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Inelastic excitations and momentum distributions in kinematically complete breakup reactions
of two-neutron halo nuclei
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A microscopic quantum-mechanical approach to breakup reactions into the low-energy continuum of Bor-
romean two-neutron halo nuclei is developed, taking simultaneously into account Coulomb and nuclear dis-
sociation. The importance of including both elastic and inelastic fragmentation is demonstrated for6He
breakup on C and Pb targets at intermediate energies, for kinematically complete experiments. Recent GSI
experimental data are analyzed quantitatively and the results reveal a rich and complex interplay of reaction
mechanisms and low-lying halo excitations.
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I. INTRODUCTION

The discovery of halo structure in light nuclei at the ne
tron dripline has given new impetus to theoretical investi
tions of nuclear structure and reaction mechanisms. In a
generation of kinematically complete experiments, uniq
data on halo excitation functions are becoming access
revealing the continuum spectrum as well as different co
lations between halo fragments. This demands develop
microscopic models that properly take into account the
grees of freedom and dynamics responsible for halo st
ture. Thus current emphasis is on understanding the intri
properties of both bound and excited states that are in
twined by reaction mechanisms and expressed through in
sive or exclusive observables that often are also distorted
detection efficiency and finite acceptance of experimenta
stallations.

The characteristic features of halo phenomena are c
nected not only with the specific structure of the ground-s
wave function~weak binding, spatial granularity, and larg
extension! but also with excitation of halo degrees of fre
dom, reflected in the structure of the low-lying continuu
which, near the three-body breakup threshold, reveals a
mulation of the transition strength for different multipole e
citations, the so-called soft modes.

Highly integrated observables, measured in a variety
reactions, show different sensitivity to the presence of h
structure. The halo increases the reaction cross section
the scale of the effect is a few tenths. The width of fragm
momentum distributions becomes a few times narrow
while the electromagnetic dissociation cross sections are
creased by orders of magnitude compared to reactions
stable nuclei@1#. The sensitivity is defined by the role tha
the transitions from the ground state to the low-energy c
tinuum play in the reaction, and is increased to a maxim
for Coulomb dissociation. When excited to the low-lyin
continuum, the halo nucleus subsequently breaks up into
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heavy core and halo nucleons. The core detection in a f
mentation reaction primarily selects a peripheral collisio
but may correspond to a wide spectrum of excitation en
gies in the halo nucleus. A simultaneous detection of all fr
ments allows reconstruction of the halo spectrum and sin
out the low energy part, thus underlining the reaction mec
nism that is the most sensitive to the halo structure. In ad
tion, a variety of angular and energy correlations of detec
fragments become accessible and shed light on intimate
tails of interaction dynamics of exotic nuclei.

Different reaction mechanisms such as Coulomb
nuclear dissociation may emphasize different sides of th
correlations. To quantitatively understand them, the Coulo
and nuclear interactions have to be treated on equal foot
explicitly taking into account the Coulomb-nuclear interfe
ence.

There are different approaches to breakup dynamics
reactions with unstable nuclei. A simple and extensively u
model for energetic fragmentation is the Serber model@2#,
based on the sudden approximation, but which only inclu
ground-state correlations. This procedure has to be impro
to make the extracted information on nuclear structure m
quantitatively meaningful. The interactions with the targ
should be included at a dynamical level, and correlatio
caused by final-state interactions~FSI! between outgoing
halo fragments should be considered. In applications to h
physics several attempts exist@3–9# that deal in different
ways with these questions, but a consistent microsco
treatment for the case of two-neutron halo nuclei has
been developed yet. Atlow halo excitationenergies, when
relative velocities of halo fragments are small, it is necess
to take into account all final-state interactions, and the sp
tator model~knockout of constituents in halo nuclei! and, in
particular, the no-FSI approximation are invalid. This h
motivated us to develop a reaction model where the comp
nature of the low-energy continuum is treated in an accu
way. To test the model, reactions with6He were considered

The 6He nucleus has become, both theoretically and
perimentally, the test bench for a series of Borromean h
nuclei such as11Li, 14Be, etc. Recently, a variety of theore
ical methods and models have also been developed for
resonance structure of halo excitations. For the continu
structure, a striking observation has been made. While
-
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well-known three-body 21 resonance in6He is reproduced,
all three-body calculations@10,11# have given a peaking o
the strength concentration for the soft dipole mode at
MeV from the three-body threshold, which is not observed
recent experiments with6He @12#. This has called for further
investigation within the cluster three-body dynamics.

To fully understand the detailed Borromean halo exc
tion structure of a nucleus such as6He, at least a four-body
reaction theory is necessary. A full-scale four-body the
that takes into account available reaction channels and
complex structure of the constituents, has not been for
lated. But for definite physical conditions, simplification
the reaction mechanism makes it possible to develop a vi
approach. At intermediate energies the one-step reac
mechanism dominates and the Glauber or distorted wave
pulse approximation~DWIA ! can be applied. These ap
proaches contain as a main part the microscopic three-b
structure of the ground state~Glauber elastic scattering@13#!,
and also final discrete states in DWIA charge-exchange r
tions @14#, and the exact three-body continuum@15#. The
latter enables us to study, in principle, the internal halo str
ture via all possible fragment correlations.

Recently@16#, in diffractive breakup of Borromean hal
nuclei onproton target, we demonstrated the crucial role
the correlated continuum excitations in the fragment mom
tum distribution, within a microscopic four-body DWIA
theory. We have now extended this approach to breakup
actions onnucleartargets, especially suitable for a comple
kinematic experiment, which gives information about
beam and fragment momenta~except the recoil of the targe
nucleus!. Such experiments allow sophisticated analysis
the data and give a possibility to reconstruct projectile ex
tation spectra and different correlations between fragme
But still some ambiguity exists since the energy transfer
to the target can be distributed in different ways betwe
internal excitations and center-of-mass motion.

To be compared with experimental data that include
cited final target states, the theoretical models have to
into account the presence of different reaction mechani
leading to elastic and inelastic fragmentations, i.e., when
target remains in the ground state or goes to excited sta
respectively. Recently, a short report on our approach
presented@17#. Now, a detailed study of inelastic halo exc
tations, different energy and angular correlations, longitu
nal and transverse momentum distributions for elastic
inelastic 6He breakup reactions on12C ~light target, nuclear
interaction dominates! and 208Pb~heavy target, Coulomb dis
sociation is the main process! will be described and com
pared with recent experimental data from GSI@12,18–20# at
collision energy 240 MeV/nucleon. The recoil of all ha
constituents@15# is now fully included. The material con
tained in this paper is organized as follows. Section II d
scribes the formalism in details. The discussion of results
comparison of calculations with experimental data are gi
in Sec. III. Finally, Sec. IV contains the main conclusions
this work.

II. REACTION FORMALISM

The cross section of the breakup reactiona1A→n1
1n21n31A8, involving collision of projectile a ~two-
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neutron halo nucleus that breaks up into three fragmentsni)
and target nucleusA, can be written in the following way:

s5
~2p!4

\v i
(
A8

E dk1dk2dk3dkA8d~Ef2Ei !

3d~Pf2Pi !uTf i u2, ~1!

where summation is over target excited statesA8 ~0 labels
the ground state!. HereEi5«a1«A , Ef5«11«21«31«A8
1EA81Q, Pi5ka1kA , Pf5k11k21k31kA8 are the total
energies and momenta of all particles before and after c
sions.Q is the separation energy of the halo nucleus, wh
EA8 ~50, for ground state! is the excitation energy of the
target in stateA8, « j is a kinetic energy of particlej. The
relative incident velocity is v i5\ki /m i , and m i
5maMA /(ma1MA) is the reduced mass of the particles b
fore collision with ma5m11m21m3. We use the (a1A)
center-of-mass~c.m.! coordinate frame (Pi50,kA52ka

5ki ,Ei5« i5\2ki
2/2m i). The Jacobi coordinates for pa

ticles both in initial and final systems are given by

kx5mxS k2

m2
2

k1

m1
D , mx5

m1m2

m11m2
,

ky5myS k3

m3
2

k11k2

m11m2
D , my5

~m11m2!m3

m11m21m3
,

kf5m f S kA8
mA

2
k11k21k3

ma
D , m f5

maMA

ma1MA
,

Pf50, k11k21k352kA852kf . ~2!

Jacobi vectors (kx ,ky) characterize the relative motion of th
three projectile-breakup fragments, andkf the relative target-
projectile c.m. motion. In the c.m. frameEf5« f1Ek1Q
1EA8 , where« f5\2kf

2/2m f is the kinetic energy of relative
(n11n21n3)1A motion in the exit channel, whileEk5«x

1«y5\2kx
2/2mx1\2ky

2/2my is the internal projectile excita
tion energy measured from the breakup threshold and c
sisting of kinetic energies of projectile fragments in a syst
where the projectile is at rest.1 The corresponding coordinat
system in configuration space is shown in Fig. 1 and is d
cussed in details in Sec. II F.

The matrix elementTf i in Eq. ~1! includes all interaction
dynamics and is given in prior representation by

Tf i5^CA8
(2)

~kx ,ky ,kf !,FA8u

3(
p,t

Vpt2UaAuC0 ,F0 ,x0
(1)~ki !&, ~3!

1Notice a few notational changes when compared with@15#, such
as C→3, A→a, N→A, and that a misprint of the sign ofkx has
been corrected.
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INELASTIC EXCITATIONS AND MOMENTUM . . . PHYSICAL REVIEW C64 064609
where C0 is the halo ground-state wave function whi
CA8

(2)(kx ,ky ,kf) is the exact continuum wave function th
describes relative motion of the halo fragmentsni and the
target in an excited stateFA8 . To getCA8

(2) one has to solve
equations of the Faddeev-Yakubovsky type, taking into
count the complex nature of the constituents. An exact s
tion has not been feasible up to now and approximate m
ods are required. We make approximations at the level of
reaction mechanism but treat the three-body structure of
halo projectile in a consistent way keeping the characteris
of the halo structure. They are contained directly in the h
ground-state wave functionC0 and in the low-lying excita-
tion spectra where strength concentration of transitions w
different multipolarities are formed. If there is no dire
knockout of a projectile constituent we cannot neglect any
its mutual interactions. All projectile fragments take simil
part in the interaction process. This is realized for the s
part of a halo spectrum where relative fragment velocities
small and restricted kinematically by the low excitation e
ergy Ek . At low Ek there areno spectatorparticles. Hence,
we factorizeCA8

(2)(kx ,ky ,kf) explicitly extracting a wave
function of the excited projectile

^CA8
(2)

~kx ,ky ,kf !u.^xA8
(2)

~kf !,C
(2)~kx ,ky!u, ~4!

whereC (2)(kx ,ky) is a continuum three-body wave functio
of the halo system with excitation energyEk . xA8

(2)(kf) is a
distorted wave describing relative motion of projectile a
target in excited stateA8 and depends on the relative coo

FIG. 1. Spatial coordinates in the nucleus-nucleus collision
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dinate R between the ejectile c.m.a and the target c.m.A .
Such distorted wavesxA8

(2)(kf) can be used if the reaction i
fast and the loss of energy is small compared with the ini
collision energy. This is different from the case where a co
stituent due to nuclear interaction with the target, is kick
out of the halo nucleus, and its relative velocity is significa
in comparison with the rest of the halo system, what cor
sponds to high excitation energyEk . Then the interactions
between ‘‘participant’’~kicked out fragment! and ‘‘specta-
tors’’ ~the two others halo constituents! can be neglected in
describing the state of the ejectile. Under such condition
‘‘spectator’’ approach is justified and a factorization
CA8

(2)(kx ,ky ,kf) other than that in Eq.~4! has to be used.
Within approximation~4! the reaction amplitude can b

written as

Tf i5^xA8
(2)

~kf !,FA8 ,C (2)~kx ,ky!u

3(
p,t

VptuC0,F0 ,x0
(1)~ki !&. ~5!

