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Ellipsoidal shape fluctuations of the compound nucleus
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Hot rotating compound nuclei are modeled as ellipsoidally shaped liquid drops. A formalism for the deter-
mination of their equilibrium shape distribution is presented. Commonly used metrics associated with the
volume element in deformation space are derived with a discussion of their underlying assumptions. Example
calculations of shape distributions are presented. These distributions are not characterized by any one type of
shape in particular; the full range of deformations from oblate to prolate are populated including spherical and
triaxial deformations. However the tail of the distributions extending towards highly deformed prolate con-
figurations is more pronounced especially at the higher angular momenta. The shape of the Coulomb-barrier
distributions for the evaporation of charged particles from the nuclear surface, averaged over the equilibrium
distribution of shapes, is calculated and its relevance for the understanding of the yield of low-energy
particles observed in evaporation spectra is discussed.
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I. INTRODUCTION for the derivation of these metrics. Calculated distributions
for a number of example systems are presented in Sec. lll
Thermal fluctuations in the shape of a compound nucleuglong with a comparison of the Coulomb-barrier distribu-
are an important ingredient in understanding the energy spetions associated witf-particle emission from equilibrium
tra of both charged particles and gamma rays emitted as trdistributions of spheroidally and ellipsoidally shaped sys-
nucleus cools. The role of such fluctuations in determiningems. Finally the conclusions of this work are presented in
the shape of the gamma-ray spectrum in the region of th&ec. IV.
giant dipole resonance has been addressed in Refsl].
Recently, statistical-model calculations incorporating only ||. STATISTICAL THEORY OF SHAPE FLUCTUATIONS
spheroidal-shape fluctuations reproduced experimental ) o
a-particle kinetic-energy spectra measured for a number of FOr a system constrained to have an ellipsoidal shape, the
compound systems with>150 and excitation energies of radii at the principal axes can be defined by BohBsy
<100 MeV [5]. These calculations were found to accountParametrizatio10,11 as
for the experimental yield of low-energy particles which

are not predicted in standard statistical-model calculations _ /i _2_77

for evaporation from spherical systems. In these calculations, Re=Ro(B,7)| 1+ 477'8 COS( Y73 ) ' @
low-energy particles are evaporated predominately from the

population of highly deformed prolate systems, for which the 5 20
Coulomb-barrier distribution extends down low in energy for Ry=Ro(B, 7)1+ \/ E’B COS( v+ ?) : i)
emission from the system’s tips. At higher excitation ener-

gies these calculations with spheroidal fluctuations were un- g

able to account for the low-energy-particle yield measured _ 2

in Ni+ Mo reactiong’5]. However, real compound nuclei are Re=Ro(B7)| 1+ 47Tﬁ cosy |- @

not constrained to spheroidal shapes. The consideration of

other important shape degrees of freedom, when determininghe termRy(3,) was introduced by Kaniowsket al.[12]

the thermal shape distributions at high excitation energies0 conserve volume for large deformations,

may increase the probability for the larger deformations,

which will have important consequences for the Coulomb- Roo

barrier distributions. Ro(B,7)=
As part of an eventual aim of incorporating ellipsoidal-

shape fluctuations into evaporation calculations, this work

focuses on the formalism for determining the equilibrium

shape distributions for hot rotating ellipsoidally shaped syswhereRq is the radius for a spherical shape.

tems where shell and pairing effects are washed out and The shape of an ellipsoid can be uniquely defined by a

guantum shape fluctuations are small and can be neglectegoint in the pie sector wherg is the radius parameter and

