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Pairing and continuum effects in nuclei close to the drip line
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The Hartree-Fock-BogoliubotHFB) equations in coordinate representation are solved exactly, i.e., with
correct asymptotic boundary conditions for the continuous spectrum. The calculations are performed with
effective Skyrme interactions. The exact HFB solutions are compared with HFB calculations based on box
boundary conditions and with resonant continuum Hartree-Fock-B€FSBCS results. The comparison is
done for the neutron-rich Ni isotopes. It is shown that close to the drip line the amount of pairing correlations
depends on how the continuum coupling is treated. On the other hand, the resonant continuum HF-BCS results
are generally close to those of HFB even in neutron-rich nuclei.
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[. INTRODUCTION continuum by a box discretization. It will be shown that
nuclear properties related to pairing correlations are correctly
The physics of exotic nuclei close to the drip lines haspredicted by discretized continuum methods away from drip
triggered a new interest for the study of pairing correlationdine but they deviate appreciably from exact continuum re-
in finite systems. A peculiarity of pairing correlations in Sults when one approaches the drip line.
weakly bound nuclei is their sensitivity to the effects of un- The paper is organized as follows. In Sec. Il we give a
bound single-particle states. brief reminder of the HFB equations in coordinate represen-
The pairing correlations in the presence of Continuumtation. In Sec. lll we present the procedure we have used for
coupling have been treated both in Hartree-Fock-Bogoliubogalculating the continuum HFB solutions and we discuss, in
(HFB) [1-8] and Hartree-Fock-BCSHF-BCS [9-12] ap- @ schematic model, how the quasiparticle resonant states are
proximations. In the HFB approximation the continuum isidentified. In Sec. IV we present the continuum HFB calcu-
generally included in spherical systems by solving the HFB/ations for Ni isotopes in comparison with box HFB and
equations in coordinate representation. The calculations af&sonant HF-BCS calculations. Conclusions are drawn in
done either in the complex energy plane by using Greerp€C. V.
function technique§l,6], or on the real energy axi8,4]. In

the latter case the HFB equations are usually solved by im- Il. HFB EQUATIONS IN COORDINATE

posing box boundary conditions, i.e., the HFB wave func- REPRESENTATION

tions are assumed to vanish beyond some distance that is S ) )
chosen to be typically a few times the nuclear radius. The HFB approximation in coordinate representation has

The effect of the resonant continuum upon pairing corredeen discussed quite extensively in the literaf@-e4] and,

lations was also studied in the framework of the BCS apiherefore, we recall here only the basic equations.
proximation, both for zerd9—11 and finite temperature ~ The HFB equations in coordinate representation {&d

[12). _

For deformed systems working in coordinate representa- [ h(ra,r’'c’)  h(ro,r'c’) | [ ®y(E,r'c")
tion is much more difficulf5]. In most of the deformed HFB r ‘| = L ;o O(Er'o
calculations the continuum is discretized by expanding the o \h(ro.r'e’) h(ro.r'a”) 2(E.r'e’)
HFB wave functions on a single-particle basis. Usually a E+\ 0 @, (E,ro)
harmonic oscillator basis is taken and one can improve the = , (1)

0 E-N/\Dy(E o)

description of physical quantities at large distances such as

density tails by performing a local scaling transformation -

[7.8]. where is the chemical potentiah andh are the mean field
The aim of this paper is to show how the coordinate spac@nd the pairing field, andk;) represents the two-component

HFB equations can be actually solved in the case of sphericalFB quasiparticle wave function of enerdgy The mean-

symmetry and Skyrme type forces by treating the continuuniield operatoih is a sum of the kinetic energlyand the mean

exactly, i.e., with correct boundary conditions, and to analyzdield potentiall’,

to which extent different approximations, namely, box HFB

and resonant continuum HF-BCS calculations, compare with h(ro,r'a’)=T(r,1")85e +I'(ro,r'c’). )

the exact solutions. In this paper we will treat the continuum

exactly only for the neutrons of neutron-rich systems forThe mean-field potential’ is expressed in terms of the

which one expects that the continuum plays an importanparticle-hole two-body interactiod and the particle density

role close to the drip line. For the protons we will treat thep in the following way:
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d3r,d3r, >, V(ro,rioqr'o! roy)

0102

F(ra,r’(r’)=J
()

Xp(ryoy,ri07).

