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Ellipsoidal shape fluctuations of the compound nucleus

R. J. Charity
Department of Chemistry, Washington University, St. Louis, Missouri 63130

~Received 24 July 2001; published 20 November 2001!

Hot rotating compound nuclei are modeled as ellipsoidally shaped liquid drops. A formalism for the deter-
mination of their equilibrium shape distribution is presented. Commonly used metrics associated with the
volume element in deformation space are derived with a discussion of their underlying assumptions. Example
calculations of shape distributions are presented. These distributions are not characterized by any one type of
shape in particular; the full range of deformations from oblate to prolate are populated including spherical and
triaxial deformations. However the tail of the distributions extending towards highly deformed prolate con-
figurations is more pronounced especially at the higher angular momenta. The shape of the Coulomb-barrier
distributions for the evaporation of charged particles from the nuclear surface, averaged over the equilibrium
distribution of shapes, is calculated and its relevance for the understanding of the yield of low-energya
particles observed in evaporation spectra is discussed.
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I. INTRODUCTION

Thermal fluctuations in the shape of a compound nucl
are an important ingredient in understanding the energy s
tra of both charged particles and gamma rays emitted as
nucleus cools. The role of such fluctuations in determin
the shape of the gamma-ray spectrum in the region of
giant dipole resonance has been addressed in Refs.@1–4#.
Recently, statistical-model calculations incorporating o
spheroidal-shape fluctuations reproduced experime
a-particle kinetic-energy spectra measured for a numbe
compound systems withA.150 and excitation energies o
&100 MeV @5#. These calculations were found to accou
for the experimental yield of low-energya particles which
are not predicted in standard statistical-model calculati
for evaporation from spherical systems. In these calculatio
low-energy particles are evaporated predominately from
population of highly deformed prolate systems, for which t
Coulomb-barrier distribution extends down low in energy
emission from the system’s tips. At higher excitation en
gies these calculations with spheroidal fluctuations were
able to account for the low-energya-particle yield measured
in Ni1Mo reactions@5#. However, real compound nuclei ar
not constrained to spheroidal shapes. The consideratio
other important shape degrees of freedom, when determi
the thermal shape distributions at high excitation energ
may increase the probability for the larger deformatio
which will have important consequences for the Coulom
barrier distributions.

As part of an eventual aim of incorporating ellipsoida
shape fluctuations into evaporation calculations, this w
focuses on the formalism for determining the equilibriu
shape distributions for hot rotating ellipsoidally shaped s
tems where shell and pairing effects are washed out
quantum shape fluctuations are small and can be negle
Other treatments of ellipsoidal-shape distributions@1–4,6–9#
make use of two forms for the metric associated with
differential volume element in deformation shape. In Sec.
the development of a formalism for shape distributions
presented with attention given to the assumptions neces
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for the derivation of these metrics. Calculated distributio
for a number of example systems are presented in Sec
along with a comparison of the Coulomb-barrier distrib
tions associated witha-particle emission from equilibrium
distributions of spheroidally and ellipsoidally shaped sy
tems. Finally the conclusions of this work are presented
Sec. IV.

II. STATISTICAL THEORY OF SHAPE FLUCTUATIONS

For a system constrained to have an ellipsoidal shape
radii at the principal axes can be defined by Bohr’sb-g
parametrization@10,11# as

Rx5R0~b,g!F11A 5

4p
b cosS g2

2p

3 D G , ~1!

Ry5R0~b,g!F11A 5

4p
b cosS g1

2p

3 D G , ~2!

Rz5R0~b,g!F11A 5

4p
b cosgG . ~3!