Other treatments of ellipsoidal-shape distributibhs4,6—9  is the angular coordinafd 1]. This pie sector is bounded by

make use of two forms for the metric associated with thethe anglesy=0 and y= #/3 which correspond to prolate

differential volume element in deformation shape. In Sec. Il,and oblate spheroids, respectively. All other intermediate val-

the development of a formalism for shape distributions isues of y correspond to deformations which are not axially

presented with attention given to the assumptions necessasymmetric.
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The state of an ellipsoid can be specified by the shape p(E*,B,7)BdBdy
coordinates3,y and the three Euler angles 6, andy giving

the orientation of the ellipsoid’s principal axes relative to an _ j f J' f f
external reference frame. At eaghy point, the differential =K | dPg [ dP,| dJ| dJy | dJ, p(U)dBdy.
phase space available to an ellipsoid with total collective 9)
energyE can be expressed in terms of these coordinates and
their corresponding canonical momerig, P,, Py, Py, At high excitation energies, the level density can be ex-
and P, from the microcanonical partition function as ded
panded as
W(E,B,y)dBdy V+E,+E
p(E* ~V—Eo— E=p(E*)exp — —=—|,

=JdPBJdPyJ d¢JdP¢J dafdp(, (10

where the nuclear temperature is
decpf dP,6(E—Ey)dBdy. (5)
1 dinp 11
T du” (D

The integrations are over all possible values of the coordi-

nates and momenta. The total collective energy ) .
For a Fermi-gas level density, the temperature can be ex-

pressed in terms of the level-density parametess
ECO||= V(B! 7) + Erot(ﬁa Vs P(/), PG,P(,D) + Ek(ﬁi Y, PB,Py)
6 *
E
T~\/— (12

can be subdivided into the contributions from the potential a

energy for the deformatioW, the rotational kinetic energy hi _ . h ical distribution f .
E,.., and the kinetic energy associated with changes in del his expansion gives us the canonical distribution function
formation E,. The five coordinates for the ellipsoid repre-

sent a small fraction of the large humber of collective and P(T.B.y)BdBdy
intrinsic degrees of freedom available to the nucleus. Let the
level density associated with the remaining degrees of free- =Kf dPﬁf dny def dJyf dJ,
dom be represented hy
The distribution of compound nuclear shapes will be de- V+E ot Ex
fined in terms of a probabiliyp per unit area in the pie Xex% - |dBdy, (13

sector. This probability can be obtained from convoluting the

phase space associated with the ellipsoid in &hwith the here the termp(E*) has aaain been incorporated into the
level densityp. The probability associated with the differen- \rgvormalizationg(nst;n( gal I P I

tial area elemenBdBdy in the pie sector is thus defined Following Bohr[10,11], the kinetic energ{, can be ex-

to be pressed in terms of three inertia parameters, i.e.,
E* B,y)Bdady= | dEp(E* —E)W(E,B,y)dBd D 524D, B+ D o2
P(E™.B.y)BdBdy= | = dEp( (E,B8,y)dBdy Ex=5DpsB’+Dp,By+ 5D,y
(7)
1

1 2 1 2
dPdeqsfde,f de

J o]
where
xfdP(,f dqodeP p(U)dgBdy,
tS)

2_ 2
D2=D4D,,— D3 (15)

)
The rotational energy can be expressed in terms of the mo-

whereK is a normalization constant andi= E* — Ey . It is ments of inertiaZ, , Z,, 7, about the three principal axes as

useful in evaluating this expression to transform from the 5 2 5
momenta P4, P,, P, to the more familiar angular- E — I n %y n %
momentum projections,, J,, andJ, along the principal U 2L(By)  2Ty(B.y)  2L(B.y)’
axes using the Jacobian ginThe integration over the Euler

angles can then be performed giving a constant term that cafhe integrations over the momentum variables are easily per-
be incorporated intd, i.e., formed for this canonical distribution giving

(16)
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p(T.B,v)BdBdy forms are c_ommonly used in other_ treatments of ellipsoidal-
shape distributiongl—4,6—9. The difference between these

—Kexd — V(B,7) metrics is entirely due to the assumed values for the mo-
N T ments of inertia. Both metrics include the angular-

momentum orientation degree of freedoms as in both cases
XD(B VNI B YTy (B, V)IAB,y)dBdy, (17)  the integration over all values o, J,, andJ, has been

h i . fant t h b bsorbédTih performed. In fact, both metrics include contributions from
where yet again constant terms have been absor IN€ " all absolute values of angular momenta and neither is valid

term D VZ,Z,7,dg dy=dr is the metric for this problem, - ¢, |3rge deformations. Use of either form must be consistent
and although it has been derived from the classical partitior it these assumptions.