Similarly the pairing fieldh is expressed in terms of the
pairing interactionV,,;; and the pairing density,

d3r,d%, >, 20’ 5V pair(ro,r’

0102

ﬁ(ra,r’a’)=f
4

— 0" 1101,13—=03)p(r101,505).

The particle and pairing densitigsandp are defined by the
following expressions:

p(ro,r'c')=
0<

Y Oy(E,,ro)®3(E, o)
Ep<—\

ECUO
+f AED,(E,ro) @3 (E,r' o), (5)
-\

prar'ac)= D ®(E,,ro)®*(E,,r'c’)
0<E<—\

ECUO
+f “NAED,(E,ro) @ (E,r'o”), (6)
-\

where the sums are over the discrete quasiparticle states with
energiedE|<—\, and the integrals are over the continuous

quasiparticle states with energit|>—\. The HFB solu-
tions have the following symmetry with respectEo

O, (—E,ro)=0,(E,ro),

@2(—E,r0')=—(1)1(E,r0'). (7)
As it appears clearly from Eqg5) and (6) we choose to
work with the positive energies.

The particle-hole and pairing interactions in E¢3. and

(4) are chosen as density-dependent contact interactions, so
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In the following we use for the upper and lower components
of the radial wave functions the standard notatigy(E,r)
andv ;(E,r).

As we have already mentioned, the HFB equations are
usually solved by imposing to the radial wave functions the
condition that they vanish beyond a given distafté€ox
radiug. In this case the continuous spectrum is replaced by a
set of discrete energies, whose density depends on the box
radius. In what follows we discuss how the HFB equations
can be solved by keeping the correct asymptotic conditions
for the neutron wave functions.

IIl. THE TREATMENT OF QUASIPARTICLE CONTINUUM
A. Asymptotic behaviors

The asymptotic behavior of the HFB wave function is
determined by the physical condition that, at large distances
the nuclear mean fielfl(r) and the pairing field\(r) van-
ish. This condition requires an effective interaction of finite
range and finite-range nonlocality. Outside the range of mean
fields the equations fob;(E,r o) are decoupled and one can
readily find the asymptotic behavior of the physical solutions
at infinity [2]. Thus, for a negative chemical potentiali.e.,
for a bound system, there are two well-separated regions in
the quasiparticle spectrum.

Between 0 and-\ the quasiparticle spectrum is discrete
and both upper and lower components of the radial HFB
wave function decay exponentially at infinity. For neutrons
this implies that those components have the form

u;(E,r)=Ah{(iayr),

oy (E,r)=Bh{")(iBr), (10
where h{™) are spherical Haenkel functionsp?=
—(2m/#?)(\+E) and B2=(2m/4?)(A—E). These solu-
tions correspond to the bound quasiparticle spectrum. In this
case, the solutions are normalized to unity.

For E>—\ the spectrum is continuous and the solutions
are

uj(E,r)=C[cog 8jj)ji(ayr)— sin(&;)ni(a;r)],

that the integro-differential HFB equations reduce to coupled
differential equations. The zero-range character of the pair-
ing interaction is the reason why one has to adopt an energy
cutoff as seen in Eqg¢5) and(6). wherej, andn, are spherical Bessel and Neumann functions,

In this paper we consider systems with spherical symmerespectively, ands;; is the phase shift corresponding to the
try. In this case the wave functions are readily decomposeangl_”ar momentumu)_ One can see that the upper compo-
into their radial and spin-angular paft] nent of the HFB wave function has the standard form of a
scattering state while the lower component is always expo-
nentially decaying at infinity.

The asymptotic form of the wave function should be
matched with the inner radial wave function, which for
—0 can be written as follows:

0
o)

<U|j(E,r))_ (r|+l
vy (E,r) =Dzl

vy;(E,r)=D;h{N(iByr), (1)

@i(E,ra)=ui(E|j,r)%y[j"i(F,a),i=1,2, (8)

where

+Ds (12)

- 1
Y[}](f,O')EY|m|(®,(I))X1,2(m,,)<|m|§m(r|jm)_ (9)
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The HFB wave function is normalized to the Dirat  where the derivative of the phase shift is maxim(malf of
function of energy. This condition fixes the constanto the  its maximum. Then, we choose for the integration in the
value energy region of a resonant state an energy grid with a small

step. In the calculations presented below the energy step in

/1 2m the region of a resonance 1§10 and the energy cutoff is
C= 7 hlay (13 chosen to be minus the depth of the mean field.
The radial wave functions are calculated by integrating the B. Quasiparticle resonances in a schematic model

