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Improved treatment of ground-state correlations: Modified random phase approximation
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A method is proposed to improve the treatment of the ground-state correlations in a finite Fermi system
compared with the standard random phase approxim@R&#) or earlier suggested renormalized RPA. The
correlations lead to nonzero quasiparticle occupancies in the ground state. The method employs modified
quasiparticles obtained by a canonical transformation of usual quasiparticles explicitly involving the quasipar-
ticle occupation numbers. A set of equations is derived, which allows one to determine these occupation
numbers along with the RPA modes. The formalism is illustrated with the Lipkin-Meshkov-Glick model, and
a model for superconducting pairing at a finite temperature. With the new approach, the ground-state correla-
tions are significantly reduced, the energy of the first excited state becomes closer to the exact solution around
the region where the RPA collapses, and the superconducting gap monotonously decreases instead of the sharp
phase transition. We discuss the effective equivalence of the interaction effects and variation of temperature for
the ground-state correlations.

DOI: 10.1103/PhysRevC.64.064319 PACS nuni)er21.60.Jz

I. INTRODUCTION rious,” can be situated at very low energi@sg., lower than
the energy of the well-known first quadrupole s}ates; and
One of the central issues in theory of many-body quantun;. are close to each other.
systems, such as atomic nuclei, is the treatment of collective In hot equilibrium Fermi systems, the quasiparticle occu-
modes and their coupling to noncollective degrees of freepation numbers can be described by the Fermi-Dirac distri-
dom. The collective modes are generated by the coheremiution at a given temperature It is well known that the
motion of many quasiparticles beyond the mean-field apsuperconducting gag(T), obtained as a solution of the
proximation of independent quasiparticles. The microscopidinite-temperature BCS equation, collapses at a critical tem-
treatment of the collective modes is routinely carried outperatureT,~0.567A(0) [7], which signals the phase transi-
within the framework of the random phase approximationtion from the superconducting state to the normal one. In
(RPA) in the absence of superconducting pairing or quasiparmacroscopic systems, the ground-state correlations are small
ticle RPA (QRPA with pairing included. The RPAor  so that the approximation of zero quasiparticle occupation
QRPA) equations are usually obtained within the quasibosomumbers in the ground state is sufficiently accurate, and the
approximation, which violates the Pauli principle betweensharp phase transition indeed takes place. In finite systems,
the particle-holelor quasiparticle pairs considered as ideal such as nuclei, this is no longer valid. As a matter of fact,
bosons. In this way, only a part of ground-state correlationsaking into account thermal fluctuations, it has been shown in
is accounted for. This leads to the collapse of the RPA at @ number of papers that the gAgT) does not collapse, but
critical point, where it yields an imaginary solution. decreases with increasing temperature, and remains finite
Several approaches were developed taking into accoumiven at rather higi [8—12). On the other hand, a method
the ground-state correlations beyond the RPA to correct thigsing the particle number projection has also shown that the
inconsistency 1-5]. One of them is the renormalized RPA gap A does not vanish at high temperatures in finite Fermi
[1,5]. In this method, a set of RPA-like equations is solvedsystemg 13]. Similar results follow from the exact solution
self-consistently together with the equation for the single-of the nuclear pairing probleri4].
particle (or quasiparticle occupation numbers. The most  In the present work we propose a method to improve the
complete form of the renormalized RPA is the so-called extreatment of the ground-state correlations. We preserve the
tended renormalized RPA proposed &). It includes all pos-  contributions of all processes of creating or destructing qua-
sibleph, pp andhh transitions. This has been done by con- siparticle pairs as well as those of quasiparticle scattering but
structing the phonon operators, which include all theeliminate at the same time the appearance of the extra poles.
forward- and backward-going two quasiparticle amplitudeswe also show that the same method can resolve the problem
as well as the amplitudes describing the quasiparticle scattesf the collapse of the BCS gap at finite temperature in finite
ing. The presence of the quasiparticle occupation nunters systems.
different from O brings in many new solutions associated The paper is organized as follows. The approach is devel-
with the new two quasiparticle poles;(- €;/) in addition to  oped within the framework of the QRPA in Sec. II, while its
the usual ones for the breaking of pairs; £ €;;). Now one  RPA limit is presented in the Appendix. Section Il and IV
has the nonvanishing termg(n; —n;,)/[(¢;—€;:) = w]. The  discuss the application of this method to the exactly solvable
new formal solutions, classified by several authors as “sputipkin-Meshkov-Glick model, and a schematic model for the
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superconducting gap at finite temperature, respectively. Con- U=y ’—1—n,-+vj\/n—j, v;=v, /_1—n,-—uj\/n_j. (6)
clusions are given in the last section.
Because of Eq(4), we find that the following expressions
Il. THE MODIFIED QUASIPARTICLE RPA hold exactly in the correlated ground state:

