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Improved treatment of ground-state correlations: Modified random phase approximation

N. Dinh Dang1,2 and V. Zelevinsky3
1RI-Beam Factory Project Office, RIKEN, 2-1 Hirosawa, Wako, 351-0198 Saitama, Japan

2Institute for Nuclear Science and Technique, VAEC, Hanoi, Vietnam
3Department of Physics and Astronomy and National Superconducting Cyclotron Laboratory, Michigan State University,

East Lansing, Michigan 48824-1321
~Received 10 September 2001; published 20 November 2001!

A method is proposed to improve the treatment of the ground-state correlations in a finite Fermi system
compared with the standard random phase approximation~RPA! or earlier suggested renormalized RPA. The
correlations lead to nonzero quasiparticle occupancies in the ground state. The method employs modified
quasiparticles obtained by a canonical transformation of usual quasiparticles explicitly involving the quasipar-
ticle occupation numbers. A set of equations is derived, which allows one to determine these occupation
numbers along with the RPA modes. The formalism is illustrated with the Lipkin-Meshkov-Glick model, and
a model for superconducting pairing at a finite temperature. With the new approach, the ground-state correla-
tions are significantly reduced, the energy of the first excited state becomes closer to the exact solution around
the region where the RPA collapses, and the superconducting gap monotonously decreases instead of the sharp
phase transition. We discuss the effective equivalence of the interaction effects and variation of temperature for
the ground-state correlations.
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I. INTRODUCTION

One of the central issues in theory of many-body quant
systems, such as atomic nuclei, is the treatment of collec
modes and their coupling to noncollective degrees of fr
dom. The collective modes are generated by the cohe
motion of many quasiparticles beyond the mean-field
proximation of independent quasiparticles. The microsco
treatment of the collective modes is routinely carried o
within the framework of the random phase approximat
~RPA! in the absence of superconducting pairing or quasip
ticle RPA ~QRPA! with pairing included. The RPA~or
QRPA! equations are usually obtained within the quasibo
approximation, which violates the Pauli principle betwe
the particle-hole~or quasiparticle! pairs considered as idea
bosons. In this way, only a part of ground-state correlati
is accounted for. This leads to the collapse of the RPA a
critical point, where it yields an imaginary solution.

Several approaches were developed taking into acc
the ground-state correlations beyond the RPA to correct
inconsistency@1–5#. One of them is the renormalized RP
@1,5#. In this method, a set of RPA-like equations is solv
self-consistently together with the equation for the sing
particle ~or quasiparticle! occupation numbers. The mo
complete form of the renormalized RPA is the so-called
tended renormalized RPA proposed in@6#. It includes all pos-
sible ph, pp andhh transitions. This has been done by co
structing the phonon operators, which include all t
forward- and backward-going two quasiparticle amplitud
as well as the amplitudes describing the quasiparticle sca
ing. The presence of the quasiparticle occupation numbernj
different from 0 brings in many new solutions associa
with the new two quasiparticle poles (e j2e j 8) in addition to
the usual ones for the breaking of pairs, (e j1e j 8). Now one
has the nonvanishing terms}(nj2nj 8)/@(e j2e j 8)6v#. The
new formal solutions, classified by several authors as ‘‘s
0556-2813/2001/64~6!/064319~10!/$20.00 64 0643
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rious,’’ can be situated at very low energies~e.g., lower than
the energy of the well-known first quadrupole state! if e j and
e j 8 are close to each other.

In hot equilibrium Fermi systems, the quasiparticle occ
pation numbers can be described by the Fermi-Dirac dis
bution at a given temperatureT. It is well known that the
superconducting gapD(T), obtained as a solution of th
finite-temperature BCS equation, collapses at a critical te
peratureTc.0.567D(0) @7#, which signals the phase trans
tion from the superconducting state to the normal one.
macroscopic systems, the ground-state correlations are s
so that the approximation of zero quasiparticle occupat
numbers in the ground state is sufficiently accurate, and
sharp phase transition indeed takes place. In finite syste
such as nuclei, this is no longer valid. As a matter of fa
taking into account thermal fluctuations, it has been show
a number of papers that the gapD(T) does not collapse, bu
decreases with increasing temperature, and remains fi
even at rather highT @8–12#. On the other hand, a metho
using the particle number projection has also shown that
gap D does not vanish at high temperatures in finite Fer
systems@13#. Similar results follow from the exact solutio
of the nuclear pairing problem@14#.

In the present work we propose a method to improve
treatment of the ground-state correlations. We preserve
contributions of all processes of creating or destructing q
siparticle pairs as well as those of quasiparticle scattering
eliminate at the same time the appearance of the extra p
We also show that the same method can resolve the prob
of the collapse of the BCS gap at finite temperature in fin
systems.

The paper is organized as follows. The approach is de
oped within the framework of the QRPA in Sec. II, while i
RPA limit is presented in the Appendix. Section III and I
discuss the application of this method to the exactly solva
Lipkin-Meshkov-Glick model, and a schematic model for t
©2001 The American Physical Society19-1
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superconducting gap at finite temperature, respectively. C
clusions are given in the last section.

