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A normal mode analysis of rotating equilibrium densities is made in tf® swean field approximation. The
su3) self-consistent mean field solutions are stable equilibria for rotations of a triaxial body about a short or
long principal axis and unstable equilibria for rotations about the middle axis. The wobbling frequencies are
determined for the short and long axis cases. Bands of stable equilibrium solutions are found for tilted rotation
in a principal plane. The normal modes for tilted rotors are oscillations of the axis lengths together with
wobbling off the principal plane. The frequencies for these normal modes are determined.
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I. INTRODUCTION therefore, it is a paradigm for a mean field theory of a gen-
eral Lie algebra. In particular, the mathematical methods em-
This article contains three main sections. The Introductiorployed for s3) are applicable to any Lie algebra.
presents an overview of €) mean field theory and estab- A “state” in su(3) mean field theory is a density matrix
lishes notation. Section Il formulates normal mode theory fordefined as a Hermitian traceless<3 matrix p=q-—3il ,
su3) and analyzes the stability of principal axis and tilted where g is a real symmetric traceless matrix ahds an
su3) rotors. The Conclusion addresses the physical implicaantisymmetric matrix. The real pad is interpreted as the
tions of the mean field method and future applications. ~ quadrupole moment expectation and the imaginary past
Mean field theory was formulated for the(8ualgebra the angular momentum expectation. The components of the
and applied to the description of rotational bands in twoangular momentum pseudovecioare related to the entries
recent article§1,2]. The first one found rotating equilibrium  of the antisymmetric matrikvia l;;= &y . The dual space
solutions as the critical points of physically relevant3u su(3) of the Lie algebra consists of all such traceless Her-
energy functionals. The second one developed timemitian density matrices.
dependent 48) mean field theory and derived the (3 The sy3) mean field approximation restricts the model
mean field Hamiltonian from the energy functional. The densities to a surface in the dual space sti(3)he surface
equilibrium solutions of the dynamical equations[@} co-  may be characterized by two equivalent conditions, either as
incide with the critical points calculated [d]. In this paper  an orbit of the SUB) group action or as a level surface of the
the time-dependent theory is used to study solutions in they3) Casimirs. Each one of these conditions provides a sig-
neighborhood of equilibria. nificant component of the theory.
The sy3) mean field theory provides an approximation to A group elementy in SU(3) transforms a density via the
su3) irreducible representations. The latter are relevant t@oadjoint action, Agngpgfl_ The coadjoint orbit0, of
the oscillator shell mod¢B] and the interacting boson model e densityp consists op and all densities Aflp asg ranges

[4]. In the mean field approximation, the mathematicalyyer the group SB). Each orbit contains a unique real di-
analysis of an 98) irreducible representation, whatever its agonal matrix

dimension, involves only operations withx3 matrices

from the group and the algebra. The physical interpretation N u 0 0
of the sy3) mean field results is simpler than that of the 1
su3) shell model results in part due to the derivation of Q:§ 0 A —2u 0 , (1)

analytical formulas for the deformation and the energy as
functions of the angular momentum.

Mean field and normal mode theories may be formulated
as an alternative to shell model irreducible representation&here\,u are non-negative real numbers. The surface of the
for any Lie algebra model of nuclear structure. The algebréanodel densities is a coadjoint orbit
u(n) of one-body Hermitian operators in amdimensional
valence space is the motivating example: a fully antisymmet- O,={p=geg 'esu3)*|ge SU3)}. (2
ric irreducible representation of m) is a shell model sub-
space, the mean field theory ofn)(is Hartree-Fock, and A coadjoint orbitO, is a symplectic manifold or phase
normal mode theory for u) is the random phase approxi- space8-10. An energy functionak] p] of the densityp in
mation(RPA) [5-7]. In fact, Hartree-Fock and RPA theories conjuction with the symplectic structure on a coadjoint orbit
are special cases of the general framework for several realetermines a unique mean field Hamiltonigp]. For each
sons; e.g., the idempotent densities are in one-to-one correensityp in O, , the mean field Hamiltonian is an element of
spondence with the Slater determinants and the idempotettie sy3) Lie algebra, and, viewed geometrically,p] is a
densities are a minimal dimension t)(coadjoint orbit. The tangent vector to the coadjoint orbit at The s¢3) mean
su3) theory does not possess such special properties anfield Hamiltonian was derived explicitly from the energy
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functional in [2]. The Hamiltonian dynamics o, is a gin 0 03

finite-dimensional Lax systeifil] 0o 1 0
g= , €C)

g1 O Os3

dp
i5; =LhLel.p]. 3

where the nonzero entries of the matgxn SU(3) are
gu={(N+ W= 1212012
g1z=i{(A— \Z=12)/21 12,
Oar=il /{2 (A + NZ=12)112
Oaa=/{2N(A— \Z=1?)}12