A. Transformation to modified quasiparticles

Ol[A(i"). Al , (j1i1)1/0)

We consider a system of fermions in a spherical mean (OlA(I") Al“l(]ljl):” )
field; the single-particle orbitals will be labeled by the angu- S Y O W ST B R LS W S
lar momentum quantum numbgrandm. Assuming that the Wy Ouusl 930~ (7 1) i 01l
residual interaction contains a pairing part between the time 7)
conjugate orbitals, we perform the standard Bogoliubov ca-
nonical transformathn from thTe particle operatcnﬁn and <0|[BIM(” "),By i, (i1i1)1/0)=0,
ajm, to the quasiparticle oneg;,, and a;,,. On top of that,
We propose that th_e qu_a5|part|cles are mod|f|ed_ by the COMSihere the standard notations are used for the operators of
lations in the quasiparticle ground state according to the fol- " e P = .
lowing secondary canonical transformation between the qua?@r creationAy ,(jj’) and scatterinds, ,(jj ") of modified

siparticle operatorsf,,, ;. and the modified ones,, quasiparticles, namely,
Ajm - o - .
T A—nal — : ALGIN=2 (imj'm N g)ajme]
%jm= 1_njajm+\/n—jajﬁ“ Ajm= 1_njajr71_ nJ'a'jm- mm
(2)

B, (ii’)= imi’m’ —F .

The inverse transformation to E€) is Byr.(ji")=— 2, (jmj’m |)\M>ajmaj,m, _ ®)
mm

N e S S - - i
ofn=VI-njafn— VN, am=Vi-nan+nagn,. Using Eq.(2), we express the pair creatiok] ,(jj’) and
(2) scatteringB, ,(jj ') operators in terms of their modified qua-

- . . AT (i =3 sey
In Egs. (1) and (2) the sign” stands for the time reversal siparticle counterpart8, ,(jj ) andB,,(jj’) as
operationa;;=(—1)'""a;_p,; n; are thequasiparticleoc-

cupation numbers of orbitajsin the correlated ground state ALLGI D =VA=n)(L=n;HAL (")

105, — iy AT+ Ty B )
"= (0l jna;n|0) 0. @ (= 0Bl )

A transformation similar to Eq(1) has been introduced in _5x05M05”,\/2j+1\/nj(1_nj)' (9)

[15,14 at finite temperaturd, wheren; takes the form of
the Fermi-Dirac distribution with quasiparticle energy

Byu(ii)=V(1=n)(1—n;)By (] ") = Vnn; B~ (ji ")

>0. The expectation valug@] . . .|0) for the ground state is

then substituted by the average over the grand canonical en- —JA=nn AT (i =Jn (1= DA~(ii’
semble. In contrast to Reflsl5,16], no specific form fon; is ( )y wull] ) i RVl
assumed here. The occupation numbgrsvill be found by + 6jj 1 O\00,u0Nj V2] + 1. (10

solving self-consistently the modified QRPA equations de-
rived below. Using the inverse transformatit), we notice  From Egs.(7), (9), and (10) we find the following exact

that in order to satisfy EqJ3) it is necessary that relations:
T S oy — — - Al
(Ol ajmatjm| 0) =0 “) (OILALLGi )AL, (12 D110)
Thus, the correlated ground sta@ is the vacuum state with =(1=nj=Nj1) 6\ Opp,
respect to the modified quasiparticle opera@;ﬁ anda;n, . o
Using Eq.(2) we express the transformation from the X[51115j’11_(_1)m A5iii5i’1'1]’ (1D
original particle operators to the modified quasiparticle op-
eratorsay, , ajn as[15,16 (OI[BT,.(ii"),By (11 D1[0)
an=Ujalntojam,  am=Uamn-vial,, (5 =(Njr =) Sxx; 0y 633, By (12)

with the coefficientsUj andv_j related to the conventional which recover the approximate commutation relations in the
Bogoliubov coefficientss; andv; as renormalized QRPA, see, e.g., E¢A5) and (A6) of [6].
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B. Modified phonons lytic solutions for separable interactions, we can illustrate the
results considering the Hamiltonian as in Egsl) and(A2)

of Ref.[6].
Q = 2 [_(“)KT i _(“)A 0l @@ Using the canonical transformatlofﬁ) and(13) we ex-