The termR0(b,g) was introduced by Kaniowskaet al. @12#
to conserve volume for large deformations,

R0~b,g!5
R00

F12
15

16p
b21

1

4
S 5

4p
D 3/2

b3cos~3g!G1/3, ~4!

whereR00 is the radius for a spherical shape.
The shape of an ellipsoid can be uniquely defined b

point in the pie sector whereb is the radius parameter andg
is the angular coordinate@11#. This pie sector is bounded b
the anglesg50 and g5p/3 which correspond to prolate
and oblate spheroids, respectively. All other intermediate v
ues ofg correspond to deformations which are not axia
symmetric.
©2001 The American Physical Society10-1
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The state of an ellipsoid can be specified by the sh
coordinatesb,g and the three Euler anglesf, u, andc giving
the orientation of the ellipsoid’s principal axes relative to
external reference frame. At eachb,g point, the differential
phase space available to an ellipsoid with total collect
energyE can be expressed in terms of these coordinates
their corresponding canonical momentaPb , Pg , Pf , Pu ,
andPu from the microcanonical partition function as

W~E,b,g!db dg

5E dPbE dPgE dfE dPfE duE dPu

3E dwE dPwd~E2Ecoll!db dg. ~5!

The integrations are over all possible values of the coo
nates and momenta. The total collective energy

Ecoll5V~b,g!1Erot~b,g,Pf,Pu,Pw!1Ek~b,g,Pb,Pg!
~6!

can be subdivided into the contributions from the poten
energy for the deformationV, the rotational kinetic energy
Erot , and the kinetic energy associated with changes in
formation Ek . The five coordinates for the ellipsoid repr
sent a small fraction of the large number of collective a
intrinsic degrees of freedom available to the nucleus. Let
level density associated with the remaining degrees of f
dom be represented byr.

The distribution of compound nuclear shapes will be d
fined in terms of a probabilityp per unit area in the pie
sector. This probability can be obtained from convoluting
phase space associated with the ellipsoid in Eq.~5! with the
level densityr. The probability associated with the differen
tial area elementb db dg in the pie sector is thus define
to be

p~E* ,b,g!b db dg5E
0

E*
dE r~E* 2E!W~E,b,g!db dg

~7!

5KE dPbE dPgE dfE dPfE du

3E dPuE dwE dPw r~U !db dg,

~8!

whereK is a normalization constant andU5E* 2Ecoll . It is
useful in evaluating this expression to transform from
momenta Pf , Pu , Pw to the more familiar angular
momentum projectionsJx , Jy , and Jz along the principal
axes using the Jacobian sinu. The integration over the Eule
angles can then be performed giving a constant term that
be incorporated intoK, i.e.,
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e

e
nd

i-

l

e-

d
e
e-

-

e

e

an

p~E* ,b,g!b db dg

5KE dPbE dPgE dJxE dJyE dJz r~U !db dg.

~9!

At high excitation energies, the level density can be e
panded as

r~E* 2V2Erot2Ek!'r~E* !expS 2
V1Erot1Ek

T D ,

~10!

where the nuclear temperature is

1

T
5

d ln r

dU
. ~11!

For a Fermi-gas level density, the temperature can be
pressed in terms of the level-density parametera as

T'AE*

a
. ~12!

This expansion gives us the canonical distribution functio

pc~T,b,g!b db dg

5KE dPbE dPgE dJxE dJyE dJz

3expS 2
V1Erot1Ek

T Ddb dg, ~13!

where the termr(E* ) has again been incorporated into th
normalization constantK.

Following Bohr@10,11#, the kinetic energyEk can be ex-
pressed in terms of three inertia parameters, i.e.,

Ek5
1

2
Dbbḃ21Dbgḃġ1

1

2
Dggġ2

5
1

D2 S 1

2
DggPb

22DbgPbPg1
1

2
DbbPg

2D , ~14!

where

D25DbbDgg2Dbg
2 . ~15!

The rotational energy can be expressed in terms of the
ments of inertiaIx , Iy , Iz about the three principal axes a

Erot5
Jx

2

2Ix~b,g!
1

Jy
2

2Iy~b,g!
1

Jz
2

2Iz~b,g!
. ~16!

The integrations over the momentum variables are easily
formed for this canonical distribution giving
0-2
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ELLIPSOIDAL SHAPE FLUCTUATIONS OF THE . . . PHYSICAL REVIEW C 64 064610
pc~T,b,g!b db dg

5K expF2
V~b,g!