function, is has a more general application. For example, it The gistribution function just presented may not be par-
was also derived by Kumar and Baran@8| in their solu- ¢ jarly useful as most applications of shape fluctuations
fuon to the wave functions for the elllpsou_js motion. It is require that the angular momentum or its distribution be
important to note that the value of the metric depends on the,eified. If all three components of the angular momentum
deformation dependence of the inertias. _ Je, Jy, J, are constrained, then after removing the integra-
For inertiasD 44, D, andDg,, which are associated ionq” gyer these variables, the metric is simplyr

with changes in shape, the expression obtained by Kanio; 5 434 hich. f I h
wskaet al. [12] for irrotational flow are deemed appropriate “Ddpdy. which, for small, approaches

at high excitation energies. For the rotational motion, we will

’ - 25 5 5
consider both rigid-body values droc| 1+ Elgh 1—2\/:Scos3yl[33> Bdgdy. (22
o
re. (RE+RD) re_ (RATR) _
x T oR2 0 Yy T oR2 0 If the absolute value of the angular momentum is con-
00 00 strained, the canonical distribution function becomes
2 2
re_ (Rt Ry pe(T.J.8,7)BdBdy
Z 2o, (19
. i . =K [ dPg | dP,| dJ, | dJ, | dJ
and values associated with irrotational flo®d], j 'BJ yj Xf yJ z
2 2\ 2 V+E,+E
R [RTRE) e ><exp( —+k S[I2—(32+ 32+ 32)1dB dy.
*O\R4RZ)
(23)
R2_R2 2 2 p2\2
TR X2 RB IR_| X Y| 7RB (19 All the integrations can be performed analytically, except
Y OARZ+RZ) ©O\RMRY Y one, giving
whereZ, is the spherical rigid-body value. The rigid-body —Erlot 1
values are expected to be more appropriate at high excitation drocD exp —— |dB d)’fo dx

energies, but the irrotational values will also be considered as
they allow comparison with other studies. For small defor- E3 +E2 _2F!

. . . . rot rot rot 2
mations, one can expand the expressions for the inertias X ex —T(l—x )
aboutB=0 and obtain

(1-x%)

3 2
Erot_ Erot

2T ' @49

95 295

2 5 3 xlo
1+E'B _3_84 ;COS?:’)/,B ,Bdﬁd’y (20)

d7RBx

o . where |, is the modified Bessel function of the first kind and
for rigid-body rotation and E},.=J?/2Z, is the energy for rotation about thigh principal
d7'Roc gsin 3y|d 8 dy (21y  @is which are ordered such thal <EZ,<E2,. The mini-
mum rotational energy for rigid-body rotation E-,=EY,
for inertias associated with irrational flow. To lowest order,while for irrotational flow Ej,=EJ,. For small deforma-

these metrics ar@ dgdy and 8*sin 3y]dBdy. These two tions, the metrics approach

Ot2 EOI 0t3 E0t2 EOt
25+ 2 % +10$} {—28(}4(% +63 %) —280%}
driyBec | 1+ Ton B2— 575 ;cos%ﬁ' Bdgdy (25
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or

p( 47ES,

eX

158%sir?(y—2mI3)T

d+Roc 3dBdy, 26
N Tes@(y5 273 =058y —2731[052(y) —cs@—2a3] " (P (29

where E?ot=J2/(ZIO) is the rotational energy of the rigid where
spherical system. Note that for rigid-body rotation, the met-

ric, to lowest order, is3 dB8 dy independent of whether or U=E*—-V(B,7)—E(B.y), T=Ula. (32
not the angular momentum is constrained.