A A press this Hamiltonian in terms @Mu' me' B)\’u(jj ),

and B (jj ). Applying the standard procedure of deriving
— the QRPA equation for separable interactions, we obtain the
- A N AT
Quai= 2 [_( I)Aw (41" - _( I)A w11 dispersion relation for the phonon energyas

We introduce the following modified phonon operators:

Using Egs.(1) and (8), we find that the modified phonon 1-kMF(w)=0, (20
operatorsQW andQM, in (13) contain all the conventional
two-quasiparticle parts\m(” ) A\i(jj"), as well as the where

scattering part8, ,(jj '), andB (jj "), namely, _
a o 2(_”)) (€+¢)
> @ ———. @

F(o)=
2)\+1 ”/ ( j+€j,)2—w2

QM.——E [XCVALGED) =Y AL

In Egs.(20) and(21), k™ is the coupling parameter of the
separable interaction for multipolarity; qm is the single-
particle matrix element correspondlng to the separable inter-

Quii= z [x(“)AM(” )— Y(“)Aw(jj') action @V-q™); =V(E;—~Ep2+A? is the modified

quaS|part|cIe energy WI'[h the modified superconducting pair-

—z}?PBW(n'>+w}?3)81,;<jj')], (14)

e [ o ing gapA, single-particle ener and the modified Fermi
—zgj”PBA;(u )+WODB,,(Gi)], (15 N9 gaps, single-particle energf, :
energyEg. The funct|onuj., is a combination of the modi
where fied Bogoliubov coherence facto(8)
X =X (@=n)(X=n; )+ YNy, ul=uvp +ojup=[(I=n)(@=n;) = Vnjn; Jul)

(=)

i - - H 'r+ i - i’ A
where u(-,)—quJ +oup, o) = =Uujujy—vjvj,. For sim-

i’
plicity, we do not speufy the neutron and proton components

as well as the isoscalar and isovector parts of the multipole
W(“) VJ(J“) (1—n)n;, _fj“) n(1-n;). (17  interaction.
The equations for the modified paring ga@p and the
Equatlons(14) and (15) show that the modified operators qqified Fermi energf, have exactly the same form as the
QJ i andQ, ,; in Eq. (13) have the general structure of the BCS ‘equations, where the coefficientsando; are replaced
extended renormalized QRPA phonon operators discussed iy, uj anva from Eq. (6). In terms of the usual Bogoliu-

[6]. bov coefﬂmentsu, andv;, the equations have the form
Due to the vacuum expectation of the commutation rela-

tions (7), we obtain the usual QRPA-like orthonormalization

Z(“) Y](]“) (1—njn;, _(“) n(1-n;.),

for the modified phonon amplltud%”') and_fj”,'), K=G; QjUjv_j=G; Q[ (1—2nj)ujv;
2 [yj?\jiril?\jl’il_VM _)\1|1:| 25}\)\ 5” ' (18) —\/nj(l—nj)(ujz—vjz)], (23)

_ _ _ —_ 2
so that the modified phonon operatdgg ,; and Q, ,; are N—ZE Q] _2; Q[(1=2n))vj+ni]

ideal bosons with respect to the new vacuum state

_42 QJ\/nJ(l_ﬂJ)U]UI, (24)

(OILQupi » Qi JI0) = Bn, B, S - (19)

Therefore, within a model Hamiltonian including a residualwhereN is the particle number, the pairing matrix elements
two-body interaction, the equations of motion for the modi-are approximated by the constadt and{};=j+1/2. Once

fied phonon Opefato@m andQW have exactly the same the modified phonon energy,; is found as the solution of
form as the usual QRPA equations. Since the latter have an&q. (20), the amplltudes_((“) and_(“) are calculated as
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_ q(?\)a(fr) _ q(?\)agf) In numerical calculations, these equations can be solved
X0 =y Yy g iteratively as follows. Starting from the usual BCS equation
! €t € —wyj . €t €T Wy (n;=0), one obtains the quasiparticle energées the gap

(259 A, and the Fermi energfr. Using them, one solves the

modified RPA equation to find,;, YJ(]“) VJ(J“) and the

quasiparticle occupation numbers. The latter are inserted

into the modified BCS equation®3) and (24) to determine

A, Eg, ande; . These values are used to solve the modified
(:j+?jf—wm)2 RPA.equation again, apd the procedure is repeated until the

required convergence is reached.

