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Pairing and continuum effects in nuclei close to the drip line
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The Hartree-Fock-Bogoliubov~HFB! equations in coordinate representation are solved exactly, i.e., with
correct asymptotic boundary conditions for the continuous spectrum. The calculations are performed with
effective Skyrme interactions. The exact HFB solutions are compared with HFB calculations based on box
boundary conditions and with resonant continuum Hartree-Fock-BCS~HF-BCS! results. The comparison is
done for the neutron-rich Ni isotopes. It is shown that close to the drip line the amount of pairing correlations
depends on how the continuum coupling is treated. On the other hand, the resonant continuum HF-BCS results
are generally close to those of HFB even in neutron-rich nuclei.
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I. INTRODUCTION

The physics of exotic nuclei close to the drip lines h
triggered a new interest for the study of pairing correlatio
in finite systems. A peculiarity of pairing correlations
weakly bound nuclei is their sensitivity to the effects of u
bound single-particle states.

The pairing correlations in the presence of continu
coupling have been treated both in Hartree-Fock-Bogoliu
~HFB! @1–8# and Hartree-Fock-BCS~HF-BCS! @9–12# ap-
proximations. In the HFB approximation the continuum
generally included in spherical systems by solving the H
equations in coordinate representation. The calculations
done either in the complex energy plane by using Gr
function techniques@1,6#, or on the real energy axis@3,4#. In
the latter case the HFB equations are usually solved by
posing box boundary conditions, i.e., the HFB wave fun
tions are assumed to vanish beyond some distance th
chosen to be typically a few times the nuclear radius.

The effect of the resonant continuum upon pairing cor
lations was also studied in the framework of the BCS
proximation, both for zero@9–11# and finite temperature
@12#.

For deformed systems working in coordinate represe
tion is much more difficult@5#. In most of the deformed HFB
calculations the continuum is discretized by expanding
HFB wave functions on a single-particle basis. Usually
harmonic oscillator basis is taken and one can improve
description of physical quantities at large distances such
density tails by performing a local scaling transformati
@7,8#.

The aim of this paper is to show how the coordinate sp
HFB equations can be actually solved in the case of sphe
symmetry and Skyrme type forces by treating the continu
exactly, i.e., with correct boundary conditions, and to anal
to which extent different approximations, namely, box HF
and resonant continuum HF-BCS calculations, compare w
the exact solutions. In this paper we will treat the continu
exactly only for the neutrons of neutron-rich systems
which one expects that the continuum plays an import
role close to the drip line. For the protons we will treat t
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continuum by a box discretization. It will be shown th
nuclear properties related to pairing correlations are corre
predicted by discretized continuum methods away from d
line but they deviate appreciably from exact continuum
sults when one approaches the drip line.

The paper is organized as follows. In Sec. II we give
brief reminder of the HFB equations in coordinate repres
tation. In Sec. III we present the procedure we have used
calculating the continuum HFB solutions and we discuss
a schematic model, how the quasiparticle resonant state
identified. In Sec. IV we present the continuum HFB calc
lations for Ni isotopes in comparison with box HFB an
resonant HF-BCS calculations. Conclusions are drawn
Sec. V.

II. HFB EQUATIONS IN COORDINATE
REPRESENTATION

The HFB approximation in coordinate representation h
been discussed quite extensively in the literature@2–4# and,
therefore, we recall here only the basic equations.

The HFB equations in coordinate representation read@3#

E d3r 8(
s8

S h~rs,r 8s8! h̃~rs,r 8s8!

h̃~rs,r 8s8! 2h~rs,r 8s8!
D S F1~E,r 8s8!

F2~E,r 8s8!
D

5S E1l 0

0 E2l
D S F1~E,rs!

F2~E,rs!
D , ~1!

wherel is the chemical potential,h andh̃ are the mean field
and the pairing field, and (F i) represents the two-compone
HFB quasiparticle wave function of energyE. The mean-
field operatorh is a sum of the kinetic energyT and the mean
field potentialG,

h~rs,r 8s8!5T~r ,r 8!dss81G~rs,r 8s8!. ~2!