The deformation potential energy in the liquid-drop model!n Ref. [5], the distribution of spheroidal shapes was ob-
can be expressed in the following forfd]; tained from a summation over the quantum-mechanical rota-

tional levels associated with a rigid spheroid. An equivalent
V(B,7)=[Bs(B,7)— 11ES+[B.(B,y)—1]EC, (27) formulation for an ellipsoid is

whergEg andE? are the surface and Coulomb energies for a p* (E*,J,8,7)x b > p[E* —V(B,y)—EL5(B, T,
spherical nucleus an8; and B, express the surface and B %

Coulomb energies of a deformed nucleus in units of the re- (33
spective spherical quantity. The quantitBs and B, were

derived for ellipsoidal shapes in terms of the incomplete elWhere nowT=\/(E* —V—Epf)/a and E}f are the (2

liptic integrals in Refs[15,16]. For small values of3, +1) rotational levels of a rigid asymmetric rotpt7] with
total angular momenturdz. There is no analytical expres-
B? B? sion for Efg,f except in the oblate and prolate limits and so
Bs=1+ om’ Be=1-— A 28 the computer code of Jain and ThompddB] was used.

Neither this expression nor the purely classical version, Eq.
and the canonical distribution function for rigid-body rota- (31), include the quantum corrections for fluctuations in the

tion reduces to shape degrees of freedom and it was found that they both
give almost identical results for excitation energies where
B? E?ot 2 these corrections are expected to be small.
pC(T,J,,B,y)oc1+E 25+2 3
I1l. CALCULATIONS
0 0 0
+102_g=2 +4—°}, (29 In this section, calculations of equilibrium shape distribu-
T T T tions from Eq.(31) will be presented. Following the rotating

liquid-drop model(RLDM) [19], the surface and Coulomb

The distribution function has a maximum @& 0 so long as energies for spherical systems are takefi28521]

ES<\(4EJ—2EQ)T—(5T/2)2-5T/2. (30
Ed= 17.943%1— 1.782€<T

2
}Az"" MeV, (34
These expansions cannot be used to describe the full equi-
librium shape distribution as large deformations are impor- 22
tant. In this case, rather than use the full canonical distribu- 0_
tion [Eqg. (24)] which was obtained by expanding the level Ee 0'7053AT/3 Mev 39
density abouE* in Eq. (10), a better approximation can be
obtained by performing the expansion abdit—V(3,y) and usingr,=1.2249 fm, the spherical rigid-body moment
—EL (B, ) for each value o3, y. The resulting distribution ~ of inertia is defined by
function is
h?  34.540

2—10 = F MeV. (36)

* D1
p(E ,J,B,Y)MP(U)TEJde

3 ) 1 Full calculations, rather than expansions, iprB, B, and
Xexp{ Bt Erot_2Erot(l_ 2)} all moments of inertia are performed. Unless otherwise
2T stated, rigid-body moments of inertia are assumed.
Consider first the example systel?fEr. The variation of
the inertia parameteD/B and the deformation energy
V(B,v) are shown in Fig. 1. To gauge the magnitude of the

3 2
Erot_ Erot

T(l—xz)}, (31)

xlo
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60° 60°

(8) V4+E 4o

0°

0.0 0.5 1.0

0.0

158Er (b) /Pmex

60°

0.0 0.5 1.0

(¢) P/Pmex

FIG. 1. Contours showing the dependence of the potential en-
ergy V and the inertia paramet®/g on the deformation coordi- :
natesB and y for the 1%8%r system. Contours fdb/g are labeled in 0.0 0.5 1.0
units of the value for sphericity3=0). 8

deformations, it is useful to remember that the coordinates FIG. 2. (a) Contours showing thgs,y dependence of the de-
y=0, B=0.79 and y==/3, B=0.64 represent “superde- formation plus minimum rotational energy+Ex, for the S%r
formed” prolate and oblate shapes, respectively, i.e., the ratieystem withJ=607%. The filled point indicates the configuration
of the major to the minor axes is 2. The inertia paramBter with the minimum value oV + E;., which is 25.2 MeV. The con-
is approximately linear ir8 for small values of3. For larger  tours are labeled by the energy in MeV above this valoeand(c)
deformation a linear approximation becomes invalid. The poProbability distribution functions are plotted as contours for
tential energy has a minimum for a spherical syst@w0) =60% 158y systems with excitation energies @ 50 and(c) 300
and is approximately independent pfor small values of3. MeV. The cont(_)u_r intervals are 10% of the m_aximum va_tlug Which
For larger deformations, the potential energy favors Shapegccur at gphenuty for bot.h.excnatlon energles..The. distributions
closer to the prolate limit. were obtained assuming rigid-body moments of inertia.