The optical potentialUaA depends on the c.m. distance b
tweena andA and defines the distorted wavex0

1 describing
the relative motion of the colliding nuclei in the initial chan
nel. (p,tVpt is composed of effective nucleon-nucleon inte
actionsVpt between projectile~p! and target~t! nucleons and
governs the fragmentation process in the breakup reacti
The optical potentialUaA does not give contribution to Eq
~5! due to orthogonality between the boundC0 and excited
C (2)(kx ,ky) states of the halo projectile. The post and pr
forms of the breakup amplitudeTf i are equal in our approxi-
mation since the decomposition of the Hamiltonian into p
turbed and unperturbed parts is the same for initial and fi
channels. According to this expressionthe breakup is treated
as an inelastic excitation of the halo projectile directly to th
continuumC (2)(kx ,ky). Whether this continuum state wil
be resonant or nonresonant depends on the final state i
actions between the fragments.

A. Separation into elastic and inelastic breakup

The inclusive cross section~1! includes elastic and inelas
tic breakup. By elastic~inelastic! breakup we mean breaku
of the halo projectile in an encounter leaving the target
ground~excited! state. In order to single out their contribu
tions separately we use the method of Refs.@21–23#, where
the energyd function is expressed by the imaginary part
energy denominator, which is subsequently replaced by
many-body Green’s function. Thus we can write
(
A8

E dkfd~v2« f2EA8!u^xA8
(2)

~kf !,FA8uVaAuF0&u25(
A8

E dkf S 2
1

p D Im
^F0uVaAuFA8 ,xA8

(2)
~kf !&^xA8

(2)
~kf !,FA8uVaAuF0&

v2« f2EA81ıh

5S 2
1

p D ^F0uVaAImG~v!VaAuF0&, ~6!
9-3
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where

v5« i2Ek2Q

and

VaA5C (2)~kx ,ky!(p,tVptC0x0
(1)~ki !.

The many-body Green’s functionG(v) has following spec-
tral representation:

G~v!5
1

v2HA2Tf2ŨaA1ıh

5(
A8

E dkf

uFA8xA8
(2)

~kf !&^xA8
(2)

~kf !FA8u

v2« f2EA81ıh
. ~7!

The HA is the Hamiltonian of the target nucleus, (EA8
2HA)FA850. The distorted wavesxA8

(2)(kf) are defined by

the kinetic energy operatorTf and the optical potentialŨaA ,
(« f2Tf2ŨaA)xA8

(2)(kf)50. A practical way to deal with
G(v) is to integrate out the internal coordinates by averag
over the target ground-state wave functionF0. TheF0 can-
not be passed directly through matrix element~6! to the
Green’s function, since theNN interactionVpt depends on
internal target coordinates. Hence, we approximate ImG(v)
by its ground state expectation value@22,24# using the
Green’s function optical reduction

G~v!5^F0uG~v!uF0&5
1

v2Tf2ŨaA1ıh
. ~8!

The imaginary part of the Green’s function satisfies the u
tary identity @23#

ImG~v!5~2p!E dkux0
(2)~k!&d~v2«k!^x0

(2)~k!u

1G1~v!ImŨaAG~v!. ~9!

Applying identity ~9! in Eq. ~6! one gets two terms tha
give a separation between elastic breakup with target in
ground state and inelastic breakup, which includes all p
sible transitions out ofF0. Thus, the inclusive cross sectio
is decomposed into elasticsel and inelastics in parts ass
5sel1s in , where

sel5
~2p!4

\v i
E dkxdkydkfd~« i2« f2Ek2Q!

3u^x0
(2)~kf !,F0 ,C (2)~kx ,ky!u

3(
p,t

VptuC0 ,F0 ,x0
(1)~ki !&u2, ~10!
06460
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~2p!4

\v i
E dkxdkyE dR

1

p
@2ImŨaA~R!#

3u^G~R,v!,F0 ,C (2)~kx ,ky!u

3(
p,t

VptuC0 ,F0 ,x0
(1)~ki !&u2. ~11!

These expressions are the starting point for calculations
various cross sections, angular and energy correlations
for elastic and inelastic breakup. We notice that the expr
sions forsel ands in have similar structure. In Eq.~11! the
integration over the radial dependence of the optical pot
tial and Green’s function is shown explicitly. In the matr
element for inelastic fragmentation, the optical mod
Green’s functionG(R,v) appears instead of the distorte
wave x0

(2)(kf) in the elastic amplitude and an integratio
over theR coordinate weighted with the imaginary part
optical potential ImŨaA(R) replaces the integration over th
direction of the momentumk̂f . Therefore, in the approac
we have developed, we can study the space localizatio
inelastic breakup processes, but the differential cross sec
for inelastic scattering of the halo nucleus can be calcula
only for elastic fragmentationd3sel /dk̂fdEk , since the an-
gular variablesk̂f are not present in expression~11! for in-
elastic breakup.

B. Elastic breakup

The exclusive elastic breakup cross section~10! ~when
energies and momenta of all particles are observed!, aver-
aged over initial and summed over final spin projections, c
be written as

d8sel

dk̂fdk̂xdk̂yd«ydEk

5~2p!4
m im f

\4

kf

ki
2S mxmy

\4 D 3/2

3
A«y~Ek2«y!

Ĵi
2ĴA

2 (
MA8 ,m1 ,m2 ,MA ,Mi

uTelu2,

~12!

whereĴ5A2J11. The reaction amplitudeTel is given in the
DW framework by

Tel5^x (2)~kf !,FJAMA8
,Cm1 ,m2

(2) ~kx ,ky!u

3(
p,t

VptuCJi Mi
,FJAMA

,x (1)~ki !&. ~13!

In Eq. ~13! the wave-function dependence on the quant
numbers of angular momenta is shown explicitly. HereJi
andMi (JA andMA) are the spin and spin projection of th
projectile ~target! ground state,m1 andm2 are the spin pro-
jections of halo neutrons after breakup. Since we are foc
ing on a study of6He, where one of the fragments is ana
9-4
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particle with zero spin, we have omitted everywhere m
tioning the core spin. For the nucleus-nucleus scattering
dressed later, there is no spin dependence in optical po
tials and the distorted wavesx (6) do not depend on spin
projections. The formulas below are presented explicitly
that case. When the target is a proton or a nucleus w
nonzero spin, the optical potential has usually spin-orbit c
pling and, the distorted waves depend onMA . Generaliza-
tion to such cases is straightforward but is not given her

To calculate Eq.~13!, the boundCJi Mi
and continuum

Cm1 ,m2

(2) (kx ,ky) halo wave functions have to be generated

a nuclear model. For Borromean two-neutron halo nuclei
understanding of the essential halo structure has been
tained in the framework of a three-body model@25#. In this
model, the total wave function of6He is represented by
product of wave functions describing the internal structure
the a core and the relative motion of three interacting co
stituents, core and halo neutrons. The method of hypersp
cal harmonics@26,27# has been used to treat the three-bo
interaction dynamics for both bound and scattering states
has given@14–16,28# a comprehensive description of data
weak and electromagnetic characteristics, (p,p8) inelastic
scattering and charge-exchange (p,n),(n,p) reactions to
bound and continuum states forA56 systems. It is impor-
tant to underline that in calculating the continuum wa
functionsCm1 ,m2

(2) (kx ,ky) the final state interaction~the pair

interactions between all ejectile constituents! was fully taken
into account. The same model for the halo wave function
used in our calculations of the reaction amplitude~13!.

In the method of hyperspherical harmonics the wave fu
tion above the breakup threshold is written as follows:

Cm1 ,m2

(1) 5 (
d,M f ,ML f

~s1m1s2m2uSfMSf
!~L fML f

SfMSf
uJfM f !

3ı2K fcK f

l xl y~ak!@Yl x
~ k̂x!

^ Yl y
~ k̂y!#L f ML f

* CgJf M f
~j,x,y,k!, ~14!

where d5$Jf ,g%5$Jf ,K f ,L f ,Sf ,l x ,l y% is an abbreviation
for a set of quantum numbers, which characterizes the r
tive motion of the three constituents flying apart in6He. The
notation@•••# indicates tensor coupling. ThecK f

l xl y(ak) is the

hyperangular part of the hyperharmonic

cK f

l xl y~ak!5NK f

l xl y~sinak! l x~cosak! l yP(K f2 l x2 l y)/2
l x11/2,l y11/2

~cos 2ak!,

~15!

wherePn
a,b are Jacobi polynomials andNK

l xl y is a normaliza-
tion factor. The hyperangleak is defined as cos2ak5«y /Ek .
The continuum wave functionCgJf M f

(j,x,y,k) depends on

the quantum numbersg, nuclear excitation energyEk ~ex-
pressed by the hypermomentumk5A2mEk /\2 with m be-
ing the nucleon mass!, the internala-particle coordinatesj
and Jacobian space coordinates (x,y) ~shown on Fig. 1!, the
total angular momentumJf and its projectionsM f ,
06460
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CgJf M f
~j,x,y,k!5

f~j!

~kr!5/2 (
g8

xgg8~kr!c
K8

l x8 l y8~a!

3$@Yl
x8
~ x̂! ^ Yl

y8
~ ŷ!#L8^ xS8%Jf M f

xTMT
,

tana5
x

y
, r5Ax21y2. ~16!

Thef(j) is thea-particle core wave function,xS(T) is a spin
or isospin function. The hyper-radial wave functio
xgg8(kr) is a solution of a set of coupledK-harmonic equa-
tions. The necessary details on how to solve a system
K-harmonic equations, choosing nucleon-nucleon a
nucleon-core potentials in calculations of the three-bo
bound and continuum wave functions for6He, can be found
in Ref. @10#. According to Eq.~14!, the transition amplitude
Tel can be further decomposed as

Tel5 (
d,ML f

,MSf

~s1m1s2m2uSfMSf
!~L fML f

SfMSf
uJfM f !

3ı2K fcK f

l xl y~ak!@Yl x
~ k̂x! ^ Yl y

~ k̂y!#L f ML f

* Td~kf ,ki ,k!.

~17!

TheTd(kf ,ki ,k) has now formally the same structure as a
two-body amplitude for excitation of a nuclear state w
total momentumJf ,M f , excitation energyEk , and a fixed
state of relative motion of breakup fragments defined by
quantum numbersg,

Td~kf ,ki ,k!5^x (2)~kf !,FJAMA8
,CgJf M f

~k!

3u(
p,t

VptuCJi Mi
,FJAMA

,x (1)~ki !&.

~18!

The effectiveNN interaction Vpt ~assuming local interac
tions! depends on distancerpt5rp2rt1R between projectile
~p! and target~t! nucleons~see Fig. 1!, whererp,t are nucleon
coordinates relative to the c.m.a,A , respectively, whileR is
the c.m. distance between target and projectile. Integra
over projectile rp and targetrt internal coordinates, the
nuclear form factors as a function ofR can be defined as

^FJAMA8
,CgJf M f

u(
p,t

VptuCJi Mi
,FJAMA

&

5 (
l j pj t

~JiM i j pmpuJfM f !~ lml j tmtu j pmp!

3~JAMA8 j tmtuJAMA!ı2 lYlml
* ~R̂!Fl j t j p

d ~R,k!,

~19!

where l , j p , and j t are the orbital, the total projectile, an
target angular-momentum transfers, respectively. A con
nient way to handle the complicated radial dependence
Eq. ~19! is to perform the calculation of the radial form fac
9-5
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tor Fl j t j p

d (R,k) in momentum space@15,29,30#, where the

integrations over different space coordinates are reduced
product of integrand factors. Using a Fourier-Bessel trans
mation

Vpt[V~rpt!5
1

~2p!3E dkV~k!exp$2ı~rp2rt1R!•k%,

~20!

a common decomposition of the effective nucleon-nucle
forcesVpt into operators acting on separate coordinates
be obtained@30#. Here we are presenting the calculations
a reaction on a target with zero spinJA50. In this case, if
we neglect the two-bodyNN spin-orbital interaction~the
usual approximation in nucleus-nucleus collisions!, then only
nonspinflip excitations of natural parity in the projectile a
allowed @29# and only the central part of nucleon-nucleo
forces can excite them. The formulas for radial form fact
are given below for this case. Generalization to a more g
eral situation is straightforward. After transition into mome
tum space, the radial partF j p0 j p

d (R,k) of the nuclear form

factor can be written as

F j p0 j p

d ~R,k!5E
0

`

dkk2 j l~kR!ı j
4

Ap Ĵf

VC~k!