The mean-field potentialG is expressed in terms of th
particle-hole two-body interactionV and the particle density
r in the following way:
©2001 The American Physical Society21-1
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G~rs,r 8s8!5E d3r 1d
3r 2 (

s1s2

V~rs,r 1s1 ;r 8s8,r 2s2!

3r~r 2s2 ,r 1s1!. ~3!

Similarly the pairing fieldh̃ is expressed in terms of th
pairing interactionVpair and the pairing densityr̃,

h̃~rs,r 8s8!5E d3r 1d
3r 2 (

s1s2

2s8s28Vpair~rs,r 8

2s8;r 1s1 ,r 22s2!r̃~r 1s1 ,r 2s2!. ~4!

The particle and pairing densitiesr andr̃ are defined by the
following expressions:

r~rs,r 8s8![ (
0,En,2l

F2~En ,rs!F2* ~En ,r 8s8!

1E
2l

Ecuto f f
dEF2~E,rs!F2* ~E,r 8s8!, ~5!

r̃~rs,r 8s8![ (
0,En,2l

F2~En ,rs!F1* ~En ,r 8s8!

1E
2l

Ecuto f f
dEF2~E,rs!F1* ~E,r 8s8!, ~6!

where the sums are over the discrete quasiparticle states
energiesuEu,2l, and the integrals are over the continuo
quasiparticle states with energiesuEu.2l. The HFB solu-
tions have the following symmetry with respect toE:

F1~2E,rs!5F2~E,rs!,

F2~2E,rs!52F1~E,rs!. ~7!

As it appears clearly from Eqs.~5! and ~6! we choose to
work with the positive energies.

The particle-hole and pairing interactions in Eqs.~3! and
~4! are chosen as density-dependent contact interaction
that the integro-differential HFB equations reduce to coup
differential equations. The zero-range character of the p
ing interaction is the reason why one has to adopt an en
cutoff as seen in Eqs.~5! and ~6!.

In this paper we consider systems with spherical symm
try. In this case the wave functions are readily decompo
into their radial and spin-angular parts@3#

F i~E,rs!5ui~El j ,r !
1

r
yl j

mj~ r̂ ,s!,i 51,2, ~8!

where

yl j
m~ r̂ ,s![Ylml

~Q,F!x1/2~ms!S lml

1

2
msu jmD . ~9!
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In the following we use for the upper and lower compone
of the radial wave functions the standard notationul j (E,r )
andv l j (E,r ).

As we have already mentioned, the HFB equations
usually solved by imposing to the radial wave functions t
condition that they vanish beyond a given distanceR ~box
radius!. In this case the continuous spectrum is replaced b
set of discrete energies, whose density depends on the
radius. In what follows we discuss how the HFB equatio
can be solved by keeping the correct asymptotic conditi
for the neutron wave functions.

III. THE TREATMENT OF QUASIPARTICLE CONTINUUM

A. Asymptotic behaviors

The asymptotic behavior of the HFB wave function
determined by the physical condition that, at large distan
the nuclear mean fieldG(r ) and the pairing fieldD(r ) van-
ish. This condition requires an effective interaction of fin
range and finite-range nonlocality. Outside the range of m
fields the equations forF i(E,rs) are decoupled and one ca
readily find the asymptotic behavior of the physical solutio
at infinity @2#. Thus, for a negative chemical potentiall, i.e.,
for a bound system, there are two well-separated region
the quasiparticle spectrum.

Between 0 and2l the quasiparticle spectrum is discre
and both upper and lower components of the radial H
wave function decay exponentially at infinity. For neutro
this implies that those components have the form

ul j ~E,r !5Ahl
(1)~ ia1r !,

v l j ~E,r !5Bhl
(1)~ ib1r !, ~10!

where hl
(1) are spherical Haenkel functions,a1

25

2(2m/\2)(l1E) and b1
25(2m/\2)(l2E). These solu-

tions correspond to the bound quasiparticle spectrum. In
case, the solutions are normalized to unity.

For E.2l the spectrum is continuous and the solutio
are

ul j ~E,r !5C@cos~d l j ! j l~a1r !2 sin~d l j !nl~a1r !#,

v l j ~E,r !5D1hl
(1)~ ib1r !, ~11!

wherej l andnl are spherical Bessel and Neumann functio
respectively, andd l j is the phase shift corresponding to th
angular momentum (l j ). One can see that the upper comp
nent of the HFB wave function has the standard form o
scattering state while the lower component is always ex
nentially decaying at infinity.