Alternatively, the density is proven to be a point oM, by

verifying the Casimir equation®) and(6). When the energy

o functional is
A point p=q— 3il of the dual space for which the quad-

rupole momenﬁzdiag(ql,qz,%) is diagonal represents a

density in the principal axis frame. The spats, is defined _ L~
to be the subset of all principal axis densities contained iWhereA, are real constants, the mean field RoutHigfip |

The orbit surface is also a level surface of th€3sCa-
simir functions. There are two independent Casin@iegp)
=tr(p?) and C5(p)=tr(p>), which are SWB3) invariants,
Cu(p)=Ci(gpg™ 1), k=2,3. The values of the Casimirs on
0, are

Ca0)= E(7\2+ Nt w?)
2 3 ! (10)

1
Ca(@) =g (2N°+3N\u—3\pu?~24%). (4)

dpl=A1l+Agl5+As13, (11)

O, . The densityp in the principal axis frame is a point of
M, if and only if the two Casimir identities are satisfied:

1. .
2 it 5 T=Cal0), (5)
> 3—52 12=C3(0) (6)
_ A%~ 7 - ailx=Cs(0).

The rotation group S@) is a subgroup of S(B). Each
SQ(3) orbit of a densityp=q— il contains a principal axis
frame densitp=q— 3il = Ad§p in M, for some rotatiorR.
The rotationR transforms the laboratory frame densjtyin
O, into the principal axis frame densify in M,CO,.

The dynamical systen8) on O, determines an equiva-
lent dynamical system oMM, ,

dp ~ o~
g =thalpl.pl, (7

whereho[p]=Rh p]RT+iQ is the mean field Routhian and

Q=RRT is the angular velocity of the principal axis frame.

When the mean field Hamiltonian is a polynomialgmandl,
the projection to the body-fixed frame is simpRHh[ p]R"
=h[p].

For example, the density iV, corresponding to a rota-
tion with angular momenturh about the short axis is

q_ 0 i1/2
—il/2 0 q.

where . =(\+2u)/6= \?—12/2 for 0<I<\ [1]. This
density is a point on the orbit surfacg, sincepzAdg o for

vanishes for rotation about one principal ak®§. The den-
sity p of Eq. (8) is a rotating equilibrium solution because
the time rate of changdp/dt vanishes.

II. LINEARIZED EQUATIONS OF MOTION

In this section the linearized equations of motion.bt,
are derived. For triaxial systems, applications are made to
rotations about the three principal axes and to tilted rotations
in a principal plane. The stability of each equilibrium rotat-
ing density is determined. For the stable normal modes, for-
mulas for the oscillation frequencies are reported.

Suppose the principal frame densi{f) in M, is rotat-
ing in equilibrium with constant angular velocify(®). This
density is a self-consistent solution to the equation

[hoo[p@],p¥]=0.

In a neighborhood of the equilibrium point in, , the
density and angular velocity are perturbed d¢t)=p(®
+e8p(t) andQ(t) = QO+ e5Q(t), respectively, where is
a small real number. The mean field Hamiltonian is approxi-
mated in a Taylor series expansion Hyp]=h[p(®]
+e8h[p(®; 8p]. The linearization of the equation of motion
(7) yields the dynamical equation

(12)

d - ~ ~ - - -
57 9p=[oh[p!*; 5p]+i60,p @1+ o], 5p].
(13

The perturbatiord() of the angular velocity is chosen so that
‘(1) is in the principal axis frame; i.e., the imaginary parts of
the off-diagonal components of the right-hand side of Eq.
(13) are zero.