HFB equations outwards starting from the initial conditions
(12), and inwards starting from Eq10) or Eq.(11) depend-
ing on the value ofE. The solutions are propagated by a

modified Numerov method towards the matching pomt,Square well potential of deptt, and radiusa. The pairing

where the continuity conditions for the wave functions andfield is taken also as a constant inside the same raars]

their derivatives are imposed. These conditions determine the . . .
coefficientsD, . D,, Ds, and the phase shiff for a quasi- Zero outside. In addition, we suppose that the chemical po

article state in the continuum; in the case of a discrete qu fential \ is given. For such a system the radial HFB equa-
P . S . U%ons inside the potential well, i.e., for<a, are
siparticle state the continuity conditions and the normaliza-

In order to illustrate how one can identify the quasiparti-
cle resonances in HFB calculations, we take here a simple
model[1,2]. Let us assume that the mean field is given by a

tion condition determine the coefficiends B, D,, D3, and 2
1d la+1 )
the energ)E. = —r————+a®|u;— =0,
The difficulty of an exact continuum calculation, i.e., with rdr r
asymptotic solutions given by Ed11), is to identify the
energy regions where the localization of the wave functions 1 d? [(1+1) ) )
changes quickly with the quasiparticle energy. These are the T ﬁ’ - (2 +B7 v~ yuy =0, (16)

regions of quasiparticle resonant states.
In HFB the quasiparticle resonant states are of two typesyhere  a?=(2m/42)(A+E+U,), B2=(C2m/Ad)(N—E

A first type corresponds to the single-particle resonances o 2_ 2 — (Vot V.8

the mean field. The low-lying resonances of the mean field Uo), y=(2m/A")4, andUq (Vot Vel -S).

located close to the particle threshold are very important ir{icl

the treatment of pairing correlations of weakly bound nuclei

The solutions of Eqs(16) for any value of the quasipar-
e energy are

because they become strongly populated by pairing correla- U =A,ji(kor)+A_ji(k_r),
tions.
A second kind of resonant states is specific to the HFB v =A.g:ji(kir)+A_g_ji(kr), (17)

method and corresponds to the bound single-particle states,
which in the absence of pairing correlations have an energwhere j, are spherical Bessel functionk, =(2m/42)[U,
€<2\ . In the presence of the pairing field these bound+\ +(E?— A?)Y?] andg. =[E+ (E?— A%)Y?]/A.
states are coupled with the continuum single-particle states Outside the potential well the HFB equations are decou-
and, therefore, they acquire a width. The positions and theled. In this case the type of solutions depends on the qua-
widths of these HFB resonances are related to the total phaséparticle energy. They have the forms given by Ed<€)
shift, calculated from the matching conditions,[2$ and (11).
. In order to simulate the potential corresponding to a
heavy nucleus close to the drip line, we take for the model
o(B)= 6O(E)+arct%(ER_ E)’ (14 parameters the following value¥,=45.35 MeV,V,,=0.5
MeV, a=5.2 fm,A=1 MeV, andA =—2.0 MeV.
whereEg andI” are the energy and the width of the resonant Here, we discuss only the quasiparticle resonant solutions
quasiparticle state. The functiafy(E) is the phase shift of induced by the bound single-particle states that are specific
the upper component of the HFB wave function in the HFto the HFB approximation. As a typical example we take the

limit, i.e., h=0. In this limit one has case ofpy, states. In the HF limit, i.e A=0, there are two
bound states at energies;=—32.873 MeV ande,=
hd9=(E+\)®Y. (155  —10.698 MeV. When the pairing field is switched on, these

states become quasiparticle resonant states at endfgies

If there is no single-particle resonance close to the energy-30.889 MeV andE,=8.735 MeV with corresponding
E+ X\ in the HF limit, then the HF phase shify has a slow  widthsI';=0.40 keV andl’,=24.38 keV. These values are
variation in the quasiparticle energy region. In this case the@btained by solving the HFB equations in the complex en-
derivative of the total phase shift has a Breit-Wigner form,ergy plane with outgoing wave boundary conditions. On the
which can be used for estimating the position and the widthreal energy axis one should find these two resonances from
of the quasiparticle resonance. the phase shift behavior. In Fig. 1 we show the phase shift

