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SU„3… normal mode theory
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~Received 29 June 2001; published 5 November 2001!

A normal mode analysis of rotating equilibrium densities is made in the su~3! mean field approximation. The
su~3! self-consistent mean field solutions are stable equilibria for rotations of a triaxial body about a short or
long principal axis and unstable equilibria for rotations about the middle axis. The wobbling frequencies are
determined for the short and long axis cases. Bands of stable equilibrium solutions are found for tilted rotation
in a principal plane. The normal modes for tilted rotors are oscillations of the axis lengths together with
wobbling off the principal plane. The frequencies for these normal modes are determined.
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I. INTRODUCTION

This article contains three main sections. The Introduct
presents an overview of su~3! mean field theory and estab
lishes notation. Section II formulates normal mode theory
su~3! and analyzes the stability of principal axis and tilt
su~3! rotors. The Conclusion addresses the physical impl
tions of the mean field method and future applications.

Mean field theory was formulated for the su~3! algebra
and applied to the description of rotational bands in t
recent articles@1,2#. The first one found rotating equilibrium
solutions as the critical points of physically relevant su~3!
energy functionals. The second one developed tim
dependent su~3! mean field theory and derived the su~3!
mean field Hamiltonian from the energy functional. T
equilibrium solutions of the dynamical equations of@2# co-
incide with the critical points calculated in@1#. In this paper
the time-dependent theory is used to study solutions in
neighborhood of equilibria.

The su~3! mean field theory provides an approximation
su~3! irreducible representations. The latter are relevan
the oscillator shell model@3# and the interacting boson mod
@4#. In the mean field approximation, the mathemati
analysis of an su~3! irreducible representation, whatever i
dimension, involves only operations with 333 matrices
from the group and the algebra. The physical interpreta
of the su~3! mean field results is simpler than that of th
su~3! shell model results in part due to the derivation
analytical formulas for the deformation and the energy
functions of the angular momentum.

Mean field and normal mode theories may be formula
as an alternative to shell model irreducible representat
for any Lie algebra model of nuclear structure. The alge
u(n) of one-body Hermitian operators in ann-dimensional
valence space is the motivating example: a fully antisymm
ric irreducible representation of u(n) is a shell model sub-
space, the mean field theory of u(n) is Hartree-Fock, and
normal mode theory for u(n) is the random phase approx
mation~RPA! @5–7#. In fact, Hartree-Fock and RPA theorie
are special cases of the general framework for several
sons; e.g., the idempotent densities are in one-to-one co
spondence with the Slater determinants and the idempo
densities are a minimal dimension U(n) coadjoint orbit. The
su~3! theory does not possess such special properties
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n

r

-

-

e

o

l

n

f
s

d
s

a

t-

a-
re-
nt

d,

therefore, it is a paradigm for a mean field theory of a ge
eral Lie algebra. In particular, the mathematical methods e
ployed for su~3! are applicable to any Lie algebra.

A ‘‘state’’ in su~3! mean field theory is a density matri
defined as a Hermitian traceless 333 matrix r5q2 1

2 i l ,
where q is a real symmetric traceless matrix andl is an
antisymmetric matrix. The real partq is interpreted as the
quadrupole moment expectation and the imaginary partl is
the angular momentum expectation. The components of
angular momentum pseudovectorlW are related to the entrie
of the antisymmetric matrixl via l i j 5« i jk l k . The dual space
su(3)* of the Lie algebra consists of all such traceless H
mitian density matrices.

The su~3! mean field approximation restricts the mod
densities to a surface in the dual space su(3)* . The surface
may be characterized by two equivalent conditions, eithe
an orbit of the SU~3! group action or as a level surface of th
su~3! Casimirs. Each one of these conditions provides a s
nificant component of the theory.

A group elementg in SU~3! transforms a densityr via the
coadjoint action, Adg* r[grg21. The coadjoint orbitOr of
the densityr consists ofr and all densities Adg* r asg ranges
over the group SU~3!. Each orbit contains a unique real d
agonal matrix

%5
1

3 S 2l1m 0 0

0 2l22m 0

0 0 2l1m
D , ~1!

wherel,m are non-negative real numbers. The surface of
model densities is a coadjoint orbit

O%5$r5g%g21Psu~3!* ugPSU~3!%. ~2!

A coadjoint orbitO% is a symplectic manifold or phas
space@8–10#. An energy functionalE@r# of the densityr in
conjuction with the symplectic structure on a coadjoint or
determines a unique mean field Hamiltonianh@r#. For each
densityr in O% , the mean field Hamiltonian is an element
the su~3! Lie algebra, and, viewed geometrically,h@r# is a
tangent vector to the coadjoint orbit atr. The su~3! mean
field Hamiltonian was derived explicitly from the energ
©2001 The American Physical Society03-1
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functional in @2#. The Hamiltonian dynamics onO% is a
finite-dimensional Lax system@11#

i
dr

dt
5@h@r#,r#. ~3!