T G
3D~b,g!AIx~b,g!Iy~b,g!Iz~b,g!db dg, ~17!

where yet again constant terms have been absorbed inK. The
term DAIxIyIzdb dg5dt is the metric for this problem
and although it has been derived from the classical parti
function, is has a more general application. For example
was also derived by Kumar and Baranger@13# in their solu-
tion to the wave functions for the ellipsoid’s motion. It
important to note that the value of the metric depends on
deformation dependence of the inertias.

For inertiasDbb , Dgg , and Dbg , which are associated
with changes in shape, the expression obtained by Ka
wskaet al. @12# for irrotational flow are deemed appropria
at high excitation energies. For the rotational motion, we w
consider both rigid-body values

I x
RB5

~Ry
21Rz

2!

2R00
2

I0 , I y
RB5

~Rx
21Rz

2!

2R00
2

I0 ,

I z
RB5

~Rx
21Ry

2!

2R00
2

I0 , ~18!

and values associated with irrotational flow@11#,

I x
IR5S Ry

22Rz
2

Ry
21Rz

2D 2

I x
RB,

I y
IR5S Rx

22Rz
2

Rx
21Rz

2D 2

I y
RB, I z

IR5S Rx
22Ry

2

Rx
21Ry

2D 2

I z
RB, ~19!

whereI0 is the spherical rigid-body value. The rigid-bod
values are expected to be more appropriate at high excita
energies, but the irrotational values will also be considere
they allow comparison with other studies. For small def
mations, one can expand the expressions for the ine
aboutb50 and obtain

dtRB}S 11
95

32p
b22

295

384
A 5

p3
cos 3g b3D b db dg ~20!

for rigid-body rotation and

dt IR}b4usin 3gudb dg ~21!

for inertias associated with irrational flow. To lowest ord
these metrics areb db dg and b4usin 3gu db dg. These two
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forms are commonly used in other treatments of ellipsoid
shape distributions@1–4,6–9#. The difference between thes
metrics is entirely due to the assumed values for the m
ments of inertia. Both metrics include the angula
momentum orientation degree of freedoms as in both ca
the integration over all values ofJx , Jy , and Jz has been
performed. In fact, both metrics include contributions fro
all absolute values of angular momenta and neither is v
for large deformations. Use of either form must be consist
with these assumptions.

The distribution function just presented may not be p
ticularly useful as most applications of shape fluctuatio
require that the angular momentum or its distribution
specified. If all three components of the angular moment
Jx , Jy , Jz are constrained, then after removing the integ
tions over these variables, the metric is simplydt
}D db dg, which, for smallb, approaches

dt}S 11
25

16p
b22

5

12
A 5

p3
cos 3g b3D b db dg. ~22!

If the absolute value of the angular momentum is co
strained, the canonical distribution function becomes

pc~T,J,b,g!b db dg

5KE dPbE dPgE dJxE dJyE dJz

3expS 2
V1Erot1Ek

T D d@J22~Jx
21Jy

21Jz
2!#db dg.

~23!

All the integrations can be performed analytically, exce
one, giving

dt}D expS 2Erot
1

T Ddb dgE
0

1

dx

3expF2
Erot

3 1Erot
2 22Erot

1

2T
~12x2!G

3I0FErot
3 2Erot

2

2T
~12x2!G , ~24!

where I0 is the modified Bessel function of the first kind an
Erot

i 5J2/2Ii is the energy for rotation about thei th principal
axis which are ordered such thatErot

1 <Erot
2 <Erot

3 . The mini-
mum rotational energy for rigid-body rotation isErot

1 5Erot
y

while for irrotational flow Erot
1 5Erot

x . For small deforma-
tions, the metrics approach
dtJ
RB}H 11

F2512S Erot
0

T D 2

110
Erot

0

T G
16p

b22

F228024S Erot
0

T D 3

163S Erot
0

T D 2

2280
Erot

0

T G
672

A 5

p3
cos 3g b3J b db dg ~25!
0-3
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or

dtJ
IR}

expS 24pErot
0

15b2sin2~g22p/3!T
D

A@csc2~g12p/3!2csc2~g22p/3!#@csc2~g!2csc2~g22p/3!#
b3db dg, ~26!
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where Erot
0 5J2/(2I0) is the rotational energy of the rigid

spherical system. Note that for rigid-body rotation, the m
ric, to lowest order, isb db dg independent of whether o
not the angular momentum is constrained.