with

M{z O
i’

1

TZ
(ej+ej/+w>\i)

-1/2
] : (26) IIl. ATESTING GROUND: THE LIPKIN-MESHKOV-
GLICK MODEL

In a general case of a nonseparable interaction, we do not In this section we compare the exact solutions of the
have the dispersion equatid@0) and the analytic expres- Lipkin-Meshkov-Glick (LMG) model [17] with those ob-
sions forf}j“,') andV}f,') as in Eq.(25). Instead, we obtain a tained with the use of various approximatiof®®PA, renor-

; J ; A alized RPA, and modified RBAThe model considers a
set of equations, which has to be solved by diagonalization tQ;/stem ofN fermions distributed in two levels each having a

: ; e (M) (M) ;
find the RPA eigenvectorsX;;,”, Yy}, and the eigenvalues 5 fo|q degeneracy; the levels are separated by erErdy
)i - Equationg20), (21), (25), and(26) have the same form  he noninteracting system the lower level is occupied\by

as their counterparts in the QRPA. The number of solutiongarticles, i.e., 22=N. The model is described by the Hamil-
(normal modekis also the same because the number of tWQqqgnian

guasiparticle polesg+?j,) remains unchanged. In this way,
the problem of “spurious” solutions, which may occur due
to the new poless;— ;. within the extended QRPAG] is

eliminated here. The new features are in the coefficiaﬁt’s
(22) instead ofufjf), and in the modified quasiparticle ener-

1 1
H=EJ,— EV(Ji+32_)— 5V10,3-+3-35), (29

where the operators

gies?j instead of the usuat; . Sinceﬁf?,) as well as Egs. 1N " "
(23) and (24) contain the unknown quasiparticle occupation Jo=3 mzzl (@imdim~a-md-m),
numbersn;, we discuss below the way to determine it.
N
_ t _ t
C. Quasiparticle occupation numbers J.= mzzl aimd-m, J-=(J+) (29

We definen; using the procedure of the extended renor- o ]
malized QRPA proposed if6], according to which we ob- are the usual S(2) generators, satisfying the commutation

tained Eq.(A7) of Ref. [6] for the ground state correlation relations

factor Dj;. . Using _Eq.(16), we express t_he right hand sid_e [J.,9.1=23y, [Josds]==J.. (30)
of (A7) of Ref.[6] in terms of the modified phonon ampli-
tudesffj”,') andV}j”,') as The quasispind is an exact constant of motion while its
o projectionM =J, is not conserved because of the processes
Djj=1-nj—n;;=1 of pair transfer between the levels generated by the coupling
constanV. The exact eigenenergi€sof this general version
_ E 2 D. V(M)W of the LMG model are found by diagonalizing the tridiagonal
- { “/'[ jj// ( nj)( nj") . . . .
T matrix, whose nonvanishing elements in the space of states

. _ . |J,M) with —J<M<J (J=Q=N/2) are
+Y](J)\,I,) \/njnju]2+ DJUJ/[VJ(,):JI),\(1—njn)(1_nj/)

(J,M|H|J,M)=EM—V,[I(J+1)—M?],

+ X500 npng 13}, (27)
(J,M i2|H|J,M>
The set of Egs(20), (23)—(25), and (27) should be solied 1
self-consistently for determining the modified BCS gap == §V\/(JI M)[I*= (M= 1)%](JEM +2). (32)

Fermi energ\Eg, phonon energies,;, the amplitudes_(lgj",i)
andV}j}‘,'), as well as the quasiparticle occupation humbers
n;. We refer to Egs(23) and (24) as the modified BCS 3 ]
equation, and Eq(20) supplemented with Eqg21), (22), Q'=XxJ,-YJ, QT:X—+—y;,
(25)—(27) as the modified QRPA equation. JD D

The phonon operators for the model are
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Qf=XJ,-YJ_, (32)

in the RPA, renormalized RPA, and modified RPA, respec-
tively. The factorD=1/(1+2Y?) is defined according to
Refs.[5,6]. The orthonormalization condition for the renor-
malized phonon amplitude¥ and)), and the modified pho-
non amplitudesX andY are the same as that for the RPA
phonon amplitudeX andY, namely,

N(X2-Y)=N(X2-Y?)=N(X2-Y?)=1. (33

After some algebra, we obtain the analytic solutions for
the normal frequencies of the RPA, ., Of the renormal-

PHYSICAL REVIEW ®4 064319

ized RPA, andw,q Of the modified RPA equations as
w=*EJ(1-x1)°—x%,

wren:iE\/(l_XlD)z_XzDza (34

Omod= + EN(1— xult)2— 3 ulM?,

where
X=NVIE, x1=NV{/E, x=x[u")],
xi=xau, E=Eu), (35)
with
ut=1-2n=D= ! (36)

1+2[nX+(1-n)Y]?’