Thus, in the first step of the calculations we study for eachtop) and its derivativgbottom in the energy region of the
(1,j) channel the behavior of the phase shift and we estimateecond resonant state. One can see that the derivative of the
the energiegwidths) of the resonant states from the energiesphase shift is maximum at the resonance energy, and it drops
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. TABLE |. Hartree-Fock single-particle energies HFB quasi-
] particle resonance energies)( and widths T) in the nucleusNi,
] for the various [j) states involved.
] I j € (MeV) E (MeV) I' (keVv)
] 0 1/2 -0.731 1.276
, 1 -22.530 20.878 98
& 40 8 -45.010 43.3917 0.3
%30 | 11 1/2 -9.540 7.965 338
20, ] -34.709 33.444 102
1
o1 11 312 -11.194 9.712 576
%5 86 87 88 89 9 -36.364 34.976 76
E (MeV)
2 3/2 0.475 2.317 816
FIG. 1. Phase shifttop) and its derivativelbottom in the py;,
channel for a square well model. -23.055 22.028 58
. . . -1.467 1.845 44
to half of its maximum value when the energy increases b\/2 52
about 25 keV. This shows that the behavior of the phase shift -26.961 25.628 3
as a function of the real enerdfygives accurate information
on the positions and widths of the quasiparticle resonances. 5/2 -10.586 8.863 944
From Fig. 1 one can also see that the total phase shift doeg 712 17.023 15.857 882
not crossw/2 at the resonance energy. As discussed above;
the value of the phase shift associated with the resonanck 712 1.604 3.598 24
energy is actuallys, = w/2+ &;. In this casedy=1.59, so that o2 6.837 5674 3

the resonance appears when the total phase shift crosses a
value close tar and not tomr/2. Thus, in order to identify the 5 11/2 3.295 5.380 52
resonances one can calculate the derivative of the total phase
shift and search for the local maxima, or calculate the HF

phase shifté, and search for the energies associatedto guasiparticle statesd3,, 197, and Ihy,, originate from

= 7/2+ 8,. For the 2y, state analyzed here, the two proce- Single-particle resonances while all the others are related to
dures give exactly the same position of the resonance, blgound states. .

this is not generally the case even for a square well potential As already discussed in the case of the schematic model,
[13]. In the present calculations we localize the resonancefle positions of some resonances may appear for values of

by using the derivative procedure. the total phase shifts that are quite far frami2. We take
here as an example the quasiparticle resonance state corre-
IV. RESULTS FOR Ni ISOTOPES sponding to the bound statg2,, which was also analyzed

in the schematic model. The resonance energy and the width
In this section we apply the continuum HFB method toestimated from the derivative of the phase shift &e
the case of Ni isotopes, which have been investigated exten=7.965 MeV andl’ =338 keV. The value of the HF phase
sively both in nonrelativistic{5] and relativistic Hartree- shift is in this cases,=0.656 so that the total phase shift

V:VO

Bogoliubov approximatiofi14,15]. associated with the resonance should &e= 7w/2+ 0.656.

For the Hartree-Fock field we use the Skyrme interactionThe energy corresponding to this phase shiftEis 7.707
Slll whereas in the pairing channel we choose a densityMeV, which is smaller than the corresponding value ex-
dependent zero-range interaction tracted from the maximum of the derivative of the phase

shift. This shows that in this case the HF phase shift has a
1 &)7 S(ti—t,) (19 non-negligible variation in the energy region of the reso-
Po roek nance. However, in practical HFB calculations a small shift
in the actual position of a resonance induced by the variation
with the following parameterfs]: Vo= —1128.75 MeV,pq of &y is not essential because this information is used only to
=0.134 fm3, andy=1. fix an appropriate energy grid for the energy integration.

Let us first examine the quasiparticle resonant states for A special behavior can be noticed for the resonant con-
the isotope®Ni. After convergence of the self-consistent tinuum in thes;, channel. As can be seen in Fig. 2, the
procedure the chemical potential ls=—1.104 MeV. In  occupancy in this channel increases starting frem up to
Table | we show the resonant quasiparticle energies and then energy equal to 1.276 MeV. Therefore, in this channel one
widths calculated from the derivatives of the phase shift. Theneeds to use a very small energy step close ¥oin order to
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FIG. 2. Occupation probability profile in the,,, channel for » ] ) B )
84Nj. FIG. 3. Pairing correlation energies for Ni isotopes calculated in

HFB approximation.