The deformation potential energy in the liquid-drop mod
can be expressed in the following form@14#:

V~b,g!5@Bs~b,g!21#Es
01@Bc~b,g!21#Ec

0 , ~27!

whereEs
0 andEc

0 are the surface and Coulomb energies fo
spherical nucleus andBs and Bc express the surface an
Coulomb energies of a deformed nucleus in units of the
spective spherical quantity. The quantitiesBs and Bc were
derived for ellipsoidal shapes in terms of the incomplete
liptic integrals in Refs.@15,16#. For small values ofb,

Bs511
b2

2p
, Bc512

b2

4p
~28!

and the canonical distribution function for rigid-body rot
tion reduces to

pc~T,J,b,g!}11
b2

16p F2512S Erot
0

T D 2

110
Erot

0

T
28

Es
0

T
14

Ec
0

T G . ~29!

The distribution function has a maximum atb50 so long as

Erot
0 ,A~4Es

022Ec
0!T2~5T/2!225T/2. ~30!

These expansions cannot be used to describe the full e
librium shape distribution as large deformations are imp
tant. In this case, rather than use the full canonical distri
tion @Eq. ~24!# which was obtained by expanding the lev
density aboutE* in Eq. ~10!, a better approximation can b
obtained by performing the expansion aboutE* 2V(b,g)
2Erot

1 (b,g) for each value ofb,g. The resulting distribution
function is

p~E* ,J,b,g!}r~U !T
D

b E0

1

dx

3expF2
Erot

3 1Erot
2 22Erot

1

2T
~12x2!G

3I0FErot
3 2Erot

2

2T
~12x2!G , ~31!
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where

U5E* 2V~b,g!2Erot
1 ~b,g!, T5AU/a. ~32!

In Ref. @5#, the distribution of spheroidal shapes was o
tained from a summation over the quantum-mechanical r
tional levels associated with a rigid spheroid. An equivale
formulation for an ellipsoid is

r* ~E* ,J,b,g!}
D

b (
k

r@E* 2V~b,g!2Erot
J,k~b,g!#T,

~33!

where nowT5A(E* 2V2Erot
J,k)/a and Erot

J,k are the (2J
11) rotational levels of a rigid asymmetric rotor@17# with
total angular momentumJ\. There is no analytical expres
sion for Erot

J,k except in the oblate and prolate limits and
the computer code of Jain and Thompson@18# was used.
Neither this expression nor the purely classical version,
~31!, include the quantum corrections for fluctuations in t
shape degrees of freedom and it was found that they b
give almost identical results for excitation energies wh
these corrections are expected to be small.

III. CALCULATIONS

In this section, calculations of equilibrium shape distrib
tions from Eq.~31! will be presented. Following the rotatin
liquid-drop model~RLDM! @19#, the surface and Coulomb
energies for spherical systems are taken as@20,21#

Es
0517.9439F121.7826S N2Z

A D 2GA2/3 MeV, ~34!

Ec
050.7053

Z2

A1/3
MeV ~35!

and usingr 051.2249 fm, the spherical rigid-body mome
of inertia is defined by

\2

2I0
5

34.540

A5/3
MeV. ~36!

Full calculations, rather than expansions, forD, Bs , Bc , and
all moments of inertia are performed. Unless otherw
stated, rigid-body moments of inertia are assumed.