X +X1

FIG. 1. Normalized excitation energies as a function of the in-
teractiony + x, for N=28 particles: exact solution, thin solid line;
RPA, dotted line; renormalized RPA, dashed line; and modified
RPA, thick solid line.

numbersn; found by solving self-consistently the set of
renormalized BC$ RPA equations.

Shown in Fig. 1 are the exact excitation enegy- &,
and the frequencie®, w,en, andwnq (in units of the level
spacingE) as functions of the interaction strenggh- y, for
N=28 particles. The energ§, is the lowest exact eigenvalue
of the Hamiltonian(28), while &; is the energy of the lowest
excited state. The calculations have been carried outajor
x1=0, the standard LMG model an@) y,;=0.2 x. The
RPA solution collapses a¢+ y;=1. In contrast to that, the

see Eq(27). The expressions of the phonon amplitudes arefrequencies for the renormalized RPA, modified RPA, and

1/2

_[ L EQ-x)+ol”? {i E(1—x)—o

2N D) ’ 2N D) '
(37)

vo| L EA=xiD)F wrey vz

2N ®ren ’
_ 1 E(]—_)(lD)_(J‘)renl/2 38
- m wren ’ ( )

Y= 1 E(:I-_;lmﬂ)"'wmod v

B m ®mod ’
vl 1 E(:I-_;la(ﬂ)_wmod 12 39
2N Omod : (39

exact solution monotonously decrease with the increasing
interaction strengthy+ x4. The excitation energy obtained
within the modified RPA is larger, and closer to the exact
solution than that of the renormalized RPA at a given inter-
action. With increasing, the lowest level and the one above

it in the exact solution start to cross. This corresponds to the
transition from the spherical scheme to the deformed one.
Therefore, below we will concentrate on the standard version
of the LGM model withy;=0.

The normalized excitation energie®ey/E, o/E,
wen/ E, and w,,0q/E, obtained forN=16, 24, 50, and 100
are plotted in Fig. 2 as a function of the interactipnThe
energy obtained with the modified RPA is always closer to
the exact energy ay<y., where y. is the value of the
interaction parameter, at which the exact solution crosses
with that of the modified RPA. The values gf are found to
be around 1.86, 1.48, 1.2, and 1.1 =16, 24, 50, and
100, respectively. The difference between the energy ob-

for the three versions of the RPA, respectively. We note thattained within the modified RPA and that of the renormalized
in the conventional form of the renormalized RPA consideredRPA decreases with the increasing particle nunibso that,
here[5], the quasiparticle energy, is not renormalized. A at asymptotically largé&d (N>100), the solutions given by
full renormalized RPA should include such renormalizationall three versions of the RPA become rather close to the exact

due to the nonzero quasiparticle occupancigsThe renor-

one. This indicates that the ground-state correlations are

malized BCS equation has then the form identical to thesmall in large systems, where the RPA works well.

finite-temperature BCS equati¢i] but with the occupation

The difference between the correlated ground state and
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N =100
FIG. 3. Squared backward-going amplitudé&sof RPA (dotted
- line), Y2 of renormalized RPAdashed ling and Y? of modified
RPA (solid line) as a function of the interactiog for various par-
ticle numbersN.
2 3

=11exp(E/Ts) +1] at an effective temperaturéys. The
temperaturel o is derived directly from this distribution as

FIG. 2. Normalized excitation energies as a function of the in-
teractiony (x;=0) for various particle numbend. Notations are
the same as in Fig. 1.