In the rotating liquid-drop model and the finite-range
liquid-drop model(FRLDM) [22], where the effects of sur- tions is a=A/10 MeV !. Both distributions have similar
face diffuseness and the finite range of the nucleus force afeatures with the exception that, for the higher excitation
added, equilibrium configurations are found which minimizeenergy, the distribution extends out to larger valuesBof
the deformation-plus-rotational energy. Although these modNote that the minimunV + Erlot energy configuration is not
els consider a larger number of shape degrees of freedoghy more characteristic of the compound nucleus shape than
than the present work, the equilibrium configurations are apis a spherical system or a prolate deformation. Although this
proximately ellipsoids. These configurations are in fact axi-oblate configuration has one principal axis about which the
ally symmetric oblate shapes for all but the largest angulafotational energy is lower than the spherical value, the rota-
momenta. The corresponding shapes in this work can be okional energies about the other axes are larger, contributing
tained by minimizingV+ Ef;. A contour plot of this energy less to the distribution function, whereas for nearly spherical
is shown in Fig. 2a) for J=607%. The minimum energy systems, all levels contribute approximately equally. Of
occurs for an oblate shafge==/3) indicated by the filled course for very low excitation energies, the yield will be
dot in the figure. Both the shape and the valué/erfE,lOt are  more localized near the configuration with the minimum
similar to the predictions of the RLDM in this example. The rotational-plus-deformation energy, but in this regime shell,
equilibrium shape distribution functions for this system with pairing, and quantum effects need to be considered.
excitation energies of 100 and 300 MeV are shown by the The dependence of the distributions on angular momen-
contours in Figs. @) and Zc), respectively. The distribu- tum is illustrated in Fig. 3. This angular-momentum depen-
tions have maxima a=0 consistent with Eq(30). The dence is not strong except at the largest values where
level-density parameter used here and in all other calculathere is an increased probability of highly deformed prolate-
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100 200 300 400
E*(MeV)

FIG. 4. Predicted dependence of the average value ofgthe
deformation parameter for*®Er systems as a function of the exci-
tation energy. Results are presented for calculations with angular
momenta 0fJ=0, 40 60, and 7& and where the shape distribu-
tions are unrestrictedashed curvesor restricted to fission-stable
configurations(solid curve$. Calculations were performed using
rigid-body moments of inertia.

ciated with irrotational flow are presented in Fig. 5. These

FIG. 3. Predicted probability distribution functions are repre-
sented by contour plots foP®Er systems with excitation energy of
300 MeV and withJ=0, 40, 60, and 7@&. The contour interval is
10% of the maximum value which occurs at sphericity. The dashe
arcs indicate the approximate location where the fission instability
sets in(see text The filled points indicate the configuration with
the minimum rotational-plus-deformation energy as in Fig. 2.

like systems. Fod=70 % the tail of the distribution even
extends out to th€B=1.26,y=0) “hyperdeformed”(axis ra-

tio of 3:1) system. It is here where the ellipsoidal-shape pa-
rametrization shows its inadequacies, as such prolatelike
shapes with the inclusion of a “neck” degree of freedom are
unstable to the fission, i.e., the fission barrier is only
~5 MeV at this angular momentum. To estimate where fis-
sion instabilities are important, a deformatig~ B5,q at
y=0, for which the value o¥/+EL, has the same energy as
the angular-momentum dependent saddle-point configuration
in the FRLDM, was determined. The values@f,4for each
angular momentum are indicated by the dashed arcs in Fig.
3. In the following, the compound-nucleus population will be
restricted toB<< Bs,qUnless otherwise stated.