3rA
000~k!ra

j p0 j p~k,k!, ~21!

ra
j p0 j p~k,k!5E

0

`

drr 2 j 0~kr !ra
j p0 j p~r ,k!,

rA
000~k!5E

0

`

drr 2 j 0~kr !rA
000~r !,

VC~k!5E
0

`

drr 2 j 0~kr !4pVC~r !.

Herera
j p0 j p(k,k), rA

000(k), andVC(k) are Fourier transforms

of the projectile transition densityra
j p0 j p(r ,k), the target den-

sity rA
000(r ) and the central partVC(r ) of the NN forces

between projectile and target nucleons, respectively. A tr
sition density is a reduced matrix element between the in
and final nuclear states and describes the system respon
a zero-range perturbation

ra
l ps jp~r ,k!5^CgJf

~k!i(
p

d~r 2r p!

r p
2

3@Yl p
~ r̂p! ^ sp

s# j p
iCJi

&, ~22!
06460
a
r-

n
n

r

s
n-
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n-
l

e to

rA
l ts jt~r !5^FJA

i(
t

d~r 2r t!

r t
2 @Yl t

~ r̂t! ^ s t
s# j t

iFJA
&,

~23!

where summation overp(t) includes all nucleons in the pro
jectile ~target!. In cluster three-body models the nucleon d
grees of freedom are treated unsymmetrically. Only the m
tion of the two halo nucleons is singled out explicitly in th
three-body wave functions while the motion of the co
nucleons are combined into the core-center mass and inte
motion inside the cluster. The detailed descriptions of
contributions to transition densities from halo nucleons
given in Ref.@15# and the treatment of core nucleon degre
of freedom is presented in Sec. II F. Taking into accou
these definitions and using the partial wave decompositio
the distorted wavesx (1)(ki ,R)

x (1)~ki ,R!5
4p

kir
(

l aml a

i l aYl aml a
* ~ k̂i !Yl aml a

~R̂!x l a
~ki ,R!,

~24!

where x l a
(ki ,R) is the radial part, the reaction amplitud

Td(kf ,ki ,k) can be written as

Td~kf ,ki ,k!5
1

p3/2kikf
(

j pj tl l al b
~JiM i j pmpuJfM f !

3~JAMA8 j tmtuJAMA!~ lml j tmtu j pmp!

3~ l bml b
lml u l aml a

!Yl aml a
* ~kî !Yl b ml b

~k f̂ !

3
1

ĵ pl̂ a
2

Tl b ,l a

l j t j p ,d
~kf ,ki ,k!, ~25!

Tl b ,l a

l j t j p ,d
~kf ,ki ,k!5ı l a2 l 2 l b ĵ pl̂ l̂ al̂ b~ l b0 l0u l a0!

3I l b ,l a

l j t j p ,d
~kf ,ki ,k!, ~26!

where the radial integralsI l b ,l a

l j t j p ,d are defined as

I l b ,l a

l j t j p ,d
~kf ,ki ,k!5~2p!3E

0

`

dRx l b
~kf ,R!

3Fl j t j p

d ~R,k!x l a
~ki ,R!. ~27!

Using Eqs.~17! and~25! in Eq. ~12! and performing sum-
mation over spin projections, the expression for the exclus
cross section with the momentum and energy of all partic
measured, can be obtained,
9-6
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d8sel

dk̂fdk̂xdk̂yd«ydEk

5
1

« i« f

kf

ki
S mxmy

\4 D 3/2

2A«y~Ek2«y! (
Sf , j t ,Lx ,Ly ,La ,Lb ,L

~21!Ji1Sf1 j t

4p ĵ t
2Ĵi

2

3~@YLx
~ k̂x! ^ YLy

~ k̂y!#L•@YLa
~ k̂i ! ^ YLb

~ k̂f !#L! (
b,b8

~21! l x1 l y1L f1Jf1Jf81 l a1 l a8

3~ l̂ bl̂ xl̂ yL̂ f Ĵ f
2!~ l̂ b8 l̂ x8 l̂ y8L̂ f8Ĵf8

2!~ l x0 l x80uLx0!~ l y0 l y80uLy0!~ l a0 l a80uLa0!~ l b0 l b80uLb0!

3H L f L f8 L

Jf8 Jf Sf
J H Jf Jf8 L

j p8 j p Ji
J H j p j p8 L

l 8 l j t
J H l y8 l x8 L f8

l y l x L f

Ly Lx L
J H l a8 l b8 l 8

l a l b l

La Lb L
J

3ı2(K f2K f8)cK f

l xl y~ak!c
K

f8

l x8 l y8~ak!Tl b ,l a

l j t j p ,d
~kf ,ki ,k!T

l
b8 ,l

a8

l 8 j t j p8 ,d8*
~kf ,ki ,k!. ~28!
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Hereb5( l x ,l y ,L f ,Jf ,K f ,l a ,l b ,l , j p) is a short notation for
a set of the quantum numbers characterizing different mo
modes in the system. This cross section contains the m
complete information that can be extracted from a reac
with unpolarized nuclei. We can calculate this observable
at present time there is no experimental data to be comp
with. Also, Eq.~28! depends on too many variables to offer
meaningful analysis of the important correlations. More
structive is to integrate out most of the independent variab
and analyze various inclusive cross sections that can be c
pared with experiment, and thus clarify the underlying d
namics on which the model is based. At the moment
restrict our analysis to inclusive cross sections that are
more than double folded. Even so, many different energy
angular correlations can be singled out that contain valua
information about the nuclear structure of halo nuclei and
reaction mechanisms.

After fragmentation there are four different, physica
meaningful momenta:ki is the momentum of initial beam,kf
is the momentum of relative motion between c.m. of proj
tile and target,kx and ky are the relative momenta betwee
fragments in the projectile rest frame. The beam momen
ki is fixed by initial conditions and memory about its valu
and direction is kept in the system through conservat
laws, but the other momenta can be independent variable
terms of which dynamical correlations might be express
Keeping absolute values of the single momentakf , kx, or ky
and integrating out other degrees of freedom, the energy
tributions ds/dEk , ds/d«x, or ds/d«y can be obtained
These describe the total projectile excitation spectrum,
energy distribution of relative motion between two fragme
or the energy distribution of one fragment, respectively.
tegrating out any two of the three independent momentakf ,
ky, or kx , the cross sections become dependent on the a
between the beam directionki and the direction of the re
maining momentum. Thus, the differential cross sect
d2s/dV f , the fragment relatived3s/dkx , and the fragment
momentum distributionsd3s/dky can be obtained. An addi
tional integration over two of the three momentum proje
tions gives the usual longitudinal and transverse distri
tions.
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A next class of cross sections can be calculated if o
one of the three independent momenta is integrated
From the possible variants only one, that where an integ
tion over kf is performed, will be considered below. Th
vectorskx andky , describing the motion of projectile frag
ments, lie in a plane. After averaging overkf only the angle
betweenkx and ky has a physical meaning, the orientatio
of the plane they define does not play any role and
be integrated out. The resulting angular correlationsds/
d( k̂x• k̂y) might be of interest.

A variety of the different motion modes connected wi
any momentumk, are characterized by some subset of qu
tum numbers and coexist in the final system. All of the
interfere with each other and give a coherent contribution
the exclusive cross sections~28!. Integration over the mo-
mentum destroys the interference and the corresponding
tion modes add independent contributions to the cross
tions. Therefore, different cross sections are sensitive
different correlations, and simultaneous descriptions of al
them within the framework of one model gives a thorou
test of the underlying dynamics and model assumptions
nuclear structure and reaction mechanisms.

Integrating over all independent variables except for
projectile excitation energyEk and taking into account the
orthogonality properties of hyperharmonics

E
0

Ek
d«yA«y~Ek2«y!cK

l xl y~ak!c
K8

l xl y~ak!52Ek
2dKK8 ,

~29!

the spectrum of inelastic excitations in the halo nucleus
be written as

dsel

dEk
5

1

« i« f

kf

ki
S mxmy

\4 D 3/2

4Ek
2

3 (
Sf , j t ,b

Ĵf
2

l̂ 2 ĵ t
2 ĵ p

2 l̂ a
2Ĵi

2
uTl b ,l a

l j t j p ,d
~kf ,ki ,k!u2, ~30!
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which describes the strength distribution of the different m
tion modes over total projectile excitation energyEk . The
factor Ek

2 , which originates from the three-body phase v
ume, guarantees the correct cross-section behavior a
breakup threshold. All correlations between modes are
and they give independent contributions to the cross sec
The fragment energy distributions@b5(h,K f)#

d2sel

d«ydEk
5

d2sel

d«xdEk

5
1

« i« f

kf

ki
S mxmy

\4 D 3/2

2A«y~Ek2«y!

3 (
Sf , j t ,h,K f ,K f8

Ĵf
2

l̂ 2 ĵ t
2 ĵ p

2 l̂ a
2Ĵi

2
ı2(K f2K f8)cK f

l xl y~ak!

3c
K

f8

l xl y~ak!Tl b ,l a

l j t j p ,d
~kf ,ki ,k!Tl b ,l a

l j t j p ,d8* ~kf ,ki ,k!

~31!

carry the energy correlations in the fragment motion tha
contained in interference between modes with different v
ues of the hypermomentK f . For a single-fragment energ
distribution we have to integrate over the total excitati
energyEk . In spite of the equality of the double-folded cro
sections, the single distributionsdsel /d«y and dsel /d«x
will be different, since the integration overEk is equivalent
to the different projections from the two-dimensional dist
bution over«y and«x .
06460
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The differential cross section for the projectile c.m. sc
tering with fixed inelastic excitation energyEk can be writ-
ten as

d3sel

dk̂fdEk

5
1

« i« f

kf

ki
S mxmy

\4 D 3/2

4Ek
2

3 (
L,l , j t , j p ,d

Ĵf
2

4p l̂ 2 ĵ t
2 ĵ p

2Ĵi
2

PL~ k̂i• k̂f !~21! l l̂ bl̂ b8

3~ l a0 l a80uL0!~ l b0 l b80uL0!

3H l a l a8 L

l b8 l b l J Tl b ,l a

l j t j p ,d
~kf ,ki ,k!

3T
l
b8 ,l

a8

l j t j p ,d*
~kf ,ki ,k!. ~32!

Here, any mode of internal excitation, characterized by
quantum numbersd, gives an independent contribution t
the differential distribution.

In the projectile rest framek11k21k350, used for the
representation of fragment momentum distributions, the m
mentum k3 of the projectile constituent 3 is equal to th
Jacobi momentumky . Hence, integration of the exclusiv
cross section over variablesk̂x andk̂f of the unobserved par
ticles and summation over all spin and angular moment
projections, gives the elastic fragmentation cross section
momentum distribution of the projectile particle 3, which c
be written as follows:
to
over
d4sel

dkydEk
5

1

« i« f

kf

ki
S mx

\2D 3/2

A2~Ek2«y! (
Sf , j t ,l x ,l b ,L

~21!Ji1Sf1 j t1 l x1 l b

4p Ĵi
2 ĵ t

2
PL~ k̂i• k̂y! (

l y ,l,l y8 ,l8
~21!Jf1Jf81 l 1 l 8~ l̂ yL̂ f Ĵ f

2!

3~ l̂ y8L̂ f8Ĵf8
2!~ l y0 l y80uL0!~ l a0 l a80uL0!H l y l y8 L

L f8 L f l x
J H L f L f8 L

Jf8 Jf Sf
J H Jf Jf8 L

j p8 j p Ji
J H j p j p8 L

l 8 l j t
J H l l 8 L

l a8 l a l b
J

3ı2(K f2K f8)cK f

l xl y~ak!c
K

f8

l xl y8~ak!Tl b ,l a

l j t j p ,d
~kf ,ki ,k!T

l b ,l
a8

l 8 j t j p8 ,d8*
~kf ,ki ,k!. ~33!

Herel5$Jf ,L f ,K f , j p ,l ,l a%, and the motion modes characterized by (l y ,l) quantum numbers give a coherent contribution
the cross section. For momentum distribution of relative motion between two fragments, we have to study distributionk̂x
momentum,

d4sel

dkxdEk
5

1

« i« f

kf

ki
S my

\2 D 3/2

A2~Ek2«x! (
Sf , j t ,l y ,l b ,L

~21!Ji1Sf1 j t1 l y1 l b

4p Ĵi
2 ĵ t

2
PL~ k̂i• k̂x! (

l x ,b,l x8 ,b8
~21!Jf1Jf81 l 1 l 8~ l̂ xL̂ f Ĵ f

2!~ l̂ x8L̂ f8Ĵf8
2!