1 -1
Tei=E In(ﬁ—l)} . (40
the BCS vacuum is given by the square of the backward- The values ofT.4/E are plotted in Fig. 4 versus the in-

going amplitude, i.e.Y?, Y2, andY? of the RPA, renormal-  teraction paramete. It is seen from this figure that the
ized RPA, and modified RPA, respectively. Being propor-yalidity region of the RPA corresponds td.s<0.4
tional to the expectation value of the boson number operatox £ (MeV) at N=4, which is reduced toT.=<0.2

in the ground state, these quantities can serve as a measuyt& (MeV) atN=100. At largey the dependence df,; on
for the ground-state correlatioh$8]; they are shown in Fig. y is independent oN. At y=6, wherew/E is practically

3 as a function ofy for several particle numbers. At ¥ zero, it can be well approximated with a simple relation
below around 0.5 the results of the RPA, renormalized RPA,

and modified RPA practically coincide. At larger values of
the interaction, the ground-state correlations become too
strong within the RPA so that? collapses ajy= 1. At the
instability point, the RPA overestimates the ground-state cor-
relations by a factor of 18 compared to the renormalized
RPA, and by a factor of 30 compared to the modified RPA at
N=4; these factors are reduced about twice when the par-
ticle numbem is doubled. Aty>1, only the results obtained
with the renormalized RPA and modified RPA remain,
whereas the ground-state correlations for the modified RPA
are about thrice weaker than those for the renormalized RPA
at largey. FIG. 4. Effective temperature as a functionyofThe thick solid,

The quasiparticle occupation numbreat energyE can be  thin solid, dashed, dash-dotted, and dotted lines denote the results
fitted well with a Fermi-Dirac distribution n obtained forN=4, 8, 24, 50, and 100, respectively.
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1.2 T T T T T

1
Teﬁ:EE(&— 0.1). (42)

The relationship between the interaction and the effective
temperature also demonstrates that the study of the effect of
the ground-state correlations beyond the RPA on various
nuclear characteristics as a function of interaction at zero
temperature is essentially equivalent to the study of the
ground-state correlations as a function of temperature at a
fixed interaction. This observation is important for the study
of thermodynamics of small many-body systems. Various
phenomena related to the fluctuations of nuclear degrees of
freedom can be in fact understood as thermal effects at an
effective temperaturg¢19,20. The emergence of quantum
liquid features with a typical particle distribution correspond-
ing to some temperature in a finite isolated strongly interact-
ing system was studied in the shell-model framework for
nuclei [12,21], atoms[22] and model systems of fermions
[23] or bosong 24]. This gives rise to a new point of view at
the statistical description of thermal equilibrium in a small
finite system where the interaction plays a role of the effec-
tive heat batH25]. One of the relevant nuclear characteris- :
tics is the superconducting gap, which will be considered in o = } - - .
the following section.

A(T)/A(0)

A(T) /A(0)

A(T) 1A(0)

IV. A SCHEMATIC MODEL FOR SUPERCONDUCTING
GAP AT FINITE TEMPERATURE

A(T)/A0)

In this section we compare the solution of the modified
BCS approximation, Eq$23) and(24), with that of the stan-

dard finite-temperature BCS equatipfi: 1 2 3
T/Tcrit

A= 2 Qj(l— 2nj)ujvj , FIG. 5. Pairing gafgnormalized to its value at zero temperajure

J as a function of temperatufeormalized tdT ) for various particle
numbersN. The modified gapA(T) is plotted as a solid line, while
the usual finite-temperature BCS gAfT) is represented by a dot-
ted line.

—Ef

€

15

]

(1—2nj)}, (42

where the quasiparticle occupation numberare described ¢=0.567, 0.528, 0.507, and 0.529Mt=2, 4, 6, and 8, re-
by the Fermi-Dirac distributiom, = 1] exple /T)+1] at a spectively. These numbers are close to the value 0.567 pre-

. \/—‘—2—2 o dicted by the BCS theory for infinite systerfig.
temptzaratureT with €= V(Ej—Ep)"+A% and E;j=Ej The vanishing pairing gap in the finite-temperature BCS
—Guj’; Gis the pairing constant. _ theory is a signature of the phase transition from the super-
The schematic model is studied in two versions, a tWoonducting state to the normal one. In finite systems, such as
level version(a), and a version with a realistic level scheme nuclei, the ground state may differ significantly from the
(b). The version(a) considersN particles distributed in two s one. This effect of the ground state correlations is seen