II. THE MODIFIED QUASIPARTICLE RPA

A. Transformation to modified quasiparticles

We consider a system of fermions in a spherical me
field; the single-particle orbitals will be labeled by the ang
lar momentum quantum numbersj andm. Assuming that the
residual interaction contains a pairing part between the t
conjugate orbitals, we perform the standard Bogoliubov
nonical transformation from the particle operators,ajm

† and
ajm , to the quasiparticle ones,a jm

† anda jm . On top of that,
we propose that the quasiparticles are modified by the co
lations in the quasiparticle ground state according to the
lowing secondary canonical transformation between the q
siparticle operatorsa jm

† , a jm , and the modified onesā jm
† ,

ā jm :

ā jm
† 5A12nja jm

† 1Anja jm̃ , ā jm̃5A12nja jm̃2Anja jm
† .
~1!

The inverse transformation to Eq.~1! is

a jm
† 5A12nj ā jm

† 2Anj ā jm̃ , a jm̃5A12nj ā jm̃1Anj ā jm
† .
~2!

In Eqs. ~1! and ~2! the sign˜ stands for the time reversa
operation,ajm̃5(21) j 2maj 2m ; nj are thequasiparticleoc-
cupation numbers of orbitalsj in the correlated ground stat
u0̄&,

nj5^0̄ua jm
† a jmu0̄&Þ0. ~3!

A transformation similar to Eq.~1! has been introduced in
@15,16# at finite temperatureT, wherenj takes the form of
the Fermi-Dirac distribution with quasiparticle energye j

.0. The expectation valuê0̄u . . . u0̄& for the ground state is
then substituted by the average over the grand canonica
semble. In contrast to Refs.@15,16#, no specific form fornj is
assumed here. The occupation numbersnj will be found by
solving self-consistently the modified QRPA equations
rived below. Using the inverse transformation~2!, we notice
that in order to satisfy Eq.~3! it is necessary that

^0̄uā jm
† ā jmu0̄&50. ~4!

Thus, the correlated ground stateu0̄& is the vacuum state with
respect to the modified quasiparticle operatorsā jm

† andā jm .
Using Eq. ~2! we express the transformation from th

original particle operators to the modified quasiparticle o
eratorsā jm

† , ā jm as @15,16#

ajm
† 5ū j ā jm

† 1 v̄ j ā jm̃ , ajm̃5ū j ā jm̃2 v̄ j ā jm
† , ~5!

with the coefficientsū j and v̄ j related to the conventiona
Bogoliubov coefficientsuj andv j as
06431
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ū j5ujA12nj1v jAnj , v̄ j5v jA12nj2ujAnj . ~6!

Because of Eq.~4!, we find that the following expression
hold exactly in the correlated ground state:

^0̄u@Ālm~ j j 8!, Āl1m1

† ~ j 1 j 18!#u0̄&

5dll1
dmm1

@d j j 1
d j 8 j

18
2~21! j 1 j 82ld j j

18
d j 8 j 1

#,

~7!

^0̄u@B̄lm
† ~ j j 8!,B̄l1m1

~ j 1 j 18!#u0̄&50,

where the standard notations are used for the operator
pair creationĀlm

† ( j j 8) and scatteringB̄lm( j j 8) of modified
quasiparticles, namely,

Ālm
† ~ j j 8!5 (

mm8
^ jm j8m8ulm&ā jm

† ā j 8m8
† ,

B̄lm~ j j 8!52 (
mm8

^ jm j8m8ulm&ā jm
† ā j 8m̃8 . ~8!

Using Eq. ~2!, we express the pair creationAlm
† ( j j 8) and

scatteringBlm( j j 8) operators in terms of their modified qua
siparticle counterpartsĀlm

† ( j j 8) and B̄lm( j j 8) as

Alm
† ~ j j 8!5A~12nj !~12nj 8!Ālm

† ~ j j 8!

2Anjnj 8Ālm̃~ j j 8!1A~12nj !nj 8B̄lm~ j j 8!

1Anj~12nj 8!B̄lm̃
†

~ j j 8!

2dl0dm0d j j 8A2 j 11Anj~12nj !, ~9!

Blm~ j j 8!5A~12nj !~12nj 8!B̄lm~ j j 8!2Anjnj 8B̄lm̃
†

~ j j 8!

2A~12nj !nj 8Ālm
† ~ j j 8!2Anj~12nj 8!Ālm̃~ j j 8!

1d j j 8dl0dm0njA2 j 11. ~10!

From Eqs.~7!, ~9!, and ~10! we find the following exact
relations:

^0̄u@Alm~ j j 8!,Al1m1

† ~ j 1 j 18!#u0̄&

5~12nj2nj 8!dll1
dmm1

3@d j j 1
d j 8 j

18
2~21! j 1 j 82ld j j

18
d j 8 j 1

#, ~11!