3~ l x0 l x80uL0!~ l a0 l a80uL0!H l x l x8 L

L f8 L f l y
J H L f L f8 L

Jf8 Jf Sf
J H Jf Jf8 L

j p8 j p Ji
J H j p j p8 L

l 8 l j t
J H l l 8 L

l a8 l a l b
J

3ı2(K f2K f8)cK f

l xl y~ak!c
K

f8

l x8 l y~ak!Tl b ,l a

l j t j p ,d
~kf ,ki ,k!T

l b ,l
a8

l 8 j t j p8 ,d8*
~kf ,ki ,k!. ~34!
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The expressions~33! and ~34! are starting points for calculations of the transverse and longitudinal fragment-mome
distributions. The way to do this will be discussed below. Performing integrations of these expressions over energies
values of„( k̂i• k̂y)( k̂i• k̂x)…, the fragment~momentum of relative motion between fragments! angular distributions relative beam
direction, in the projectile rest frame, can be obtained.

Finally, the triple cross section for angular correlations can be written

d3sel

d~ k̂x• k̂y!d«ydEk

5
1

« i« f

kf

ki
S mxmy

\2 D 3/2

2A«y~Ek2«y! (
e,L

Ĵf
2

l̂ 2 ĵ t
2 ĵ p

2 l̂ a
2Ĵi

2

~21!L f1L

2
PL~ k̂x• k̂y!

3 (
l x ,l y ,K f ,l x8 ,l y8 ,K f8

l̂ xl̂ yl̂ x8 l̂ y8~ l x0 l x80uL0!~ l y0 l y80uL0!H l x l x8 L

l y8 l y L f
J

3ı2(K f2K f8)cK f

l xl y~ak!c
K

f8

l x8 l y8~ak!Tl b ,l a

l j t j p ,d
~kf ,ki ,k!Tl b ,l a

l j t j p ,d8* ~kf ,ki ,k!, ~35!
p
at

ca

a
n

tral

a

or-

to
en-

o-
where e5( l , j t , j p ,l a ,l b ,L f ,Sf ,Jf). All projectile excita-
tions with the different orbitalL f , spinSf , and total angular
momentumJf are summed independently here, while kee
ing the correlations in the relative fragment motion. Integr
ing additionally over the energies«y and Ek , the angular
correlationsdsel /d( k̂x• k̂y) can be calculated.

C. Inelastic breakup

The exclusive inelastic breakup cross section~11! ~when
energies and momenta of all particles are observed!, aver-
aged over initial and summed over final spin projections,
be written as

d6s in

dk̂xdkydEk

5~2p!4
m i

ki\
2A2S mx

\2D 3/2

AEk2«y

3E dR
1

p
@2ImŨaA~R!#

1

Ĵi
2ĴA

2

3 (
m1 ,m2 ,MA8 ,Mi ,MA

uTin~R!u2. ~36!

The matrix elementTin for inelastic fragmentation has
form similar to Eq.~13! for the elastic breakup, and is give
by

Tin~R!5^G~R,« f !,FJAMA8
,Cm1 ,m2

(2) ~kx ,ky!u

3(
p,t

VptuCJi Mi
,FJAMA

,x (1)~ki !&, ~37!

where the optical-model Green’s functionG(R,R8,« f) re-
places the distorted wavex(kf ,R8) for an exit channel. The
Green’s functionG(R,R8,« f) is the solution of the equation
06460
-
-

n

S « f1
\2

2m f
¹22ŨaADG~R,R8,« f !5d~R2R8! ~38!

with the same energy« f5« i2Ek2Q as for the relative mo-
tion in the exit channel in elastic fragmentation. For a cen
optical potentialŨaA(R), the Green’s functionG has the
following partial-wave decomposition:

G~R,R8,« f !5
2m f

\2 (
l

1

rr 8
Gl~R,R8,kf !Ylm~R̂!Ylm~R̂8!* ,

~39!

where the radial partGl(R,R8,kf) can be represented as
product of the regularx l(kf ,R) and outgoinghl(kf ,R) ra-
dial solutions in the optical potentialŨaA(R),

Gl~R,R8,kf !5
x l~kf ,R,!hl~kf ,R.!

W~x l ,hl !
. ~40!

HereR, andR. mean the smallest and largest of the co
dinatesR andR8, respectively. The

W~x l ,hl !5x l

dhl

dR
2

dx l

dR
hl

is the Wronskian of the independent solutionsx l andhl .
Inserting the decompositions~14!, ~24!, ~19!, and ~39!

into Eq.~36! and doing all calculations in a way analogous
that for elastic breakup, the cross sections for different
ergy and angular correlations except for Eq.~32!, can be
obtained. As an example, the expression for a particle m
mentum distribution becomes
9-9
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d4s in

dkydEk
5

1

« i« f

kf

ki
S mx

\2D 3/2
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0
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dR ImS 2
2m f
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PL~ k̂i• k̂y!
~21!Ji1Sf1 j t1 l x1 l b

4p Ĵi
2 ĵ t

2

3 (
l y ,l,l y8 ,l8

~21!Jf1Jf81 l 1 l 8~ l̂ yL̂ f Ĵ f
2!~ l̂ y8L̂ f8Ĵf8

2!~ l y0 l y80uL0!~ l a0 l a80uL0!

3H l y l y8 L

L f8 L f l x
J H L f L f8 L

Jf8 Jf Sf
J H Jf Jf8 L

j p8 j p Ji
J H j p j p8 L

l 8 l j t
J H l l 8 L
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J

3ı2(K f2K f8)cK f

l xl y~ak!c
K
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l xl y8~ak!T̃l b ,l a

l j t j p ,d
~R,kf ,ki ,k!T̃
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a8
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~R,kf ,ki ,k!, ~41!
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where the amplitudeT̃l b ,l a

l j t j p ,d(R,kf ,ki ,k) has the same ex

pression as Tl b,l a

l j t j p ,d(kf ,ki ,k) in Eq. ~26!, but with

I l b ,l a

l j t j p ,d(kf ,ki ,k) replaced by a new radial integral

Ĩ l b ,l a

l j t j p ,d
~R,kf ,ki ,k!5~2p!3/2E

0

`

dR8Gl b
~R,R8,kf !Fl j t j p

d

3~R8,k!x l a
~ki ,R8!. ~42!

The expressions~33! and~41! for particle momentum distri-
bution in elastic and inelastic breakup have the same de
dence on different quantum numbers describing the rela
motion of decaying fragments. In addition, the integrand
pression in Eq.~41! gives the cross-section distribution o
inelastic fragmentation as a function of the radial coordin
R.

D. Longitudinal and transverse momentum distributions

We now use a Jacobi coordinate system where the
mentum directionk̂y in the projectile rest frame is equal t
that of the momentum of the observed fragmentk̂3.

To calculate thelongitudinal momentum distribution, we
have to fix the projectionkz of the momentumky5k3 onto
the beam directionk̂i in Eqs.~33! and~41! and integrate over
the other momentum components. Due to azimuthal sym
try, the integration is reduced to one dimension, over
orthogonal k' component of the total momentumukyu
5Akz

21k'
2 ,

d2s

dkzdEk
5E

0

[(2my /\2)Ek2kz
2] 1/2

dk'k'A2my

\2 Ek2kz
22k'

2

3 (
L,l x ,l y

K f ,l y8 ,K f8

F3cK f

l xl y~ak!c
K

f8

l xl y8~ak!PLS kz

Akz
21k'

2 D .

~43!

Here F includes the transition form factors and does n
depend onk' .
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For thetransverse momentum distribution, we have to fix
the momentum projectionkx perpendicular to the beam d
rection k̂i and integrate over other momentum componen
To this end, it is convenient to combine theky andkz com-
ponents of the vectorky to ak'5Aky

21kz
2, which is lying in

the (y, z) plane and has an anglef relative to the axisẑi k̂i .
Then the transverse momentum distribution is

d2s

dkxdEk
5E

0

[(2my /\2)Ek2kx
2] 1/2

dk'k'A2my

\2 Ek2kx
22k'

2

3 (
L,l x ,l y

K f ,l y8 ,K f8

FcK f

l xl y~ak!c
K

f8

l xl y8~ak!

3E
0

2p

dfPLS k'cosf

Akx
21k'

2 D . ~44!

For oddL the integral overf gives zero and has a simpl
polynomial form for even values. The expressions~43! and
~44! define longitudinal and transverse momentum distrib
tions for fixed projectile excitation energyEk . The integra-
tion of a product of hyperharmonics and Legendre polyn
mial overk' can be done analytically and can be reduced
the sums of incomplete beta functions. Usually the exp
mental data include contributions for all excitation energ
Ek allowed by the experimental setup. Hence, we need
ditionally to integrate the momentum distributions over e
citation energy from the breakup threshold up to some ma
mal energy defined by experimental conditions.

Formulas~43! and ~44! give the distributions for particle
3 in the projectile rest frame. In order to get the distributio
of particles 1 and 2 we have to rotate to the other sets
Jacobi coordinates whereky5k1,2; a change that is easily
done since the amplitudes transform through Raynal-Re
coefficients in the hyperspherical method@31#. Hence the
momentum distributions have the same structure for core
halo neutrons.

Before discussing the numerical results it is useful
make a few remarks concerning the basic structure of form
las ~33! and ~41!. The expressions describe the momentu
distribution of the constituents of the projectile relative to t
9-10
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INELASTIC EXCITATIONS AND MOMENTUM . . . PHYSICAL REVIEW C64 064609
only direction ~beam! of which memory still exists in the
reaction after integration over unobserved particle coo
nates. As a result, the cross sections~33! and ~41! depend
only on the angle between the beam and the detected
ticle. This dependence is described by the Legendre poly
mial PL( k̂y• k̂i) and the cross sections are incoherent su
over quantum numbers (Sf , j t ,l x ,l b) that characterize unob
served fragments. The nuclear states have many other q
tum numbers and due to the lack of symmetry the co
sponding components are connected and give cohe
contributions to the cross sections. For nonzero values oL,
there are interference terms between excitations with the
ferent total momentaJf reached by the different transferre
momentaj p . The interference is expressed in different wa
for the longitudinal@Eq. ~43!# and transverse@Eq. ~44!# dis-
tributions. For the longitudinal distributions all ordersL of
the Legendre polynomialPL( k̂i• k̂y), allowed by the angular
momentum addition rules, give contributions. For the tra
verse, only even values ofL are present. For evenL, the
interference terms are the same for the positive and nega
values of kx,z and have the opposite signs for odd.As a
result, the transverse distributions always have symmetr
shape relative the origin of the kx axis, while the longitudinal
one may be asymmetric relative to kz50. All interference
terms should belong to the same values of the orbital ang
momentuml x and oddL may appear only forl y with differ-
ent parity. Hence, the interference between nuclear st
with different parity excited at the same energy with comp
rable intensity may cause deviations from the symmetr
shape in the longitudinal distributions. Studying such dist
tions may give valuable information on the structure of h
nuclei. Recently, in the longitudinal momentum distributio
of 7Be produced in Coulomb breakup of the8B ~a candidate
for one-proton halo nucleus!, large asymmetry arising from
interference ofE1 and E2 excitations was measured@32#
and discussed, for example, in Ref.@33#.