Consider first the example system158Er. The variation of
the inertia parameterD/b and the deformation energ
V(b,g) are shown in Fig. 1. To gauge the magnitude of t
0-4
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deformations, it is useful to remember that the coordina
g50, b50.79 and g5p/3, b50.64 represent ‘‘superde
formed’’ prolate and oblate shapes, respectively, i.e., the r
of the major to the minor axes is 2. The inertia parameteD
is approximately linear inb for small values ofb. For larger
deformation a linear approximation becomes invalid. The
tential energy has a minimum for a spherical system~b50!
and is approximately independent ofg for small values ofb.
For larger deformations, the potential energy favors sha
closer to the prolate limit.

In the rotating liquid-drop model and the finite-rang
liquid-drop model~FRLDM! @22#, where the effects of sur
face diffuseness and the finite range of the nucleus force
added, equilibrium configurations are found which minimi
the deformation-plus-rotational energy. Although these m
els consider a larger number of shape degrees of free
than the present work, the equilibrium configurations are
proximately ellipsoids. These configurations are in fact a
ally symmetric oblate shapes for all but the largest angu
momenta. The corresponding shapes in this work can be
tained by minimizingV1Erot

1 . A contour plot of this energy
is shown in Fig. 2~a! for J560 \. The minimum energy
occurs for an oblate shape~g5p/3! indicated by the filled
dot in the figure. Both the shape and the value ofV1Erot

1 are
similar to the predictions of the RLDM in this example. Th
equilibrium shape distribution functions for this system w
excitation energies of 100 and 300 MeV are shown by
contours in Figs. 2~b! and 2~c!, respectively. The distribu
tions have maxima atb50 consistent with Eq.~30!. The
level-density parameter used here and in all other calc

FIG. 1. Contours showing the dependence of the potential
ergy V and the inertia parameterD/b on the deformation coordi-
natesb andg for the 158Er system. Contours forD/b are labeled in
units of the value for sphericity~b50!.
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tions is a5A/10 MeV21. Both distributions have similar
features with the exception that, for the higher excitati
energy, the distribution extends out to larger values ofb.
Note that the minimumV1Erot

1 energy configuration is no
any more characteristic of the compound nucleus shape
is a spherical system or a prolate deformation. Although t
oblate configuration has one principal axis about which
rotational energy is lower than the spherical value, the ro
tional energies about the other axes are larger, contribu
less to the distribution function, whereas for nearly spheri
systems, all levels contribute approximately equally.
course for very low excitation energies, the yield will b
more localized near the configuration with the minimu
rotational-plus-deformation energy, but in this regime sh
pairing, and quantum effects need to be considered.

The dependence of the distributions on angular mom
tum is illustrated in Fig. 3. This angular-momentum depe
dence is not strong except at the largest values ofJ where
there is an increased probability of highly deformed prola

n-

FIG. 2. ~a! Contours showing theb,g dependence of the de
formation plus minimum rotational energyV1Erot

1 for the 158Er
system withJ560 \. The filled point indicates the configuratio
with the minimum value ofV1Erot

1 which is 25.2 MeV. The con-
tours are labeled by the energy in MeV above this value.~b! and~c!
Probability distribution functions are plotted as contours forJ
560 \ 158Er systems with excitation energies of~b! 50 and~c! 300
MeV. The contour intervals are 10% of the maximum value wh
occur at sphericity for both excitation energies. The distributio
were obtained assuming rigid-body moments of inertia.
0-5
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R. J. CHARITY PHYSICAL REVIEW C 64 064610
like systems. ForJ570 \ the tail of the distribution even
extends out to the~b51.26,g50! ‘‘hyperdeformed’’~axis ra-
tio of 3:1! system. It is here where the ellipsoidal-shape
rametrization shows its inadequacies, as such prolate
shapes with the inclusion of a ‘‘neck’’ degree of freedom a
unstable to the fission, i.e., the fission barrier is o
;5 MeV at this angular momentum. To estimate where
sion instabilities are important, a deformationb5bsad at
g50, for which the value ofV1Erot

1 has the same energy a
the angular-momentum dependent saddle-point configura
in the FRLDM, was determined. The values ofbsad for each
angular momentum are indicated by the dashed arcs in
3. In the following, the compound-nucleus population will
restricted tob,bsad unless otherwise stated.