The asymptotic form of the wave function should b
matched with the inner radial wave function, which forr
→0 can be written as follows:

S ul j ~E,r !

v l j ~E,r !
D 5D2S r l 11

0 D 1D3S 0

r l 11D , ~12!
1-2
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The HFB wave function is normalized to the Diracd
function of energy. This condition fixes the constantC to the
value

C5A1

p

2m

\2a1
. ~13!

The radial wave functions are calculated by integrating
HFB equations outwards starting from the initial conditio
~12!, and inwards starting from Eq.~10! or Eq. ~11! depend-
ing on the value ofE. The solutions are propagated by
modified Numerov method towards the matching poi
where the continuity conditions for the wave functions a
their derivatives are imposed. These conditions determine
coefficientsD1 , D2 , D3, and the phase shiftd for a quasi-
particle state in the continuum; in the case of a discrete q
siparticle state the continuity conditions and the normali
tion condition determine the coefficientsA, B, D2 , D3, and
the energyE.

The difficulty of an exact continuum calculation, i.e., wi
asymptotic solutions given by Eq.~11!, is to identify the
energy regions where the localization of the wave functio
changes quickly with the quasiparticle energy. These are
regions of quasiparticle resonant states.

In HFB the quasiparticle resonant states are of two typ
A first type corresponds to the single-particle resonance
the mean field. The low-lying resonances of the mean fi
located close to the particle threshold are very importan
the treatment of pairing correlations of weakly bound nuc
because they become strongly populated by pairing corr
tions.

A second kind of resonant states is specific to the H
method and corresponds to the bound single-particle sta
which in the absence of pairing correlations have an ene
e,2l . In the presence of the pairing field these bou
states are coupled with the continuum single-particle st
and, therefore, they acquire a width. The positions and
widths of these HFB resonances are related to the total p
shift, calculated from the matching conditions, as@2#

d~E!.d0~E!1arctg
G

2~ER2E!
, ~14!

whereER andG are the energy and the width of the resona
quasiparticle state. The functiond0(E) is the phase shift of
the upper component of the HFB wave function in the H
limit, i.e., h̃50. In this limit one has

hF1
05~E1l!F1

0 . ~15!

If there is no single-particle resonance close to the ene
E1l in the HF limit, then the HF phase shiftd0 has a slow
variation in the quasiparticle energy region. In this case
derivative of the total phase shift has a Breit-Wigner for
which can be used for estimating the position and the wi
of the quasiparticle resonance.

Thus, in the first step of the calculations we study for ea
( l , j ) channel the behavior of the phase shift and we estim
the energies~widths! of the resonant states from the energ
06432
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where the derivative of the phase shift is maximum~half of
its maximum!. Then, we choose for the integration in th
energy region of a resonant state an energy grid with a sm
step. In the calculations presented below the energy ste
the region of a resonance isG/10 and the energy cutoff is
chosen to be minus the depth of the mean field.

B. Quasiparticle resonances in a schematic model

In order to illustrate how one can identify the quasipar
cle resonances in HFB calculations, we take here a sim
model@1,2#. Let us assume that the mean field is given b
square well potential of depthV0 and radiusa. The pairing
field is taken also as a constant inside the same radiusa and
zero outside. In addition, we suppose that the chemical
tential l is given. For such a system the radial HFB equ
tions inside the potential well, i.e., forr<a, are

S 1

r

d2

dr2
r 2

l ~ l 11!

r 2
1a2D ul j 2g2v l j 50,

S 1

r

d2

dr2
r 2

l ~ l 11!

r 2
1b2D v l j 2g2ul j 50, ~16!

where a25(2m/\2)(l1E1U0), b25(2m/\2)(l2E

1U0), g25(2m/\2)D, andU052(V01VsolW•sW).
The solutions of Eqs.~16! for any value of the quasipar

ticle energy are

ul j 5A1 j l~k1r !1A2 j l~k2r !,

v l j 5A1g1 j l~k1r !1A2g2 j l~k2r !, ~17!

where j l are spherical Bessel functions,k65(2m/\2)@U0
1l6(E22D2)1/2# andg65@E6(E22D2)1/2#/D.