E. Treatment of Coulomb interaction

For a consistent treatment of electromagnetic dissociat
Coulomb and nuclear interactions have to be treated on e
footing. The interactionVpt between projectile and targe
nucleons has a short-range part due to strong forces bu
central part also includes Coulomb repulsion when b
nucleons are protons. In calculations of the radial form fac
~21! performed in momentum space, the central partVC(k)
of the nucleon-nucleon forces acting between protons h
nuclear part together with a Coulomb partVCoul(k)
54pe2/k2, which causes destructive interference w
nuclear attraction. The long-range nature of Coulomb for
is a main feature and involves additional effects in comp
son with heavy-ion reaction calculations that only inclu
nuclear interaction. For short-range nuclear forces it is su
cient to calculate the nuclear form factor~21! within a finite
region 0<R<Rmax of coordinate space outside of which th
form factor becomes negligible. Accordingly, only a r
stricted numberl ,LN of distorted partial waves have to b
taken into account in reaction calculations. In the presenc
long-range Coulomb interaction, the form factor has a slow
06460
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decreasing tail that reaches out to a much larger radii. F
target with high charge, the tail has sufficient amplitude
cause a strong Coulomb dissociation. As a result, there
slow convergence of the partial-wave decomposition and
necessary to extend the radial integration in Eqs.~27! and
~42! to large distances. A simplification is that atR>Rmax
the Coulomb form factor is known analytically and has
simple form

F j p0 j p

d ~R,k!ur .Rmax

5ı j p
4pe2ZA

~2 j p11!Ĵf

^CgJf
~k!i (

p51

Zp

r p
j pYj p

~ r̂ p!iCJi
&

3
1

Rj p11
. ~45!

Hence, we calculate Eq.~21! only for R<Rmax and use the
analytic form factor~45! for larger radii. The coordinate an
partial-wave spaces can be separated~as shown in Fig. 2!
into three regions@34# where different methods of the radia
integration are used. The first region (R<Rmax andl<LN) is
for calculations where a short-range nuclear and a long-ra
Coulomb interactions are present. In this region the distor
waves and form factors are known numerically and num
cal integration of the radial integrals has a sufficient ac
racy. The second region corresponds to the low partial wa
l<LN and radial integrations fromRmax,R,`. The form
factor is known analytically@Eq. ~45!#, the distorted waves
are given by their asymptotic representations and their o
laps are non-negligible, if Coulomb excitation is significa
The poor convergence of numerical integrations can
handled by the method of contour integration in the comp
radial plane@35# since all functions are known analytically
The third region embraces the high partial wavesl .LN . The
partial waves do not penetrate the large centrifugal barr
therefore these waves do not feel the nuclear potential
experience only Rutherford scattering and are the reg
Coulomb wave functions. Since these partial waves are n
ligible at smallR, the analytical form-factor expression~45!
can be used also atR<Rmax. Then the radial integrals ar
reduced to the well-known integrals of Coulomb excitati

FIG. 2. Separation of the coordinate and distorted-wave spa
into regions where different methods are used for the calculation
radial integrals.
9-11
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theory @36# with explicit analytical expressions in terms o
the hypergeometric functions. With increasing partial wa
orbital angular momentum, the Coulomb matrix elements
crease exponentially@36#, but the rate of convergence de
pends strongly on the excitation energy and is rather s
near the breakup threshold. For example, in the case of
low-energy dipole excitations for6He fragmentation on
208Pb at 240 MeV/nucleon, we have taken into account up
20 000 partial waves while only about 400 were sufficient
the short-ranged nuclear interaction. This allows us to p
form quantum-mechanical calculations of nuclear and C
lomb excitations, including their interference, without arti
cial separation of different mechanisms. Note that
Coulomb-nuclear interference only appears in region 1~see
Fig. 2!, where both nuclear and Coulomb form factors a
present. The contributions to the amplitude from region
and 3 are purely Coulombic. The degree of interference
cross sections is governed by the magnitude of the contr
tions from these regions to a total amplitude.

F. Inclusion of nucleon degrees of freedom of the core

In the description of the light systems such as6He, recoil
effects, i.e., translational symmetry play an important ro
Thus, from the beginning we have based the formulation
the reaction dynamics on relative, translationally invaria
Jacobi coordinates. Within the three-body cluster model o
the halo valence neutrons and core c.m. are directly
pressed in the relative motion functionCg,Jf ,M f

(x,y,k)
while the coordinates of the core constituents are referre
in a more complex way. The treatment of the degrees
freedom of the core nucleons merits in this context a spe
attention. Figure 2 shows the coordinate system, relevan
our case. The vectorsr1,2 and r i show the positions of the
halo anda-core nucleons with respect to the6He center-of-
massO, while ji is the coordinate ofi th core nucleon rela-
tive to the core c.m.~point 3!. They andx are Jacobi vectors
between c.m. of the neutron pair and thea core and between
the halo neutrons. Recall thatR is the distance between th
collision partners and the variable on which the distor
wavesx i , f

(6) depend. The nuclear structure enters in the re
tion dynamics as a transition density that describes the
sponse of the system to a zero-range perturbation, and ca
expressed as a reduced matrix element between the in
boundCJi Mi

and final continuumCgJf M f
nuclear states

r ls j~r !5^CgJf
i(

i 51

6
d~r 2r i !

r i
2 @Yl~ r̂ i ! ^ s i

s# j iCJi
&

5rn
ls j~r !1ra

ls j~r !. ~46!

Here the summationi is over nucleons in the halo nucleu
and integration over all coordinatesr i is to be understood
The quantum numbersl, s, andj are relative orbital, spin, and
total angular momenta, respectively, transferred to
nucleus in the excitation process. In the second line of
~46!, the two parts of the transition density connected
contributions of halo neutronsrn

ls j(r ) and a-core nucleons
ra

ls j(r ) are shown separately. In the cluster three-body mo
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the nuclear wave functions have the product formsCgJM
5F(ji)cgJM(x,y), whereF(ji) is an intrinsic core wave
function~with zero spin for6He), whilecgJM(x,y) describes
relative motion of the cluster constituents~carrying the total
angular momentumJ). In this model the calculation of halo
neutron transition densityrn

ls j(r ) involves the three-body
wave functioncgJM(x,y), since the halo neutron coordinate
r1,2 depend only on the Jacobi vectorsx and y. A detailed
scheme for thern

ls j(r ) calculation is given in@15,14# ~the
contributions from the halo neutrons 1 and 2 are equal du
particle identity!.

The calculation of the halo neutron transition dens
ra

ls j(r ) for the a-core nucleons is more complex. This tra
sition density is defined by the vectorsr i5by1ji , shown on
Fig. 1, whereb5(m11m2)/(m11m21m3), with m15m2
and m3 being halo neutron and core masses, respectiv
The transition density operator in Eq.~46! has to be decom-
posed into multipoles depending on the coordinatesby and
ji . It is convenient to do the multipole decomposition
momentum space@30,15# where

r ls j~k!5E
0

`

dr r 2 j l~kr !r ls j~r !

5^CgJf
i(

i
t ls j~ i !iCJi

&,

t ls j ,m~ i !5 j l~kri !@Yl~ r̂ i ! ^ s i
s# j ,m . ~47!

The multipole operatort ls j ,m( i ) for the i th core nucleon can
be decomposed in a general way in a product of multip
operators depending separately onby andji ,

t ls j ,m~ i !5A4p (
Ll yl j

ı l y1 l j2 l L̂ l̂ yl̂ j~ l y0 l j0u l0!

3~21! l 1s2 j H l s j

L l y l j
J @t l y0l y

~by!

^ t l jsL~j i !# j ,m . ~48!

Here a spin transfers is connected only to operatort l jsL(j i)
depending on internal cluster coordinates, while opera
t l y0l y

(by) acts on the cluster c.m. After taking the matr
element between initial and final nuclear wave functio
F(ji)cJi ,Jf

(x,y) the nucleon transition density that take
into account an internal structure of the core with any s
can be obtained within the cluster model. For ana-particle
core with zero spin and isospin, the result is very simple

ra
l0l~k!5^cgJf

i j l~kby!Yl~ ŷ!icJi
&^Fi(

i 51

4

j 0~kj i !iF&

5racm

l0l ~k!rmat~k!, ~49!

where racm

l0l (k)5^cJf
i j l(kby)Yl( ŷ)icJi

& is the transition

density for the a-core c.m., while rmat(k)
9-12
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INELASTIC EXCITATIONS AND MOMENTUM . . . PHYSICAL REVIEW C64 064609
5^Fi(i51
4 j0(kji)iF& is the nucleon matter density of thea

particle, normalized atk50 to the number of core nucleon
The factorrac.m.

l0l in Eq. ~48! gives contributions only to

the normal parity (l 5 j ) excitations with transferred spins
50 and cannot give contributions to excitations with sp
s51. It means that in the three-body cluster model the in
actions with thea-core nucleons can excite the nucleus on
to normal parity states without spin flip. The coordinater3 of
the a c.m. relative toO is proportional to the Jacobi coord
natey, r35by. The transition densityrac.m.

ls j represents a re

coil effect in the system. If the core massm3 goes to infinity
(b→0), the transition density operator becomes independ
of internal coordinates and due to orthogonality of nucl
states with different energies, the core transition densit
zero. To exemplify this, Fig. 3~a! shows the modulus of the
real part ofrac.m.

l0l (r ) ~dashed line! and rn
l0l(r ) ~solid line!

transition densities (l 5 j 52,s50) to the (KLSlxl y)
5(22002) component of the continuum wave function
the 21 resonance peak energy (E* 51.8 MeV), respectively.

FIG. 3. The real part of the6He transition densityr ls j ( l 5 j
52,s50) for the excitation of the (KLSlxl y)5(22002) compo-
nent of a continuum wave function at 21 resonance peak energ
(E* 51.8 MeV).~a! Coordinate space. Solid and dashed lines sh
the modulus of the halo-neutron anda-core c.m. transition densi
ties, respectively.~b! Momentum space. Solid, dashed, and dot
lines show transition densities of the halo neutrons,a-core c.m.
motion, and core nucleons transition densities, respectively.
dashed-dotted line shows thea-particle matter density in arbitrary
units. Theoretical angular distributions are shown for~c! 21 (E*
51.8 MeV) resonance and~d! dipole (E* <4.5 MeV) excitations
in the 6He in elastic breakup reactions on12C at 240 MeV/nucleon
collision energy. Solid, dashed, and dotted lines are for the dif
ential cross sections of total, halo neutrons, anda-core nucleons,
respectively.
06460
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The recoil density is concentrated at small radii, while t
halo neutron density has larger spatial extension and do
nates in the outer region. If the core massm3 is increased,
the proportionality coefficientb between ther3 andy coor-
dinates becomes smaller and the recoil densityrac.m.

l0l will be

compressed to smaller radii.
The concentration of the recoil transition density at sm

radii means that in momentum space the recoil density
be concentrated at large momenta and we can expect a
creasing core contribution to a reaction cross section w
increasing transferred momenta. Figure 3~b! shows the tran-
sition densities in momentum space. The halo neutron d
sity ~solid line! is concentrated at low momenta. The rec
density ~dashed line! has a wide extension in momentu
space. Thea-particle matter densityrmat(k) @37# is shown
by the dashed-dotted line. It cutsrac.m.

ls j (k) at large momenta

and the transition densityra
ls j(k) ~dotted line! of a-core

nucleons has a shape similar to that of a halo neutron
shifted to larger momenta.

Figure 3~c! shows the theoretical differential cross se
tions for excitation of the 21 resonance in inelastic scatterin
of 6He on 12C at collision energy 240 MeV/nucleon. Th
total differential cross section and separate contributi
from interactions with halo and core nucleons are shown
solid, dashed, and dotted lines, respectively. The core c
section has a maximum at larger angles than that from
halo neutrons. The two contributions become equal at
upper end of the shown angular interval~at transferred mo-
mentum;1 fm21). At larger momenta the core contributio
dominates. This tendency shows that a large momentum
more easily transferred in scattering via the more massiva
constituent. The total differential cross section for the 21

resonance shows a strong constructive interference betw
halo and core contributions.

Another example of interplay between core and h
nucleons is given in Fig. 3~d! where the angular distribution
for dipole excitations withE* <4.5 MeV is shown@the no-
tation is the same as in Fig. 3~c!#. The peak at forward angle
is due to pure Coulomb excitations and it is completely d
termined by thea-core contribution. The second peak
larger angles is excited by the nuclear interaction. The c
contribution is roughly twice that of the halo nucleons a
shifted to larger angles. But now there is a destructive in
ference between the halo and core degrees of freedom.
total cross section is less than the individual contributio
and shows a bump at larger angles. Hence, a correct t
ment of translational invariance in light nuclei such as6He,
intimately connected with recoil effects, is an important p
of reaction dynamics and has to be taken into accoun
quantitative descriptions of nuclear reactions.