The average value ofb is plotted as a function of excita
tion energy in Fig. 4. Results are shown for four values
angular momentum with~solid curve! and without~dashed
curve! the conditionb,bsad. The average deformation in
creases both as a function of increasing angular momen
and excitation energy. However, for the case where
compound-nucleus population is restricted to fission-sta
shapes (b,bsad), this increase saturates at high values
excitation energy and angular momentum. ForJ,60 \, the
restrictionb,bsad is of little consequence in terms of calcu
lating average properties such as Coulomb-barrier distr
tions for charged-particle evaporation which are discus
later.

The distributions obtained using moments of inertia as

FIG. 3. Predicted probability distribution functions are rep
sented by contour plots for158Er systems with excitation energy o
300 MeV and withJ50, 40, 60, and 70\. The contour interval is
10% of the maximum value which occurs at sphericity. The das
arcs indicate the approximate location where the fission instab
sets in~see text!. The filled points indicate the configuration wit
the minimum rotational-plus-deformation energy as in Fig. 2.
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ciated with irrotational flow are presented in Fig. 5. The
distributions show a very strong angular-momentum dep
dence, with the mean deformation increasing rapidly withJ.
The moments of inertia for irrotational flow vanish for rot

-

d
ty

FIG. 4. Predicted dependence of the average value of thb
deformation parameter for158Er systems as a function of the exc
tation energy. Results are presented for calculations with ang
momenta ofJ50, 40 60, and 70\ and where the shape distribu
tions are unrestricted~dashed curves! or restricted to fission-stable
configurations~solid curves!. Calculations were performed usin
rigid-body moments of inertia.

FIG. 5. Predicted probability distribution functions as in Fig.
but calculated with moments of inertia associated with irrotatio
flow. The results were obtained for158Er systems with the indicated
excitation energies and angular momenta.
0-6
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ELLIPSOIDAL SHAPE FLUCTUATIONS OF THE . . . PHYSICAL REVIEW C 64 064610
tions about a symmetry axis, thus preventing such motion
the rotational energy becomes infinite for a fixed angu
momentum. As a consequence the population of shapes
axial symmetry~b50, g50, andg5p/3! also vanishes as
can be seen in Fig. 5. Although these moments of inertia
not considered appropriate for hot compound nuclei, it d
raise a question as to how one should treat spherical
axially symmetric systems, since in a quantum-mechan
treatment, no collective rotations are allowed about a sy
metry axis. Of course, the angular momentum can be buil
from the intrinsic contributions of each nucleon, howev
the level density in this case is expected to be reduced c
pared to an almost symmetric system with collective ro
tional levels@11,23–25#. If such reductions in the distribu
tion functions are confined to shapes very close tog50, p/3,
or b50 they would have a minimal effect on the avera
properties of the shape distributions, but this may not be
case. Also it is not clear whether one should think ofb50
andg50, p/3 as representing axially symmetric systems.
the many possible collective degrees of freedom, the form
ism of Sec. I projects out the distribution function only o
the b and g coordinates which describe quadrupolelike d
formations. Therefore, higher-order deformations should
ready be summed over and their contributions must be c
tained in the level densityr. For example,b50 represents
distributions of octupole and higher-order deformations.
more of these deformation parameters are explicitly inclu
in the evaluation of the distribution function, the question
how to treat the contribution from spherical and axially sy
metric systems may become less important as such sys
will represent a decreasing fraction of the total phase sp
associated with the shape degrees of freedom.