Outside the potential well the HFB equations are dec
pled. In this case the type of solutions depends on the q
siparticle energy. They have the forms given by Eqs.~10!
and ~11!.

In order to simulate the potential corresponding to
heavy nucleus close to the drip line, we take for the mo
parameters the following values:V0545.35 MeV,Vso50.5
MeV, a55.2 fm, D51 MeV, andl522.0 MeV.

Here, we discuss only the quasiparticle resonant soluti
induced by the bound single-particle states that are spe
to the HFB approximation. As a typical example we take t
case ofp1/2 states. In the HF limit, i.e.,D50, there are two
bound states at energiese15232.873 MeV and e25
210.698 MeV. When the pairing field is switched on, the
states become quasiparticle resonant states at energieE1
530.889 MeV andE258.735 MeV with corresponding
widths G150.40 keV andG2524.38 keV. These values ar
obtained by solving the HFB equations in the complex e
ergy plane with outgoing wave boundary conditions. On
real energy axis one should find these two resonances f
the phase shift behavior. In Fig. 1 we show the phase s
~top! and its derivative~bottom! in the energy region of the
second resonant state. One can see that the derivative o
phase shift is maximum at the resonance energy, and it d
1-3
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to half of its maximum value when the energy increases
about 25 keV. This shows that the behavior of the phase s
as a function of the real energyE gives accurate information
on the positions and widths of the quasiparticle resonan
From Fig. 1 one can also see that the total phase shift d
not crossp/2 at the resonance energy. As discussed ab
the value of the phase shift associated with the resona
energy is actuallyd r5p/21d0. In this cased051.59, so that
the resonance appears when the total phase shift cros
value close top and not top/2. Thus, in order to identify the
resonances one can calculate the derivative of the total p
shift and search for the local maxima, or calculate the
phase shiftd0 and search for the energies associated tod r
5p/21d0. For the 2p1/2 state analyzed here, the two proc
dures give exactly the same position of the resonance,
this is not generally the case even for a square well poten
@13#. In the present calculations we localize the resonan
by using the derivative procedure.

IV. RESULTS FOR Ni ISOTOPES

In this section we apply the continuum HFB method
the case of Ni isotopes, which have been investigated ex
sively both in nonrelativistic@5# and relativistic Hartree-
Bogoliubov approximation@14,15#.

For the Hartree-Fock field we use the Skyrme interact
SIII whereas in the pairing channel we choose a dens
dependent zero-range interaction

V5V0F12S r~r !

r0
D gGd~r12r2!, ~18!

with the following parameters@5#: V0521128.75 MeV,r0
50.134 fm23, andg51.

Let us first examine the quasiparticle resonant states
the isotope 84Ni. After convergence of the self-consiste
procedure the chemical potential isl521.104 MeV. In
Table I we show the resonant quasiparticle energies and
widths calculated from the derivatives of the phase shift. T

FIG. 1. Phase shift~top! and its derivative~bottom! in the p1/2

channel for a square well model.
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quasiparticle states 2d3/2, 1g7/2, and 1h11/2 originate from
single-particle resonances while all the others are relate
bound states.

As already discussed in the case of the schematic mo
the positions of some resonances may appear for value
the total phase shifts that are quite far fromp/2. We take
here as an example the quasiparticle resonance state c
sponding to the bound state 2p1/2, which was also analyzed
in the schematic model. The resonance energy and the w
estimated from the derivative of the phase shift areE
57.965 MeV andG5338 keV. The value of the HF phas
shift is in this cased050.656 so that the total phase sh
associated with the resonance should bed r.p/210.656.
The energy corresponding to this phase shift isE57.707
MeV, which is smaller than the corresponding value e
tracted from the maximum of the derivative of the pha
shift. This shows that in this case the HF phase shift ha
non-negligible variation in the energy region of the res
nance. However, in practical HFB calculations a small sh
in the actual position of a resonance induced by the varia
of d0 is not essential because this information is used only
fix an appropriate energy grid for the energy integration.