III. RESULTS AND DISCUSSION

A. Physical input to the calculations

Before a discussion of results the necessary details on
physical ingredients in the microscopic model of a tw
neutron halo breakup have to be reemphasized. As follo
from the formulas above, in the distorted-wave framewo

e

r-
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S. N. ERSHOV, B. V. DANILIN, AND J. S. VAAGEN PHYSICAL REVIEW C64 064609
the reaction amplitude has three ingredients:~i! The structure
of the target nucleus~matter density! and of the halo system
~transition densities!. ~ii ! The nucleon-nucleon effective in
teractions between projectile and target nucleons.~iii ! The
optical potentials for relative motion of projectile and targ
nuclei.

~i! The matter density distributions of12C and 208Pb nu-
clei have the two-parameter Fermi form with parameters@38#
chosen to reproduce the rms radius and surface thickne
density distributions.

To calculate transition densities for6He we employ the
method of hyperspherical harmonics@10#. The quantitative
calculations have been carried out with the GPTn-n poten-
tial and Kukulin’s n2a potential2 with even-odd splittings
@39# for Kmax540 (01),Kmax539 (12) @10#. A polarization
potential with inverse cubic dependence@10# was added in
the ground-state calculation to reproduce the binding ene
The treatment of the Pauli principle followed in Ref.@40# has
been extended, but will be discussed in a separate pub
tion @41#. Our results, except for the dipole excitation~see
below!, do not depend essentially on this modification. T
Feshbach reduction to active subspace was used, and
partial states we have reduced the initialK;40 hyperhar-
monic space~enough for practical convergence! to K;10,
which gives the same results as a strict calculation in
larger initial space. With this structure input, we calculat
the soft dipole response function. The comparison with
experimental GSI data@12# is shown in Fig. 4 by the solid
line. Monopole 01, dipole 12, and quadrupole 21 excita-
tions in 6He with energies from threshold up to 10 Me
were considered.

~ii ! The effectiveNN interactionVpt defines the dynamics
of the one-step reactions. At intermediate collision energ
the impulse approximation is reasonable and has prove
be very successful. In this approximation the nucleo
nucleont matrix describing a freeNN scattering is used as a

2In comparison with our earlier paper@17#, we have used an im
proved version of then2a potential and an improved computa
tional technique. Hence, the results differ numerically slightly fro
previous work, but the conclusions are not changed.

FIG. 4. Dipole strength distributions for6He. Dashed, dotted
and solid lines are for previous theoretical calculations from R
@10,11# and present work, respectively. Dark squares are experim
tally derived boundaries from Ref.@12#.
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effective interaction. In the calculations we used thet-matrix
parametrization by Love and Franey@42#. The contribution
of an exchange knockout amplitude was taken into acco
in the pseudopotential approximation.

~iii ! Heavy ion elastic scattering defines the optical pot
tials needed for calculations of the distorted waves in
initial channel. Until now, there are no experimental data
elastic 6He scattering from the12C and 208Pb nuclei. There-
fore, optical potentials for12C scattering on12C and 208Pb
targets at energy 200 MeV/nucleon@43# were used.~The
radius parameters were scaled proportionally to the num
of nucleons in6He.! For fragmentation on12C the calcula-
tions have also been done with the optical potential fr
work @44#. This optical potential describes the experimen
data for12C-12C elastic scattering in a large angular region
energy about 100 MeV/nucleon and has a shallow imagin
part. This energy is probably somewhat low but comparis
of our results with different types of potential~‘‘deep’’ and
‘‘shallow’’ ! may give an estimation of ambiguity and che
the sensitivity of breakup calculations to the optical pote
tials. Since the nuclear excitation energy is negligibly sm
in comparison with the collision energy, the optical potent
in the final channel is taken to be the same as in the init

B. Inclusive excitation spectra

Table I gives total theoretical cross sections integra
over excitation energy up to 10 MeV for inelastic scatteri
of 6He on 208Pb and12C targets. Figures 5 and 6 show th
corresponding spectra compared with experimental data@12#.
The calculations correctly describe absolute values and s
tral shapes for both reactions, in spite of their different re
tion mechanisms. Still theory underestimates the total cr
sections somewhat, caused by insufficient contributions
higherE* . In this respect the calculations can be improv
by inclusion of excitations with higher multipolarities@15#,
currently not taken into account.

.
n-

TABLE I. Theoretical ~integrated over excitation energyE*
<10 MeV) cross sections~mb! for inelastic excitation of6He at
240 MeV/nucleon on208Pb and12C targets.N ~C! labels calcula-
tions with purely nuclear~Coulomb! forces. Experimental data@12#
include cross sections up toE* <12.3 MeV.

Total Elas. Inel. 01 12 21 2res
1

208Pb
N1C 578 378 199 82 320 176 87
N 320 136 184 82 55 184 91
C 252 224 28 0 251 1 0.3
Expt. @12# 6506110 1464
12C
(N1C) a 25.5 14.6 11 3 7.6 15 7.9
N a 24.7 13.2 11.5 3 6.3 15.4 8.1
C a 1.6 1.5 0.1 0 1.6 0.02 0.01
(N1C) b 31.4 16.9 14.5 6.1 9.9 15.3 8.1
Expt. @12# 3065 460.8

a@43#.
b@44# are the optical potentials used in the calculations.
9-14
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INELASTIC EXCITATIONS AND MOMENTUM . . . PHYSICAL REVIEW C64 064609
The contributions@Fig. 5~a!# to inclusive spectra on lea
target from different multipole excitations in6He display a
small monopole contribution, while the dipole dominates a
the well-known three-body 21 resonance at 1.8 MeV is
strongly excited~total cross section;90 mb). Since the cal-
culated 21 resonance width (;60 keV) is less than the ex
perimental (;113 keV) and no energy averaging over e
perimental resolution performed, the theoretical peak cr
section exceeds the experimental one. The steep cr
section increase at threshold is completely due to dipole
citations. Figure 5~b! shows the cross sections for calcul
tions with only Coulomb or nuclear interaction. Coulom
dissociation dominates, but cannot alone describe the a
lute values of experimental data. Applying the semiclass
method to our dipole strength function gives;355 mb for a
cutoff minimum impact parameter of 9.5 fm. Quantum c
culations when only the Coulomb part of the optical pote
tials is present gave;330 mb for the dipole elastic cros
section. The excitation of the 21 resonance is connecte
mainly with the nuclear interaction. The Coulomb a
nuclear dissociations have a different dependence on ex
tion energyE* . The Coulomb cross section dominates
smaller E* but falls rapidly with increasing energy. Th
nuclear part has a weak dependence onE* and decrease
with energy rather slowly. As a result, the two contributio

FIG. 5. Comparison of the theoretical6He excitation spectrum
~thick solid line! for 6He1 208Pb breakup at 240 MeV/nucleon wit
experimental data@12#. ~a! The thin solid, dashed, and dotted line
show the dipole 12, quadrupole 21, and monopole 01 contribu-
tions.~b! Dashed~dotted! lines show calculations with only nuclea
~Coulomb! interactions.~c! Dashed~dotted! lines are contributions
from elastic~inelastic! fragmentation.
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become equal aroundE* ;7 MeV. The cross section contri
butions from elastic and inelastic fragmentation are shown
Fig. 5~c!. Although the elastic fragmentation dominates t
low-energy part of the spectrum, for a quantitative descr
tion both contributions have to be taken into account sim
taneously. Near the threshold, the total cross section c
cides with the elastic. Elastic and inelastic fragmentatio
give approximately equal contribution to the 21 resonance.
The dependence onE* is different for the two processes
The elastic fragmentation cross section decreases rap
with energy while the inelastic stays rather flat. In total,s in
on 208Pb contributes about 30% of the total cross section
E* <10 MeV.

Figure 6 shows comparisons of theoretical calculatio
~using optical potential@43#! with experimental data@12# for
6He1 12C at 240 MeV/nucleon. The peak, the most pr
nounced feature in the spectrum, is due to excitation of
21 resonance@Fig. 6~a!# with total cross section;8 mb.
Above the resonance, in the flat part of spectrum, appro
mately half of the cross section is due to dipole, a third
quadrupole, and the rest is monopole excitations. On car
target the inclusive excitation spectrum is completely defin
by nuclear interaction@Fig. 6~b!# and the contributions from
elastic and inelastic fragmentations are approximately eq
@Fig. 6~c!#. The excitation energy dependence is weak,
still the cross section for elastic fragmentation shows a t
dency of decreasing fastest whenE* becomes larger.

As experiments show, the low-lying6He inelastic spectra
for reactions on12C and 208Pb targets have different shape

FIG. 6. The same as in Fig. 5 but for the6He1 12C reaction.
9-15
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This difference has a dynamical origin and can be explai
by interplay of short-range nuclear and long-range Coulo
interactions. The reaction form factor, due to attract
nuclear forces, has a finite extension in coordinate sp
Coulomb repulsion reduces the nuclear form factor at sm
radii and produces a Coulomb tail~45! at large. The rate of
the tail falloff is defined by the transition multipolarity. Th
monopole should decrease most slowly, but due to ortho
nality between the ground and excited 01 states of6He, the
monopole form factor is zero at large distances. Hence,
dipole form factor has the longest extension in space
dipole excitations are the most sensitive to the strength
Coulomb interaction. Both space regions, internal and ex
nal, cause a breakup reaction. In breakup on12C, the contri-
bution from the internal region dominates while for the208Pb
case, due to strong Coulomb interaction, the reverse is t
Figure 7 shows by solid lines the quadrupole@Figs. 7~a! and
7~c!# and dipole@Figs. 7~b! and 7~d!# excitations of the6He
for reaction on the12C and 208Pb targets. The dashed an
dotted lines are for excitations caused only by Coulomb
nuclear interactions, respectively. For quadrupole transiti
@Figs. 7~a! and 7~c!# the Coulomb interaction is not impor
tant. For both targets they are excited mainly by nucl
forces ~dotted lines! and the cross section is roughly in
creased by one order of magnitude going from light to he
targets. For dipole excitations@Figs. 7~b! and 7~d!# the pic-
ture is qualitatively different. The nuclear excitations~dotted
lines! are more than two times bigger than Coulomb
breakup on12C and its cross section is roughly increased
one order of magnitude in the reaction on208Pb. But dipole

FIG. 7. Quadrupole~a! and dipole~b! excitations of the6He on
208Pb, and quadrupole~c! and dipole~d! excitations on12C. Dashed
~dotted! lines show calculations with only Coulomb~nuclear! inter-
actions.
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cross sections due to Coulomb forces~dashed lines! are in-
creased by more than two orders of magnitude going fr
carbon to lead targets. This factor is similar to the square
the ratio of target charges and is expected for pure Coulo
excitations. When both interactions are present, the pic
becomes more complex: There is a destructive interfere
in the internal region and Coulomb excitation in the out
Therefore, explicit calculations are needed to get a quan
tive result.