Above a critical angular momentumL I in the RLDM and
the FRLDM, the equilibrium configuration with the min
mum rotation-plus-deformation energy loses stability aga
triaxial deformations. ForA.200, there are no stable triaxia
ground-state configurations and the fission barrier also v
ishes atL I . For lighter systems, a stable triaxial ground-st

FIG. 6. The variation~solid curves! of the angular momentum a
which the maximum in the shape distributions atb50 vanishes for
b-stable nuclei at the three indicated values of the temperaturT.
For comparison, the angular momentumL I in the FRLDM at which
the ground-state configuration loses stability against triaxial de
mation is indicated. ForA.200, this model predicts the fissio
barrier is zero, otherwise it is predicted to vanish at the valueL II .
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configuration exists for angular momenta aboveL I and less
than a valueL II . Also for these lighter systems, the loss
stability against triaxial deformations corresponds clos
with the disappearance of the maximum in the distribut
function atb50. The angular momenta at which the max
mum vanishes for nuclei on the line ofb stability, calculated
from Eq. ~30! for temperatures of 2, 3, and 4 MeV, are plo
ted in Fig. 6 where they are compared to the values ofL I and
L II determined in the FRLDM. The temperature depende
is not large and the maximum disappears at an angular
mentum just beforeL I for A,200. The dependence of th
shape distributions in this critical region is illustrated in Fi
7 for the 100Tc system with angular momenta of 45 and 60\.
The configurations with the lowest values ofV1Erot

1 are
again indicated by the solid points. ForJ560 \, this con-
figuration is triaxial and this angular momentum is just abo
L I for this system. At this angular momentum, the fissi
barrier is 9 MeV and the predicted distribution is still co
fined to deformations belowbsad. The maximum has moved
from b50 at 45\ to a prolate deformation on theg50 axis
for the higher angular momentum. The distribution now h
a local minimum atb50. Calculations for higher values ofJ
are problematic as the fission barrier rapidly vanishes
most of the predicted distribution is fission unstable.

It is not the purpose of the present paper to include
ellipsoidal-shape fluctuations into evaporation calculatio

r-

FIG. 7. Contours showing distribution functions as in Fig. 2, b
calculated for the100Tc system at an excitation energy of 100 Me
and angular momenta of 45 and 60\. The configurations with the
minimum deformation-plus-rotational energies are again indica
by the solid points.
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A new formalism needs to be developed as the treatmen
evaporation from spheroidal systems in Ref.@5# is only ap-
propriate for axially symmetric shapes. Care must be ta
in the implementation of an extended formalism in a co
puter code as the spheroidal calculations are already
time consuming. While hopefully these difficulties can
overcome in the future, at present one can look for qual
tive differences in the distribution of Coulomb barriers as
ciated with the equilibrium shape distributions. Determini
accurately the Coulomb barrier and transmission coefficie
for particle evaporation at each point on the surface o
deformed nucleus involves the folding of the nuclear a
Coulomb interactions between the evaporated particle
the nucleons of the emitting system with the distributions
these nucleons in the deformed system. This is an invol
calculation and often less precise methods are used. In
popular equivalent-spheres approximation@26,27# which was
used in the evaporation calculations of Ref.@5#, the Coulomb
barrier at any point on the surface, with radiusR from the
center, is obtained from an equivalent spherical system w
a radiusR. The Coulomb barrierVCoul is thus approximately
inversely proportional toR. However, this is rather imprecis
as it ignores the multipole moments of the Coulomb field a
surface-curvature dependencies of the nuclear potential.
example, the Coulomb barrier fora-particle emission from
the tip of a ‘‘superdeformed’’ Er prolate system with a rat
of major to minor axes of 2 is;3 MeV lower than for the
result obtained from a more precise folding calculation@28#.
The latter folding calculation, which is similar to tha
outlined in Refs.@29,30#, gives the same barrier for emissio
from a spherical system as the equivalent-sphere approx
tion.

A much better approximation can be obtained by us
the Coulomb potential at a fixed separations from a sharp-
surfaced ellipsoidal system. An analytical expression ex
for this potential@31,32# thus permitting rapid calculation o
the barrier over the surfaces of all shapes sampled in e
librium distributions. The separation from the surface was
to s53.7 fm to give a Coulomb barrier of;18 MeV for
emission from a spherical system and the Coulomb barr
obtained for emission from the superdeformed prolate s
tem were within 0.2 MeV of the folding calculation.