The orbit surface is also a level surface of the su~3! Ca-
simir functions. There are two independent CasimirsC2(r)
5tr(r2) and C3(r)5tr(r3), which are SU~3! invariants,
Ck(r)5Ck(grg21), k52,3. The values of the Casimirs o
O% are

C2~% !5
2

3
~l21lm1m2!,

C3~% !5
1

9
~2l313l2m23lm222m3!. ~4!

A point r̃5q̃2 1
2 i I of the dual space for which the quad

rupole momentq̃5diag(q1 ,q2 ,q3) is diagonal represents
density in the principal axis frame. The spaceM% is defined
to be the subset of all principal axis densities contained
O% . The densityr̃ in the principal axis frame is a point o
M% if and only if the two Casimir identities are satisfied:

(
k

qk
21

1

2
IW• IW5C2~% !, ~5!

(
k

qk
32

3

4 (
k

qkI k
25C3~% !. ~6!

The rotation group SO~3! is a subgroup of SU~3!. Each
SO~3! orbit of a densityr5q2 1

2 i l contains a principal axis
frame densityr̃5q̃2 1

2 i I 5AdR* r in M% for some rotationR.
The rotationR transforms the laboratory frame densityr in
O% into the principal axis frame densityr̃ in M%,O% .

The dynamical system~3! on O% determines an equiva
lent dynamical system onM% ,

i
dr̃

dt
5@hV@r̃#,r̃ #, ~7!

wherehV@r̃#5Rh@r#RT1 iV is the mean field Routhian an
V5ṘRT is the angular velocity of the principal axis fram
When the mean field Hamiltonian is a polynomial inq andl,
the projection to the body-fixed frame is simplyRh@r#RT

5h@ r̃#.
For example, the density inM% corresponding to a rota

tion with angular momentumI about the short axis is

r̃5S q2 0 i I /2

0 2~l12m!/3 0

2 i I /2 0 q1
D , ~8!

where q65(l12m)/66Al22I 2/2 for 0<I<l @1#. This
density is a point on the orbit surfaceO% sincer5Adg* % for
06430
n

g5S g11 0 g13

0 1 0

g31 0 g33
D , ~9!

where the nonzero entries of the matrixg in SU~3! are

g115$~l1Al22I 2!/2l%1/2,

g135 i $~l2Al22I 2!/2l%1/2,

g315 i I /$2l~l1Al22I 2!%1/2,

g335I /$2l~l2Al22I 2!%1/2. ~10!

Alternatively, the densityr̃ is proven to be a point ofM% by
verifying the Casimir equations~5! and~6!. When the energy
functional is

E@ r̃#5A1I 1
21A2I 2

21A3I 3
2 , ~11!

whereAk are real constants, the mean field RouthianhV@r̃#
vanishes for rotation about one principal axis@2#. The den-
sity r̃ of Eq. ~8! is a rotating equilibrium solution becaus
the time rate of changedr̃/dt vanishes.

II. LINEARIZED EQUATIONS OF MOTION

In this section the linearized equations of motion onM%

are derived. For triaxial systems, applications are made
rotations about the three principal axes and to tilted rotati
in a principal plane. The stability of each equilibrium rota
ing density is determined. For the stable normal modes,
mulas for the oscillation frequencies are reported.

Suppose the principal frame densityr̃ (0) in M% is rotat-
ing in equilibrium with constant angular velocityV (0). This
density is a self-consistent solution to the equation

@hV(0)@ r̃ (0)#,r̃ (0)#50. ~12!

In a neighborhood of the equilibrium point inM% , the
density and angular velocity are perturbed tor̃(t)5 r̃ (0)

1edr̃(t) andV(t)5V (0)1edV(t), respectively, wheree is
a small real number. The mean field Hamiltonian is appro
mated in a Taylor series expansion byh@ r̃#5h@ r̃ (0)#

1edh@ r̃ (0);dr̃#. The linearization of the equation of motio
~7! yields the dynamical equation

i
d

dt
dr̃5@dh@ r̃ (0);dr̃#1 idV,r̃ (0)#1@hV(0)@ r̃ (0)#,dr̃#.

~13!

The perturbationdV of the angular velocity is chosen so th
r̃(t) is in the principal axis frame; i.e., the imaginary parts
the off-diagonal components of the right-hand side of E
~13! are zero.

