PHYSICAL REVIEW C, VOLUME 64, 064609

Inelastic excitations and momentum distributions in kinematically complete breakup reactions
of two-neutron halo nuclei
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A microscopic quantum-mechanical approach to breakup reactions into the low-energy continuum of Bor-
romean two-neutron halo nuclei is developed, taking simultaneously into account Coulomb and nuclear dis-
sociation. The importance of including both elastic and inelastic fragmentation is demonstrat&defor
breakup on C and Pb targets at intermediate energies, for kinematically complete experiments. Recent GSI
experimental data are analyzed quantitatively and the results reveal a rich and complex interplay of reaction
mechanisms and low-lying halo excitations.
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I. INTRODUCTION heavy core and halo nucleons. The core detection in a frag-
mentation reaction primarily selects a peripheral collision,
The discovery of halo structure in light nuclei at the neu-but may correspond to a wide spectrum of excitation ener-
tron dripline has given new impetus to theoretical investiga-gies in the halo nucleus. A simultaneous detection of all frag-
tions of nuclear structure and reaction mechanisms. In a nef€nts allows reconstruction of the halo spectrum and singles
generation of kinematically complete experiments, unique?ut the low energy part, thus underlining the reaction mecha-
data on halo excitation functions are becoming accessibldliSm that is the most sensitive to the halo structure. In addi-
revealing the continuum spectrum as well as different corretion, & variety of angular and energy correlations of detected
lations between halo fragments. This demands developing"f“Jmer_‘ts become accessible and shed light on intimate de-
microscopic models that properly take into account the details .Of mteractlon_dynamlcs Of. exotic nuclei.
grees of freedom and dynamics responsible for halo struc- Different reaction mechanisms such as Coulomb or
ture. Thus current emphasis is on understanding the intrinsir(1:l“:|e"’1r.d'ssoc"'ﬂIon may emphasize different sides of these
. : . correlations. To quantitatively understand them, the Coulomb
pr(_)pertles of b.Oth bound gnd excited states that are !nteréind nuclear interactions have to be treated on equal footing,
twined by reaction mechanisms and expressed through incl

. . X lé'xplicitly taking into account the Coulomb-nuclear interfer-
sive or exclusive observables that often are also distorted bé(nce

detection efficiency and finite acceptance of experimental in- THere are different approaches to breakup dynamics in

stallations. o reactions with unstable nuclei. A simple and extensively used
The characteristic features of halo phenomena are connggdel for energetic fragmentation is the Serber mdag!

nected not only with the specific structure of the ground-stat®ased on the sudden approximation, but which only includes
wave function(weak binding, spatial granularity, and large ground-state correlations. This procedure has to be improved
extension but also with excitation of halo degrees of free- to make the extracted information on nuclear structure more
dom, reflected in the structure of the low-lying continuum quantitatively meaningful. The interactions with the target
which, near the three-body breakup threshold, reveals accghould be included at a dynamical level, and correlations
mulation of the transition strength for different multipole ex- caused by final-state interactiorf6Sl) between outgoing
citations, the so-called soft modes. halo fragments should be considered. In applications to halo
Highly integrated observables, measured in a variety ophysics several attempts exi8—9] that deal in different
reactions, show different sensitivity to the presence of halavays with these questions, but a consistent microscopic
structure. The halo increases the reaction cross section am@atment for the case of two-neutron halo nuclei has not
the scale of the effect is a few tenths. The width of fragmenbeen developed yet. Abw halo excitationenergies, when
momentum distributions becomes a few times narrowerrelative velocities of halo fragments are small, it is necessary
while the electromagnetic dissociation cross sections are ine take into account all final-state interactions, and the spec-
creased by orders of magnitude compared to reactions wittator model(knockout of constituents in halo nudleind, in
stable nucleil]. The sensitivity is defined by the role that particular, the no-FSI approximation are invalid. This has
the transitions from the ground state to the low-energy conmotivated us to develop a reaction model where the complex
tinuum play in the reaction, and is increased to a maximurmature of the low-energy continuum is treated in an accurate
for Coulomb dissociation. When excited to the low-lying way. To test the model, reactions wifile were considered.
continuum, the halo nucleus subsequently breaks up into the The ®He nucleus has become, both theoretically and ex-
perimentally, the test bench for a series of Borromean halo
nuclei such asLi, *Be, etc. Recently, a variety of theoret-

*Permanent address: JINR, RU-141980 Dubna, Russia. ical methods and models have also been developed for the
"Permanent address: RRC The Kurchatov Institute, RU-sesonance structure of halo excitations. For the continuum
123182 Moscow, Russia. structure, a striking observation has been made. While the
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well-known three-body 2 resonance irfHe is reproduced, neutron halo nucleus that breaks up into three fragmets
all three-body calculationgL0,11] have given a peaking of and target nucleud, can be written in the following way:
the strength concentration for the soft dipole mode at 1.2

MeV from the three-body threshold, which is not observed in (2m)*
recent experiments withHe[12]. This has called for further o= > f dkidk,dksdka: 6(Es—E))
investigation within the cluster three-body dynamics. oA

To fully understand the detailed Borromean halo excita- X 8(Pi—P)| Tsil2, (1)

tion structure of a nucleus such &ile, at least a four-body

reaction theory is necessary. A full-scale four-body theory . ,

that takes into account available reaction channels and thi¥here summation is over target excited statés(0 labels
complex structure of the constituents, has not been formuthe ground state HereEj=e,+ ¢4, Ef=e1+ &5+ 83t 6nr
lated. But for definite physical conditions, simplification of +Ea'+Q, Pi=ka+ka, Pr=k;+ky+ks+ka: are the total
the reaction mechanism makes it possible to develop a viablenergies and momenta of all particles before and after colli-
approach. At intermediate energies the one-step reactiogions.Q is the separation energy of the halo nucleus, while
mechanism dominates and the Glauber or distorted wave inEs, (=0, for ground stateis the excitation energy of the
pulse approximationDWIA) can be applied. These ap- target in stateA’, ¢; is a kinetic energy of particlg. The
proaches contain as a main part the microscopic three-bodglative incident velocity is vi=#Ak;/u;, and pu;
structure of the ground stat&lauber elastic scatterifd.3]), =muM /(m,+M,) is the reduced mass of the particles be-
and also final discrete states in DWIA charge-exchange reagore collision with m,=m;+m,+m;. We use the §+A)

tions [14], and the exact three-body continuurhb]. The  center-of-mass(c.m) coordinate frame B,=0,ky=—k,
latter enables us to study, in principle, the internal halo struc— K Ei=8i=h2k-2/2,ui) The Jacobi coordinates for par-
H 1 .

ture via all possible fragment correlations. : Lot ' X
Recently[16], in diffractive breakup of Borromean halo ticles both in initial and final systems are given by

nuclei onproton target, we demonstrated the crucial role of

the correlated continuum excitations in the fragment momen- k= ke kg __Mim;
tum distribution, within a microscopic four-body DWIA Tyt P mrmy
theory. We have now extended this approach to breakup re-
actions omucleartargets, especially suitable for a complete
ks kyitk; (mg+my)m

kinematic experiment, which gives information about all ko= (__
Y™ m; mp+m
3 1 2

beam and fragment momeng@xcept the recoil of the target
nucleus. Such experiments allow sophisticated analysis of
the data and give a possibility to reconstruct projectile exci-
tation spectra and different correlations between fragments. k¢= Mf(
But still some ambiguity exists since the energy transferred
to the target can be distributed in different ways between
internal excitations and center-of-mass motion. Pi=0, kitkyt+ky=—ka=—ks. 2
To be compared with experimental data that include ex-
cited final target states, the theoretical models have to ta
into account the presence of different reaction mechanis
leading to elastic and inelastic fragmentations, i.e., when th rojectile c.m. motion. In the c.m. framg;=g;+E +Q
target remains in the ground state or goes to excited state 'E whe.rea.s =ﬁ2k2/.2 is the. kiﬁetic enfer f of rKeIative
respectively. Recently, a short report on our approach wa(<, AT f A he exit ch | gyh'l B
presented17]. Now, a detailed study of inelastic halo exci- n1+n2;rr213)+A m2°t;°“ In the exit channel, whil&, =,
tations, different energy and angular correlations, longitudi-" €y=% " K/2ux+h7Kj/2u, is the internal projectile excita-
nal and transverse momentum distributions for elastic an§fo" €nergy m(.aasured'from the' brgakup threshqld and con-
inelastic ®He breakup reactions offC (light target, nuclear sisting of kme'qc energies of projectile fragmt_ants ina s_ystem
interaction dominatgsand 2°%Pb (heavy target, Coulomb dis- where the propctlle Is at re%fl’h_e corresp(_)ndl_ng coordlr_1ate_
sociation is the main proceswill be described and com- system In confl_gu_ratlon space Is shown in Fig. 1 and Is dis-
pared with recent experimental data from G&2,18—2Qat ~ cussed in details in Sec. Il F. _ . .
collision energy 240 MeV/nucleon. The recoil of all halo . The matrix elemenTy; in Eq. (1) includes all interaction
constituents 15] is now fully included. The material con- dynamics and is given in prior representation by
tained in this paper is organized as follows. Section Il de-
scribes the formalism in details. The discussion of results and
comparison of calculations with experimental data are given
in Sec. IIl. Finally, Sec. IV contains the main conclusions of X% Vo= Uaal Wo, @0, x5 (k). (©)]
this work. '

'uy_m1+ my+m;’

maM
Ma m, v M

T mytMy’

I(facobi vectorsk; ,k,) characterize the relative motion of the
ree projectile-breakup fragments, dndhe relative target-

Ti=(W (ke Ky ko), D |

II. REACTION FORMALISM
. ) INotice a few notational changes when compared Wif, such
The cross section of the breakup reactian-A—n; asC—3, A—a, N—A, and that a misprint of the sign & has

+n,+nz+A’, involving collision of projectilea (two-  been corrected.
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dinate R between the ejectile c.qp.and the target c.rg.
Such distorted Wave,s(AT)(kf) can be used if the reaction is
fast and the loss of energy is small compared with the initial
collision energy. This is different from the case where a con-
stituent due to nuclear interaction with the target, is kicked
out of the halo nucleus, and its relative velocity is significant
in comparison with the rest of the halo system, what corre-
sponds to high excitation enerdy,. Then the interactions
between “participant”(kicked out fragmentand “specta-
tors” (the two others halo constituehtsan be neglected in
describing the state of the ejectile. Under such conditions a
“spectator” approach is justified and a factorization of
lIff(,)(kx,ky,kf) other than that in Eq4) has to be used.