Distributions of Coulomb barriers averaged over the s
face area of each ellipsoid and then averaged over the
mal distribution of ellipsoids are shown as the solid curves
Fig. 8 for a-particle emission from158Er systems. In com-
parison, the dotted curves show distributions obtained
spheroidal-shaped systems using the equilibrium distr
tions from Ref.@5#. Results are indicated for excitation e
ergies of 100 and 300 MeV and for angular momenta of z
and 60\. With the extra triaxial shape degree of freedom,
Coulomb-barrier distributions for the ellipsoids are wid
The increase in width comes mostly from an increased pr
ability of low Coulomb barriers and thus one would expe
this to increase the predicted yield of evaporated low-ene
a particles. Similar conclusions can be obtained for ot
charged particles.

In Ref. @5#, the experimental yield of low-energy alph
particles was reproduced forE* &100 MeV with only
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spheroidal-shape fluctuations and using the imprec
equivalent-spheres approximation. The Coulomb-barrier
tributions obtained with these assumptions are indicated
the dashed curves in Fig. 8. They are closer in shape to
ellipsoidal result~solid source! than the more precise sphe
roidal result~dotted curves!. Therefore, the degree to whic
the calculations of Ref.@5# reproduced the experiment data
somewhat fortuitous, as the restriction to a single shape
gree of freedom was compensated, to an extent, by the us
the equivalent-spheres approximation which overemphas
the effect of deformation. Clearly, shape fluctuations are
important ingredient in understanding the yield of low
energy charged particles. Future evaporation calculati
should determine the extent to which they can account
the experimental yield of low-energy charged particles a
its excitation-energy dependence. Note, that while
present work has only extended the treatment of shape
tuations by including one extra shape degree of freed
explicit consideration of other shapes when determin
Coulomb barriers may well further increase the width of t
distribution. One then needs to clarify what minimum set
shape variables are required to address this problem.

IV. CONCLUSIONS

A formalism to calculate the equilibrium distribution o
ellipsoidally shaped liquid drops has been developed for

FIG. 8. Distributions of the Coulomb barriersVCoul for
a-particle evaporation averaged over the surface area of each s
and over the equilibrium shape distributions. Results are shown
ellipsoidal-~solid curves! and spheroidal-~dotted curves! shape dis-
tributions calculated for excitation energies of 100 and 300 M
and for angular momenta of zero and 60\. VCoul

sphereis the Coulomb
barrier for the spherical system. The dashed curves are assoc
with the spheroidal calculations, but where the imprec
equivalent-spheres approximation is used to determined the C
lomb barriers.
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plication in the study of hot rotating compound nuclei. T
assumptions needed for the derivation of the commonly u
metrics associated with the volume element in deforma
space are determined. They depend on the deformation
pendence of the inertia parameters and the constraints o
angular momenta. Also, these commonly used metrics
only valid for small deformations.

Example probability distribution functions are presente
They are not characterized by any one type of shape in
ticular, and the full range of deformations from oblate
prolate are populated including spherical and triaxial def
mations. However the tail of the distribution extending t
wards highly deformed prolate configurations is more p
nounced especially at the higher angular momenta.
lighter systems there even exists a small window of ang
momentum, just before the fission barrier vanishes,
which the shape distributions become more centered aro
a large prolate deformation.
n

ev

tt

o-
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The Coulomb-barrier distributions for the evaporation
charged particles from the nuclear surface, averaged ove
equilibrium distribution of the ellipsoidal shapes, are calc
lated and compared to similar calculations where the nu
are restricted to spheroidal shapes only. The distributions
sociated with the ellipsoidal shapes have enhanced prob
ity for low Coulomb barriers. This could help explain th
yield of low-energya particles observed in the statistic
decay of hot compound nuclei.
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