The average value @8 is plotted as a function of excita-
tion energy in Fig. 4. Results are shown for four values of
angular momentum witlisolid curve and without(dashed
curve the conditionB< Bs,q. The average deformation in-
creases both as a function of increasing angular momentum
and excitation energy. However, for the case where the
compound-nucleus population is restricted to fission-stable
shapes B<pBs.d, this increase saturates at high values of
excitation energy and angular momentum. Ber60 7, the
restriction 3<< Bs,4is of little consequence in terms of calcu-

distributions show a very strong angular-momentum depen-
dence, with the mean deformation increasing rapidly with
(;]’he moments of inertia for irrotational flow vanish for rota-

80°

40°

20°

lating average properties such as Coulomb-barrier distribu- FIG. 5. Predicted probability distribution functions as in Fig. 2,

tions for charged-particle evaporation which are discussedut calculated with moments of inertia associated with irrotational

later. flow. The results were obtained fdPEr systems with the indicated
The distributions obtained using moments of inertia assoexcitation energies and angular momenta.
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tions about a symmetry axis, thus preventing such motion agonfiguration exists for angular momenta abdyeand less
the rotational energy becomes infinite for a fixed angulathan a valuel, . Also for these lighter systems, the loss of
momentum. As a consequence the population of shapes wittapility against triaxial deformations corresponds closely
axial symmetry(8=0, y=0, and y=m/3) also vanishes as with the disappearance of the maximum in the distribution
can be seen in Fig. 5. Although these moments of inertia arfinction at3=0. The angular momenta at which the maxi-
not considered appropriate for hot compound nuclei, it doegnum vanishes for nuclei on the line gfstability, calculated
raise a question as to how one should treat spherical anlom Eq. (30) for temperatures of 2, 3, and 4 MeV, are plot-
axially symmetric systems, since in a quantum-mechanicakd in Fig. 6 where they are compared to the valuds, aind
treatment, no collective rotations are allowed about a symt, determined in the FRLDM. The temperature dependence
metry axis. Of course, the angular momentum can be built ups not large and the maximum disappears at an angular mo-
from the intrinsic contributions of each nucleon, however,mentum just beford., for A<200. The dependence of the
the level density in this case is expected to be reduced comshape distributions in this critical region is illustrated in Fig.
pared to an almost symmetric system with collective rota-7 for the 1%T¢ system with angular momenta of 45 and/60
tional levels[11,23-295. If such reductions in the distribu- The configurations with the lowest values Wi+ EL, are
tion functions are confined to shapes very closg+®, 7/3,  4gain indicated by the solid points. Far 607, this con-

or =0 they would have a minimal effect on the averagefigration is triaxial and this angular momentum is just above
properties o_f Fhe shape distributions, but this may not be thgI for this system. At this angular momentum, the fission
case. Also it is not clear whether one should think®f0  haprier is 9 MeV and the predicted distribution is still con-
andy=0, m/3 as representing axially symmetric systems. Ofgineq 1o deformations beloy.,s. The maximum has moved
the many possible collective degrees of freedom, the formalg, ., B=0 at 454 to a prolate deformation on theg=0 axis

ism of Sec. | projects out the distribution function only on ¢, the higher angular momentum. The distribution now has

the 8 and y coordinates which describe quadrupolelike de- |ocq1 minimum a=0. Calculations for higher values of
formations. Therefore, higher-order deformations should aly.e roplematic as the fission barrier rapidly vanishes and
re_ady t_)e summed over _and their contributions must be COMmost of the predicted distribution is fission unstable.

tained in the level density. For example8=0 represents It is not the purpose of the present paper to include the

distributions of octupole and higher-order deformations. Asy|jinsoidal-shape fluctuations into evaporation calculations.
more of these deformation parameters are explicitly included

in the evaluation of the distribution function, the question of 60°
how to treat the contribution from spherical and axially sym-
metric systems may become less important as such systems
will represent a decreasing fraction of the total phase space
associated with the shape degrees of freedom.