^0̄u@Blm
† ~ j j 8!,Bl1m1

~ j 1 j 18!#u0̄&

5~nj 82nj !dll1
dmm1

d j j 1
d j 8 j

18
, ~12!

which recover the approximate commutation relations in
renormalized QRPA, see, e.g., Eqs.~A5! and ~A6! of @6#.
9-2



:

n
l

s
e
d

la
n

a
di
e
an

the

g
the

e

ter-

air-
i

nts
ole

e

ts

f

IMPROVED TREATMENT OF GROUND-STATE . . . PHYSICAL REVIEW C64 064319
B. Modified phonons

We introduce the following modified phonon operators

Q̄lm i
† 5

1

2 (
j j 8

@X̄j j 8
(l i )Ālm

† ~ j j 8!2Ȳj j 8
(l i )Ālm̃~ j j 8!#, ~13!

Q̄lm̃ i5
1

2 (
j j 8

@X̄j j 8
(l i )Ālm̃~ j j 8!2Ȳj j 8

(l i )Ālm
† ~ j j 8!#.

Using Eqs.~1! and ~8!, we find that the modified phono
operatorsQ̄lm i

† andQ̄lm i in ~13! contain all the conventiona
two-quasiparticle partsAlm

† ( j j 8), Alm̃( j j 8), as well as the
scattering partsBlm( j j 8), andBlm̃

† ( j j 8), namely,

Q̄lm i
† 5

1

2 (
j j 8

@Xj j 8
(l i )Alm

† ~ j j 8!2Yj j 8
(l i )Alm~ j j 8!

2Zj j 8
(l i )Blm~ j j 8!1Wj j 8

(l i )Blm̃
†

~ j j 8!#, ~14!

Q̄lm̃ i5
1

2 (
j j 8

@Xj j 8
(l i )Alm̃~ j j 8!2Yj j 8

(l i )Alm
† ~ j j 8!

2Zj j 8
(l i )Blm̃

†
~ j j 8!1Wj j 8

(l i )Blm~ j j 8!#, ~15!

where

Xj j 8
(l i )

5X̄j j 8
(l i )A~12nj !~12nj 8!1Ȳj j 8

(l i )Anjnj 8,

Yj j 8
(l i )

5Ȳj j 8
(l i )A~12nj !~12nj 8!1X̄j j 8

(l i )Anjnj 8, ~16!

Zj j 8
(l i )

5X̄j j 8
(l i )A~12nj !nj 82Ȳj j 8

(l i )Anj~12nj 8!,

Wj j 8
(l i )

5Ȳj j 8
(l i )A~12nj !nj 82X̄j j 8

(l i )Anj~12nj 8!. ~17!

Equations~14! and ~15! show that the modified operator
Q̄lm i

† andQ̄lm i in Eq. ~13! have the general structure of th
extended renormalized QRPA phonon operators discusse
@6#.

Due to the vacuum expectation of the commutation re
tions ~7!, we obtain the usual QRPA-like orthonormalizatio
for the modified phonon amplitudesX̄j j 8

(l i ) and Ȳj j 8
(l i ) ,

(
j j 8

@X̄j j 8
l i X̄

j j 8

l1i 12Ȳj j 8
l i Ȳ

j j 8

l1i 1#52dll1
d i i 1

, ~18!

so that the modified phonon operatorsQ̄lm i
† and Q̄lm i are

ideal bosons with respect to the new vacuum state

^0̄u@Q̄lm i ,Q̄l1m1i 1
† #u0̄&5dll1

dmm1
d i i 1

. ~19!

Therefore, within a model Hamiltonian including a residu
two-body interaction, the equations of motion for the mo
fied phonon operatorsQ̄lm i

† andQ̄lm i have exactly the sam
form as the usual QRPA equations. Since the latter have
06431
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lytic solutions for separable interactions, we can illustrate
results considering the Hamiltonian as in Eqs.~A1! and~A2!
of Ref. @6#.

Using the canonical transformations~5! and ~13!, we ex-
press this Hamiltonian in terms ofQ̄lm i

† , Q̄lm i , B̄lm( j j 8),

and B̄lm̃
† ( j j 8). Applying the standard procedure of derivin

the QRPA equation for separable interactions, we obtain
dispersion relation for the phonon energyv as

12k(l)F̄~v!50, ~20!

where

F̄~v!5
1

2l11 (
j j 8

~qj j 8
(l)

!2
~ ū j j 8

(1)
!2~ ē j1 ē j 8!

~ ē j1 ē j 8!
22v2

. ~21!

In Eqs. ~20! and ~21!, k(l) is the coupling parameter of th
separable interaction for multipolarityl; qj j 8

(l) is the single-
particle matrix element corresponding to the separable in

action (q(l)
•q(l)); ē j[A(Ej2ĒF)

21D̄2 is the modified
quasiparticle energy with the modified superconducting p
ing gapD̄, single-particle energyEj and the modified Ferm
energyĒF . The functionū j j 8

(1) is a combination of the modi-
fied Bogoliubov coherence factors~6!