get a correct description of the pairing correlations. Finally . _

one should stress upon the fact that the contribution to thésotope ®®Ni is not bound in HF and, therefore, tiHF)
pairing correlations of this pronounced resonant structur¢iSed for estimating the pairing correlation energy is calcu-
close to the quasiparticle continuum threshold is just théated by using a box, as in box HFB calculations. From Fig.
manifestation of the loosely bound single-particle state3 One can see that the box HFB calculations start to overes-
3s,,,, Which in the HFB approach is embedded in the con-imate the amount of pairing correlations in the proximity of
tinuum. This structure has nothing to do with the contribu-the drip line. Thus, in box calculations the pairing energy for

tion of thes,, single-particle background continuum close to °'Ni is about twice that of continuum HFB and it is still
zero energy, which remains very small. increasing for®Ni, where the continuum HFB calculations

predict zero pairing correlation energy.

These differences are reflected in the pairing densities, as
shown in Fig. 4 for the isotope&Ni and 8®Ni. One can

In this section we analyze the sensitivity of the HFB re-notice that the box calculations overestimate the pairing cor-
sults to the continuum treatment in the vicinity of a drip line, relations in the surface region, where the localization of the
by comparing the results provided by continuum and boxesonance wave functions with high ) increases. Thus, in
HFB calculations for the chain of neutron-rich Ni isotopes.the box calculations the resonant states with high (o-
The energy cutoff is the same in both calculations. For alkcated above the Fermi level are more strongly populated than
box calculations presented below the box radius is taketthe corresponding states calculated by using continuum HFB
equal to 22.5 fermi. Recently, some box calculations have
been reported for carbon isotopes with box radii up to 400 0.02 .
fermi [16]. If these large box HFB codes could also be used _ (@
for heavier nuclei such as the Ni isotopes the differences tha's N
we show here between box and exact results near the dri|%
line might be somewhat reduced. g 00T T o s

Lets us first discuss the properties directly related to the 2 '
pairing correlations, i.e., pairing correlation energies and g
pairing densities.

The pairing correlation energies are estimated by the dif-
ference between the total energies calculated in HFB and HF»
approach

A. Comparison between continuum and box HFB calculations

[s]

E,=E(HF)— E(HFB). (19) ool

Pairing density (fm

The results for continuum and box HFB calculations are
shown in Fig. 3 for all Ni isotopes starting frofk= 74 up to 0 ‘ ‘ . ‘ ‘
A=88, which is the last nucleus with positive two-neutron 0 4 8 r(f:ni 18 2
separation energy, as predicted by the continuum HFB cal-

culations(see below. Up to Ni the quantityE(HF) does FIG. 4. Neutron pairing densities in HFB calculations &iNi
not depend on the continuous single-particle spectrum. Thé) and Ni (b).
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FIG. 6. Neutron particle densities in HFB, resonant continuum

FIG. 5. Two-neutron separation energies in HFB, HF-BCS, andHF-BCS, and HF approximations féPNi. The density represented
HF approximations. For®Ni and "®Ni the corresponding values by the dotted lingHF-BCS boundlis calculated by including only
extrapolated from experimental dgtE8] are also shown. the contribution of bound states.

calculations. As an illustration we consider the occupancy ofrons are removed fromgy, or added to s, Because the
the single-particle resonangg,,. In 8Ni this resonance is Nole state has larger degeneracy than the particle state, the
located at 3.6 MeV and has a width of about 25 keV. If wePairing correlations are stronger iiNi than in ®Ni. This

take an energy interval 3.2 MeYE<4 MeV around the explains the asymmetry seen in the behavioiSgf across

resonance, we find that the total occupancy of the states i€ doubly magic nucleu&Ni. The fact that the value @,
pancy predicted by HFB for’® "®Ni is close to the data extrapo-

the box that are within this interval is about 2% higher than ) ) s N
the corresponding occupancy in the continuum calculationgtfated from_llghter Isotopes |n(j|cate_s that the pairing interac-
. . ion used in the calculations is quite reasonable, at least for
In box calculations the role of a resonant state is usually, '\ - -0 0 <o =28_50
taken by one state.wnh an energy cl.ose to the energy _Of t_he Next, we compare the résults given by the two HFB cal-
resonance, and this state has maximum localization insidg,|ations for observables related to mean-field properties. In
the nucleus. Thus, while in box calculations the pairs carkig g the particle density for the isoto€Ni is shown. One
virtually scatter mainly to that state with maximum localiza- gtices that the particle densities are practically the same
tion, in continuum HFB calculation the pairs can also Scatte%xcept in the region near the box radius. The fact that the
to the neighbpring states whose wave functions are less CORyo-particle densities are very close up to very large dis-
centrated inside the nucleus. As a result the occupancy of @ ces implies that the neutron root-mean-square) radii

resonance in continuum HFB is smaller. This effect, induceqg|cylated within the two approaches should be similar. This
by the width of resonant states, is missing in box HFB cal--5, pe seen in Fig. 7 for the isotop&s “Ni.