Within approximation(4) the reaction amplitude can be
written as

FIG. 1. Spatial coordinates in the nucleus-nucleus collision. )
Tfi:<XA’ (kf)vq)A’ 1qf(7)(kX1ky)|

szg)re WY, is th-e halo ground-s.tate wave functioh while XE th|‘1’o,‘1’o,)(§)+)(ki)>- (5)
W (K, Ky ,K) is the exact continuum wave function that p.t
describes relative motion of the halo fragmentsand the
target in an excited sta®,, . To get\Ifg‘,) one has to solve The optical potential ;o depends on the c.m. distance be-
equations of the Faddeev-Yakubovsky type, taking into actweena andA and defines the distorted wayg describing
count the complex nature of the constituents. An exact soluthe relative motion of the colliding nuclei in the initial chan-
tion has not been feasible up to now and approximate mettrel. =V, is composed of effective nucleon-nucleon inter-
ods are required. We make approximations at the level of thactionsV; between projectilép) and targett) nucleons and
reaction mechanism but treat the three-body structure of thgoverns the fragmentation process in the breakup reactions.
halo projectile in a consistent way keeping the characteristic¥he optical potentiall ;o does not give contribution to Eq.
of the halo structure. They are contained directly in the hald5) due to orthogonality between the boudt) and excited
ground-state wave functiow, and in the low-lying excita- \If(*)(kx,ky) states of the halo projectile. The post and prior
tion spectra where strength concentration of transitions wittiorms of the breakup amplitudg; are equal in our approxi-
different multipolarities are formed. If there is no direct mation since the decomposition of the Hamiltonian into per-
knockout of a projectile constituent we cannot neglect any oturbed and unperturbed parts is the same for initial and final
its mutual interactions. All projectile fragments take similar channels. According to this expressithre breakup is treated
part in the interaction process. This is realized for the sofias an inelastic excitation of the halo projectile directly to the
part of a halo spectrum where relative fragment velocities areontinuum\lf(*)(kx,ky). Whether this continuum state will
small and restricted kinematically by the low excitation en-be resonant or nonresonant depends on the final state inter-
ergyE, . At low E, there areno spectatomparticles. Hence, actions between the fragments.
we factorize\Ifg_,)(kx,ky,kf) explicitly extracting a wave o . . .
function of the excited projectile A. Separation into elastic and inelastic breakup
The inclusive cross sectigi) includes elastic and inelas-
(-) — /) (-) tic breakup. By elasti¢inelastig breakup we mean breaku
(W ok k) [ =Cxa (k) Wkl () of the halg pr}éjectile in an encounterpleaving the targetpin
ground (excited state. In order to single out their contribu-
whereWw (7)(k, ,k,) is a continuum three-body wave function tions separately we use the method of RE24—23, where
of the halo system with excitation enery.. x\, (k) isa  the energys function is expressed by the imaginary part of
distorted wave describing relative motion of projectile andenergy denominator, which is subsequently replaced by the
target in excited statd’ and depends on the relative coor- many-body Green'’s function. Thus we can write

ks

. 1) (Dol Vaal®ar X5 KW XS (ko) @ ar [Vaa Do)
> | dkid(w—e:—Ea) (X% (k) ®ar[Vaa @)= 2 f dkf( )lm A 2
A A’ w—Sf_EAr+|7]

1
[ = 2] ol Vantmat Vi), ©
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where
w=g—E.—Q
and
Vaa= (ke k) S Vo oxt (k).

The many-body Green'’s functiofi( w) has following spec-
tral representation:

1
G(w)= =
w—HA—Tf—UaA+I7]

_s [ g/ Eaxe k) koeal
A!

w_Sf_EAr+I77

The H, is the Hamiltonian of the target nucleusky
—Hp)® 4 =0. The distorted wavegi\T)(kf) are defined by
the kinetic energy operatd; and the optical potentidl
(sf—Tf—UaA)X(AT)(kf)zo. A practical way to deal with

G(w) is to integrate out the internal coordinates by averagin

over the target ground-state wave functibg. The ®, can-
not be passed directly through matrix elemé6t to the
Green’s function, since thBIN interactionV,; depends on
internal target coordinates. Hence, we approximaté(kn)
by its ground state expectation valy@2,24] using the
Green'’s function optical reduction

G(w)=<<1>o|g(w)|<l)o>=w (8)

_Tf_UaA'Hn.

PHYSICAL REVIEW (54 064609

2m)4 1 -
%f dkxdkyJ dR_{—~ImTA(R)]

Oin=
X |<G(R1w)1q)0!\l,(7)(kx ,ky)|

x; Vol o, @0, x5 (k)2 (11)

These expressions are the starting point for calculations of
various cross sections, angular and energy correlations both
for elastic and inelastic breakup. We notice that the expres-
sions foro, and o, have similar structure. In Eq11) the
integration over the radial dependence of the optical poten-
tial and Green’s function is shown explicitly. In the matrix
element for inelastic fragmentation, the optical model
Green’s functionG(R,w) appears instead of the distorted
wave Xg_)(kf) in the elastic amplitude and an integration
over theR coordinate weighted with the imaginary part of

optical potential I ,,(R) replaces the integration over the

direction of the momentunk;. Therefore, in the approach

we have developed, we can study the space localization of
inelastic breakup processes, but the differential cross section
for inelastic scattering of the halo nucleus can be calculated

only for elastic fragmentatiod®c,/dk;dE, , since the an-

gbular variablesk; are not present in expressi¢hl) for in-

elastic breakup.

B. Elastic breakup

The exclusive elastic breakup cross secti@f) (when
energies and momenta of all particles are observader-
aged over initial and summed over final spin projections, can
be written as

d80'e|

dk;dk,dk,de,dE,

The imaginary part of the Green’s function satisfies the uni-

tary identity[23]

IMG(w)=(— ) f Ak X5 (K0) 8w 10 (6§ (K|

+ G () IMU 2G(w). (9)

_ (ot Hit kf2<uxuy)3’2

Btk RY
Xvsy(EK_Sy)

= Tell?,
le\]i | el|

Mar,mg,ma,Ma, M

(12)

Applying identity (9) in Eq. (6) one gets two terms that \yherej= 2]+ 1. The reaction amplitud&,, is given in the
give a separation between elastic breakup with target in itg)n/ framework by

ground state and inelastic breakup, which includes all pos-
sible transitions out ofb. Thus, the inclusive cross section
is decomposed into elastie,; and inelastico;, parts aso
=0t 0y, Where

TeI: <X(7)(kf):(I).]AMAM\I,E‘n;),mZ(kx 1ky)|

x; Vo Wy @, xX(K)). (13

(2m)*
Uelzh—vif dk,dk,dk;S(ei—es—E—Q) In Eqg. (13) the wave-function dependence on the quantum
numbers of angular momenta is shown explicitly. Hére
andM; (J, andM,) are the spin and spin projection of the
projectile (targej ground statemn; andm, are the spin pro-
jections of halo neutrons after breakup. Since we are focus-

ing on a study of®He, where one of the fragments is an

X[(x6 7 (ke), @0, WO (ky Ky )|
X; Vol Wo, @0, x4 (k))|?, (10)
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particle with zero spin, we have omitted everywhere men- b(&)

tioning the core spin. For the nucleus-nucleus scattering ad- W m (EXY,K)=—> REz 2 Xyy' (Kp)l/lK,y(a)
dressed later, there is no spin dependence in optical poten-

tials and the distorted waveg'™ do not depend on spin

projections. The formulas below are presented explicitly for x{[Yl;(X)®Y';(y)]t’®xs’}JfoXTMT*
that case. When the target is a proton or a nucleus with

nonzero spin, the optical potential has usually spin-orbit cou- _X >

pling and, the distorted waves depend M, . Generaliza- tana= y’ pP=NXTHY (16

tion to such cases is straightforward but is not given here.
To calculate Eq(13), the bound¥; . and continuum The ¢(¢) is thea-particle core wave functiongsr) is @ spin

\P(’ . (kx,ky) halo wave functions have to be generated by isospin function. The hyper-radial wave function

kp) is a solution of a set of couplad§-harmonic equa-
a nuclear model. For Borromean two-neutron halo nuclei, aréw ((xp) b d

derstandi t th tial halo struct has b ons. The necessary details on how to solve a system of
understanding of the essential halo structuré has been OR-narmonic  equations, choosing nucleon-nucleon and

tained in the framework of a three-body mod@b]. In this 1, ,cje0n.core potentials in calculations of the three-body

model, the total wave function ofHe is represented by a 1,04 and continuum wave functions féide, can be found
product of wave functions describing the internal structure o{; Ref. [10]. According to Eq.(14), the transition amplitude
the @ core and the relative motion of three interacting con- T., can be further decomposed as

stituents, core and halo neutrons. The method of hyperspheri-
cal harmonic4 26,27 has been used to treat the three-body
interaction dynamics for both bound and scattering states andel= > (S1MiS;Mp|SiMs))(LiM( SiM [I¢M )

has giver{14-16,28 a comprehensive description of data on LpMs;

weak and electromagnetic characteristicg,p() inelastic —Ky, Xy C ook .
scattering and charge-exchangp,n),(n,p) reactions to X (@)Y, (k)@Y (KT Talks ki)
bound and continuum states f8r=6 systems. It is impor- (17)

tant to underline that in calculating the continuum wave

funct|ons‘1'( )m (kx,ky) the final state interactiofthe pair  TheT s(k; ,k;,x) has now formally the same structure as any

interactions between all ejectile constituentms fully taken ~ two-body amplitude for excitation of a nuclear state with

into account. The same model for the halo wave functions i$0tal momentumJ¢ M, excitation energye, , and a fixed

used in our calculations of the reaction amplitud8). state of relative motion of breakup fragments defined by the
In the method of hyperspherical harmonics the wave funcduantum numbersy,

tion above the breakup threshold is written as follows: T (ke ok 1K):<X(7)(kf)vCDJAMAu\Inyfo(K)

i = S1M;S,M,|SM g ) (LM SM ¢ |JiM
my\m, aM;MLf( 1M1S2My| SM ) (LtM | SM g |ItM ¢) ><|; Vol W, @, X (K)).
K (K (18)
A The effective NN interactionV,; (assuming local interac-
* pt
®YIY(ky)]LfMLf\Py‘]fo(g’X'y'K)’ (14 tions) depends on distaneg,=r,—r+ R between projectile

(p) and targett) nucleongsee Fig. 1, wherer, ; are nucleon
where 6={J;,v}=1{J;,K;,L;,S,lx.ly} is an abbreviation coordinates relative to the c.gy, respectively, whileR is
for a set of quantum numbers, which characterizes the relahe c.m. distance between target and projectile. Integrating
tive motion of the three constituents flying apart®ide. The  over projectile r, and targetr, internal coordinates, the
notation[ - - - ] indicates tensor coupling. Thg'gly(a,() isthe nuclear form factors as a function Bf can be defined as

hyperangular part of the hyperharmonic
<<I>JAMA,,\Inyfo|§ Vod ¥, @5 m,)

) =N (sina,) x(cosa,) WP P, icos 2x,),

15
( ) _2 ‘]Mljpm |‘J Mf) ImIJtmt|Jp p)

Iplt
. . 1. . p
wherePﬁ’ﬁ are Jacobi polynomials ard” is a normaliza-

tion factor. The hyperangle, is defined as cda, =&, /E,. X(‘]AMA’jtmt|JAMA)|7|Y|*m|(R)F|[?ij(RvK)a
The continuum wave functioﬂnyfo(g,x,y, k) depends on

the quantum numberg, nuclear excitation energg, (ex-

pressed by the hypermomentues 2mE, /%2 with m be-  wherel, jp,» andj; are the orbital, the total projectile, and
ing the nucleon magsthe internala-particle coordinateg  target angular-momentum transfers, respectively. A conve-
and Jacobian space coordinat&sy] (shown on Fig. 1, the  nient way to handle the complicated radial dependence in
total angular momenturd; and its projectiondM¢, Eq. (19) is to perform the calculation of the radial form fac-

(19
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tor Ffjtjp(R,K) in momentum spac¢l5,29,30, where the Lsi, S(r—ry) . .

integrations over different space coordinates are reduced toa Pa (r):<q>‘]AHZ rt? [Ylt(rt)®a-t]jt”q>‘]A>’
product of integrand factors. Using a Fourier-Bessel transfor- (23
mation

. where summation ovay(t) includes all nucleons in the pro-
_ _ o ) jectile (targe}. In cluster three-body models the nucleon de-
Vo= V(o) (27r)3f dkV(k)jexp{=1(rp=r+R)-K}, grees of freedom are treated unsymmetrically. Only the mo-
(200 tion of the two halo nucleons is singled out explicitly in the
three-body wave functions while the motion of the core