A special behavior can be noticed for the resonant c
tinuum in thes1/2 channel. As can be seen in Fig. 2, th
occupancy in this channel increases starting from2l up to
an energy equal to 1.276 MeV. Therefore, in this channel
needs to use a very small energy step close to2l in order to

TABLE I. Hartree-Fock single-particle energiese, HFB quasi-
particle resonance energies (E), and widths (G) in the nucleus84Ni,
for the various (l j ) states involved.

l j e ~MeV! E ~MeV! G ~keV!

0 1/2 -0.731 1.276

-22.530 20.878 98

-45.010 43.3917 0.3

1 1/2 -9.540 7.965 338

-34.709 33.444 102

1 3/2 -11.194 9.712 576

-36.364 34.976 76

2 3/2 0.475 2.317 816

-23.055 22.028 58

2 5/2 -1.467 1.845 44

-26.961 25.628 3

3 5/2 -10.586 8.863 944

3 7/2 -17.023 15.857 882

4 7/2 1.604 3.598 24

4 9/2 -6.837 5.674 3

5 11/2 3.295 5.380 52
1-4
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get a correct description of the pairing correlations. Fina
one should stress upon the fact that the contribution to
pairing correlations of this pronounced resonant struct
close to the quasiparticle continuum threshold is just
manifestation of the loosely bound single-particle st
3s1/2, which in the HFB approach is embedded in the co
tinuum. This structure has nothing to do with the contrib
tion of thes1/2 single-particle background continuum close
zero energy, which remains very small.

A. Comparison between continuum and box HFB calculations

In this section we analyze the sensitivity of the HFB r
sults to the continuum treatment in the vicinity of a drip lin
by comparing the results provided by continuum and b
HFB calculations for the chain of neutron-rich Ni isotope
The energy cutoff is the same in both calculations. For
box calculations presented below the box radius is ta
equal to 22.5 fermi. Recently, some box calculations h
been reported for carbon isotopes with box radii up to 4
fermi @16#. If these large box HFB codes could also be us
for heavier nuclei such as the Ni isotopes the differences
we show here between box and exact results near the
line might be somewhat reduced.

Lets us first discuss the properties directly related to
pairing correlations, i.e., pairing correlation energies a
pairing densities.

The pairing correlation energies are estimated by the
ference between the total energies calculated in HFB and
approach

Ep5E~HF!2E~HFB!. ~19!

The results for continuum and box HFB calculations a
shown in Fig. 3 for all Ni isotopes starting fromA574 up to
A588, which is the last nucleus with positive two-neutr
separation energy, as predicted by the continuum HFB
culations~see below!. Up to 86Ni the quantityE(HF) does
not depend on the continuous single-particle spectrum.

FIG. 2. Occupation probability profile in thes1/2 channel for
84Ni.
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isotope 88Ni is not bound in HF and, therefore, theE(HF)
used for estimating the pairing correlation energy is cal
lated by using a box, as in box HFB calculations. From F
3 one can see that the box HFB calculations start to ove
timate the amount of pairing correlations in the proximity
the drip line. Thus, in box calculations the pairing energy
84Ni is about twice that of continuum HFB and it is sti
increasing for86Ni, where the continuum HFB calculation
predict zero pairing correlation energy.

These differences are reflected in the pairing densities
shown in Fig. 4 for the isotopes84Ni and 86Ni. One can
notice that the box calculations overestimate the pairing c
relations in the surface region, where the localization of
resonance wave functions with high (l j ) increases. Thus, in
the box calculations the resonant states with high (l j ) lo-
cated above the Fermi level are more strongly populated t
the corresponding states calculated by using continuum H

FIG. 3. Pairing correlation energies for Ni isotopes calculated
HFB approximation.

FIG. 4. Neutron pairing densities in HFB calculations in84Ni
~a! and 86Ni ~b!.
1-5
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calculations. As an illustration we consider the occupancy
the single-particle resonanceg7/2. In 84Ni this resonance is
located at 3.6 MeV and has a width of about 25 keV. If w
take an energy interval 3.2 MeV<E<4 MeV around the
resonance, we find that the total occupancy of the state
the box that are within this interval is about 2% higher th
the corresponding occupancy in the continuum calculatio
In box calculations the role of a resonant state is usu
taken by one state with an energy close to the energy of
resonance, and this state has maximum localization in
the nucleus. Thus, while in box calculations the pairs c
virtually scatter mainly to that state with maximum localiz
tion, in continuum HFB calculation the pairs can also sca
to the neighboring states whose wave functions are less
centrated inside the nucleus. As a result the occupancy
resonance in continuum HFB is smaller. This effect, induc
by the width of resonant states, is missing in box HFB c
culations.