The mean field Hamiltoniam[f)] in the principal axis
frame is derived from the energy functiondl) in [2]. Let
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gx andl, denote the Cartesian components of the quadrupolBor | =0 or =0 the density is static because=0. When
moment and angular momentum of the equilibrium principalA; and Az are bigger tham\,, there is a harmonic wobbling
axis frame density(?). The corresponding Cartesian compo- @bout the equilibrium rotation axis with frequency
nents of the perturbed densifip are denoted byq, and

) C21(AL=A) (A= Ay)

ol k- The matrix elements of the linearized mean field Hamil- w 5 . 0<I=\. (18)
tonian for the functiona(l11) are I

1+——
AA Apu(N+p)
0557 = S8 ) — 2ien
onlp™ dplij= gi—q; (181 +1;61;) = 2i €Akl ¢ The numerator of this formula is the wobbling frequency
predicted for asymmetric rotors with largeby Bohr and
Ai—A, Mottelson[12]. The denominator is a correction factor im-
- (q__q_)z'i|1'(5qi_ 4a;) (14 posed by the 98) model.
i

for i #j, while the diagonal component;; are zero. 2. Long axis rotation
When the body rotates about its long principal axis, the
A. Rotation about a principal axis result is similar to the short axis case. With the convention of

. . . o . Eq. (1), the rotation is about the third axis. Af; andA, are
The linearized equations simplify for rotation about agmgjier thanA,, the wobbling frequency is
principal axis, since two of the angular momentum compo- '

nents and the mean field Routhian vanish at the equilibrium JAS— _
S . : 21V(A3— A1) (A3~ Ay)
principal axis density. Thus, the second commutator on the w= 2 , 0<I=pu. (19
right hand side of Eq(13) and the third term on the right 14—
hand side of Eq(14) are zero. Using Eq14) and the equi- AN(N+ )

librium densities reported 2], the linearized dynamical o )
equationg13) result in no vibration of the axis lengths and a For =0 orx =0 the density is static.
proportionality between the perturbed angular velocity and _ _ )
the perturbed angular momentum components: 3. Middle axis rotation

Consider a rotation about the middle or one-axis. The dy-

i&q -0 namical equations for the perturbed angular momentum com-
de ok ponents are
5Qk:2Ak5lk' (15) d _
T él,=0,

The proportionality relation implies that the perturbed angu-
lar velocity components obey the Euler dynamical equations d
[2]. The linearized dynamical equations for the perturbed pridba (A1—Agz)vdls, (20
angular momentum components depend on whether the rota-
tion is about the short, long, or middle axis. d
1. Short axis rotation dt Ola=(Az=ArJudlz,
The equilibrium density for the short axis rotation is given yere
in Eq. (8). In this casel,=1, I,=13=0, Q,=2A,l,, and
the linearized equations for the angular momenta are 8\ ul
v=——", O0=I<VaNpu. (21
d Anp—12
aallz(Ag_Az)Uélg,
For middle axis rotationd\; is bracketed betweeh, andA;.
Thus, the equilibrium density is an unstable hyperbolic point.

d
at ol,=0, (16)
B. Tilted rotation

d Suppose the rotation axis is tilted into the 1-3 principal
&6I3=—(A1—A2)u5|1, plane andl,=0 [13,14]. The rotating equilibrium densities

in M, are parametrized by the real roots of an eighth-degree
polynomial, Eq.(4.9) of [1]. In terms of a rooq; there are
formulas for the other quadrupole moment components
g,,93 and the nonzero angular momentum components
_ 8plr il (17 1.5, Egs.(4.10 and (4.13 of [1]. The tilted equilibrium

Au(N+p)+1? densities are independent of the inertial parametgrs

where
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FIG. 1. For tilted asymmetric $8) rotors the
regions of stability are shown in thex plane,
where | is the angular momentum anel is an
inertial parameter.
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K
q, —ilg/2 0 The Routhianhqo[p(®] is a Hermitian matrix with zero
; i diagonal entries; its matrix elements in the upper triangular
~ | ilg2 —il,/2 g ) pp g
p=| 3 _ 92 ! (22)  plock are
0 il3/2 ds
ilau, (ij)=(12),
~) A Il ij)=(13
In equilibrium the angular velocity vector is aligned with haolp™]ij= el R LT (ij)=(13), (249
the angular momentum vectd®(®=Al, where the recipro- ilw, (ij)=(23),
cal of the moment of inertia is
where
_ (As—Ap(15-17) +2[A1(QB_Q2)_A3(Q1_Q2)] ,
T 2(gs—qy)? (Qz—0y) - e [4(91—03)(d2—d3) — 7]
(23 64, ’

20

FIG. 2. For tilted asymmetric $8) ro-
tors, the wobbling-vibrational frequency, in
units of |A;—Ag|, is plotted versus the angular
momentum| for various values of the inertial
parametelk.