ū j j 8
(1)[ū j v̄ j 81 v̄ j ū j 85@A~12nj !~12nj 8!2Anjnj 8#uj j 8

(1)

2@A~12nj !nj 81Anj~12nj 8!#v j j 8
(2) , ~22!

where uj j 8
(1)

5ujv j 81v juj 8 , v j j 8
(2)

5ujuj 82v jv j 8 . For sim-
plicity, we do not specify the neutron and proton compone
as well as the isoscalar and isovector parts of the multip
interaction.

The equations for the modified paring gapD̄ and the
modified Fermi energyĒF have exactly the same form as th
BCS equations, where the coefficientsuj andv j are replaced
with ū j andv j̄ from Eq. ~6!. In terms of the usual Bogoliu-
bov coefficients,uj andv j , the equations have the form

D̄5G(
j

V j ū j v̄ j5G(
j

V j@~122nj !ujv j

2Anj~12nj !~uj
22v j

2!#, ~23!

N52(
j

V j v̄ j
252(

j
V j@~122nj !v j

21nj #

24(
j

V jAnj~12nj !ujv j , ~24!

whereN is the particle number, the pairing matrix elemen
are approximated by the constantG, andV j5 j 11/2. Once
the modified phonon energyvl i is found as the solution o
Eq. ~20!, the amplitudesX̄j j 8

(l i ) and Ȳj j 8
(l i ) are calculated as
9-3
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X̄j j 8
(l i )

5
qj j 8

(l)ū j j 8
(1)

ē j1 ē j 82vl i

M̄l i , Ȳj j 8
(l i )

5
qj j 8

(l)ū j j 8
(1)

ē j1 ē j 81vl i

M̄l i ,

~25!

with

M̄l i5H (
j j 8

@qj j 8
(l)

#2@ ū j j 8
(1)

#2F 1

~ ē j1 ē j 82vl i !
2

2
1

~ ē j1 ē j 81vl i !
2G J 21/2

. ~26!

In a general case of a nonseparable interaction, we do
have the dispersion equation~20! and the analytic expres
sions forX̄j j 8

(l i ) andȲj j 8
(l i ) as in Eq.~25!. Instead, we obtain a

set of equations, which has to be solved by diagonalizatio
find the RPA eigenvectors$X̄j j 8

(l i ) ,Ȳj j 8
(l i )%, and the eigenvalue

vl i . Equations~20!, ~21!, ~25!, and~26! have the same form
as their counterparts in the QRPA. The number of soluti
~normal modes! is also the same because the number of t
quasiparticle poles (ē j1 ē j 8) remains unchanged. In this wa
the problem of ‘‘spurious’’ solutions, which may occur du
to the new polese j2e j 8 within the extended QRPA@6# is
eliminated here. The new features are in the coefficientsū j j 8

(1)

~22! instead ofuj j 8
(1) , and in the modified quasiparticle ene

gies ē j instead of the usuale j . Since ū j j 8
(1) as well as Eqs.

~23! and ~24! contain the unknown quasiparticle occupati
numbersnj , we discuss below the way to determine it.

C. Quasiparticle occupation numbers

We definenj using the procedure of the extended ren
malized QRPA proposed in@6#, according to which we ob-
tained Eq.~A7! of Ref. @6# for the ground state correlatio
factor D̄ j j 8 . Using Eq.~16!, we express the right hand sid
of ~A7! of Ref. @6# in terms of the modified phonon ampl
tudesX̄j j 8

(l i ) and Ȳj j 8
(l i ) as

D̄ j j 8[12nj2nj 851

2(
l i

(
j 9

$D̄ j j 9@Ȳj j 9
(l i )A~12nj !~12nj 9!

1X̄j j 9
(l i )Anjnj 9#

21D̄ j 9 j 8@Ȳj 9 j 8
(l i )A~12nj 9!~12nj 8!

1X̄j 9 j 8
(l i )Anj 9nj 8#

2%. ~27!

The set of Eqs.~20!, ~23!–~25!, and ~27! should be solved
self-consistently for determining the modified BCS gapD̄,
Fermi energyĒF , phonon energiesvl i , the amplitudesX̄j j 8

(l i )

and Ȳj j 8
(l i ) , as well as the quasiparticle occupation numb

nj . We refer to Eqs.~23! and ~24! as the modified BCS
equation, and Eq.~20! supplemented with Eqs.~21!, ~22!,
~25!–~27! as the modified QRPA equation.
06431
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In numerical calculations, these equations can be sol
iteratively as follows. Starting from the usual BCS equati
(nj50), one obtains the quasiparticle energiese j , the gap
D, and the Fermi energyEF . Using them, one solves th
modified RPA equation to findvl i , X̄j j 8

(l i ) , Ȳj j 8
(l i ) , and the

quasiparticle occupation numbersnj . The latter are inserted
into the modified BCS equations~23! and ~24! to determine
D̄, ĒF , and ē j . These values are used to solve the modifi
RPA equation again, and the procedure is repeated until
required convergence is reached.