Above a critical angular momentuin in the RLDM and
the FRLDM, the equilibrium configuration with the mini-
mum rotation-plus-deformation energy loses stability against
triaxial deformations. FOA>200, there are no stable triaxial
ground-state configurations and the fission barrier also van-
ishes at_,. For lighter systems, a stable triaxial ground-state

20°

100 [ 0°
€ 8o}
g [
B L
g 60
g r
£ i
20 [
13 40 L
g L
E b 20°
Q L
& e0f

O(;‘ a '50‘ a '100' I 150 200 250 ‘ éoo (\
0.9
A m o
0.0 0.5 1.0
FIG. 6. The variatior{solid curve$ of the angular momentum at B

which the maximum in the shape distributions@at0 vanishes for

B-stable nuclei at the three indicated values of the temperdture FIG. 7. Contours showing distribution functions as in Fig. 2, but
For comparison, the angular momentiuin the FRLDM at which  calculated for the'®°Tc system at an excitation energy of 100 MeV
the ground-state configuration loses stability against triaxial deforand angular momenta of 45 and 60The configurations with the
mation is indicated. FOA>200, this model predicts the fission minimum deformation-plus-rotational energies are again indicated
barrier is zero, otherwise it is predicted to vanish at the valye by the solid points.
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A new formalism needs to be developed as the treatment of 0307171 T T
evaporation from spheroidal systems in Ré&f] is only ap- 0.25 ] [300 MeV, 0 h ]
propriate for axially symmetric shapes. Care must be taken .

in the implementation of an extended formalism in a com- 020 3

puter code as the spheroidal calculations are already very 0.15 -

time consuming. While hopefully these difficulties can be > 0.10 a2

overcome in the future, at present one can look for qualita- = :

tive differences in the distribution of Coulomb barriers asso- E 0.05 3

ciated with the equilibrium shape distributions. Determining ° 0.00 e

accurately the Coulomb barrier and transmission coefficients 530 — S

for particle evaporation at each point on the surface of a E 0.25 300 MeV, 60 h ]
deformed nucleus involves the folding of the nuclear and s b

Coulomb interactions between the evaporated particle and ® 0.20 o .
the nucleons of the emitting system with the distributions of 0.15 2 g
these nucleons in the deformed system. This is an involved N ;

calculation and often less precise methods are used. In the 0.10F AN E
popular equivalent-spheres approximati@f,27] which was 0.05L N AE / E
used in the evaporation calculations of Hé&fl, the Coulomb 0.00 P & |
barrier at any point on the surface, with radidfrom the ) 09 10 1.1 09 10 1.1

center, is obtained from an equivalent spherical system with Vg, /VRhere
a radiusR. The Coulomb barrie¥ ¢y, is thus approximately Coul/ ¥ Coul

Inv_er_sely proportlona_l &R However, this is ratherlmp_reC|se FIG. 8. Distributions of the Coulomb barrier¥c,, for

as it ignores the multipole moments of the Coulomb field and,-particle evaporation averaged over the surface area of each shape
surface-curvature dependencies of the nuclear potential. F@hd over the equilibrium shape distributions. Results are shown for
example, the Coulomb barrier far-particle emission from ellipsoidal-(solid curve$ and spheroidalidotted curvesshape dis-

the tip of a “superdeformed” Er prolate system with a ratio tributions calculated for excitation energies of 100 and 300 MeV
of major to minor axes of 2 is-3 MeV lower than for the  and for angular momenta of zero and A0V"®"®is the Coulomb
result obtained from a more precise folding calculafi28l. barrier for the spherical system. The dashed curves are associated
The latter folding calculation, which is similar to that with the spheroidal calculations, but where the imprecise
outlined in Refs[29,30, gives the same barrier for emission equivalent-spheres approximation is used to determined the Cou-
from a spherical system as the equivalent-sphere approximémb barriers.

tion.