11
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[4(q,—01)(ds—qy) — 1] normal modes, a plot of the frequency in units|af — A
v= 60, : (25  versus the angular momenturis drawn in Fig. 2 for several
values of the inertial parameter Whenk is less than unity,
The linearized systenil3) shows that the angular mo- the band of tilted equilibrium rotors consists of both stable
mentum components in the principal plane are stationary, and unstable configurations. For examplexifequals 0.8,
then the rotational band densities frdm4 to aboutl =7
d are unstable. At ~7, a band of stable equilibrium states

d
a& 125&3:0' (26 emerges and continues uplte-10.08.

But there is a wobbling off the principal plane coupled to a lIl. CONCLUSION
vibration of the axis lengths:
The normal mode theory of €3) achieves a clear physi-
d cal picture of vibrational and wobbling motion of a rotating
&wa_ 9G2) =3l113Gar 31 /p, nucleus in the 98) approximation. Indeed the &) densi-
ties corresponding to the wobbling and vibrational collective
modes are determined in this article as explicit functions of
g (992~ 803) = 3111501 812/p, the time. The analytic formulas for the normal mode frequen-
cies give the energies of the collective excitations. The deri-
vation of the RPA from time-dependent Hartree-Fock theory
aélzz(As—Al)I1I3/(6q2p) has a similar physical appeHl6].
In a shell model description of rotational bands, the exis-
X[s(69,— 6qy) +t(50,— 093], (27)  tence of s(B) dynamical symmetry imposes the stringent
requirement that the wave functions of band members be
where vectors from a single irreducible representation dBgsuFor
some light deformed nuclei, the amplitude of such wave
P=(d1—02)(d1—d3)(92—03), functions can be concentrated in a single leading irreducible
representation. But in medium mass and heavy deformed nu-
r=(93=90) (A1~ A2) + (A2~ A1) (As—Ay), clei, the wave function is expected to be a superposition of
vectors from many irreducible €8) representations. The
5= (02~ 05)(4q5— 320,04, — 803 +17), mixing is caused primarily by spin-orbit and pairing forces
which break s(B) symmetry. Nevertheless, the measured de-
t= (02— q)(405~ 32003~ 805+ 12). (28) pendence of the quadrupole deformation of band members
One of the eigenvalues of the linearized syst@m) is zero.

on the angular momentum may be consistent witt3)sdy-
The square of the nonzero wobbling-vibrational frequency i§am'ca| symmetry. Although the experimental evidence does

not imply that the wave functions belong to a single irreduc-
w?=(A1—A3)21 21 k(q3— 1) +30,1/(qp?) X[ (d3—0y) ible representation, it does mean that th€3swensities of
band members share a common value for th8)syuadratic
X(95—80102—203) + (41— G2) (45— 80,03~ 203) Casimir function. Thus, even when (8) shell model dy-
) namical symmetry is broken strongly, the fundamental ansatz
—30.!17/4], 29 of su3) mean field theory can be verified experimentally.
Similarly the normal mode theory for &) may apply for
the su3) density even though the wave functions of collec-
k=(2A,—A;— A3l (A;—As). (30)  tive vibrational and wobbling states are not drawn from a
single irreducible representation space.
When w? is positive, the wobbling-vibrational normal mode  In future investigations, the mean field method and its
is stable. associated normal mode theory will be applied to other Lie
As an illustration, consider then(u)=(8,4) coadjoint algebra nuclear structure models. Because the dimension of a
orbit. There is a band of tilted triaxial equilibrium densities Lie algebra’s dual space of densities equals the dimension of
beginning with a noncollective prolate spheroidlatu=4  the algebra, the mean field and normal mode approximations
and ending at ~10.08; see Table 4 dfl]. In Fig. 1 the are expected to be especially useful in applications to high-
zones of stability in theé-« plane are shown. For the stable or infinite-dimensional representations.

where the asymmetry paramefés]
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