III. A TESTING GROUND: THE LIPKIN-MESHKOV-
GLICK MODEL

In this section we compare the exact solutions of
Lipkin-Meshkov-Glick ~LMG! model @17# with those ob-
tained with the use of various approximations~RPA, renor-
malized RPA, and modified RPA!. The model considers a
system ofN fermions distributed in two levels each having
2V-fold degeneracy; the levels are separated by energyE. In
the noninteracting system the lower level is occupied byN
particles, i.e., 2V5N. The model is described by the Hami
tonian

H5EJ02
1

2
V~J1

2 1J2
2 !2

1

2
V1~J1J21J2J1!, ~28!

where the operators

J05
1

2 (
m51

N

~a1m
† a1m2a2m

† a2m!,

J15 (
m51

N

a1m
† a2m , J25~J1!† ~29!

are the usual SU~2! generators, satisfying the commutatio
relations

@J1 ,J2#52J0 , @J0 ,J6#56J6 . ~30!

The quasispinJ is an exact constant of motion while it
projectionM[J0 is not conserved because of the proces
of pair transfer between the levels generated by the coup
constantV. The exact eigenenergiesEi of this general version
of the LMG model are found by diagonalizing the tridiagon
matrix, whose nonvanishing elements in the space of st
uJ,M & with 2J<M<J (J5V5N/2) are

^J,M uHuJ,M &5EM2V1@J~J11!2M2#,

^J,M62uHuJ,M &

52
1

2
VA~J7M !@J22~M61!2#~J6M12!. ~31!

The phonon operators for the model are

Q†5XJ12YJ2 , Q †5X J1

AD
2Y J2

AD
,

9-4
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Q̄†5X̄J̄12ȲJ̄2 , ~32!

in the RPA, renormalized RPA, and modified RPA, resp
tively. The factorD51/(112Y 2) is defined according to
Refs. @5,6#. The orthonormalization condition for the reno
malized phonon amplitudesX andY, and the modified pho-
non amplitudesX̄ and Ȳ are the same as that for the RP
phonon amplitudesX andY, namely,

N~X 22Y 2!5N~X̄22Ȳ2!5N~X22Y2!51. ~33!

After some algebra, we obtain the analytic solutions
the normal frequenciesv of the RPA,v ren of the renormal-
ized RPA, andvmod of the modified RPA equations as

v56EA~12x1!22x2,

v ren56EA~12x1D !22x2D2, ~34!

vmod56ĒA~12x̄1ū(1)!22x̄2@ ū(1)#2,

where

x5NV/E, x15NV1 /E, x̄5x@ ū(1)#,

x̄15x1ū(1), Ē5Eū(1), ~35!

with

ū15122n5D̄5
1

112@nX̄1~12n!Ȳ#2
, ~36!

see Eq.~27!. The expressions of the phonon amplitudes a

X5F 1

2N

E~12x1!1v

v G1/2

, Y5F 1

2N

E~12x1!2v

v G1/2

,

~37!

X5F 1

2N

E~12x1D !1v ren

v ren
G1/2

,

Y5F 1

2N

E~12x1D !2v ren

v ren
G1/2

, ~38!

X̄5F 1

2N

Ē~12x̄1ū(1)!1vmod

vmod
G1/2

,

Ȳ5F 1

2N

Ē~12x̄1ū(1)!2vmod

vmod
G1/2

, ~39!

for the three versions of the RPA, respectively. We note th
in the conventional form of the renormalized RPA conside
here @5#, the quasiparticle energye j is not renormalized. A
full renormalized RPA should include such renormalizati
due to the nonzero quasiparticle occupanciesnj . The renor-
malized BCS equation has then the form identical to
finite-temperature BCS equation@7# but with the occupation
06431
-
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e
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numbersnj found by solving self-consistently the set o
renormalized BCS1RPA equations.

Shown in Fig. 1 are the exact excitation energyE12E0
and the frequenciesv, v ren, andvmod ~in units of the level
spacingE) as functions of the interaction strengthx1x1 for
N58 particles. The energyE0 is the lowest exact eigenvalu
of the Hamiltonian~28!, while E1 is the energy of the lowes
excited state. The calculations have been carried out for~a!
x150, the standard LMG model and~b! x150.2 x. The
RPA solution collapses atx1x151. In contrast to that, the
frequencies for the renormalized RPA, modified RPA, a
exact solution monotonously decrease with the increas
interaction strengthx1x1. The excitation energy obtaine
within the modified RPA is larger, and closer to the exa
solution than that of the renormalized RPA at a given int
action. With increasingx1 the lowest level and the one abov
it in the exact solution start to cross. This corresponds to
transition from the spherical scheme to the deformed o
Therefore, below we will concentrate on the standard vers
of the LGM model withx150.