Let us consider now the two-neutron separation ener
S2n ,

S2n5E~Z,N!2E~Z,N22!, ~20!

which are plotted in Fig. 5. One can see that in both cal
lations the change of the sign of the two-neutron separa
energies, i.e., the position of the two-neutron drip line,
between 88Ni and 90Ni, with a faster drop in the case o
continuum HFB. The values ofS2n , evaluated within the
two HFB calculations are in better agreement one with
other than the corresponding values of the pairing correla
energies. This is because the differences observed in the
ing correlation energies are much reduced when one ca
lates the differences appearing inS2n . For the same reaso
one can see that even a HF calculation gives quite reson
values for the two-neutron separation energies close to
drip line. The largest differences between HFB and HF c
culations appear across the doubly magic isotope78Ni. In
this case the pairing energy changes quickly when two n

FIG. 5. Two-neutron separation energies in HFB, HF-BCS, a
HF approximations. For76Ni and 78Ni the corresponding value
extrapolated from experimental data@18# are also shown.
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trons are removed from 1g9/2 or added to 2d5/2. Because the
hole state has larger degeneracy than the particle state
pairing correlations are stronger in76Ni than in 80Ni. This
explains the asymmetry seen in the behavior ofS2n across
the doubly magic nucleus78Ni. The fact that the value ofS2n
predicted by HFB for76278Ni is close to the data extrapo
lated from lighter isotopes indicates that the pairing inter
tion used in the calculations is quite reasonable, at least
the valence shellN528–50.

Next, we compare the results given by the two HFB c
culations for observables related to mean-field properties
Fig. 6 the particle density for the isotope86Ni is shown. One
notices that the particle densities are practically the sa
except in the region near the box radius. The fact that
two-particle densities are very close up to very large d
tances implies that the neutron root-mean-square~rms! radii
calculated within the two approaches should be similar. T
can be seen in Fig. 7 for the isotopes80290Ni.

In Fig. 7 the HF radii are also shown. In84Ni we can see
that the HFB radius is slightly larger than the HF valu
which is the trend usually expected when the pairing int
action is switched on. In this case the HFB radius is
creased because the pairing interaction scatters some
trons from 2d5/2 to the loosely bound state 3s1/2 which is a
state less localized inside the nucleus. On the other hand
seen in Fig. 7, the effect of pairing correlations on the rad
of 86Ni is opposite. Here, the pairing interaction scatters p
ticles out of 3s1/2 state that is completely occupied in H
The particles are scattered in the continuum single-part
states, mainly to single-particle resonances that have a la
localization inside the nucleus than the 3s1/2 state. Thus, in
this case the radius is decreased when the pairing cor
tions are switched on. This effect of the pairing interacti
on nuclear radii is sometimes called ‘‘antihalo’’@6,17#.

B. Comparison between HFB and HF-BCS approximation

The HF-BCS approximation is obtained by neglecting
the HFB equations the non-diagonal matrix elements of

d
FIG. 6. Neutron particle densities in HFB, resonant continu

HF-BCS, and HF approximations for86Ni. The density represented
by the dotted line~HF-BCS bound! is calculated by including only
the contribution of bound states.
1-6
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pairing field. This means that in the HF-BCS limit one n
glects the pairing correlations induced by the pairs formed
states that are not time-reversed partners.

The extension of BCS equations for taking into acco
the continuum coupling was proposed in Refs.@9,10,12#. For
the case of a general pairing interaction the BCS equat
read@10#

D i5(
j

Vi ī j j̄ ujv j1(
n

Vi ī ,nennen
E

I n

gn~e!un~e!vn~e!de,

~21!