In the calculations discussed above, we used the op
potentials@43# fitted to describe the12C elastic scattering a
200 MeV/nucleon on the carbon and lead targets with rad
parameter scaled to the6He size. Therefore, it is reasonab
to estimate the uncertainty of the calculations and check
sensitivity of the results to potential variations. As an alt
native, we choose the optical potential from work@44# fitted
to elastic data on12C1 12C scattering in a large angular in
terval at energy;100 MeV/nucleon. This energy is lowe
than ours but the potential has a ‘‘shallow’’ imaginary pa
and is an example of another class of optical potentials. W
radius parameter scaled to6He, this potential may give a
reasonable variation of the optical potential. It is of spec
interest to estimate the influence on inelastic fragmenta
that is formally proportional to the potential imaginary pa
@see Eq.~11!#. Figure 8~a! compares the calculations of th
inelastic spectrum for ‘‘deep’’~dashed line! and ‘‘shallow’’
~solid line! potentials. The calculations with the shallow p
tential have a similar spectral shape but somewhat la

FIG. 8. ~a! Comparison of the theoretical6He excitation spec-
trum for 6He1 12C breakup at 240 MeV/nucleon for calculation
with the ‘‘shallow’’ ~solid line! and ‘‘deep’’ ~dashed line! optical
potentials.~b! The thin solid, dashed, and dotted lines show t
dipole 12, quadrupole 21, and monopole 01 contributions for cal-
culations with the ‘‘shallow’’ optical potential.~c! Differential cross
sections for6He inelastic scattering at 240 MeV/nucleon in12C
target for region of excitation energiesE* <4.5 MeV. The solid,
dashed, dotted, and dash-dotted lines are for the total, 21, 12, and
01 transitions, respectively. The double-dotted dashed line is
total cross section for ‘‘deep’’ optical potential.
9-16
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INELASTIC EXCITATIONS AND MOMENTUM . . . PHYSICAL REVIEW C64 064609
values of absolute cross sections. The total cross sec
from threshold up to 10 MeV excitation energy is increas
by 20%. Figure 8~b! shows for the shallow potential the de
composition of the inelastic spectrum on contributions fro
different multipole excitations~thin solid, dashed, and dotte
lines for 12, 21, and 01, respectively!. The most remark-
able observation is the increase of monopole cross sect
To demonstrate better these changes, Fig. 9 shows the
parison of calculations with ‘‘deep’’~solid lines! and ‘‘shal-
low’’ ~dashed lines! potentials for different multipole excita
tions. It has been seen from Fig. 9~a! that quadrupole
transitions have only minor changes. Dipole cross secti
@Fig. 9~b!# are increased by 30%. The most significant
crease@Fig. 9~c!# by more than two times is that of th
monopole excitations. It is clearly demonstrated that us
the shallow or transparent potential, influences most stron
the excitations that are concentrated more deeply inside
nucleus. The contributions from elastic and inelastic fra
mentation for shallow potentials are increased similarly,
elastic slightly more then elastic.

It is useful to get a more detailed insight into the inelas
fragmentation, especially the spatial distribution for inelas
fragmentation cross sections as it is defined by Eq.~11!.
Figure 10 shows the radial distributions of total inelas
fragmentation cross sections for reaction on208Pb @Fig.
10~a!# and on 12C for calculations with shallow@Fig. 10~b!#
and deep@Fig. 10~c!# optical potentials. The thick solid
dashed, dashed-dotted, and dotted lines denote the total2,
21, and 01 cross sections, respectively. Thin solid lines d
note the imaginary parts of corresponding optical potenti
scaled arbitrarily. The curves show that inelastic fragmen
tion ~thin solid lines! is concentrated in the surface region.
is suppressed in the internal region since the significant

FIG. 9. Comparison of different multipole contributions for ca
culations with the ‘‘deep’’~solid line! and ‘‘shallow’’ ~dashed line!
optical potentials. The quadrupole, dipole, and monopole are sh
in ~a!, ~b!, and~c!, respectively.
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tial waves that define the Green’s function behavior at sm
radii, are suppressed due to absorption. At large radii,
exponential decrease of the optical potential imaginary p
is responsible for suppression. This behavior clearly dem
strates the peripheral nature of the inelastic fragmenta
reaction. Physically, the suppression in the internal reg
singles out the reactions that do not destroy the core.
suppression at large radii means that nuclei have to be c
enough to excite each other.

An additional observation is related to the radial distrib
tions of different multipole cross sections. The higher t
multipolarity, the more an excitation is shifted to the surfa
The monopole~dotted lines! has a volume character, the d
pole ~dashed lines! is concentrated on the surface, and t
quadrupole~dashed-dotted lines! is shifted even further from
the center. The radial distributions for the shallow poten
@Fig. 10~b!# are broader than those for the deep one@Fig.
10~c!#. A transparent potential more strongly underlines t
partial waves with low values of orbital momenta than
absorptive one. Therefore, contributions from the inter
space play a bigger role in the reaction in comparison w
the case of strong absorption. It qualitatively explains
doubling of the monopole and minor influence on the qu
rupole contributions in calculations with deep and shall
potentials. Practically, there are two competitive factors a
ing in different directions. One is that an inelastic fragme
tation cross section~11! is proportional to the absolute valu

FIG. 10. The radial distributions of the inelastic6He breakup at
240 MeV/nucleon~a! on the 208Pb target,~b! and ~c! on the 12C
target calculated for the ‘‘shallow’’ and ‘‘deep’’ optical potentials
The thick solid, dashed, dash-dotted, and dotted lines show
total, dipole, quadrupole, and monopole contributions, respectiv
The thin solid line shows the arbitrarily scaled imaginary part
optical potential.

n
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S. N. ERSHOV, B. V. DANILIN, AND J. S. VAAGEN PHYSICAL REVIEW C64 064609
of imaginary potential part. The second is that a large abs
tion strongly suppresses the contributions from the inter
region and, hence, decreases the cross section. In our
the second factor is more significant.

C. Fragment energy distributions

Figure 11 shows the different fragment energy spectra
6He breakup on208Pb target. Thea-neutron and neutron
neutron relative energy distributions are compared with
perimental data@12# in Figs. 11~a! and 11~c!. Thea-particle
and the halo neutron energy spectra in the projectile
frame are shown in Figs. 11~b! and 11~d!. The thick solid,
thin solid, dashed, and dotted lines show the total, dipole2,
quadrupole 21, and monopole 01 contributions, respec
tively. The theoretical two-body energy correlations@Figs.
11~a! and 11~c!# correctly reproduce the falloff of the cros
sections with increasing relative fragment energy, but
small energies there are some deviations from meas
data. For a fair comparison with experiment the theoret
calculations have to be folded with instrumental respons
order to correct for efficiency and solid-angle acceptance
the fragment detectors. Since these experimental distort
are not included in the calculations, it is premature to dr
definite conclusions from this comparison. Decays from
dipole excitations dominate the energy spectra and define

FIG. 11. Top: Comparison of the theoretical spectra of the re
tive energy between thea particle and a halo neutron~a!, and
between two halo neutrons~c!, for 6He1 208Pb breakup at 240
MeV/nucleon with experimental data@12#. Bottom: Energy spectra
of a particle ~b!, and of a halo neutron~d!, in the projectile rest
frame. The thick solid, thin solid, dashed, and dotted lines show
total, dipole 12, quadrupole 21, and monopole 01 contributions,
respectively. The dash-dotted lines correspond to calculation
total spectra without final-state interactions.
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slope at large energies. Decays from quadrupole states~from
the three-body 21 resonance! are important at small ener
gies. The neutron-neutron spectrum@Fig. 11~c!# from the 21

resonance has a peak close to the threshold revealing
strong nucleon-nucleon correlations. The shapes of the1

a-particle and neutron spectra@Figs. 11~b! and 11~d!, dashed
lines# are qualitatively similar to the shapes that were m
sured from decay of the 21 resonance populated in th
7Li( d,3He)6He(Jp521,E* 51.8 MeV) reactions@45,46#. It
is interesting to note that the shape of the totala-particle
spectrum@Fig. 11~b!, thick solid line# coincides perfectly
with experimental data for neutron-a correlations @Fig.
11~a!#. To demonstrate the importance of final-state inter
tions, the dash-dotted lines in Fig. 11 show the calculati
when mutual interactions between the projectile fragment
the exit channel were neglected~the fragment relative mo-
tion are described by three-body plane waves!, while the
halo ground-state wave function keeps a complex correla
structure. We see that only the spectrum of the single he
fragment@Fig. 11~b!# has a shape qualitatively similar to th
full calculation ~still the width of the peak is essentiall
broader! while all other spectra differ markedly.

D. Fragment momentum distributions

Recently @16# we demonstrated within our microscop
approach that in diffractive~elastic! breakup of Borromean
halo nuclei on proton target, the correlated continuum ex
tations play a crucial role in fragment momentum distrib
tions. Now, similar properties are revealed in6He fragmen-
tation on complex nuclei when processes of elastic a
inelastic fragmentation take place.

Figure 12 showsa-particle longitudinal momentum dis
tributions for 6He breakup on12C target at 240 MeV/
nucleon. In Fig. 12~a! the thick solid line shows the tota
distribution that includes contributions from the continuu
excitations with energyEk,10 MeV. To clarify the nature
of the momentum distributions, the contributions from thr
different intervals of the6He continuum~see caption of Fig.
12! are also shown. The well-known 21 resonance atEk
50.83 MeV, which dominates in6He energy spectra@12#,
determines the contribution from the first interval. The se
ond interval contains excitations of different soft mode
while the third corresponds to the highest excitation energ
taken into account in our model. We see that a narrow wi
of a momentum distribution is due to decays of excitatio
near the breakup threshold~from the first and second inter
vals!. The decays from the highest excitation energies~the
third interval! give a broad distribution and define the wing
of the total distribution~at a fixed excitation energy the mag
nitude of a fragment momentum is restricted by allow
phase space!. Since momentum distributions are highly int
grated observables, their dependence on the exact locatio
the soft modes and higher excitations is not strong.

Figure 12~b! shows the partial content, i.e., contribution
from continuum states with differentJf

p . Since amplitudes
for different states interfere with each other, an estimate
the partial contributions was carried out by incoherently a
ing the cross sections for allJf

p . The difference between thi
~dash-dotted! line and the one corresponding to the comple

-

e
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INELASTIC EXCITATIONS AND MOMENTUM . . . PHYSICAL REVIEW C64 064609
calculation~thick solid line!, gives an estimate of the impo
tance of such interference. In our case, the interferenc
small. The shape of the longitudinal distribution is sligh
asymmetrical@asymmetry is seen in high momentum tails
Fig. 12~a!#, which supports this statement. The decay fro
21 is the largest and gives the narrowest part of the dis
butions, the 12 is the second in importance, and the 01 gives
a small contribution. Hence, the structure of the continu
determines the essential features of momentum distributi

In Figs. 12~c! and 12~d!, the situation with no FSI is
shown, i.e., the continuum6He wave functions were de
scribed by three-body plane waves, but correlations in
ground state were kept the same. Large differences are
when neglecting FSI: the 21 resonance disappears, and the
is practically no contribution from the low-energy regio
The contribution from the highest excitation energies is
largest. The width of the distributions is correspondingly
creased, and the partial content is strongly changed. The
tribution from the 01 dominates the momentum distributio
while the role of the 21 and 12 excitations become essen
tially smaller. Monopole wave functions for continuum exc
tations must be orthogonal to the ground state since t

FIG. 12. The calculated longitudinala-particle momentum dis-
tributions in 6He breakup on12C target at 240 MeV/nucleon:~a!
and ~b! include FSI, while~c! and ~d! are without FSI. The thick
solid line shows the total momentum distribution. For~a! and ~c!,
the thin solid, dashed, and dotted lines correspond to the cont
tions from the 6He continuum for excitation energy intervals
,Ek,1 MeV, 1,Ek,5 MeV, and 5,Ek,10 MeV, respec-
tively (Ek measured from the three-body thresholdEthresh

50.97 MeV). For~b! and ~d! the dashed-dotted line shows tot
distribution without interference between excitations with differe
Jf

p ; the thin solid, dashed, and dotted lines show contributions fr
decay of the 21, 12, and 01 excitations, respectively.
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have the same quantum numbers and correspond to diffe
energy eigenvalues of the projectile Hamiltonian. Neglect
the FSI leads to violation of this important requireme
Thus, the final-state interaction is decisive: It defines
structure of the continuum excitations that directly influenc
the width of the momentum distributions.