The normalized excitation energiesvexact/E, v/E,
v ren/E, and vmod/E, obtained forN516, 24, 50, and 100
are plotted in Fig. 2 as a function of the interactionx. The
energy obtained with the modified RPA is always closer
the exact energy atx<xc , where xc is the value of the
interaction parameter, at which the exact solution cros
with that of the modified RPA. The values ofxc are found to
be around 1.86, 1.48, 1.2, and 1.1 forN516, 24, 50, and
100, respectively. The difference between the energy
tained within the modified RPA and that of the renormaliz
RPA decreases with the increasing particle numberN so that,
at asymptotically largeN (N.100), the solutions given by
all three versions of the RPA become rather close to the e
one. This indicates that the ground-state correlations
small in large systems, where the RPA works well.

The difference between the correlated ground state

FIG. 1. Normalized excitation energies as a function of the
teractionx1x1 for N58 particles: exact solution, thin solid line
RPA, dotted line; renormalized RPA, dashed line; and modifi
RPA, thick solid line.
9-5
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the BCS vacuum is given by the square of the backwa
going amplitude, i.e.,Y2, Y 2, andȲ2 of the RPA, renormal-
ized RPA, and modified RPA, respectively. Being prop
tional to the expectation value of the boson number oper
in the ground state, these quantities can serve as a me
for the ground-state correlations@18#; they are shown in Fig.
3 as a function ofx for several particle numbersN. At x
below around 0.5 the results of the RPA, renormalized R
and modified RPA practically coincide. At larger values
the interaction, the ground-state correlations become
strong within the RPA so thatY2 collapses atx5 1. At the
instability point, the RPA overestimates the ground-state c
relations by a factor of 18 compared to the renormaliz
RPA, and by a factor of 30 compared to the modified RPA
N54; these factors are reduced about twice when the
ticle numberN is doubled. Atx.1, only the results obtained
with the renormalized RPA and modified RPA rema
whereas the ground-state correlations for the modified R
are about thrice weaker than those for the renormalized R
at largex.

The quasiparticle occupation numbern at energyE can be
fitted well with a Fermi-Dirac distribution n

FIG. 2. Normalized excitation energies as a function of the
teractionx (x150) for various particle numbersN. Notations are
the same as in Fig. 1.
06431
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or
ure
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f
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r-

,
A
A

51/@exp(E/Teff)11# at an effective temperatureTeff . The
temperatureTeff is derived directly from this distribution as

Teff5EF lnS 1

n
21D G21

. ~40!

The values ofTeff /E are plotted in Fig. 4 versus the in
teraction parameterx. It is seen from this figure that the
validity region of the RPA corresponds toTeff<0.4
3E (MeV) at N54, which is reduced toTeff<0.2
3E (MeV) at N5100. At largex the dependence ofTeff on
x is independent ofN. At x>6, wherev/E is practically
zero, it can be well approximated with a simple relation

-

FIG. 3. Squared backward-going amplitudesY2 of RPA ~dotted

line!, Y 2 of renormalized RPA~dashed line!, and Ȳ2 of modified
RPA ~solid line! as a function of the interactionx for various par-
ticle numbersN.

FIG. 4. Effective temperature as a function ofx. The thick solid,
thin solid, dashed, dash-dotted, and dotted lines denote the re
obtained forN54, 8, 24, 50, and 100, respectively.
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Teff5
1

2
E~Ax20.1!. ~41!

The relationship between the interaction and the effec
temperature also demonstrates that the study of the effe
the ground-state correlations beyond the RPA on vari
nuclear characteristics as a function of interaction at z
temperature is essentially equivalent to the study of
ground-state correlations as a function of temperature
fixed interaction. This observation is important for the stu
of thermodynamics of small many-body systems. Vario
phenomena related to the fluctuations of nuclear degree
freedom can be in fact understood as thermal effects a
effective temperature@19,20#. The emergence of quantum
liquid features with a typical particle distribution correspon
ing to some temperature in a finite isolated strongly intera
ing system was studied in the shell-model framework
nuclei @12,21#, atoms@22# and model systems of fermion
@23# or bosons@24#. This gives rise to a new point of view a
the statistical description of thermal equilibrium in a sm
finite system where the interaction plays a role of the eff
tive heat bath@25#. One of the relevant nuclear character
tics is the superconducting gap, which will be considered
the following section.

IV. A SCHEMATIC MODEL FOR SUPERCONDUCTING
GAP AT FINITE TEMPERATURE

In this section we compare the solution of the modifi
BCS approximation, Eqs.~23! and~24!, with that of the stan-
dard finite-temperature BCS equation@7#:

D5(
j

V j~122nj !ujv j ,

N5(
j

V jF12
Ej2EF

e j
~122nj !G , ~42!

where the quasiparticle occupation numbersnj are described
by the Fermi-Dirac distributionnj51/@exp(ej /T)11# at a
temperature T with e j5A(Ej2EF)21D2, and Ej5Ej

0

2Gv j
2 ; G is the pairing constant.

The schematic model is studied in two versions, a tw
level version~a!, and a version with a realistic level schem
~b!. The version~a! considersN particles distributed in two
V j -fold levels and interacting via a pairing force with th
strengthG. We choose the energies of the lower and up
levels to be22.5 and 2.5 MeV, respectively,G50.6 MeV,
andV55 ( j 59/2). This gives the constraint for the partic
numberN,10.