. ) nucleons are combined into the core-center mass and internal
a common decomposition of the effective nucleon-nucleon,qiion inside the cluster. The detailed descriptions of the

forcesV,, into operators acting on separate coordinates caggntriputions to transition densities from halo nucleons are
be obtained30]. Here we are presenting the calculations for giyen in Ref[15] and the treatment of core nucleon degrees
a reaction on a target with zero spig=0. In this case, if 5 freedom is presented in Sec. Il F. Taking into account

we neglect the two-bodNN spin-orbital interaction(the  these definitions and using the partial wave decomposition of
usual approximation in nucleus-nucleus collisipnsen only ¢ gistorted waveg!*)(k; ,R)
i

nonspinflip excitations of natural parity in the projectile are

allowed [29] and only the central part of nucleon-nucleon

forces can excite them. The formulas for radial form factors A1

are given below for this case. Generalization to a more gen- x'(ki,R) =1~
. . . . L . ir

eral situation is straightforward. After transition into momen-

tum space, the radial pathpojp(R,K) of the nuclear form

factor can be written as

> iYL (KDY m (Rixi (ki R,
am 2 ¢
(24)

where Xla(ki ,R) is the radial part, the reaction amplitude

4 Ts(k¢ .k ,«) can be written as

Ffpojp(R,K)=J;dkkzj,(kR)ui—vc(k)

Vs

Xpﬁoo(k)pjapO]p(kyK), (21) T(S(kf !ki ,K):T ) 2 (JiMijpmp|Jfo)
7 KiKs ipidlalb

X(IaAMarjime| IaM 2) (Imy jomy j pMp)

ip0ip :jm 2; ip0ip ~ —~
pa P )= [ drrlolknpg T ), X1y 1L ) ¥, (R)Yi, i (R0

1 i
S X5 TP (ks ki ), (25)
Pgoo(k)=fo drr2jo(kr)p22(r), jpl2 ol m

" 42 TV kg i) =115 4] T1LT,(1,010]1,0)
Vc(k)=J drr2jo(kr)4mVe(r). B
0 Xl :L‘f." (ke ki k), (26)

Herepjapojp(k,x), pa %(k), andV¢(k) are Fourier transforms

. .. . Al jtip.o :
of the projectile transition densigy"”*(r, x), the target den- Where the radial mtegralg,bt’lz are defined as

sity p3°%r) and the central parVc(r) of the NN forces

between projectile and target nucleons, respectively. A tran-
sition density is a reduced matrix element between the initial litip.d 3f°°

! i 0P (ke ki )= (2 dRy, (k¢,R
and final nuclear states and describes the system response to Iyl (KioKi 1) =(2) 0 (ki R)

a zero-range perturbation 5
XFii i (Rocx (kiR (27)

- o(r—ry)
p;pslp(r,K):<\I’ny(K)”E % Using Eqgs(17) and(25) in Eq.(12) and performing sum-
P P mation over spin projections, the expression for the exclusive
- s cross section with the momentum and energy of all particles
><[Y'r:(rp)@UP]ip||\PJi>’ (22) measured, can be obtained,
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d80_e| 1 kf(MXMy)S/Z (—1)Ji+sf+jt
~ ~ ~ = 1T\ w7 2\ & EK_S = Ao~n
dkidk,dk,de,dE, gier ki nt ot y)sf ,jt,LX,LE,;,La,Lb,L 4] 232

X(LYL (k)@ Yy (R)IL-TYL (k)@ YL (k)] 2 (= D)yttt Jitlatly
B.B'

L LY (1

Ly Lf L) (I I L)(j, jo L)| Y *
x[f f Hf ! Jljf‘ e ] b Lepdda T |
i I Sef lip dp i) It

L, Lo L)Ly Ly L

XD ) i ) T ke T 1 (K ). @9

11!
b'a

Here B=(I,,ly,L¢,Js,Ks,l4,1p,1,]p) is a short notation for A next class of cross sections can be calculated if only
a set of the quantum numbers characterizing different motiolne of the three independent momenta is integrated out.
modes in the system. This cross section contains the mostrom the possible variants only one, that where an integra-
complete information that can be extracted from a reactionion over k; is performed, will be considered below. The
with unpolarized nuclei. We can calculate this observable buyectorsk, and k,, describing the motion of projectile frag-
at present time there is no experimental data to be comparggents, lie in a plane. After averaging ovgronly the angle
with. Also, Eq.(28) depends on too many variables to offer apetweenk, andk, has a physical meaning, the orientation
meaningful analysis of the important correlations. More in-g¢ ihe plane theyy define does not play any role and can
structive is to integrate out most of the independent variablegg integrated out. The resulting angular correlatichs
and analyze various inclusive cross sections that can be Comrr & . .

(ky-ky) might be of interest.

pared with experiment, and thus clarify the underlying dy- . . . .
namics on which the model is based. At the moment we nAr:wlzl:fe%tgrréhgrgIgﬁgigzztg]r?ztg; bmos((j)?nsecs?l;]t?s?ectti? VZ';?]_
restrict our analysis to inclusive cross sections that are n gy ’ y 9

mre tan doibe Toldd. Even somanyciferentcnergy an T LTS 200 coetl 1 e e e AL o e
angular correlations can be singled out that contain valuabl(i% g

information about the nuclear structure of halo nuclei and th m2n?a(r%ludse'\é?r;rgstﬁesﬁg%’gg%cgnfngéﬂgnchi tgﬁ dmo-mo-
reaction mechanisms. Yy p g

After fragmentation there are four different, physically tion modes add independent contributions to the cross sec-

meaningiu momenta, i the momentum of il beark (o7 eTere diferent cose sectons are sencie 10
is the momentum of relative motion between c.m. of projec- ' P

) . them within the framework of one model gives a thorough
tile and targetk, andk, are the relative momenta between . . ;
. LY test of the underlying dynamics and model assumptions on
fragments in the projectile rest frame. The beam momentum . :
e L o . nuclear structure and reaction mechanisms.

k; is fixed by initial conditions and memory about its value . . ;

AT . . Integrating over all independent variables except for the
and direction is kept in the system through conservation rojectile excitation energf.. and taking into account the
laws, but the other momenta can be independent variables o) 9%« 9

terms of which dynamical correlations might be expressedgrthOgonallty properties of hyperharmonics

Keeping absolute values of the single momeqtak,, ork,

and integrating out other degrees of freedom, the energy dis- E« Il I 5
tributions do/dE,, do/de,, or do/de, can be obtained. o deyvey(Bemey) ) (@) =28 5ckr
These describe the total projectile excitation spectrum, the (29)

energy distribution of relative motion between two fragments
or the energy distribution of one fragment, respectively. In- i i o .
tegrating out any two of the three independent moménta the spectrum of inelastic excitations in the halo nucleus can
ky, or ky, the cross sections become dependent on the angRg written as

between the beam directidn and the direction of the re-

maining momentum. Thus, the differential cross section doer 1 K[ faxty 3/2 )
d2a/dQ;, the fragment relative®o/dk,, and the fragment = (7) 4E2
momentum distributionsl3<r/dky can be obtained. An addi-

dEK _8i8f E

tional integration over two of the three momentum projec- SH i

tions gives the usual longitudinal and transverse distribu- X —A2¢2¢2A2A2|T|J“|p' (kg ki, x)|%,  (30)
. i b'a

tions. StdeB 19) ¢ pl 3di
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which describes the strength distribution of the different mo- The differential cross section for the projectile c.m. scat-
tion modes over total projectile excitation ener§y. The tering with fixed inelastic excitation enerdy, can be writ-
factor E2 which originates from the three-body phase vol-ten as

ume, guarantees the correct cross-section behavior at the

breakup threshold. All correlations between modes are lostd®ce _ 1 ks Mx,U«y 2
and they give independent contributions to the cross sect|0|ak dE, e sf ki TR 4E

The fragment energy distributiofng=(7,K;) ]
32

J
Aoy d?oq X X P (ki-k)(— DTl
= Ll s 4ml?]2j23?
de,dE, de,dE, Atip. 8 4=y
1 K[ gt X (1,010|LO)(1,01.0|LO)
=— X4y sz<EK—ey> !
EiEf ki h Ia Ié L |
3 ST Jbtfp (e ki, )
_ b b
2 e
St.icnKe K U Itlp

XT 7 (ke ). (32

Ixly litip.d litip, o *
X "”K; (TP (Re k)T TP (ke K k) Here, any mode of internal excitation, characterized by the
31) quantum numbers, gives an independent contribution to
the differential distribution.

carry the energy correlations in the fragment motion that is In the projectile rest framé; +k,+ks=0, used for the
contained in interference between modes with different valrepresentation of fragment momentum distributions, the mo-
ues of the hypermomen(f_ For a Sing|e_fragment energy mentum k3 of the projectile constituent 3 is equal to the
distribution we have to integrate over the total excitationJacobi momentunk,. Hence, integration of the exclusive
energyE,.. In spite of the equality of the double-folded cross cross section over variablég andk; of the unobserved par-
sections, the single distributiondo, /de, and dog /de,  ticles and summation over all spin and angular momentum
will be different, since the integration ovér, is equivalent projections, gives the elastic fragmentation cross section for
to the different projections from the two-dimensional distri- momentum distribution of the projectile particle 3, which can

bution overs, ande,. be written as follows:
d40‘el 1 kf(ﬂ/x)glz (—1)Ji+sf+jt+|x+|b o , o
L 2 EK_S ) P kk) -1 Jf+Jf+|+| L J2
dkydE, ejef ki 12 ( Y Sfuj[%,'b,L 4732 L(ki-ky Iy,%,x’ =D (IyLdi)
| I, L) (Le Ly L)(I¢ If L)(j, j.o LJ[I 1" L
PN y y f f f f ]p Jp
X(I’L’J’Z)(IOI’OLO)(IOI’OLO){ } ” , H . H . H , ]
/300,010 01201 Li Le g (3f I¢ St)lip dp JJU1 1 jlla la o
X1~ KD g () g ,< TR (ke ki )T' W07 (e ). (33

Hereh={J;,L¢,Ks,jp.l,14}, and the motion modes characterized by, {) quantum numbers give a coherent contribution to

the cross section. For momentum distribution of relative motion between two fragments, we have to study distributign over
momentum,

dedEK Ei€g ki

d%o | 1 ks Ly 312 (_1)Ji+sf+jt+|y+|b o ) e my aia
: 72| V2Emey X =2 Pukick) X (- ALLID AL
Stoduly L A7) B8

e 1e LyfLs Lt L[ I¢ L][ip jp LI 1" L
X(1,01,0|LO)(1,010[LO)S , , o , S ARV
Le Le L3¢ JIr S lip Tp JiJ LI Fojo la Ta o

I ltJ

X1~ KD gl (a DU (aK)T:L‘fp (ke ki )T, " (ke k). (34
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The expression$33) and (34) are starting points for calculations of the transverse and longitudinal fragment-momentum
distributions. The way to do this will be discussed below. Performing integrations of these expressions over energies for fixed
values of((k; - ky) (ki - k,)), the fragmentmomentum of relative motion between fragmemtsgular distributions relative beam
direction, in the projectile rest frame, can be obtained.