A much better approximation can be obtained by usingspheroidal-shape fluctuations and using the imprecise
the Coulomb potential at a fixed separat®from a sharp- equivalent-spheres approximation. The Coulomb-barrier dis-
surfaced ellipsoidal system. An analytical expression existributions obtained with these assumptions are indicated by
for this potential[31,32 thus permitting rapid calculation of the dashed curves in Fig. 8. They are closer in shape to the
the barrier over the surfaces of all shapes sampled in equéllipsoidal result(solid source than the more precise sphe-
librium distributions. The separation from the surface was setoidal result(dotted curves Therefore, the degree to which
to s=3.7 fm to give a Coulomb barrier of-18 MeV for  the calculations of Ref5] reproduced the experiment data is
emission from a spherical system and the Coulomb barriersomewhat fortuitous, as the restriction to a single shape de-
obtained for emission from the superdeformed prolate sysgree of freedom was compensated, to an extent, by the use of
tem were within 0.2 MeV of the folding calculation. the equivalent-spheres approximation which overemphasized

Distributions of Coulomb barriers averaged over the surthe effect of deformation. Clearly, shape fluctuations are an
face area of each ellipsoid and then averaged over the theimportant ingredient in understanding the yield of low-
mal distribution of ellipsoids are shown as the solid curves inenergy charged particles. Future evaporation calculations
Fig. 8 for a-particle emission from*>%r systems. In com- should determine the extent to which they can account for
parison, the dotted curves show distributions obtained fothe experimental yield of low-energy charged particles and
spheroidal-shaped systems using the equilibrium distribuits excitation-energy dependence. Note, that while the
tions from Ref.[5]. Results are indicated for excitation en- present work has only extended the treatment of shape fluc-
ergies of 100 and 300 MeV and for angular momenta of zerduations by including one extra shape degree of freedom,
and 60%. With the extra triaxial shape degree of freedom, theexplicit consideration of other shapes when determining
Coulomb-barrier distributions for the ellipsoids are wider. Coulomb barriers may well further increase the width of the
The increase in width comes mostly from an increased probdistribution. One then needs to clarify what minimum set of
ability of low Coulomb barriers and thus one would expectshape variables are required to address this problem.
this to increase the predicted yield of evaporated low-energy
a particles. Similar conclusions can be obtained for other
charged particles.

In Ref. [5], the experimental yield of low-energy alpha A formalism to calculate the equilibrium distribution of
particles was reproduced foE*=<100 MeV with only ellipsoidally shaped liquid drops has been developed for ap-

IV. CONCLUSIONS
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plication in the study of hot rotating compound nuclei. The The Coulomb-barrier distributions for the evaporation of
assumptions needed for the derivation of the commonly usedharged particles from the nuclear surface, averaged over the
metrics associated with the volume element in deformatiorequilibrium distribution of the ellipsoidal shapes, are calcu-
space are determined. They depend on the deformation dgited and compared to similar calculations where the nuclei
pendence of the inertia parameters and the constraints on t@ge restricted to spheroidal shapes only. The distributions as-
angular momenta. Also, these commonly used metrics argopciated with the ellipsoidal shapes have enhanced probabil-
only valid for small deformations. ity for low Coulomb barriers. This could help explain the

Example probability _distribution functions are prese.nted.yiem of low-energya particles observed in the statistical
They are not characterized by any one type of shape in paBecay of hot compound nuclei.

ticular, and the full range of deformations from oblate to

prolate are populated including spherical and triaxial defor-
mations. However the tail of the distribution extending to-

wards highly deformed prolate configurations is more pro-
nounced especially at the higher angular momenta. For _ ) i )
lighter systems there even exists a small window of angular This work was supported by the Director, Office of High

momentum, just before the fission barrier vanishes, fofEnergy and Nuclear Physics, Nuclear Physics Division of the
which the shape distributions become more centered arourld-S. Department of Energy under Contract No. DE-FG02-
a large prolate deformation. 87ER-40316.
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