of
sist, these may suggest physics beyond the baseline modé&re uncertainties, such as radiative corrections, that hinder
such as violations to the impulse approximation or to thethe parity-violating electron scattering program. Yet neutrino
independent particle picture. experiments suffer from very low counting rates. To remedy

this situation neutrino experiments employ large quantities of
nuclear targetgsuch as organic scintillatorghat provide
IV. CONCLUSIONS both the target and the detection medium. Thus neutrinos
To summarize, we have calculated the spectral function ofnteract, not only with the free protons in the target, but also
“He in a plane-wave approximation to the,&’p) reaction ~ With protons and neutrons bound to nuclei; hence, one must
using a fully relativistic formalism. We have taken advantagecompute quasifreex(,»'p) and (v, p) cross sectiongOf
of an algebraic trick originally introduced by Gardner andcourse, one must integrate the quasifree cross section over
Piekarewicz and of our recently developed relativistic for-the undetected outgoing neutrindherefore, the relativistic
malism for quasifree processes to arrive at transparent, angtane-wave formalism presented here is ideally suited, after
lytical results for the quasifree reaction. We have found thaincluding an additional axial-vector term in the single-
a simple relativistic mean-field calculation of the momentumnucleon current, to predict ratios of quasifree neutrino-
distribution in “He rivals—and in some cases surpasses—nucleus cross sections in the quasifree region.
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