The gaps, normalized to their corresponding values
zero temperature, were obtained from Eqs.~23! and ~42!.
The results for the version~a! are plotted as a function o
T/Tc at several values of the particle numberN in Fig. 5. The
finite-temperature BCS gap~a dotted line! collapses atT
5Tc , which is equal to 0.86, 1.02, 1.04, and 1 MeV atN
52, 4, 6, and 8, respectively. For the ratioc5Tc /D(0) of
the critical temperature to the BCS gap atT50 we found
06431
e
of
s
o
e
a

y
s
of

an

-
t-
r

l
-

-
n

-

r

at

c50.567, 0.528, 0.507, and 0.529 atN52, 4, 6, and 8, re-
spectively. These numbers are close to the value 0.567
dicted by the BCS theory for infinite systems@7#.

The vanishing pairing gap in the finite-temperature BC
theory is a signature of the phase transition from the sup
conducting state to the normal one. In finite systems, suc
nuclei, the ground state may differ significantly from th
BCS one. This effect of the ground state correlations is s
in the behavior of the modified gapD̄(T) from Eq. ~23! as a
function of temperature~solid line!. For N52 the modified
gap D̄(T) still vanishes but atT̄c.2.2 MeV that is much
higher thanTc50.86 MeV in the finite-temperature BCS
theory. As the particle numberN increases, the value ofT̄c is
also sharply increasing. AtN.4 the phase transition point i
practically washed out. The modified gapD̄(T) decreases
with increasingT, but remains finite up to very high tempera
ture T.6 MeV. It also becomes closer to the finite
temperature BCS gap atT,Tc . These features are robu
being observed in calculations using different sets of the
rameters, namely,~i! G50.6 MeV, E53 MeV, and~ii ! G

FIG. 5. Pairing gap~normalized to its value at zero temperatur!
as a function of temperature~normalized toTc) for various particle

numbersN. The modified gapD̄(T) is plotted as a solid line, while
the usual finite-temperature BCS gapD(T) is represented by a dot
ted line.
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50.8 MeV, E56 MeV, with the degeneracyV510 (N
,20). The whole behavior is analogous to that found in
large scale shell model diagonalization@12#.

We also notice that, in the self-consistent solutions,
shifts 2Gv j

2 ~or 2Gv̄ j
2) of the single-particle energyEj

5Ej
02Gv j

2 ~or Ēj5Ej
02Gv̄ j

2) give rather small contribu-
tions to the gap, especially at largerN as seen in Fig. 6
which is obtained forN518 using the parameter set~i!
above. The gap atT50, with this shift taken into account, i
1.74 MeV, which is only 0.2% smaller than that obtain
neglecting this shift. The value ofTc decreases only by abou
3% compared to the value of 0.84 MeV when this shift
omitted. For simplicity, we ignore this small shift in the ca
culations below with the version~b! of this model since here
the neutron numberNn is 70.

In version ~b!, we consider a realistic nucleus120Sn,
which has an open neutron shell. The single-particle ener
for this nucleus are calculated with the Woods-Saxon po
tial. The neutron single-particle energies span a space o
levels between233 and 17 MeV. Using a pairing strengt
G50.13 MeV (515.6/A MeV), the BCS neutron pairing
gap atT50 is found to beDn(0)51.42 MeV in agreemen
with the experimental value at the neutron numberNn570
@26#. Shown in Fig. 7 is the neutron pairing gap for th
nucleus as a function of temperature. The usual fin
temperature BCS gapDn(T) decreases sharply with increa

FIG. 6. Pairing gap~normalized to its value at zero temperatur!
as a function of temperature~normalized toTc) obtained using the
parameter set~i! ~see text! at N518. The notations for the modified

gap D̄(T) and the usual finite-temperature BCS gapD(T) are the
same as in Fig. 5. The corresponding values of these gaps~but

obtained without the correction! 2Gv̄ j
2 and 2Gv j

2 are shown by
thin solid and dashed lines, respectively.

FIG. 7. Neutron pairing gap for120Sn as a function of tempera
ture. The notations are the same as in Fig. 5.
06431
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ing T and vanishes atTc50.75 MeV. The modified gap
D̄n(T) remains nearly constant up toT5Tc , then decreases
with increasingT, but never disappears. AtT51 MeV, the
modified gap is still about 87% of its value atT50. Even at
a temperature as high asT53 MeV, D̄n(T) is still around
0.3 MeV. Therefore, the pairing gap cannot be neglected
the calculations of properties of hot open-shell nuclei aT
<2 MeV.