Finally, the triple cross section for angular correlations can be written

d30'e| 1 kf(:“x:“y) jfz (_1)Lf+|— AR
——————=——1 57| 2VeyE.—&y) 2 55 P (ky-ky)
d(k,-k,)de,dE, eigt kil #i ot 2 12721232 2 ok
U N
X > L 105(1,0150]L0)(1,01,0[LO)
Leoly Koty Ky Iy Iy Lt
P MK i WY
XKDy ey (@) TP ke k0 T (ke ki), (35
|
where e=(l,j¢,jplaslp,L,Sr,Jd5). All projectile excita- #2 , =~
tions with the different orbital ¢, spinS;, and total angular egt Z—MV —Uan|G(RR ,g1)=6(R-R") (38

momentumJ; are summed independently here, while keep-
ing the correlations in the relative fragment motion. Integrat-
ing additionally over the energies, and E,, the angular with the same energy;=¢;—E,—Q as for the relative mo-
correlationsder, /d(k,-k,) can be calculated. tion in the exit channel in elastic fragmentation. For a central
optical potentialU,5(R), the Green’s functionG has the
) following partial-wave decomposition:
C. Inelastic breakup

The exclusive inelastic breakup cross sectibb (when
energies and momenta of all particles are observader-
aged over initial and summed over final spin projections, can G(R,R’ Sf)— 72 2 Gi(R.R" k) Yim(R)Yim(R)*,
be written as

(39)
don  _ 4 Mi 2 Fx 3/2,/ where the radial par6,(R,R’,k;) can be represented as a

,\——(277) ﬁz 2 ﬁ—z EK—Sy p (ACASEANEEN | ; p

dk,dk,dE, i product of the regulay,(k;,R) and outgoingh,(k;,R) ra-
1 dial solutions in the optical potenti&l ,o(R),
dR— —ImU (R
< w(Rls

xi(Ks ,Ro)hy(k¢,R-)
G|(R,R' k¢)= 40
xS TR (@ (RRK) = Whe ) 40

my,mz,Mar M ,Mp

. ) ) ) HereR. andR. mean the smallest and largest of the coor-
The matrix elemenfT;, for inelastic fragmentation has a ginatesR andR’, respectively. The

form similar to Eq.(13) for the elastic breakup, and is given
by
dh, dy
W(Xl! |) XIdR dRh
Tin(R)=(G(Ri&g 1), ®3,m,, ¥ m (Ke Ky)|

is the Wronskian of the independent solutignsandh, .
x; th|\I,‘]iMi'®JAMA'X(+)(ki)>’ (37 Inserting the decompositiond4), (24), (19), and (39
' into Eq.(36) and doing all calculations in a way analogous to
that for elastic breakup, the cross sections for different en-
where the optical-model Green’s functigb(R,R’,e¢) re-  ergy and angular correlations except for E§2), can be
places the distorted wave(k;,R") for an exit channel. The obtained. As an example, the expression for a particle mo-
Green’s functionG(R,R’,¢;) is the solution of the equation mentum distribution becomes
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1 kf(ﬂx)w\/i o ( 2 ) Z L (= 1)dtSitinthetl
= =— 2(E,.— deIm - U.a(R PL(k;-k TS
dk,dE, eier k| 72 (Emen) ], 72 YanlR) T L L{ki-ky) 43?2
XX (=1 AL L137%)(1,0150[L0)(1,01,0/L0)
Ly by A
X[ly M LHLf L LHJf Ji Lij i LHI I’ LJ
Li Lo LJ W3¢ I S)lip dp LV 1 dglla ta lb
—(Ki—KL) iy Iy, =l I By _
XI fwa (aK)l#Kfr (aK)le'la (RkaaklaK)le’Ir (Rkaakvi)r (41)

where the amplitudé':{)‘jlp’5(R,kf ,Ki ,k) has the same ex-
pression as T:Lfip’é(kf ki k) in Eg. (26), but with
I:jb‘flpa"s(kf ,Ki , k) replaced by a new radial integral

|”tf'|p’5(R,kf,ki,K):(zw)wf dR'G,

’ S
I o J(RR lkf)F”tjp

X(R", k) x (ki ,R"). (42)

The expression&33) and(41) for particle momentum distri-

For thetransverse momentum distributiome have to fix
the momentum projectiok, perpendicular to the beam di-
rectionk; and integrate over other momentum components.
To this end, it is convenient to combine tkg andk, com-
ponents of the vectdt, to ak, = \/ky2+ kzz, which is lying in
the (y, z) plane and has an angierelative to the axiﬂ“?i .
Then the transverse momentum distribution is

d?o 2
E dk k. \| F2E~KE-K?

f [(2y I12)E k3]
dk dE, Jo

bution in elastic and inelastic breakup have the same depen-
dence on different quantum numbers describing the relative
motion of decaying fragments. In addition, the integrand ex-
pression in Eq(41) gives the cross-section distribution of
inelastic fragmentation as a function of the radial coordinate

Iy Iy
X L%y F @b M)
|!

y’

’

K¢y, Kj

R.

D. Longitudinal and transverse momentum distributions

We now use a Jacobi coordinate system where the m
mentum directiorﬁy in the projectile rest frame is equal to
that of the momentum of the observed fragmfe@t

To calculate thdongitudinal momentum distributiorwe
have to fix the projectiork, of the momentunk,=k; onto
the beam directioﬁi in Egs.(33) and(41) and integrate over
the other momentum components. Due to azimuthal symm
try, the integration is reduced to one dimension, over th
orthogonal k; component of the total momenturk,|

d%o [(2y 1H2)E, — K3 12 2
— y Kk "z =y 22
dedEK fO dkiki hZ EK kZ kL
N Il 2
X FX (@)Y (a )P | ————| .
L%y U (@I
Kpaly Ki

(43

szwdd;P k, cos¢
0 - Vk2+K2 |

For oddL the integral ovek) gives zero and has a simple
golynomial form for even values. The expressigA8) and
(44) define longitudinal and transverse momentum distribu-
tions for fixed projectile excitation enerdy, . The integra-
tion of a product of hyperharmonics and Legendre polyno-
mial overk, can be done analytically and can be reduced to
the sums of incomplete beta functions. Usually the experi-
mental data include contributions for all excitation energies
eEK allowed by the experimental setup. Hence, we need ad-
E‘ditionally to integrate the momentum distributions over ex-
citation energy from the breakup threshold up to some maxi-
mal energy defined by experimental conditions.

Formulas(43) and (44) give the distributions for particle
3 in the projectile rest frame. In order to get the distributions
of particles 1 and 2 we have to rotate to the other sets of
Jacobi coordinates whetlg =k, ,; a change that is easily
done since the amplitudes transform through Raynal-Revai
coefficients in the hyperspherical meth@l]. Hence the
momentum distributions have the same structure for core and
halo neutrons.

Before discussing the numerical results it is useful to
make a few remarks concerning the basic structure of formu-

(44)

Here F includes the transition form factors and does notlas (33) and (41). The expressions describe the momentum

depend ork, .

distribution of the constituents of the projectile relative to the
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only direction (beam of which memory still exists in the L

. . . . . Region 3
reaction after integration over unobserved particle coordi-
nates. As a result, the cross secti@@8) and (41) depend Coulomb excitation matrix elements
only on the angle between the beam and the detected par- ( analytical )

ticle. This dependence is described by the Legendre polyno-

mial PL(Ry~Ri) and the cross sections are incoherent sums Region 1
over quantum numberss{,j;,l,,l,) that characterize unob-
served fragments. The nuclear states have many other quan-
tum numbers and due to the lack of symmetry the corre- ( numerical )
sponding components are connected and give coherent
contributions to the cross sections. For nonzero valuds of
there are interference terms between excitations with the dif-
ferent total momentd; reached by the different transferred  FIG. 2. Separation of the coordinate and distorted-wave spaces
momentaj ,. The interference is expressed in different waysinto regions where different methods are used for the calculations of
for the longitudinallEq. (43)] and transversgEq. (44)] dis-  radial integrals.

tributions. For the longitudinal distributions all ordersof

the Legendre ponnomiaFPL(Ri . f(y), allowed by the angular decreasing tail that reaches out to a much larger radii. For a
momentum addition rules, give contributions. For the transiarget with high charge, the tail has sufficient amplitude to
verse, only even values df are present. For eveh, the  cause a strong Coulomb dissociation. As a result, there is a
interference terms are the same for the positive and negativow convergence of the partial-wave decomposition and it is
values ofk, , and have the opposite signs for odds a  hecessary to extend the radial integration in E@s) and
result, the transverse distributions always have symmetrical42) to large distances. A simplification is that B& Ry
shape relative the origin of the,laxis, while the longitudinal the Coulomb form factor is known analytically and has a
one may be asymmetric relative t9=k0. All interference  Simple form

terms should belong to the same values of the orbital angular

Region 2

I |

Nuclear + Coulomb Coulomb

{ complex rotation in r-space )

R

Df———-

max

9
momentuml, and oddL may appear only fof, with differ- FipOi p(R”‘)|f>Rmax
ent parity. Hence, the interference between nuclear states ) z,
with different parity excited at the same energy with compa- = ip ameZy (¥ (K)”E rley. (F)|w )
rable intensity may cause deviations from the symmetrical (2jp+ 1)J; i =1 P Ji
shape in the longitudinal distributions. Studying such distor-
tions may give valuable information on the structure of halo 1
nuclei. Recently, in the longitudinal momentum distributions X Rip* 1’ (45)

of "Be produced in Coulomb breakup of tAB (a candidate
for one-proton halo nucleuslarge asymmetry arising from

interference ofE1 andE2 excitations was measurd@2] ~ Hence, we calculate Eq21) only for R<Rp,, and use the
and discussed, for example, in RES3]. analytic form factor(45) for larger radii. The coordinate and

partial-wave spaces can be separai@sl shown in Fig. P
into three region$34] where different methods of the radial
integration are used. The first regioR€ R, 5 andl <L) is

For a consistent treatment of electromagnetic dissociatiorfor calculations where a short-range nuclear and a long-range
Coulomb and nuclear interactions have to be treated on equ@oulomb interactions are present. In this region the distorted
footing. The interactionV,, between projectile and target waves and form factors are known numerically and numeri-
nucleons has a short-range part due to strong forces but tleal integration of the radial integrals has a sufficient accu-
central part also includes Coulomb repulsion when bothracy. The second region corresponds to the low partial waves
nucleons are protons. In calculations of the radial form factot <L and radial integrations frorR,,;,<R<~. The form
(21) performed in momentum space, the central pastk) factor is known analyticallfEq. (45)], the distorted waves
of the nucleon-nucleon forces acting between protons has ae given by their asymptotic representations and their over-
nuclear part together with a Coulomb pa¥cq, (k) laps are non-negligible, if Coulomb excitation is significant.
=47e?/k?, which causes destructive interference withThe poor convergence of numerical integrations can be
nuclear attraction. The long-range nature of Coulomb forcesandled by the method of contour integration in the complex
is a main feature and involves additional effects in compari+adial plane[35] since all functions are known analytically.
son with heavy-ion reaction calculations that only includeThe third region embraces the high partial waked . The
nuclear interaction. For short-range nuclear forces it is suffipartial waves do not penetrate the large centrifugal barrier,
cient to calculate the nuclear form fact@l) within a finite  therefore these waves do not feel the nuclear potential and
region O=R<R,,,, Of coordinate space outside of which the experience only Rutherford scattering and are the regular
form factor becomes negligible. Accordingly, only a re- Coulomb wave functions. Since these partial waves are neg-
stricted numbet <L of distorted partial waves have to be ligible at smallR, the analytical form-factor expressi¢A5)
taken into account in reaction calculations. In the presence afan be used also &<R,,,,. Then the radial integrals are
long-range Coulomb interaction, the form factor has a slowlyreduced to the well-known integrals of Coulomb excitation

E. Treatment of Coulomb interaction
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theory [36] with explicit analytical expressions in terms of the nuclear wave functions have the product foring,y
the hypergeometric functions. With increasing partial wave=d (&), u(x,y), where®(&) is an intrinsic core wave
orbital angular momentum, the Coulomb matrix elements defunction (with zero spin for®He), while om(x,y) describes
crease exponentiall{36], but the rate of convergence de- relative motion of the cluster constitueritarrying the total
pends strongly on the excitation energy and is rather slovdngular momenturd). In this model the calculation of halo
near the breakup threshold. For example, in the case of thgautron transition densitp'nsj(r) involves the three-body