Dn[(
j

Vnennen, j j̄ ujv j

1(
n8

Vnennen,n8en8n8en8
E

I n8

gn8~e8!un8~e8!vn8~e8!de8,

~22!

N5(
i

v i
21(

n
E

I n

gn~e!vn
2~e!de. ~23!

HereD i is the gap for the bound statei andDn is the aver-
aged gap for the resonant staten. The quantity gn(e)
5@(2 j n11)/p#@(ddn)/de# is the continuum level density
anddn is the phase shift of angular momentum (l n j n). The
factor gn(e) takes into account the variation of the localiz
tion of scattering states in the energy region of a resona
~i.e., the width effect! and becomes a delta function in th
limit of a very narrow width. In these equations the intera
tion matrix elements are calculated with the scattering w
functions at resonance energies and normalized inside
volume where the pairing interaction is active. The BCS E
~21!–~23! are solved iteratively together with the HF equ
tions. The corresponding equations are called below the r
nant continuum HF-BCS equations. For more details
Ref. @10#.

FIG. 7. Neutron rms for Ni isotopes in HFB, resonant co
tinuum HF-BCS, and HF approximations.
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In the case of Ni isotopes the effect of the continuum
introduced through the first three low-lying single-partic
resonances, i.e.,d3/2, g7/2, andh11/2. These resonances form
together with the bound states 2d5/2 and 3s1/2 the equivalent
of the major shellN550–82. The energy integrals in BC
equations~21!–~23! are performed for each resonance in
energy interval defined such thatue2enu<2Gn , whereen is
the energy of the resonance andGn is its width. In the reso-
nant continuum HF-BCS calculations we use the same in
action as in HFB approach.

In Fig. 8 we show the pairing correlation energies p
dicted by the resonant continuum HF-BCS approximation
comparison with the continuum HFB results. One can
that the HF-BCS results follow closely the exact HFB valu
up to the drip line. This shows that in order to estimate
pairing correlations one needs to include from the wh
continuum only a few resonant states with their widths pro
erly considered.

In order to see the effect of the widths of resonant sta
upon pairing, we replace in the resonant continuum HF-B
equations the continuum level density by delta functio
This means that the resonant state is replaced by a scatt
state at the resonance energy, normalized in a volume
radiusR. For this radius we take the same value as in b
HFB calculations, i.e.,R522.5 fm. As it can be seen from
Fig. 9, the pairing correlations increase when one negle
the widths of the resonances and the results follow clos
those of box HFB calculations. Thus, the overestimation
pairing correlations due to the continuum discretization
similar in HF-BCS and HFB calculations.

In Fig. 7 we show also the radii calculated in the reson
continuum HF-BCS approximation. One notices that the H
BCS radii are closer to the HF values than to the HFB on
The same behavior is found for the particle densities. T
can be seen in Fig. 6 for the case of86Ni, which is the last
bound nucleus in the HF approximation. From Fig. 6 one c
see also that the tail of the density in resonant continu
HF-BCS calculations is mainly given by the particles distr

FIG. 8. Pairing correlation energies calculated in resonant c
tinuum HF-BCS approximation compared to continuum HFB.
1-7
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uted in the bound states 2d5/2 and 3s1/2 and not due to the
particles scattered to positive energy states. In HFB calc
tions a part of the particles from the bound states 2d5/2 and
3s1/2 are scattered to other states, mainly to resonant st
with wave functions concentrated inside the nucleus. The
fore, the HFB density has a smaller tail at large distance

As we have already mentioned, in the present reson
continuum HF-BCS calculations we neglect all the co
tinuum contribution except for the three low-lying res
nancesd3/2, g7/2, andh11/2. This model space seems suf
cient for a proper evaluation of pairing correlation energ
up to the drip line. The rest of the continuum changes ma
the particle distribution. In order to get a particle dens
closer to the HFB results one needs to introduce in the re
nant continuum HF-BCS calculations additional releva
pieces from the continuum. This work is in progress.