The calculated core and neutron transverse momen
distributions in various approximations and normalized
unity at zero momentum, are compared with experimen
data @19# for 6He fragmentation on the12C target in Figs.
13~a! and Fig. 13~b!. The solid~dashed! lines correspond to
calculations with~without! final-state interactions, and th
dotted line shows the transverse distributions from the Se
model @47#. The experimental data~black squares! @19# cor-
respond to the coincidences between ana particle and a
neutron. The Serber model does not simultaneously desc
the core and neutron momentum distributions. For the c
it overestimates the distribution wings, which demands c
ting the contribution for high momentum. For the neutron
gives a significantly broader distribution. Calculatio
~dashed lines! that take into account the reaction mechani
and the correlations in the ground state, but neglect FSI,
also insufficient and overestimate the width of the neut
distribution. Because of the FSI, a redistribution of transiti

u-

t

FIG. 13. Momentum distributions for6He breakup at 240 MeV/
nucleon, normalized to unity at zero momentum.~a! and ~c! show
transversea and halo neutron distributions on12C target, respec-
tively. The solid~dashed! line shows total momentum distributio
with ~without! final-state interaction. The dotted line is the distrib
tion from the Serber model. The experimental data~black squares!
from @19# correspond to the coincidences between ana particle and
a neutron.~b! and ~d! showa-particle transverse and halo neutro
longitudinal momentum distributions. The solid~dashed! line cor-
responds to the reaction on12C (208Pb) target.
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S. N. ERSHOV, B. V. DANILIN, AND J. S. VAAGEN PHYSICAL REVIEW C64 064609
strength over continuum excitation energy occurs, the lo
energy part being enhanced. As a result, the momentum
tributions become narrower than without FSI. Since
final-state interaction most strongly influences the motion
the light fragments, the shape of the neutron distribut
changes more strongly than for thea particle. Finally, the
full calculations with FSI~solid lines! are slightly narrower
than the experimental data for both fragment distributio
The reason is that the theoretical calculations include o
the low-energy part (Ek,10 MeV) 6He excitation spectrum
~with undestroyeda particle! while the experimental data
contain also fragments from higher excitations since the6He
excitation energy cannot be defined from a singlea-neutron
coincidence. The fragments from high-energy excitatio
have a flat, broad momentum distribution and taking th
contribution into account in theoretical calculations will im
prove the agreement with experimental data. Thea-particle
transverse and neutron longitudinal momentum distributi
for 6He breakup on12C ~solid line! and 208Pb ~dashed line!
targets are compared in Figs. 13~b! and 13~d!, respectively.
We see that the shapes of the momentum distributions
both reactions are rather similar in spite of differences
reaction mechanism.

E. Differential angular cross sections

In the approach we have developed, we can, as was m
tioned above, only calculate a differential angular cross s
tion d2s/dk̂f for processes of elastic6He fragmentation, i.e.
when the target does not get excited in the reaction. In k
matically complete experiments, it is possible to reconstr
the 6He recoil momentum as a sum of the momenta of
fragmentskn1

1kn2
1ka and get the angular distribution o

the 6He c.m. motion at fixed excitation energy. Since it
unknown how the energy transferred to the target is dist
uted between the c.m. motion and the internal excitation
the target, the experimental data contain the events for b
processes: elastic and inelastic breakup. Therefore, a qu
tative comparison of theoretical angular distributions w
experimental data is less certain.

Figure 14 shows the angular distributionsds/du for in-
elastic scattering of6He in carbon@Figs. 14~a! and 14~b!#
and lead@Fig. 14~c!# targets at 240 MeV/nucleon. Exper
mental data are from Ref.@20#. Figures 14~a! and 14~c! con-
tain the events with6He excitation energy<4.5 MeV, the
Fig. 14~b! is for a more narrow range ofE* <2.5 MeV to
underline the role of the 21 resonance. The solid, dashe
dotted, and dashed-dotted lines correspond to the theore
calculations of the total, quadrupole, dipole, and monop
contributions of elastic fragmentation leading to the6He ex-
citations lying in the energy ranges. For breakup on12C
target@Figs. 14~a! and 14~b!# the experimental data and the
oretical calculations give similar shapes with a narrow pe
at extremely forward angles and broader bump atu
;40 mrad. The nature of the broad bump is explained by
excitation of the 21 resonance@Fig. 14~b!# that dominates in
the low-lying part of the6He inelastic spectrum. At highe
E* , the dipole excitations are also important in addition
quadrupole transitions. They have their maxima in the an
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lar distribution at angles slightly smaller than those of qua
rupole and, as a result, the total angular distribution beco
broader@Fig. 14~a!# than it is for pure quadrupole excita
tions. The nature of the small-angle peak in the theoret
calculations is completely due to dipole excitations. Furth
more, if the attractive nuclear part from a projectile-targ
NN interactionVpt is switched off, the forward-angle pea
keeps its position and absolute magnitude@thin solid line in
Fig. 14~a!# while the peak at larger angles~nearly quadru-
pole! disappears. Hence, we conclude that pure Coulo
interaction is responsible for the forward-angle peak. This
a signal of long-ranged breakup of the halo nucleus on a l
target that, due to the weakness of Coulomb forces in s
systems, is clearly separated from nuclear breakup.

The angular position of the very forward peak is rath
stable in theoretical calculations. The quantal, semiclass
or simply plane-wave Born estimations~which can be used
since the Sommerfeld parameterh that characterizes the
strength of Coulomb interactions is small,h;0.1)—all give
a peak position at angles of about 1 mrad. The experime
data indicate a peak at larger angles. The effects of dis
tions due to finite acceptance and efficiency of fragment

FIG. 14. Differential cross sections for6He inelastic scattering
at 240 MeV/nucleon in~a! 12C target for 6He excitation energies
E* <4.5 MeV; ~b! 12C target for excitation energiesE*
<2.5 MeV; ~c!, ~d! 208Pb target for region of excitation energie
E* <4.5 MeV. The solid, dashed, dotted, and dash-dotted line
~a!, ~b!, and ~d! are for the total, 21, 12, and 01 transitions, re-
spectively. The thin solid line in~a! shows calculation of differentia
distribution in the case where only Coulomb forces are presen
the projectile-targetNN interactionVpt . In ~c!, the dashed, dotted
and solid lines correspond to calculations where the projectile-ta
NN interactionVpt includes only Coulomb or nuclear forces an
both together, respectively. The experimental data~black squares!
are from Ref.@20#.
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INELASTIC EXCITATIONS AND MOMENTUM . . . PHYSICAL REVIEW C64 064609
tection have to be applied to the theoretical calculations fo
fair comparison with experimental data. The monopole ex
tations play a smaller role in the low-lying transitions sin
the monopole wave functions are orthogonal to the gro
state having the same quantum numbers. But they ha
maximum in angular distributions just at the place where
pure Coulomb dipole is significantly decreased, while
quadrupole is not yet enhanced and have to be taken
account in quantitative analysis of angular distributions.

Figure 8~c! demonstrates the sensitivity of angular dist
butions to the optical potentials used for description of
relative motion of the colliding nuclei. The first peak arisin
from Coulomb excitation does not show sensitivity while t
second~mainly from nuclear interactions! is strongly de-
creased for a shallow potential. In this case in the ang
region of the second bump, the quadrupole excitations
weaker, while the dipole and monopole show smooth fall
behavior. Therefore, the description of an angular distri
tion due to nuclear interactions demands knowledge of o
cal potentials for which the elastic scattering data are
quired.

Figures 14~c! and 14~d! show differential distributions of
6He breakup on the208Pb target. Coulomb forces are stron
and predominantly excite the dipole transitions. The shap
angular distributions is rather smooth for a pure Coulo
interaction@dashed line in Fig. 14~c!#. But nuclear interac-
tions are important since the interference with Coulomb p
duces irregularities in angular distributions. The strength
interference shows some sensitivity to the optical potent

F. Angular distributions

For three-particle breakup of Borromean nuclei, a vari
of different angular distributions can be studied. A detai
discussion of their properties will be given elsewhere. H
we give only one example—angular distributions of thea
particle with respect to the beam direction for6He fragmen-
tation on 12C and we try to illuminate the main features
such distributions. Figure 15~a! shows the total distribution
and separate contributions from the dipole, quadrupole,
monopole excitations. Thea decay from the states in6He
for E* <10 MeV were taken into account. The decay fro
monopole states is isotropic while that from the states w
nonzero angular momentum shows anisotropy with increa
probability to fly in the plane perpendicular to the beam
rection. Figures 15~b!, 15~c!, and 15~d! show thea-particle
angular distributions from elastic and inelastic breakup
different multipole excitations. We see that angular distrib
tions from elastic and inelastic breakup are qualitatively d
ferent. Only the elastic breakup from states with nonz
total momenta shows an angular anisotropy while in inela
fragmentation thea particles have no preferable directio
The formal reason is that the optical potential used for c
culations of inelastic fragmentation in Eq.~36! is spherically
symmetric. For nonzero values ofL in Eq. ~41!, which de-
scribe the deviation from angular isotropy, the product of t
inelastic amplitudesT̃l b ,l a

l j t j p ,d(R,kf ,ki ,k) with different angu-

lar momental a has radial oscillations. An integration overR
decreases the terms withLÞ0 and, finally, the angular dis
tributions are flat.
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Figure 16 shows the same distributions as shown in F
15 but for calculations without final-state interactions. T
total angular distribution@Fig. 16~a!# is flatter in comparison
with calculations with FSI. Comparisons of contributions f

FIG. 15. Angular distribution calculations for thea fragment
with respect to the beam direction, in the projectile rest frame
6He breakup on the12C target.~a! The solid, dashed, dotted, an
dashed-dotted lines show the total, dipole, quadrupole, and m
pole contributions, respectively. In~b!, ~c!, and ~d!, the angular
distributions for dipole, monopole, and quadrupole excitations
given separately. The solid, dashed, and dotted lines show the
elastic, and inelastic contributions, respectively.

FIG. 16. The same as in Fig. 15 but without final-state inter
tions.
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S. N. ERSHOV, B. V. DANILIN, AND J. S. VAAGEN PHYSICAL REVIEW C64 064609
different multipole excitations@Figs. 16~b!–16~d!# with cor-
responding distributions in Figs. 15~b!–15~d! show that the
dipole and quadrupole distributions are similar in shape
in absolute magnitude while the isotropic monopole is
creased about 30 times in calculations without FSI. T
again demonstrates the importance of the orthogonality
tween excited- and ground-state wave functions for mo
pole excitations lost in calculations without FSI.

IV. CONCLUSIONS

The characteristics of halo phenomena in light Borrome
nuclei are present in properties of both bound and continu
states near the three-body breakup threshold. These state
also coupled by the ways we learn about halo phenom
the nuclear reaction mechanism intertwines bound and
cited states and reveals the peculiarities of halo structure
transitions to low-lying halo excited states that subseque
decay into fragments. These events can be studied by a
archy of observables in kinematically complete experime
Such experiments allow sophisticated analyses of the
and give a possibility to reconstruct projectile excitati
spectra and different correlations between fragments. In
quantitative theoretical analysis of such experiments,
final-state interactions between all halo fragments have to
taken into account. Due to the small relative fragment velo
ties at low halo-excitation energies, no interaction can
neglected. At these conditions, the no-FSI approximati
and even the spectator model, are invalid.

For definite physical conditions, simplification of the r
action mechanism makes it possible to develop a viable
proach. At intermediate energies, the one-step reac
mechanism dominates and the distorted-wave impulse
proximation~DWIA ! can be applied. These approaches c
tain, as a main part, the microscopic three-body structur
the ground state and the exact three-body continuum@15#.
This enables us to study, in principle, the internal halo str
ture via all possible fragment correlations.

We have extended our microscopic four-body DW
theory for two-neutron halo breakup reactions to account
both elastic and inelastic breakups leading to low-lying h
.
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excitations. Within this approach, the Coulomb and nucl
dissociations are included in a consistent way that also
counts for Coulomb-nuclear interference. The importance
a correct treatment of recoil effects in the reaction dynam
of the light breakup projectile has been demonstrated.
method of hyperspherical harmonics is used for a consis
description of genuine features of the halo bound-state
the final-state interactions between all halo fragments.

Our four-body DWIA theory can be applied to kinema
cally analyze complete experiments, which allow reconstr
tion of the halo excitation spectrum, and single out the eve
carrying the most valuable information on correlations s
cific to two-neutron halo systems.

The method was used to analyze recent experimental
@12,20# on 6He fragmentation at 240 MeV/nucleon on12C
and 208Pb targets. In addition to a good simultaneous d
scription of absolute cross sections and excitation spectra
both reactions, new insight into the interplay of reacti
mechanisms and correlated continuum structure was
tained. It was shown that in breakup of Borromean nucle
fragment momentum distribution has a symmetrical sh
for transverse while it may be asymmetrical for the longi
dinal distribution. A number of other energy and angular c
relations between halo fragments were calculated within
same dynamical picture. The important role found for inel
tic fragmentation, i.e., inclusion of target excitations a
Coulomb-nuclear interference, is consistent with experim
tal data. To reduce the uncertainties in the theoretical ca
lations, experimental data for elastic scattering of halo nu
are needed, allowing us to more precisely define the reac
dynamics. Application of the approach to other Borrome
nuclei is in progress.
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