Izoow-energy dipole excitations foHe fragmentation on \yaye functiony,;m(x,y), since the halo neutron coordinates
*Pb at 240 MeV/nucleon, we have taken into account up '@, , depend only on the Jacobi vectorsandy. A detailed
20000 partial waves while only about 400 were sufficient forgcneme for thep'si(r) calculation is given in15,14 (the
. . . n ’
the short-ranged nuclear interaction. This allows us t0 perz,nuibutions from the halo neutrons 1 and 2 are equal due to
form gquantum-mechanical calculations of nuclear and Cou

o i ) " i - ~“particle identity.
Iqmb exmtaﬂpns, mcluc_img their mterfer_ence, without artifi- The calculation of the halo neutron transition density
cial separation of different mechanisms. Note that 2,1si(r) for the a-core nucleons is more complex. This tran-
Coulomb nucedr nerernce o sppedrs i regomekShon densty s ceind by the vectors-By--& o on
9. 2, Fig. 1, wheref=(m;+m,)/(m;+m,+ms3), with m;=m,

present. The contributions to the amplitude from region 2 ; .
and 3 are purely Coulombic. The degree of interference iand m being halo neutron and core masses, respectively.

cross sections is governed by the magnitude of the contriblrjll-—he transition density operator in E6) has to be decom-

tions from these regions to a total amplitude posed.into muItipoIes depending on the coordinaiysgnd .
' & . It is convenient to do the multipole decomposition in

] momentum spacg30,15 where
F. Inclusion of nucleon degrees of freedom of the core
In the_descrlptlon_of the light systems such_‘%kba, recoil plsj(k):f drr2j,(kr)p'si(r)
effects, i.e., translational symmetry play an important role. 0
Thus, from the beginning we have based the formulation of
the reaction dynamics on relative, translationally invariant (¥ ||E (D)
Jacobi coordinates. Within the three-body cluster model only Pl & Ts] I
the halo valence neutrons and core c.m. are directly ex-
pressed in the relative motion functioW ., ; w (X.y,«) Tisjm(D) =11 (KE[ Y (F) @ T} - (47)
while the coordinates of the core constituents are referred to
in a more complex way. The treatment of the degrees offhe multipole operatots; (i) for theith core nucleon can
freedom of the core nucleons merits in this context a specidbe decomposed in a general way in a product of multipole
attention. Figure 2 shows the coordinate system, relevant toperators depending separately @nand§; ,
our case. The vectons , andr; show the positions of the
halo anda-core nucleons with respect to tiéle center-of-
massO, while & is the coordinate ofth core nucleon rela-

Tisj.m(1) =47 > Iy LT TL(1,01,0]10)
LIyl
tive to the core c.m(point 3. They andx are Jacobi vectors Ve

between c.m. of the neutron pair and ta€ore and between 45— ] s

the halo neutrons. Recall thRtis the distance between the xX(=1) Loy, I, [leOIy(By)
collision partners and the variable on which the distorted

wavesy!;) depend. The nuclear structure enters in the reac- ®7sL(&)]jm- (48)

tion dynamics as a transition density that describes the re-

sponse of the system to a zero-range perturbation, and can btgre a spin transfesis connected only to operater s (&)
expressed as a reduced matrix element between the initidepending on internal cluster coordinates, while operator
bound¥; y, and final continuum¥ ; y nuclear states 7,0,(BY) acts on the cluster c.m. After taking the matrix

element between initial and final nuclear wave functions
<I>(§i)z//Ji YJf(x,y) the nucleon transition density that takes
into account an internal structure of the core with any spin

. . can be obtained within the cluster model. For @iparticle
=pr(r)+pig(r) (46) i in and isospi i i
Pn Po (1) core with zero spin and isospin, the result is very simple,

6
. o(r—r; A
PN =(Ws 1 2, (—r_z—)[vmri)@o?]jll%p

Here the summatiom is over nucleons in the halo nucleus 4

and integration over all Coordinates is_ to be_ under_stood. Pf'(k):@//wfuj|(kﬁY)Y|(§/)||¢Ji><q)HE jo(k&)|| D)
The quantum numbetss, andj are relative orbital, spin, and i=1

total angular momenta, respectively, transferred to the LT K (49
nucleus in the excitation process. In the second line of Eq. pacm( )Pmat(k), )
(46), the two parts of the transition density connected to .

contributions of halo neutrong®i(r) and a-core nucleons Where p (K)=(¢;lii(kBY)Yi(M)llw;) is the transition
p'j'(r) are shown separately. In the cluster three-body modeadensity for the a-core c.m., while pyadK)
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The recoil density is concentrated at small radii, while the
halo neutron density has larger spatial extension and domi-
nates in the outer region. If the core mamssg is increased,
the proportionality coefficienB between the; andy coor-
dinates becomes smaller and the recoil densffyy will be
compressed to smaller radii.

The concentration of the recoil transition density at small
radii means that in momentum space the recoil density will

be concentrated at large momenta and we can expect an in-
creasing core contribution to a reaction cross section with
increasing transferred momenta. Figufe)3hows the tran-
sition densities in momentum space. The halo neutron den-

150l Y ~ (¢) 100 sity (solid line) is concentrated at low momenta. The recoil
- - density (dashed ling has a wide extension in momentum
3 tot g space. Thex-particle matter density (k) [37] is shown
s 100¢ neut £ | by the dashed-dotted line. It cy§’ (k) at large momenta
Y //’\ g 50 and the transition density'/(k) (dotted ling of a-core
o 50} / \ > nucleons has a shape similar to that of a halo neutron but
8 // core '\ o shifted to larger momenta.

a8 \\ Figure 3c) shows the theoretical differential cross sec-

tions for excitation of the 2 resonance in inelastic scattering
of ®He on '°C at collision energy 240 MeV/nucleon. The
total differential cross section and separate contributions
FIG. 3. The real part of théHe transition density's! (I=j from interactions with halo and core nucleons are shown by
=25=0) for the excitation of the KLSLl,)=(22002) compo- solid, dashed, and dotted lines, respectively. The core cross
nent of a continuum wave function at"2resonance peak energy section has a maximum at larger angles than that from the
(E*=1.8 MeV).(a) Coordinate space. Solid and dashed lines showhalo neutrons. The two contributions become equal at the
the modulus of the halo-neutron amdcore c.m. transition densi- upper end of the shown angular interyat transferred mo-
ties, respectively(b) Momentum space. Solid, dashed, and dottedmentum~1 fm™1). At larger momenta the core contribution
lines show transition densities of the halo neutroas;ore c.m. dominates. This tendency shows that a large momentum is
motion, and core nucleons transition densities, respectively. The,qre easily transferred in scattering via the more massive
dashed-dotted line shows tlheparticle matter density in arbitrary constituent. The total differential cross section for the 2

) . U .
linit‘z '\T/Iht\a/oretlcal angular cg;s(tjr_lbultlons*iri Fs)h'\c/alw\r} (brz.t EE resonance shows a strong constructive interference between
=1.8 MeV) resonance an ipole (E* <4.5 MeV) excitations halo and core contributions.

) PN ) .
in the ®He in elastic breakup reactions 3fC at 240 MeV/nucleon Another example of interplay between core and halo

collision energy. Solid, dashed, and dotted lines are for the differ-rluCIeonS is given in Fig. @) where the angular distribution
ential cross sections of total, halo neutrons, andore nucleons, 9 g. 9

respecti for dipole excitations witlE* <4.5 MeV is shownthe no-
pectively. o i

tation is the same as in Fig(]. The peak at forward angles
is due to pure Coulomb excitations and it is completely de-
termined by thea-core contribution. The second peak at
larger angles is excited by the nuclear interaction. The core
Yem. o ) _ contribution is roughly twice that of the halo nucleons and
the normal parity (=]) excitations with transferred sp®  ghifted to larger angles. But now there is a destructive inter-
=0 and cannot give contributions to excitations with spinference between the halo and core degrees of freedom. The
s=1. It means that in the three-body cluster model the intertota| cross section is less than the individual contributions
actions with then-core nucleons can excite the nucleus onlygnd shows a bump at larger angles. Hence, a correct treat-
to normal parity states without spin flip. The coordined®f  ment of translational invariance in light nuclei such %de,
the a c.m. relative toO is proportional to the Jacobi coordi- ntimately connected with recoil effects, is an important part

natey, ry=gy. The transition densitp,’ represents a re- of reaction dynamics and has to be taken into account in

coil effect in the system. If the core mass goes to infinity ~ quantitative descriptions of nuclear reactions.
(B—0), the transition density operator becomes independent
of internal coordinates and due to orthogonality of nuclear
states with different energies, the core transition density is
zero. To exemplify this, Fig. @) shows the modulus of the

1ol ; 10l ; ;
real part ofp, (r) (dashed ling and p,"(r) (solid line) Before a discussion of results the necessary details on the

transition densities IEj=25=0) to the KLSLI) physical ingredients in the microscopic model of a two-
=(22002) component of the continuum wave function at neutron halo breakup have to be reemphasized. As follows
the 2" resonance peak energg{=1.8 MeV), respectively. from the formulas above, in the distorted-wave framework

L " PR SR, = )
00 20 40 60 80
O (mrad)

0 56 30 60 80

O (mrad)

=(®|=",jo(k&)|®) is the nucleon matter density of the
particle, normalized dt=0 to the number of core nucleons.
The factorp'® in Eq. (48) gives contributions only to

III. RESULTS AND DISCUSSION

A. Physical input to the calculations
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TABLE |. Theoretical (integrated over excitation enerdy*
03 <10 MeV) cross sectiongmb) for inelastic excitation offHe at
E - 240 MeV/nucleon or’®®b and'’C targets.N (C) labels calcula-
o /'\'\‘ ___________ tions with purely nucleatCoulomb forces. Experimental dafd 2]
:E 02r [ f h 3 include cross sections up B <12.3 MeV.
E 0.1 Total  Elas. Inel. 0 17 2% 27
S 208y
° 0.0 N+C 578 378 199 82 320 176 87
N 320 136 184 82 55 184 91
E (MeV) c 252 224 28 0 251 1 0.3
, S Expt.[12] 650+110 14- 4
FIG. 4. Dipole strength distributions fdiHe. Dashed, dotted, 1

and solid lines are for previous theoretical calculations from Refs

1 a
[10,17] and present work, respectively. Dark squares are experimer‘,(:\laJr ) 52? igg 12515 z 22 11554 ;91
tally derived boundaries from Ref12]. ) ) ) : ’ )
c? 1.6 1.5 0.1 0O 16 0.02 0.01
. . . . (N+C) b 31.4 169 145 6.1 99 153 8.1
the reaction amplitude has three ingrediefijsThe structure Expt. [12] 30+5 4408

of the target nucleu@matter densityand of the halo system
(transition densities (ii) The nucleon-nucleon effective in- 43].

teractions between projectile and target nuclediiis. The  [44] are the optical potentials used in the calculations.
optical potentials for relative motion of projectile and target
nuclei.

effective interaction. In the calculations we used timeatrix

. . . . . 20
| ('%The rr]natter density dlstr|but|.ofns dfc ﬁnd *Pb nu- parametrization by Love and Frang42]. The contribution
clei have the two-parameter Fermi form with paramef88 ¢ oy exchange knockout amplitude was taken into account
chosen to reproduce the rms radius and surface thickness of 1,4 pseudopotential approximation.

density distributions.