Q) ;-fold levels and interacting via a pairing force with the . : L o
] . in the behavior of the modified gap(T) from Eg.(23) as a
strengthG. We choose the energies of the lower and UPPE% nction of temperaturésolid line). For N=2 the modified

levels to be—2.5 and 2.5 MeV, respectivelE=0.6 MeV, — i , )
andQ =5 (j=9/2). This gives the constraint for the particle 98P A(T) still vanishes but aff=2.2 MeV that is much
numberN< 10. higher thanT,=0.86 MeV in the f|n|te-temperature_ BCS
The gaps, normalized to their corresponding values atheory. As the particle numbé¥ increases, the value af; is
zero temperature, were obtained from E(@3) and (42). also sharply increasing. Al>4 the phaset_ransition point is
The results for the versiofe) are plotted as a function of practically washed out. The modified gay(T) decreases
T/T. at several values of the particle numibéin Fig. 5. The  with increasingT, but remains finite up to very high tempera-
finite-temperature BCS gafa dotted ling collapses afT  ture T>6 MeV. It also becomes closer to the finite-
=T., which is equal to 0.86, 1.02, 1.04, and 1 MeVMNit temperature BCS gap at<T.. These features are robust
=2, 4, 6, and 8, respectively. For the ratie= T./A(0) of  being observed in calculations using different sets of the pa-
the critical temperature to the BCS gapTat0 we found rameters, namelyj) G=0.6 MeV, E=3 MeV, and(ii) G
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1.2 T T T T T
1.0

G=0.6 MeV
_ o8 E=+3 MeV
g Q-10, N=18

< o6

-

—

T/ Tcrit

FIG. 6. Pairing gafgnormalized to its value at zero temperajure
as a function of temperatuf@ormalized toT.) obtained using the
parameter sef) (see textat N=18. The notations for the modified
gap A(T) and the usual finite-temperature BCS giafr) are the
same as in Fig. 5. The corresponding values of these @ayus
obtained without the correction—- G;jz and —ij2 are shown by
thin solid and dashed lines, respectively.

=0.8 MeV, E=6 MeV, with the degenerac{)=10 (N
<20). The whole behavior is analogous to that found in th
large scale shell model diagonalizatifi?)].
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ing T and vanishes af.=0.75 MeV. The modified gap

K,,(T) remains nearly constant up To=T., then decreases
with increasingT, but never disappears. Ati=1 MeV, the
modified gap is still about 87% of its value &&= 0. Even at

a temperature as high 8s=3 MeV, A ,(T) is still around

0.3 MeV. Therefore, the pairing gap cannot be neglected in
the calculations of properties of hot open-shell nuclerl at
=2 MeV.

V. CONCLUSIONS

The central issue in the present work is that the ground-
state correlations modify the quasiparticle and collective ex-
citations. This effect is taken into account via the secondary
canonical transformation from quasiparticle operators to
modified quasiparticle ones. The coefficients of this transfor-
mation, y1—n; and Jn;, include the mean quasiparticle oc-
cupation numbers; that are different from zero because of
the ground-state correlations. Based on this transformation a

ernodified BCSHQRPA theory is developed. The derived set

of modified equations must be solved self-consistently to de-

We also notice that, in the self-consistent solutions, thdine the modified pairing gap, the Fermi energjEg, the

shifts _ijz (or —G;jz) of the single-particle energ¥;
=E{-Gv? (or Ej=E"—Guv?) give rather small contribu-
tions to the gap, especially at larghr as seen in Fig. 6,
which is obtained forN=18 using the parameter séi)
above. The gap at=0, with this shift taken into account, is
1.74 MeV, which is only 0.2% smaller than that obtained
neglecting this shift. The value @i, decreases only by about
3% compared to the value of 0.84 MeV when this shift is
omitted. For simplicity, we ignore this small shift in the cal-
culations below with the versiofi) of this model since here
the neutron numbeN, is 70.

In version (b), we consider a realistic nucleu¥%Sn,
which has an open neutron shell. The single-particle energi
for this nucleus are calculated with the Woods-Saxon pote
tial. The neutron single-particle energies span a space of
levels between-33 and 17 MeV. Using a pairing strength
G=0.13 MeV (=15.6A MeV), the BCS neutron pairing
gap atT=0 is found to beA ,(0)=1.42 MeV in agreement
with the experimental value at the neutron number 70
[26]. Shown in Fig. 7 is the neutron pairing gap for this

nucleus as a function of temperature. The usual finite

temperature BCS gaf,(T) decreases sharply with increas-

1.5

A, (Mev)

T (MeV)

FIG. 7. Neutron pairing gap fol?°Sn as a function of tempera-
ture. The notations are the same as in Fig. 5.

n . .
2glllows us to make the following conclusions.

energies of the modified phonons, .y, the phonon ampli-

tudesX andY, as well as the quasiparticle occupation num-
bersn;. The equation fomn; is derived making use of the
ground-state correlation factor obtained within the renormal-
ized QRPA. The major merit of this method is that it sepa-
rates the collective solutions associated with only the cre-
ation of two quasiparticles from those arising from the
scattering quasiparticles, retaining the effect of the latter in
the excitation operator.