The mean field Hamiltonianh@ r̃# in the principal axis
frame is derived from the energy functional~11! in @2#. Let
3-2
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qk andI k denote the Cartesian components of the quadrup
moment and angular momentum of the equilibrium princi
axis frame densityr̃ (0). The corresponding Cartesian comp
nents of the perturbed densitydr̃ are denoted bydqk and
dI k . The matrix elements of the linearized mean field Ham
tonian for the functional~11! are

dh@ r̃ (0);dr̃# i j 5
Ai2Aj

qi2qj
~ I idI j1I jdI i !22i e i jkAkdI k

2
Ai2Aj

~qi2qj !
2

I i I j~dqi2dqj ! ~14!

for iÞ j , while the diagonal componentsdhii are zero.

A. Rotation about a principal axis

The linearized equations simplify for rotation about
principal axis, since two of the angular momentum comp
nents and the mean field Routhian vanish at the equilibr
principal axis density. Thus, the second commutator on
right hand side of Eq.~13! and the third term on the righ
hand side of Eq.~14! are zero. Using Eq.~14! and the equi-
librium densities reported in@2#, the linearized dynamica
equations~13! result in no vibration of the axis lengths and
proportionality between the perturbed angular velocity a
the perturbed angular momentum components:

d

dt
dqk50,

dVk52AkdI k . ~15!

The proportionality relation implies that the perturbed ang
lar velocity components obey the Euler dynamical equati
@2#. The linearized dynamical equations for the perturb
angular momentum components depend on whether the
tion is about the short, long, or middle axis.

1. Short axis rotation

The equilibrium density for the short axis rotation is giv
in Eq. ~8!. In this case,I 25I , I 15I 350, V252A2I 2, and
the linearized equations for the angular momenta are

d

dt
dI 15~A32A2!udI 3 ,

d

dt
dI 250, ~16!

d

dt
dI 352~A12A2!udI 1 ,

where

u5
8m~l1m!I

4m~l1m!1I 2
. ~17!
06430
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For I 50 or m50 the density is static becauseu50. When
A1 andA3 are bigger thanA2, there is a harmonic wobbling
about the equilibrium rotation axis with frequency

v5
2IA~A12A2!~A32A2!

11
I 2

4m~l1m!

, 0,I<l. ~18!

The numerator of this formula is the wobbling frequen
predicted for asymmetric rotors with largeI by Bohr and
Mottelson @12#. The denominator is a correction factor im
posed by the su~3! model.

2. Long axis rotation

When the body rotates about its long principal axis, t
result is similar to the short axis case. With the convention
Eq. ~1!, the rotation is about the third axis. IfA1 andA2 are
smaller thanA3, the wobbling frequency is

v5
2IA~A32A1!~A32A2!

11
I 2

4l~l1m!

, 0,I<m. ~19!

For I 50 or l50 the density is static.

3. Middle axis rotation

Consider a rotation about the middle or one-axis. The
namical equations for the perturbed angular momentum c
ponents are

d

dt
dI 150,

d

dt
dI 25~A12A3!vdI 3 , ~20!

d

dt
dI 35~A22A1!vdI 2 ,

where

v5
8lmI

4lm2I 2
, 0<I ,A4lm. ~21!

For middle axis rotation,A1 is bracketed betweenA2 andA3.
Thus, the equilibrium density is an unstable hyperbolic po

B. Tilted rotation

Suppose the rotation axis is tilted into the 1-3 princip
plane andI 250 @13,14#. The rotating equilibrium densities
in M% are parametrized by the real roots of an eighth-deg
polynomial, Eq.~4.9! of @1#. In terms of a rootq1 there are
formulas for the other quadrupole moment compone
q2 ,q3 and the nonzero angular momentum compone
I 1 ,I 3, Eqs. ~4.10! and ~4.11! of @1#. The tilted equilibrium
densities are independent of the inertial parametersAk ,
3-3
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FIG. 1. For tilted asymmetric su~3! rotors the
regions of stability are shown in theI -k plane,
where I is the angular momentum andk is an
inertial parameter.
th

lar

r̃5S q1 2 i I 3/2 0

i I 3/2 q2 2 i I 1/2

0 i I 3/2 q3
D . ~22!

In equilibrium the angular velocity vector is aligned wi
the angular momentum vector,V (0)5AI, where the recipro-
cal of the moment of inertia is

A5
~A32A1!~ I 3

22I 1
2!

2~q32q1!2
12

@A1~q32q2!2A3~q12q2!#

~q32q1!
.