To calculate transition densities f@He we employ the
method of hyperspherical harmonifs0]. The quantitative
calculations have been carried out with the GiRM poten-
tial and Kukulin'sn—« potentiaf with even-odd splittings

[39)] for Kma=40 (07),Kma=39 (17) [10]. A polarization  51qets at energy 200 MeV/nucledd3] were used.(The
potential with inverse cubic dependenc®] was added in 54,5 parameters were scaled proportionally to the number

the ground-state calculation to reproduce the binding energy; ., ,cleons in®He) For fragmentation ori’C the calcula-
The treatment of the Pauli principle followed in R0l has iong have also been done with the optical potential from

been extended, but will be discussed in a separate publicoy [44]. This optical potential describes the experimental
tion [41]. Our results, except for the dipole excitatiGsee 5, for 2012 elastic scattering in a large angular region at
below), do not depend essentially on this modification. Thee ergy about 100 MeV/nucleon and has a shallow imaginary

Feshbach reduction to active subspace was used, and in gll .+ "This energy is probably somewhat low but comparison
partial states we have reduced the initiet-40 hyperhar- ¢ o ¢ results with different types of potentiéideep” and

monic space(enough for practical convergence® K~10,  «ghajion” ) may give an estimation of ambiguity and check

which gives the same results as a strict calculation in the,s sensitivity of breakup calculations to the optical poten-
larger initial space. With this structure input, we calculated;j;is Since the nuclear excitation energy is negligibly small

the soft dipole response function. The comparison with the, comparison with the collision energy, the optical potential
experimental GSI datpl2] is shown in Fig. 4 by the solid i, the final channel is taken to be the same as in the initial.
line. Monopole O, dipole 1°, and quadrupole 2 excita-

tions in ®He with energies from threshold up to 10 MeV,
were considered.

(i) The effectiveNN interactionV ,, defines the dynamics Table | gives total theoretical cross sections integrated
of the one-step reactions. At intermediate collision energie§Ver excitation energy up to 10 MeV for inelastic scattering
the impulse approximation is reasonable and has proven t@f °He on ?°®Pb and*C targets. Figures 5 and 6 show the
be very successful. In this approximation the nucleon-corresponding spectra compared with experimental [da
nucleont matrix describing a fredIN scattering is used as an The calculations correctly describe absolute values and spec-

tral shapes for both reactions, in spite of their different reac-
tion mechanisms. Still theory underestimates the total cross
2n comparison with our earlier papgt7], we have used an im- S€ctions somewhat, caused by insufficient contributions at
proved version of thev—« potential and an improved computa- higherE*. In this respect the calculations can be improved
tional technique. Hence, the results differ numerically slightly fromby inclusion of excitations with higher multipolariti¢45],
previous work, but the conclusions are not changed. currently not taken into account.

(iii) Heavy ion elastic scattering defines the optical poten-
tials needed for calculations of the distorted waves in the
initial channel. Until now, there are no experimental data for
elastic ®He scattering from thé?C and 2°%b nuclei. There-
fore, optical potentials fot“C scattering on'’C and 2°%Pb

B. Inclusive excitation spectra

064609-14



INELASTIC EXCITATIONS AND MOMENTUM.. .. PHYSICAL REVIEW C64 064609

150 ' ' 8 . r r '
_ °He + **Pb a He + "°C
S E/A = 240 MeV < 6} + (a) 4
3 100 > E/A = 240 MeV
= =
s =
E 5
~ 50 ot
i i
[} -
° 3
0
s —
$ 100 =
2 S
o]
= 50 E
*
iy w
© T
o ©
0 -]
s
o 100 <
: 3
S =
E o
w50 E
3 iy
3 5
S

E* (MeV)
E* (MeV)

FIG. 5. Comparison of the theoreticBHe excitation spectrum
(thick solid line for SHe+ 2%%pp breakup at 240 MeV/nucleon with FIG. 6. The same as in Fig. 5 but for thele+ 12C reaction.
experimental datfl2]. (a) The thin solid, dashed, and dotted lines

show the dipole I, quadrupole 2, and monopole O contribu- . .
tions. (b) Dasheddotted lines show calculations with only nuclear PECOME equal arourd* ~7 MeV. The cross section contri-

(Coulomb interactions(c) Dashed(dotted lines are contributions ~Putions from elastic and inelastic fragmentation are shown in
from elastic(inelastio fragmentation. Fig. 5c). Although the elastic fragmentation dominates the

low-energy part of the spectrum, for a quantitative descrip-

The contributiongFig. 5@)] to inclusive spectra on lead tion both contributions have to be taken into account simul-
target from different multipole excitations ifHe display a taneously. Near the threshold, the total cross section coin-
small monopole contribution, while the dipole dominates anccides with the elastic. Elastic and inelastic fragmentations
the well-known three-body 2 resonance at 1.8 MeV is give approximately equal contribution to thé 2esonance.
strongly excitedtotal cross sectior-90 mb). Since the cal- The dependence oB* is different for the two processes.
culated 2° resonance width~+60 keV) is less than the ex- The elastic fragmentation cross section decreases rapidly
perimental 113 keV) and no energy averaging over ex- with energy while the inelastic stays rather flat. In total,
perimental resolution performed, the theoretical peak crosen 2°®Pb contributes about 30% of the total cross section for
section exceeds the experimental one. The steep crosE* <10 MeV.
section increase at threshold is completely due to dipole ex- Figure 6 shows comparisons of theoretical calculations,
citations. Figure &) shows the cross sections for calcula- (using optical potentidl43]) with experimental datgl2] for
tions with only Coulomb or nuclear interaction. Coulomb ®He+ “C at 240 MeV/nucleon. The peak, the most pro-
dissociation dominates, but cannot alone describe the absaeunced feature in the spectrum, is due to excitation of the
lute values of experimental data. Applying the semiclassica™ resonanceFig. 6(a)] with total cross section~8 mb.
method to our dipole strength function gives355 mb fora  Above the resonance, in the flat part of spectrum, approxi-
cutoff minimum impact parameter of 9.5 fm. Quantum cal-mately half of the cross section is due to dipole, a third is
culations when only the Coulomb part of the optical poten-quadrupole, and the rest is monopole excitations. On carbon
tials is present gave-330 mb for the dipole elastic cross target the inclusive excitation spectrum is completely defined
section. The excitation of the 2 resonance is connected by nuclear interactiofiFig. 6(b)] and the contributions from
mainly with the nuclear interaction. The Coulomb andelastic and inelastic fragmentations are approximately equal
nuclear dissociations have a different dependence on excitfFig. 6(c)]. The excitation energy dependence is weak, but
tion energyE*. The Coulomb cross section dominates atstill the cross section for elastic fragmentation shows a ten-
smaller E* but falls rapidly with increasing energy. The dency of decreasing fastest whE# becomes larger.
nuclear part has a weak dependenceEdnand decreases As experiments show, the low-lyingHe inelastic spectra
with energy rather slowly. As a result, the two contributionsfor reactions on*C and 2°%b targets have different shapes.
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i e R I B W FIG. 8. (a) Comparison of the theoreticdHe excitation spec-
trum for ®He+ 2C breakup at 240 MeV/nucleon for calculations
E* (MeV) E* (MeV)

with the “shallow” (solid line) and “deep” (dashed ling optical
potentials.(b) The thin solid, dashed, and dotted lines show the
dipole 17, quadrupole 2, and monopole ® contributions for cal-
culations with the “shallow” optical potentialc) Differential cross
sections for®He inelastic scattering at 240 MeV/nucleon 1/C
target for region of excitation energids* <4.5 MeV. The solid,
dashed, dotted, and dash-dotted lines are for the total12, and
This difference has a dynamical origin and can be explained+* transitions, respectively. The double-dotted dashed line is the
by interplay of short-range nuclear and long-range Coulomiotal cross section for “deep” optical potential.

interactions. The reaction form factor, due to attractive . , i
nuclear forces, has a finite extension in coordinate spac&f0SS sections due to Coulomb fordemshed linegare in-

Coulomb repulsion reduces the nuclear form factor at smaff'€aséd by more than two orders of magnitude going from

radii and produces a Coulomb t&5) at large. The rate of carbon to lead targets. This factor is similar to the square of
the tail falloff is defined by the transition multipolarity. The the ratio of target charges and is expected for pure Coulomb

excitations. When both interactions are present, the picture
mqnopole should decrease most S.IOWIy’ but dug to OrthOthSecomes more complex: There is a destructive interference
nality between the ground and excited Btates of°He, the

le f f X | di H hin the internal region and Coulomb excitation in the outer.
monopole form factor is zero at large distances. Hence, t herefore, explicit calculations are needed to get a quantita-
dipole form factor has the longest extension in space an

. o o ve result.
dipole excitations are the most sensitive to the strength of |, the calculations discussed above, we used the optical

Coulomb interaction. Both space regions, internal and extemotentials[43] fitted to describe théC elastic scattering at
nal, cause a breakup reaction. In breakup'@®, the contri- 200 MeV/nucleon on the carbon and lead targets with radius
bution from the internal region dominates while for tfPb  parameter scaled to tHiHe size. Therefore, it is reasonable
case, due to strong Coulomb interaction, the reverse is trugp estimate the uncertainty of the calculations and check the
Figure 7 shows by solid lines the quadruppifégs. 1a) and  sensitivity of the results to potential variations. As an alter-
7(c)] and dipole[Figs. 1b) and 7d)] excitations of the®He  native, we choose the optical potential from w#k] fitted

for reaction on the®?C and ?°®Pb targets. The dashed and to elastic data on?C+ 2C scattering in a large angular in-
dotted lines are for excitations caused only by Coulomb oterval at energy~100 MeV/nucleon. This energy is lower
nuclear interactions, respectively. For quadrupole transitionthan ours but the potential has a “shallow” imaginary part
[Figs. 1a) and 7c)] the Coulomb interaction is not impor- and is an example of another class of optical potentials. With
tant. For both targets they are excited mainly by nuclearadius parameter scaled ftHe, this potential may give a
forces (dotted lineg and the cross section is roughly in- reasonable variation of the optical potential. It is of special
creased by one order of magnitude going from light to heavyinterest to estimate the influence on inelastic fragmentation
targets. For dipole excitatiori§igs. 1b) and 1d)] the pic-  that is formally proportional to the potential imaginary part
ture is qualitatively different. The nuclear excitatioi®tted [see Eq.(11)]. Figure &) compares the calculations of the
lines) are more than two times bigger than Coulomb ininelastic spectrum for “deep{dashed ling and “shallow”
breakup on'?C and its cross section is roughly increased by(solid line) potentials. The calculations with the shallow po-
one order of magnitude in the reaction 61fPb. But dipole tential have a similar spectral shape but somewhat larger

FIG. 7. Quadrupoléa) and dipole(b) excitations of the’He on
20%ph, and quadrupole) and dipole(d) excitations on*?C. Dashed
(dotted lines show calculations with only Coulonthucleay inter-
actions.
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*He + C
E/A = 240 MeV (a)

2f shal J"=2"

n

do. /dr (fm)

°He + '*C (b)

(fm)

do, /dr

do/dE* (mb/MeV) do/dE* (mb/MeV) do/dE* (mb/MeV)

(fm)

E* (MeV)

do. /dr

FIG. 9. Comparison of different multipole contributions for cal-
culations with the “deep’(solid line) and “shallow” (dashed ling
optical potentials. The quadrupole, dipole, and monopole are shown r (fm)
in (a), (b), and(c), respectively.

FIG. 10. The radial distributions of the inelasfiele breakup at

20 1.
values of absolute cross sections. The total cross secti(cf:flo MeV/nucleon(@ on the **Pb target,(b) and (c) on the **C

from threshold up to 10 MeV excitation energy is increase arget (_:alcuIaFed for the “shallow” and “deep” optica_l potentials.