culations. ) i ) In Fig. 7 the HF radii are also shown. fiNi we can see
Let us consider now the two-neutron separation energieg,a: the HEB radius is slightly larger than the HF value,
Sens which is the trend usually expected when the pairing inter-
S, =E(Z,N)~E(Z,N-2), (20) action is switched on. In this case the HFB radius is in-

creased because the pairing interaction scatters some neu-

which are plotted in Fig. 5. One can see that in both calcufrons from s, to the loosely bound statesg, which is a
|ati0ns the Change Of the Sign Of the two-neutron Separatioﬁtate .|eSS. |Ocallzed InSIde the.n.ucleus. On. the Other hanq, as
energies, i.e., the position of the two-neutron drip line, isS€en in Fig. 7, the effect of pairing correlations on the radius
between ®Ni and %Ni, with a faster drop in the case of of “Niis opposite. Here, the pairing interaction scatters par-
continuum HFB. The values o8,,, evaluated within the ficles out of 3,, state that is completely occupied in HF.
two HFB calculations are in better agreement one with thelhe particles are scattered in the continuum single-particle
other than the corresponding values of the pairing correlatio§tates, mainly to single-particle resonances that have a larger
energies. This is because the differences observed in the pal@calization inside the nucleus than the,3 state. Thus, in

ing correlation energies are much reduced when one calctibis case the radius is decreased when the pairing correla-
lates the differences appearing $5,. For the same reason tions are swﬂc_he_:d on. Thls effect of the_pamng interaction
one can see that even a HF calculation gives quite resonab® nuclear radii is sometimes called “antihalf,17].

values for the two-neutron separation energies close to the
drip line. The largest differences between HFB and HF cal-
culations appear across the doubly magic isotéfié. In The HF-BCS approximation is obtained by neglecting in
this case the pairing energy changes quickly when two neuthe HFB equations the non-diagonal matrix elements of the

B. Comparison between HFB and HF-BCS approximation
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FIG. 7. Neutron rms for Ni isotopes in HFB, resonant con-  FIG. 8. Pairing correlation energies calculated in resonant con-
tinuum HF-BCS, and HF approximations. tinuum HF-BCS approximation compared to continuum HFB.

pairing field. This means that in the HF-BCS limit one ne- In the case of Ni isotopes the effect of the continuum is
glects the pairing correlations induced by the pairs formed inntroduced through the first three low-lying single-particle
states that are not time-reversed partners. resonances, i.eds,, g7, andh;,,. These resonances form
The extension of BCS equations for taking into accountogether with the bound stateslg, and 3/, the equivalent
the continuum coupling was proposed in R¢8510,12. For  of the major shelN=50-82. The energy integrals in BCS
the case of a general pairing interaction the BCS equationsquations(21)—(23) are performed for each resonance in an

read[10] energy interval defined such that—e,|<2T",, wheree, is
the energy of the resonance akhiglis its width. In the reso-
A=, Viijuv; +> Vi, ;J’ g,(e)u,(e)v,(e)de, nant continuum HF-BCS calculations we use the same inter-
i v s, action as in HFB approach.
(21) In Fig. 8 we show the pairing correlation energies pre-

dicted by the resonant continuum HF-BCS approximation in

A=SV — up comparison with the continuum HFB results. One can see

voAa T rareni Tl that the HF-BCS results follow closely the exact HFB values

up to the drip line. This shows that in order to estimate the

pairing correlations one needs to include from the whole

continuum only a few resonant states with their widths prop-
erly considered.