~23!
06430
The RouthianhV(0)@ r̃ (0)# is a Hermitian matrix with zero
diagonal entries; its matrix elements in the upper triangu
block are

hV(0)@ r̃ (0)# i j 5S A32A1

q32q1
D3H i I 3u, ~ i j !5~12!,

I 1I 3 , ~ i j !5~13!,

i I 1v, ~ i j !5~23!,

~24!

where

u5
@4~q12q3!~q22q3!2I 2#

6q2
,

r
l

FIG. 2. For tilted asymmetric su~3! ro-
tors, the wobbling-vibrational frequencyv, in
units of uA12A3u, is plotted versus the angula
momentumI for various values of the inertia
parameterk.
3-4
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v5
@4~q22q1!~q32q1!2I 2#

6q2
. ~25!

The linearized system~13! shows that the angular mo
mentum components in the principal plane are stationary

d

dt
dI 15

d

dt
dI 350. ~26!

But there is a wobbling off the principal plane coupled to
vibration of the axis lengths:

d

dt
~dq12dq2!53I 1I 3q3rdI 2/p,

d

dt
~dq22dq3!53I 1I 3q1rdI 2/p,

d

dt
dI 25~A32A1!I 1I 3 /~6q2p!

3@s~dq12dq2!1t~dq22dq3!#, ~27!

where

p5~q12q2!~q12q3!~q22q3!,

r 5~q32q1!~A12A2!1~q22q1!~A32A1!,

s5~q22q3!~4q2
2232q1q228q1

21I 2!,

t5~q22q1!~4q2
2232q2q328q3

21I 2!. ~28!

One of the eigenvalues of the linearized system~27! is zero.
The square of the nonzero wobbling-vibrational frequency

v25~A12A3!2I 1
2I 3

2@k~q32q1!13q2#/~q2p2!3@~q32q2!

3~q2
228q1q222q1

2!1~q12q2!~q2
228q2q322q3

2!

23q2I 2/4#, ~29!

where the asymmetry parameter@15#

k5~2A22A12A3!/~A12A3!. ~30!

Whenv2 is positive, the wobbling-vibrational normal mod
is stable.

As an illustration, consider the (l,m)5(8,4) coadjoint
orbit. There is a band of tilted triaxial equilibrium densitie
beginning with a noncollective prolate spheroid atI 5m54
and ending atI'10.08; see Table 4 of@1#. In Fig. 1 the
zones of stability in theI -k plane are shown. For the stab
06430
is

normal modes, a plot of the frequency in units ofuA12A3u
versus the angular momentumI is drawn in Fig. 2 for severa
values of the inertial parameterk. Whenk is less than unity
the band of tilted equilibrium rotors consists of both sta
and unstable configurations. For example, ifk equals 0.8
then the rotational band densities fromI 54 to aboutI 57
are unstable. AtI'7, a band of stable equilibrium stat
emerges and continues up toI'10.08.

III. CONCLUSION

The normal mode theory of su~3! achieves a clear phys
cal picture of vibrational and wobbling motion of a rotati
nucleus in the su~3! approximation. Indeed the su~3! densi-
ties corresponding to the wobbling and vibrational collec
modes are determined in this article as explicit function
the time. The analytic formulas for the normal mode frequ
cies give the energies of the collective excitations. The d
vation of the RPA from time-dependent Hartree-Fock the
has a similar physical appeal@16#.

In a shell model description of rotational bands, the e
tence of su~3! dynamical symmetry imposes the stringe
requirement that the wave functions of band members
vectors from a single irreducible representation of su~3!. For
some light deformed nuclei, the amplitude of such w
functions can be concentrated in a single leading irreduc
representation. But in medium mass and heavy deformed
clei, the wave function is expected to be a superpositio
vectors from many irreducible su~3! representations. Th
mixing is caused primarily by spin-orbit and pairing forc
which break su~3! symmetry. Nevertheless, the measured
pendence of the quadrupole deformation of band mem
on the angular momentum may be consistent with su~3! dy-
namical symmetry. Although the experimental evidence d
not imply that the wave functions belong to a single irred
ible representation, it does mean that the su~3! densities of
band members share a common value for the su~3! quadratic
Casimir function. Thus, even when su~3! shell model dy-
namical symmetry is broken strongly, the fundamental an
of su~3! mean field theory can be verified experimenta
Similarly the normal mode theory for su~3! may apply for
the su~3! density even though the wave functions of coll
tive vibrational and wobbling states are not drawn from
single irreducible representation space.

In future investigations, the mean field method and
associated normal mode theory will be applied to other
algebra nuclear structure models. Because the dimension
Lie algebra’s dual space of densities equals the dimensio
the algebra, the mean field and normal mode approxima
are expected to be especially useful in applications to h
or infinite-dimensional representations.
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