. . he thick solid, dashed, dash-dotted, and dotted lines show the
by 20%'_ Flgure &) _S‘hows,for the shallow pOte,nt'al, the de- total, dipole, quadrupole, and monopole contributions, respectively.
cpmposmon (_)f the 'neflas,t'c spgctrum on contributions fromThe thin solid line shows the arbitrarily scaled imaginary part of
different multipole excitationgthin solid, dashed, and dotted
lines for 17, 2*, and 0", respectively. The most remark-
able observation is the increase of monopole cross sectiongal waves that define the Green’s function behavior at small
To demonstrate better these changes, Fig. 9 shows the comadii, are suppressed due to absorption. At large radii, the
parison of calculations with “deep(solid lineg and “shal-  exponential decrease of the optical potential imaginary part
low” (dashed linespotentials for different multipole excita- is responsible for suppression. This behavior clearly demon-
tions. It has been seen from Fig(aP that quadrupole strates the peripheral nature of the inelastic fragmentation
transitions have only minor changes. Dipole cross sectiongeaction. Physically, the suppression in the internal region
[Fig. Ab)] are increased by 30%. The most significant in-singles out the reactions that do not destroy the core. The
crease[Fig. 9c)] by more than two times is that of the suppression at large radii means that nuclei have to be close
monopole excitations. It is clearly demonstrated that usingnough to excite each other.
the shallow or transparent potential, influences most strongly An additional observation is related to the radial distribu-
the excitations that are concentrated more deeply inside thgons of different multipole cross sections. The higher the
nucleus. The contributions from elastic and inelastic frag-multipolarity, the more an excitation is shifted to the surface.
mentation for shallow potentials are increased similarly, in-The monopolgdotted line$ has a volume character, the di-
elastic slightly more then elastic. pole (dashed lingsis concentrated on the surface, and the

It is useful to get a more detailed insight into the inelasticquadrupolgdashed-dotted lingss shifted even further from
fragmentation, especially the spatial distribution for inelasticthe center. The radial distributions for the shallow potential
fragmentation cross sections as it is defined by Bd). [Fig. 10b)] are broader than those for the deep ¢Ra.
Figure 10 shows the radial distributions of total inelastic10(c)]. A transparent potential more strongly underlines the
fragmentation cross sections for reaction 8%¥Pb [Fig.  partial waves with low values of orbital momenta than an
10(a)] and on*2C for calculations with shalloFig. 10b)]  absorptive one. Therefore, contributions from the internal
and deep[Fig. 10c)] optical potentials. The thick solid, space play a bigger role in the reaction in comparison with
dashed, dashed-dotted, and dotted lines denote the total, 1the case of strong absorption. It qualitatively explains the
2", and 0" cross sections, respectively. Thin solid lines de-doubling of the monopole and minor influence on the quad-
note the imaginary parts of corresponding optical potentialsiupole contributions in calculations with deep and shallow
scaled arbitrarily. The curves show that inelastic fragmentapotentials. Practically, there are two competitive factors act-
tion (thin solid lineg is concentrated in the surface region. It ing in different directions. One is that an inelastic fragmen-
is suppressed in the internal region since the significant patation cross sectiofil) is proportional to the absolute value

optical potential.
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8 6 slope at large energies. Decays from quadrupole statan

the three-body 2 resonanceare important at small ener-
gies. The neutron-neutron spectrfifig. 11(c)] from the 2"
resonance has a peak close to the threshold revealing the
strong nucleon-nucleon correlations. The shapes of the 2
a-particle and neutron spectfiigs. 11b) and 11d), dashed
lines| are qualitatively similar to the shapes that were mea-
sured from decay of the "2 resonance populated in the
"y Li(d,*He)’He(@™=2" ,E* =1.8 MeV) reaction$45,44. It

0 T nTmTemes is interesting to note that the shape of the tataparticle

o 1 2 3 0 1 2 3 spectrum[Fig. 11(b), thick solid ling coincides perfectly
E,.(MeV) E.. (MeV) with experimental data for neutram- correlations [Fig.
11(a)]. To demonstrate the importance of final-state interac-
tions, the dash-dotted lines in Fig. 11 show the calculations

(arb.units)
(arb.units)

an

nn
N

do/dE
do/dE

S
el e T T

) ) when mutual interactions between the projectile fragments in
g g the exit channel were neglectéthe fragment relative mo-
o a tion are described by three-body plane wayesghile the
s s halo ground-state wave function keeps a complex correlated
w® we structure. We see that only the spectrum of the single heavy
z i) fragment[Fig. 11(b)] has a shape qualitatively similar to the
o s | Neee full calculation (still the width of the peak is essentially
% 1 R broadey while all other spectra differ markedly.
E (MeV) E, (MeV)

D. Fragment momentum distributions

FIG. 11. Top: Comparison of the theoretical spectra of the rela-
tive energy between the particle and a halo neutrofa), and

between two halo neutron&), for ®He+ 2°Ph breakup at 240

MeV/nucleon with experimental dafd2]. Bottom: Energy spectra
of « particle (b), and of a halo neutrofd), in the projectile rest

frame. The thick solid, thin solid, dashed, and dotted lines show th? Hi | lei wh f elasti d
total, dipole I, quadrupole 2, and monopole 0 contributions, ation on compiex nuciel when processes of elaslic an

respectively. The dash-dotted lines correspond to calculations dpela_lstlc fragmentation ta!(e place: . .
total spectra without final-state interactions. . F|gure 12 showsy-particle longitudinal momentum dis-
tributions for ®He breakup on'°C target at 240 MeV/

of imaginary potential part. The second is that a larae absor r_lucleon. In Fig. 123 the thick solid line shows the total
imaginary p lal part. : 9 pgistribution that includes contributions from the continuum

tion strongly suppresses the contributions from the interna xcitations with energy <10 MeV. To clarify the nature

region and, hence_, decreas_es_t_he cross section. In our C&45fthe momentum distributions, the contributions from three
the second factor is more significant.

different intervals of thé’He continuum(see caption of Fig.
12) are also shown. The well-known*2resonance aE,
=0.83 MeV, which dominates iffHe energy spectrfil?2],
Figure 11 shows the different fragment energy spectra fofetermines the contribution from the first interval. The sec-
He breakup on?®b target. Then-neutron and neutron- ond interval contains excitations of different soft modes,
neutron relative energy distributions are compared with exwhile the third corresponds to the highest excitation energies
perimental dat§12] in Figs. 11a) and 11c). The a-particle  taken into account in our model. We see that a narrow width
and the halo neutron energy spectra in the projectile reaf a momentum distribution is due to decays of excitations
frame are shown in Figs. () and 11d). The thick solid, near the breakup thresholttom the first and second inter-
thin solid, dashed, and dotted lines show the total, dipole 1 vals). The decays from the highest excitation enerdibe
quadrupole 2, and monopole ® contributions, respec- third interva) give a broad distribution and define the wings
tively. The theoretical two-body energy correlatioff§igs.  of the total distributior(at a fixed excitation energy the mag-
11(a) and 11c)] correctly reproduce the falloff of the cross hitude of a fragment momentum is restricted by allowed
sections with increasing relative fragment energy, but aphase spageSince momentum distributions are highly inte-
small energies there are some deviations from measuregfated observables, their dependence on the exact location of
data. For a fair comparison with experiment the theoreticathe soft modes and higher excitations is not strong.
calculations have to be folded with instrumental response in Figure 12b) shows the partial content, i.e., contributions
order to correct for efficiency and solid-angle acceptance ofrom continuum states with differed. Since amplitudes
the fragment detectors. Since these experimental distortiorfer different states interfere with each other, an estimate of
are not included in the calculations, it is premature to drawthe partial contributions was carried out by incoherently add-
definite conclusions from this comparison. Decays from théng the cross sections for alf’ . The difference between this
dipole excitations dominate the energy spectra and define thi@ash-dotteglline and the one corresponding to the complete

Recently[16] we demonstrated within our microscopic
approach that in diffractivéelastio breakup of Borromean
halo nuclei on proton target, the correlated continuum exci-
tations play a crucial role in fragment momentum distribu-
tions. Now, similar properties are revealedSHe fragmen-

C. Fragment energy distributions
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FIG. 12. The calculated longitudinal-particle momentum dis- FIG. 13. Momentum distributions fdtHe breakup at 240 MeV/

tributions in ®He breakup on'?C target at 240 MeV/nucleor(a)  nucleon, normalized to unity at zero momentu@. and (c) show
and (b) include FSI, while(c) and (d) are without FSI. The thick transversex and halo neutron distributions offC target, respec-
solid line shows the total momentum distribution. Fay and (c), tively. The solid(dashedl line shows total momentum distribution
the thin solid, dashed, and dotted lines correspond to the contribwith (without) final-state interaction. The dotted line is the distribu-
tions from the ®He continuum for excitation energy intervals 0 tion from the Serber model. The experimental dédiiack squares
<E,.<1 MeV, 1<E,<5 MeV, and 5<E,<10 MeV, respec- from [19] correspond to the coincidences betweemgrarticle and
tively (E, measured from the three-body thresholesn a neutron(b) and (d) show a-particle transverse and halo neutron
=0.97 MeV). For(b) and (d) the dashed-dotted line shows total longitudinal momentum distributions. The solidashedl line cor-
distribution without interference between excitations with differentresponds to the reaction 0iC (***Pb) target.

J7 ; the thin solid, dashed, and dotted lines show contributions from

decay of the 2, 17, and 0" excitations, respectively. have the same quantum numbers and correspond to different
energy eigenvalues of the projectile Hamiltonian. Neglecting
calculation(thick solid line, gives an estimate of the impor- the FSI leads to violation of this important requirement.
tance of such interference. In our case, the interference i$hus, the final-state interaction is decisive: It defines the
small. The shape of the longitudinal distribution is slightly structure of the continuum excitations that directly influences
asymmetricalasymmetry is seen in high momentum tails in the width of the momentum distributions.
Fig. 12a)], which supports this statement. The decay from The calculated core and neutron transverse momentum
2" is the largest and gives the narrowest part of the distridistributions in various approximations and normalized to
butions, the I is the second in importance, and thé @ives  unity at zero momentum, are compared with experimental
a small contribution. Hence, the structure of the continuundata[19] for ®He fragmentation on théC target in Figs.
determines the essential features of momentum distributiond.3(a) and Fig. 18b). The solid(dashed lines correspond to
In Figs. 1Zc) and 12d), the situation with no FSI is calculations with(without) final-state interactions, and the
shown, i.e., the continuunfHe wave functions were de- dotted line shows the transverse distributions from the Serber
scribed by three-body plane waves, but correlations in thenodel[47]. The experimental datélack squares[19] cor-
ground state were kept the same. Large differences are seesspond to the coincidences between arparticle and a
when neglecting FSI: the”2resonance disappears, and thereneutron. The Serber model does not simultaneously describe
is practically no contribution from the low-energy region. the core and neutron momentum distributions. For the core,
The contribution from the highest excitation energies is thdt overestimates the distribution wings, which demands cut-
largest. The width of the distributions is correspondingly in-ting the contribution for high momentum. For the neutron, it
creased, and the partial content is strongly changed. The cogives a significantly broader distribution. Calculations
tribution from the 0" dominates the momentum distribution (dashed linesthat take into account the reaction mechanism
while the role of the 2 and 1™ excitations become essen- and the correlations in the ground state, but neglect FSI, are
tially smaller. Monopole wave functions for continuum exci- also insufficient and overestimate the width of the neutron
tations must be orthogonal to the ground state since thegtistribution. Because of the FSI, a redistribution of transition
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strength over continuum excitation energy occurs, the low-

energy part being enhanced. As a result, the momentum dis- 400
tributions become narrower than without FSI. Since the
final-state interaction most strongly influences the motion of
the light fragments, the shape of the neutron distribution
changes more strongly than for tle particle. Finally, the
full calculations with FSli(solid lineg are slightly narrower
than the experimental data for both fragment distributions.
The reason is that the theoretical calculations include only
the low-energy parti,<10 MeV) ®He excitation spectrum
(with undestroyeda particle while the experimental data 0
contain also fragments from higher excitations since%He

excitation energy cannot be defined from a singteeutron 200
coincidence. The fragments from high-energy excitations
have a flat, broad momentum distribution and taking their
contribution into account in theoretical calculations will im-
prove the agreement with experimental data. &hparticle - 3
transverse and neutron longitudinal momentum distributions ¥

for SHe breakup ont?C (solid line) and 2°®Pb (dashed ling v
targets are compared in Figs.(bBand 13d), respectively. P ;
We see that the shapes of the momentum distributions for 0 ST T
both reactions are rather similar in spite of differences in 0 2% (r:?adfo 80 0 wef:"_:g) 40 50
reaction mechanism.