+2 VVEUV_EVYV’E,,W’EV/J\I gv'(er)ul/’(e-,)vv’(er)der!
v’ v’

(22 In order to see the effect of the widths of resonant states

upon pairing, we replace in the resonant continuum HF-BCS

NZZ Ui2+2 f g,(e)vﬁ(e)de. (23) eqyations the continuum level density by delta functions_.
i v Ji, This means that the resonant state is replaced by a scattering

state at the resonance energy, normalized in a volume of
Here A, is the gap for the bound stateand A, is the aver-  radiusR. For this radius we take the same value as in box
aged gap for the resonant state The quantity g,(e) HFB calculations, i.e.R=22.5 fm. As it can be seen from
=[(2j,+1)/7][(dd,)/de] is the continuum level density Fig. 9, the pairing correlations increase when one neglects
and &, is the phase shift of angular momentuij(). The the widths of the resonances and the results follow closely
factorg,(€) takes into account the variation of the localiza- those of box HFB calculations. Thus, the overestimation of
tion of scattering states in the energy region of a resonancgairing correlations due to the continuum discretization is
(i.e., the width effegt and becomes a delta function in the similar in HF-BCS and HFB calculations.
limit of a very narrow width. In these equations the interac- In Fig. 7 we show also the radii calculated in the resonant
tion matrix elements are calculated with the scattering waveontinuum HF-BCS approximation. One notices that the HF-
functions at resonance energies and normalized inside tHRCS radii are closer to the HF values than to the HFB ones.
volume where the pairing interaction is active. The BCS EqsThe same behavior is found for the particle densities. This
(21)—(23) are solved iteratively together with the HF equa- can be seen in Fig. 6 for the case $Ni, which is the last
tions. The corresponding equations are called below the restvound nucleus in the HF approximation. From Fig. 6 one can
nant continuum HF-BCS equations. For more details sesee also that the tail of the density in resonant continuum
Ref.[10]. HF-BCS calculations is mainly given by the particles distrib-
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6 . . . . for the continuous spectrum and we have shown, for the case
55 - of neutron-rich Ni isotopes, how different treatments of the
5[ ] continuum can affect the pairing correlations. It was found
a5 | . ] that in the vicinity of the drip line pairing correlations are
: * overestimated by the continuum discretization done in box
4r + Box HFB ] HFB calculations. On the other hand, we have shown that the
35 | + HF-BCS (without widths) - particle densities and the radii are rather insensitive to the
$ 3l ] way in which the continuum is treated in HFB calculations.
3‘125 i e M ] This means that the quantities that are mainly related to the
w mean-field properties do not practically depend on the differ-
2r i ent treatments of continuum. We have also shown that the
15 bt ] position of the two-neutron drip line is not affected by the
1t * . ¢ - way in which continuum is treated. This is due to the fact
05 | * * ] that the differences observed for the pairing correlations en-
. . . . . ergies in the two HFB calculations are diminished when the
072 76 i 80 84 88 two-neutron separation energies are calculated. Moreover,
A the two-neutron separation energies predicted by HF are not

very different from the HFB results. This shows that these

FIG. 9. Pairing correlation energies calculated in the resonan titi t indicated for testing th . |
continuum HF-BCS approximation by neglecting the widths effectdua@ntiies are not incicated for testing the pairing correla-

compared to box HFB results. tions close to the drip line. )

We have also analyzed how the exact HFB solutions com-
uted in the bound statesdg,, and 3, and not due to the Pare to the resonant continuum HF-BCS approximation
particles scattered to positive energy states. In HFB calculd9,10l. It was shown that the resonant HF-BCS calculations
tions a part of the particles from the bound stateg,2and  that include only the first three low-lying resonances provide
3s,,, are scattered to other states, mainly to resonant stated,very good description of pairing correlation energies up to
with wave functions concentrated inside the nucleus. Therethe drip line. On the other hand, in the vicinity of the drip
fore, the HFB density has a smaller tail at large distances. line the radii predicted by the resonant continuum HF-BCS

As we have already mentioned, in the present resonartalculations are larger than the HFB radii and closer to the
continuum HF-BCS calculations we neglect all the con-HF results. This shows that one should add to the first three
tinuum contribution except for the three low-lying reso- low-lying resonances additional contributions of the con-
nancesds,, 9772, andhy,. This model space seems suffi- tinuum in order to evaluate better the particle densities for
cient for a proper evaluation of pairing correlation energieshuclei close to the drip line.
up to the drip line. The rest of the continuum changes mainly
the particle distribution. In order to get a particle density
closer to the HFB results one need§ to introdqce in the reso- ACKNOWLEDGMENTS
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