V. CONCLUSIONS

In this paper we have discussed how one can actu
solve the HFB equations with proper boundary conditio

FIG. 9. Pairing correlation energies calculated in the reson
continuum HF-BCS approximation by neglecting the widths eff
compared to box HFB results.
.
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for the continuous spectrum and we have shown, for the c
of neutron-rich Ni isotopes, how different treatments of t
continuum can affect the pairing correlations. It was fou
that in the vicinity of the drip line pairing correlations ar
overestimated by the continuum discretization done in b
HFB calculations. On the other hand, we have shown that
particle densities and the radii are rather insensitive to
way in which the continuum is treated in HFB calculation
This means that the quantities that are mainly related to
mean-field properties do not practically depend on the diff
ent treatments of continuum. We have also shown that
position of the two-neutron drip line is not affected by th
way in which continuum is treated. This is due to the fa
that the differences observed for the pairing correlations
ergies in the two HFB calculations are diminished when
two-neutron separation energies are calculated. Moreo
the two-neutron separation energies predicted by HF are
very different from the HFB results. This shows that the
quantities are not indicated for testing the pairing corre
tions close to the drip line.

We have also analyzed how the exact HFB solutions co
pare to the resonant continuum HF-BCS approximat
@9,10#. It was shown that the resonant HF-BCS calculatio
that include only the first three low-lying resonances prov
a very good description of pairing correlation energies up
the drip line. On the other hand, in the vicinity of the dr
line the radii predicted by the resonant continuum HF-B
calculations are larger than the HFB radii and closer to
HF results. This shows that one should add to the first th
low-lying resonances additional contributions of the co
tinuum in order to evaluate better the particle densities
nuclei close to the drip line.

ACKNOWLEDGMENTS

We thank J. Dobaczewski for providing us the code th
solves the HFB equations with box boundary conditio
One of us~N.S.! would like to thank the Institute de Phy
sique Nucle´aire—Orsay for its hospitality. This work wa
done in the framework of IN2P3-IPNE Collaboration.

nt
t

ys.

. C
@1# S. T. Belyaev, A. V. Smirnov, S. V. Tolokonnikov, and S. A
Fayans, Yad. Fiz.45, 1263~1987! @Sov. J. Nucl. Phys.45, 783
~1987!#.

@2# A. Bulgac, preprint No. FT-194-1980, Institute of Atom
Physics, Bucharest, 1980, nucl-th/9907088.

@3# J. Dobaczewski, H. Flocard, and J. Treiner, Nucl. Phys.A422,
103 ~1984!.

@4# J. Dobaczewzki, W. Nazarewicz, T. R. Werner, J.-F. Berger
R. Chinn, and J. Decharge´, Phys. Rev. C53, 2809~1996!.

@5# J. Terasaki, P.-H. Heenen, H. Flocard, and P. Bonche, N
Phys.A600, 371 ~1996!.

@6# S. A. Fayans, S. V. Tolokonnikov, and D. Zawischa, Phys. L
B 491, 245 ~2000!.
.

l.

t.

@7# M. V. Stoitsov, W. Nazarewicz, and S. Pittel, Phys. Rev. C58,
2092 ~1998!.

@8# M. V. Stoitsov, J. Dobaczewski, P. Ring, and S. Pittel, Ph
Rev. C61, 034311~2000!.

@9# N. Sandulescu, R. J. Liotta, and R. Wyss, Phys. Lett. B394, 6
~1997!.

@10# N. Sandulescu, N. Van Giai, and R. J. Liotta, Phys. Rev. C61,
061301~R! ~2000!.

@11# A. T. Kruppa, P. H. Heenen, and R. J. Liotta, Phys. Rev. C63,
044324~2001!.

@12# N. Sandulescu, O. Civitarese, and R. J. Liotta, Phys. Rev
61, 044317~2000!.
1-8



.

ys.

PAIRING AND CONTINUUM EFFECTS IN NUCLEI . . . PHYSICAL REVIEW C 64 064321
@13# A. Bianchini, R. J. Liotta, and N. Sandulescu, Phys. Rev. C63,
024610~2001!.

@14# J. Meng, Phys. Rev. C57, 1229~1998!.
@15# M. Del Estal, M. Centelles, X. Vina˜s, and S. K. Patra, Phys

Rev. C63, 044321~2001!.
06432
@16# K. Bennaceur~private communication!.
@17# K. Bennaceur, J. Dobaczewski, and M. Ploszajczak, Ph

Lett. B 496, 154 ~2000!.
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