The formalism is illustrated with two well-known sche-
matic models, which are frequently used in the literature,
namely the two-level LMG model with theh interaction

ez%nd the model with a monopole pairing interaction. The

analysis of the numerical results obtained in these models

(1) As compared to the renormalized RPA5], the modi-
fied RPA indeed offers an improved treatment of the ground-
state correlations beyond the RPA. The energy of the first
excited state obtained with the modified RPA is closer to the
exact energy than that of the renormalized RPA within the
validity region of the RPA and around the point where the
RPA collapses. This is a consequence of the fact that the
“spurious” poles in the RPA equations are eliminated, and
the significant part of the ground-state correlations is taken
into account by the new canonical transformation so that the
remaining correlations within the modified RPA are signifi-
cantly weaker than that of the renormalized RPA near the
RPA instability point and beyond it.

(2) The behavior of the quasiparticle occupation numbers
as a function of interaction parameter can be well approxi-
mated by a Fermi-Dirac distribution at a given temperature.
From here an effective temperature has been deduced as a
function of the interaction parameter. This shows that the
effect of ground-state correlations as a function of interaction
at zero temperature can be equivalently treated as a function
of effective temperature at fixed interaction giving a new
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argument in favor of treating the interparticle interaction in awhich should be compared with the corresponding expres-
small closed system as an agent playing the role of an effesions within the RPA
tive heat bath.

(3) Within the modified finite-temperature BCS approxi- 1 N (Ep—Ep)
mation, the proposed method increases the temperature of Flo)=577 > [qgh)]zﬁ, (A3)
the phase transition point from the superconducting state to ph (Ep=En)~o
the normal one in finite systems until smearing out com-
pletely this phase transition. This has been done without ugand within the renormalized RPA
ing any approximate particle number projection. The pairing
gap in open-shell nuclei does not vanish even at high tem- 1 o) 5 (Fh=Tp)(Ep—Ep)
peratures, therefore, it cannot be neglected in the study of hot ~ Fred @)= 53— % [Apn] EyEnw? | (Ad)

nuclei at least up td=2 MeV. These analyses show that

the modified RPA is a method that properly accounts for an , o ) )
essential part of the ground state correlations and can resolJd'e €xpression within the extended renormalized RPA coin-

self-consistently and simultaneously a number of problem§ides with Eq.(A4) in this case[6]. The modified phonon

typical for the conventional approximations. amplitudesx(}’ and Y{})) have the form
ACKNOWLEDGMENTS Y(M)_qgfh)[\/(1—fp)fh— Vi (1=f)]—

. . . . ph' = My, (A5)
The numerical calculations were carried out using the Ep—En— oy
FORTRAN IMSL Library 3.0 by Visual Numerics on the Alpha

server 800 5/500 at the Division of Computer and Informa- _(M)_qéxh)[\/(l_fp)fh_ \/fp(l_fh)]r

tion of RIKEN. N.D.D. thanks the National Superconducting

<

ichi ersi ph-— Ep—Ept wy N
Cyclotron Laboratory at the Michigan State University for P mh TN
the hospitality during his visit when this work was started.
The support from NSF Grant No. PHY-0070911 is acknowl-With
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APPENDIX: THE MODIFIED RPA Myi= % [apn LV Fp)f

In the absence of the superconducting pairing and with

. . . . 1
the interaction limited only to the particle-holpif) channel, —f1=F)71?
the modified QRPA equation is reduced to the modified RPA ol ] (Ep—Ep—w))?
equation. Using the usual canonical Bogoliubov transforma- i
tion between original particles and quasiparticles, one can 1
see that the quasiparticle occupation numbrgre3) are re- a (E,—Ep+wy)? : (A6)
lated to the single-particle occupation numbers P =T
fj5<6|aj‘fmajm|6> (A1)  The ground-state correlation factﬁ@hth— f, satisfies the
equation
as f,=n,, f,=1-—n,. Ignoring the ground-state correla-
tions beyond the RPA leads tg=n,=0, which restores the ~_ . .
usual Hartree-FockHF) single-particle occupation numbers D p,=1— >, [E D[ YOV — o),
f5F=0, fiF=1. FunctionF () in Eq. (21) takes the form Mol
(M)
- - + X Vo (1= f)]?
Flo)= o577 2 (AT Tp)fy,
- + 2 Dy [YO VA=) + XV (1= ) 12
— h/
—Jf(1—f Zp—h, A2
Vio(1=10] e e
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