V. CONCLUSIONS

The central issue in the present work is that the grou
state correlations modify the quasiparticle and collective
citations. This effect is taken into account via the second
canonical transformation from quasiparticle operators
modified quasiparticle ones. The coefficients of this trans
mation,A12nj andAnj , include the mean quasiparticle oc
cupation numbersnj that are different from zero because
the ground-state correlations. Based on this transformatio
modified BCS1QRPA theory is developed. The derived s
of modified equations must be solved self-consistently to
fine the modified pairing gapD̄, the Fermi energyĒF , the
energies of the modified phononsvmod, the phonon ampli-
tudesX̄ andȲ, as well as the quasiparticle occupation nu
bersnj . The equation fornj is derived making use of the
ground-state correlation factor obtained within the renorm
ized QRPA. The major merit of this method is that it sep
rates the collective solutions associated with only the c
ation of two quasiparticles from those arising from t
scattering quasiparticles, retaining the effect of the latte
the excitation operator.

The formalism is illustrated with two well-known sche
matic models, which are frequently used in the literatu
namely the two-level LMG model with theph interaction
and the model with a monopole pairing interaction. T
analysis of the numerical results obtained in these mod
allows us to make the following conclusions.

~1! As compared to the renormalized RPA@1,5#, the modi-
fied RPA indeed offers an improved treatment of the grou
state correlations beyond the RPA. The energy of the fi
excited state obtained with the modified RPA is closer to
exact energy than that of the renormalized RPA within
validity region of the RPA and around the point where t
RPA collapses. This is a consequence of the fact that
‘‘spurious’’ poles in the RPA equations are eliminated, a
the significant part of the ground-state correlations is ta
into account by the new canonical transformation so that
remaining correlations within the modified RPA are signi
cantly weaker than that of the renormalized RPA near
RPA instability point and beyond it.

~2! The behavior of the quasiparticle occupation numb
as a function of interaction parameter can be well appro
mated by a Fermi-Dirac distribution at a given temperatu
From here an effective temperature has been deduced
function of the interaction parameter. This shows that
effect of ground-state correlations as a function of interact
at zero temperature can be equivalently treated as a func
of effective temperature at fixed interaction giving a ne
9-8
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argument in favor of treating the interparticle interaction in
small closed system as an agent playing the role of an ef
tive heat bath.

~3! Within the modified finite-temperature BCS approx
mation, the proposed method increases the temperatur
the phase transition point from the superconducting stat
the normal one in finite systems until smearing out co
pletely this phase transition. This has been done without
ing any approximate particle number projection. The pair
gap in open-shell nuclei does not vanish even at high t
peratures, therefore, it cannot be neglected in the study o
nuclei at least up toT.2 MeV. These analyses show th
the modified RPA is a method that properly accounts for
essential part of the ground state correlations and can res
self-consistently and simultaneously a number of proble
typical for the conventional approximations.
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APPENDIX: THE MODIFIED RPA

In the absence of the superconducting pairing and w
the interaction limited only to the particle-hole (ph) channel,
the modified QRPA equation is reduced to the modified R
equation. Using the usual canonical Bogoliubov transform
tion between original particles and quasiparticles, one
see that the quasiparticle occupation numbersnj ~3! are re-
lated to the single-particle occupation numbers

f j[^0̄uajm
† ajmu0̄& ~A1!

as f p5np , f h512nh . Ignoring the ground-state correla
tions beyond the RPA leads tonp5nh50, which restores the
usual Hartree-Fock~HF! single-particle occupation numbe
f p

HF50, f h
HF51. FunctionF̄(v) in Eq. ~21! takes the form

F̄~v!5
1

2l11 (
ph

@qph
(l)#2@A~12 f p! f h

2Af p~12 f h!#2
~Ep2Eh!

~Ep2Eh!22v2
, ~A2!
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which should be compared with the corresponding expr
sions within the RPA

F~v!5
1

2l11 (
ph

@qph
(l)#2

~Ep2Eh!

~Ep2Eh!22v2
, ~A3!

and within the renormalized RPA

F ren~v!5
1

2l11 (
ph

@qph
(l)#2

~ f h2 f p!~Ep2Eh!

~Ep2Eh!22v2
. ~A4!

The expression within the extended renormalized RPA co
cides with Eq.~A4! in this case@6#. The modified phonon
amplitudesX̄ph

(l i ) and Ȳph
(l i ) have the form

X̄ph
(l i )5

qph
(l)@A~12 f p! f h2Af p~12 f h!#

Ep2Eh2vl i
M̄l i , ~A5!

Ȳph
(l i )5

qph
(l)@A~12 f p! f h2Af p~12 f h!#

Ep2Eh1vl i
M̄l i ,

with

M̄l i5H (
ph

@qph
(l)#2@A~12 f p! f h

2Af p~12 f h!#2F 1

~Ep2Eh2vl i !
2

2
1

~Ep2Eh1vl i !
2G J 21/2

. ~A6!

The ground-state correlation factorD̄ph
A [ f h2 f p satisfies the

equation

D̄ph512(
l i H(

p8
D̄p8h@Ȳp8h

(l i )A~12 f p8! f h

1X̄p8h
(l i )Af p8~12 f h!#2

1(
h8

D̄ph8
A

@Ȳph8
(l i )A~12 f p! f h81X̄ph8

(l i )Af p~12 f h8!#
2J .

~A7!
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