200

do / do (arb. units)
do / do (arb. units)

100

do / do (arb. units)
do / do (arb. units)
3,

FIG. 14. Differential cross sections fGHe inelastic scattering
E. Differential angular cross sections at 240 MeV/nucleon i@ *°C target for®He excitation energies

*<45MeV; (b) PC target for excitation energiesE*
In the approach we have developed, we can, as was meﬁ- ’
PP ped, ’ <2.5 MeV; (c), (d) ?°®Pb target for region of excitation energies

tioned aboye, only calculate a differential angular cross Secl'z*s4.5 MeV. The solid, dashed, dotted, and dash-dotted lines in
tion d?a/dk; for processes of eIas_tﬁHe_ fragmentation, i.e., (g (b), and(d) are for the total, 2, 1-, and 0" transitions, re-
when the target does not get excited in the reaction. In kinegpectively. The thin solid line ife) shows calculation of differential

matiecally complete experiments, it is possible to reconstructistribution in the case where only Coulomb forces are present in
the "He recoil momentum as a sum of the momenta of allthe projectile-targeNN interactionV,,. In (c), the dashed, dotted

fragmentsk, +k, +k, and get the angular distribution of and solid lines correspond to calculations where the projectile-target
the ®He c.m. motion at fixed excitation energy. Since it is NN interactionV, includes only Coulomb or nuclear forces and
unknown how the energy transferred to the target is distribPoth together, respectively. The experimental dalack squares
uted between the c.m. motion and the internal excitation oft® from Ref[20].
the target, the experimental data contain the events for both
processes: elastic and inelastic breakup. Therefore, a quanfar distribution at angles slightly smaller than those of quad-
tative comparison of theoretical angular distributions withrupole and, as a result, the total angular distribution becomes
experimental data is less certain. broader[Fig. 14a)] than it is for pure quadrupole excita-
Figure 14 shows the angular distributiode/d¢ for in-  tions. The nature of the small-angle peak in the theoretical
elastic scattering ofHe in carbon[Figs. 14a) and 14b)]  calculations is completely due to dipole excitations. Further-
and lead[Fig. 14(c)] targets at 240 MeV/nucleon. Experi- more, if the attractive nuclear part from a projectile-target
mental data are from Reff20]. Figures 14a) and 14c) con- NN interactionV, is switched off, the forward-angle peak
tain the events witt’He excitation energy<4.5 MeV, the  keeps its position and absolute magnitjittén solid line in
Fig. 14b) is for a more narrow range d&*<2.5 MeV to  Fig. 14a)] while the peak at larger anglésearly quadru-
underline the role of the 2 resonance. The solid, dashed, pole) disappears. Hence, we conclude that pure Coulomb
dotted, and dashed-dotted lines correspond to the theoreticalteraction is responsible for the forward-angle peak. This is
calculations of the total, quadrupole, dipole, and monopole signal of long-ranged breakup of the halo nucleus on a light
contributions of elastic fragmentation leading to fii¢e ex- target that, due to the weakness of Coulomb forces in such
citations lying in the energy ranges. For breakup B&  systems, is clearly separated from nuclear breakup.
target[Figs. 14a) and 14b)] the experimental data and the-  The angular position of the very forward peak is rather
oretical calculations give similar shapes with a narrow pealstable in theoretical calculations. The quantal, semiclassical,
at extremely forward angles and broader bump @t or simply plane-wave Born estimatiofiwhich can be used
~40 mrad. The nature of the broad bump is explained by thaeince the Sommerfeld parameter that characterizes the
excitation of the Z resonancéFig. 14b)] that dominates in  strength of Coulomb interactions is smajl~0.1)—all give
the low-lying part of the®He inelastic spectrum. At higher a peak position at angles of about 1 mrad. The experimental
E*, the dipole excitations are also important in addition todata indicate a peak at larger angles. The effects of distor-
quadrupole transitions. They have their maxima in the angutions due to finite acceptance and efficiency of fragment de-
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tection have to be applied to the theoretical calculations fora 15 y y y 1.5 . .

fair comparison with experimental data. The monopole exci- ‘He+’C  (a) J =0 (¢)

tations play a smaller role in the low-lying transitions since ~ E/A=240MeV |~

the monopole wave functions are orthogonal to the ground £ 10} tot £ 1.0}

state having the same quantum numbers. But they have aX =

maximum in angular distributions just at the place where the @ 2* ol tot

pure Coulomb dipole is significantly decreased, while the 3 g| T 1805 elas

quadrupole is not yet enhanced and have to be taken into8 | _«"" 1 ‘\.\ S ———-——-————--

account in quantitative analysis of angular distributions. s | o o [T | nel """""""
Figure §c) demonstrates the sensitivity of angular distri- b T T © 0.0 .

butions to the optical potentials used for description of the
relative motion of the colliding nuclei. The first peak arising 6r J=1 (b)) J=2" (d)

from Coulomb excitation does not show sensitivity while the =& o 6f
second(mainly from nuclear interactionsis strongly de- E 4 1ot E tot
creased for a shallow potential. In this case in the angular o [ = 4}
region of the second bump, the quadrupole excitations are « . -

. . . .~ elas ™~ @\ s elas’\
weaker, while the dipole and monopole show smooth falling § , TN o 18 |.... N
behavior. Therefore, the description of an angular distribu- 2 |7 inel AN I 2'\ S/ inel N
tion due to nuclear interactions demands knowledge of opti- 8 3 - -
cal potentials for which the elastic scattering data are re- 0 . : : 0 . . .

1.0 -05 00 05 10 -1.0 -05 00 05 1.0

quired.

Figures 14c) and 14d) show differential distributions of cos(6,) cos(9,)
®He breakup on thé%pPb target. Coulomb forces are strong o _
and predominantly excite the dipole transitions. The shape of F'G- 15- Angular distribution calculations for the fragment

P . ith respect to the beam direction, in the projectile rest frame for
angular distributions is rather smooth for a pure Coulomb‘éVI ;
interaction[dashed line in Fig. 14)]. But nuclear interac- ¢ breakup on thé“C target.(a) The solid, dashed, dotted, and

tions are important since the interference with Coulomb ro-daSth'OIOtteOI lines show the total, dipole, quadrupole, and mono-
P p ole contributions, respectively. Itb), (c), and (d), the angular

_duce;cs Irregulahrltles in angular _d_ls_trlbutlohns. The istrength ?ﬁistributions for dipole, monopole, and quadrupole excitations are
Interference shows some sensitivity to the optical potentia ‘given separately. The solid, dashed, and dotted lines show the total,

elastic, and inelastic contributions, respectively.
F. Angular distributions

For three-particle breakup of Borromean nuclei, a variety Figure 16 shows the same distributions as shown in Fig.
of different angular distributions can be studied. A detailed15 but for calculations without final-state interactions. The
discussion of their properties will be given elsewhere. Hergotal angular distributiofiFig. 16a)] is flatter in comparison
we give only one example—angular distributions of #ae Wwith calculations with FSI. Comparisons of contributions for
particle with respect to the beam direction fite fragmen-
tation on “C and we try to illuminate the main features of A y g
such distributions. Figure 18 shows the total distribution He+ "C  (a) (¢)
and separate contributions from the dipole, quadrupole, and 7 0] E/A=240 Mev
monopole excitations. The decay from the states ifiHe £ tot
for E* <10 MeV were taken into account. The decay from =~ |}-——--— Nttt -
monopole states is isotropic while that from the states with ;} 20| 0
nonzero angular momentum shows anisotropy with increased g
probability to fly in the plane perpendicular to the beam di-
rection. Figures 1), 15(c), and 1%d) show thea-particle
angular distributions from elastic and inelastic breakup for
different multipole excitations. We see that angular distribu-
tions from elastic and inelastic breakup are qualitatively dif-
ferent. Only the elastic breakup from states with nonzero
total momenta shows an angular anisotropy while in inelastic
fragmentation thex particles have no preferable direction.
The formal reason is that the optical potential used for cal-
culations of inelastic fragmentation in E@6) is spherically
symmetric. For nonzero values bfin Eq. (41), which de-
scribe the deviation from angular isotropy, the product of two 0

, , O i kit 990 o5 00 05 1.0 30 05 00 05 1.0
inelastic amplituded “?"(R,K¢, ki, «) with different angu-

brla o ) ) cos( ea) cos( (-)a)
lar momentd , has radial oscillations. An integration ovier

decreases the terms with#0 and, finally, the angular dis- FIG. 16. The same as in Fig. 15 but without final-state interac-
tributions are flat. tions.
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different multipole excitationgFigs. 18b)—16(d)] with cor-  excitations. Within this approach, the Coulomb and nuclear
responding distributions in Figs. @§—15d) show that the dissociations are included in a consistent way that also ac-
dipole and quadrupole distributions are similar in shape andounts for Coulomb-nuclear interference. The importance of
in absolute magnitude while the isotropic monopole is in-a correct treatment of recoil effects in the reaction dynamics
creased about 30 times in calculations without FSI. Thiof the light breakup projectile has been demonstrated. The
again demonstrates the importance of the orthogonality banethod of hyperspherical harmonics is used for a consistent
tween excited- and ground-state wave functions for monoédescription of genuine features of the halo bound-state and

pole excitations lost in calculations without FSI. the final-state interactions between all halo fragments.
Our four-body DWIA theory can be applied to kinemati-
IV. CONCLUSIONS cally analyze complete experiments, which allow reconstruc-

o o tion of the halo excitation spectrum, and single out the events

The characteristics of halo phenomena in light Borromearsayrying the most valuable information on correlations spe-
nuclei are present in properties of both bound and continuurgific to two-neutron halo systems.
states near the three-body breakup threshold. These states arerpe method was used to analyze recent experimental data
also coupled by the ways we learn about halo phenomen?'lzizq on ®He fragmentation at 240 MeV/nucleon JfC
the nuclear reaction mechanism intertwines bound and exgnq 208pp targets. In addition to a good simultaneous de-
cited states and reveals the peculiarities of halo structure Vié‘cription of absolute cross sections and excitation spectra for
transitions to low-lying halo excited states that subsequently, 5, reactions, new insight into the interplay of reaction
decay into fragments. These events can be studied by a higfiechanisms and correlated continuum structure was ob-
archy of observables in kinematically complete experimentsygined. It was shown that in breakup of Borromean nuclei, a
Such experiments allow sophisticated analyses of the datﬁ‘agment momentum distribution has a symmetrical shape
and give a possibility to reconstruct projectile excitationfor transverse while it may be asymmetrical for the longitu-
spectra and different correlations between fragments. In thgjna) distribution. A number of other energy and angular cor-
quantitative theoretical analysis of such experiments, thggjations between halo fragments were calculated within the
final-state interactions between all halo fragments have to bgyme dynamical picture. The important role found for inelas-
taken into account. Due to the small relative fragment velociyje fragmentation, i.e., inclusion of target excitations and
ties at low halo-excitation energies, no interaction can beoylomb-nuclear interference, is consistent with experimen-
neglected. At these conditions, the no-FSI approximationyy| gata. To reduce the uncertainties in the theoretical calcu-
and even the spectator model, are invalid. lations, experimental data for elastic scattering of halo nuclei

For definite physical conditions, simplification of the re- 5re needed, allowing us to more precisely define the reaction

action mechanism makes it possible to develop a viable apgyynamics. Application of the approach to other Borromean
proach. At intermediate energies, the one-step reactiojyclei is in progress.

mechanism dominates and the distorted-wave impulse ap-
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