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Flow analysis from multiparticle azimuthal correlations
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We present a new method for analyzing directed and elliptic flow in heavy-ion collisions. Unlike standard
methods, it separates the contribution of flow to azimuthal correlations from contributions due to other effects.
The separation relies on a cumulant expansion of multiparticle azimuthal correlations, and includes corrections
for detector inefficiencies. This new method allows the measurement of the flow of identified particles in
narrow phase-space regions, and can be used in every regime, from intermediate to ultrarelativistic energies.
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[. INTRODUCTION outgoing particles: the correlation between every particle and
the reaction plane induces correlations among the particles
In noncentral heavy-ion collisions, it is possible to mea-(which we call hereafter the “flow correlationg” from
sure azimuthal distributions of outgoing particles with re-whichv, can be reconstructed. The method we propose here
spect to the reaction plane. This is the so-called “flow analyis based on a systematic analysis of multiparticle azimuthal
sis,” which is being actively studied over a wide range of correlations.
colliding energies, from below 25 MeV per nucleon in the  The most widely used method for the flow analysis is that
center-of-mass systeii] to above 60 Ge\[2]. The main jnjtially proposed by Danielewicz and Odynift7] (see also
motivation for such studies is that anisotropies in the azi{18—2Q for further developmenjs which relies on azi-
muthal distributions are likely to contain much information muthal correlations between two “subevents.” It has recently
on the physics in the hot, dense central region of the collisiomeen applied at intermediate energies in Darmsfagdt1],
(see[3-5] for reviews. In particular, they may provide a and at higher energies in Dubiia2], at the Brookhaven
signature of the formation of a quark-gluon plasma at ul-AGS[23-23, at the CERN super proton synchrotr(8PS
trarelativistic energieg6,7]. Azimuthal distributions may [26,27 and, finally, at the Brookhaven relativistic heavy ion
also be of interest in connection with more exotic phenom<ollider (RHIC) [2]. An alternative, simpler method extracts
ena, such as the formation of disoriented chiral condensatgmw from two-particle correlation§28] and is still in use,
[8,9], or the study of parity and/or time-reversal violation hoth at intermediatd29] and at ultrarelativistic energies
[10]. Finally, the combination of flow analysis and two- [30,31]. Both methods are more or less equivalent: correlat-
particle interferometry yields a three-dimensional picture ofing two subevents amounts to summing two-particle correla-
the emitting sourc¢11-13, as was shown recently at the tions. In these analyses, one usually assumes that the only
Brookhaven alternating gradient synchrotfdd]. sources of azimuthal correlations are flow and, when neces-
In this paper, we propose a hew method to measure azg-ary, transverse momentum conservafig4.
muthal distributions. As usual, they will be characterized by  However, we have shown in two papéB2,33 that this

their Fourier coefficient§15], assumption is no longer valid at SPS energies, where “di-
, o rect” nonflow two-particle correlations become of the same
v,=(e"?"PR)=(cosn(¢—DR)), (1) magnitude as the correlations due to flow. Even when non-

flow correlations area priori smaller than flow correlations,

where ¢ is the azimuthal angle of an outgoing particle mea-they must be taken into account in order to obtain accurate
sured in the laboratory coordinate systeby, is the azimuth  and reliable results. Some sources of nonflow correlations
of the impact parametefor reaction plang and angular are well known. One can attempt to avoid them experimen-
brackets denote a statistical average, over many events. Thally by appropriate cuts in phase spd2¢ or one can take
first two coefficientsv; and v, are usually referred to as them into account in the analydis8], as was done for trans-
directed flow and elliptic flow, respectively. Theg's can be  verse momentum conservatifd4,33, for correlations from
measured for various particle species, as a function of transr®— yy decays 35,36, and for quantum correlatiori82].
verse momentum and/or rapidity: we refer to these detaile@ut there is no systematic way to separate the effects of flow
measurements as “differential” flow, following Ref16]. In  from other effects at the level of two-particle correlations.
this paper, we also discuss global measurements, pfav- There have been several attempts in the past to go beyond
eraged over a large phase-space region, typically correspontivo-particle correlations: analyses of the global event shape
ing to the acceptance of a detector. We call this “integrated]37] allowed the first observations of collective flow at inter-
flow. mediate[38] and ultrarelativistic energief39,40, which

Since the reaction plan@y cannot be measured directly, were not biased by nonflow correlations. Multiparticle azi-
the only way to obtain the coefficients, experimentally is muthal correlations were also used in Réfl]. These meth-
to deduce them from the azimuthal correlations between theds are now considered obsolete because they apply only to
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the “integrated” flow, as defined above, whereas most of themate due to nonflow correlations and limited statistics, and
recent analyses concentrate on the differential flow of identhe resulting optimal choice, are examined in Sec. Il D. Fi-
tified particles, in particular, kaori®24,42, » mesong21], nally, we discuss in Sec. Il E the generalization of the previ-
A hyperong 25,43, and antiproton$44]. ous subsections to different, optimal particle weights.

In recent paperf45,46, we have shown for the first time
that nonflow correlations can be removed systematically not
only for integrated flow, but also in analyses of differential
flow. However, a limitation of this method when measuring We denote byp;, withj=1, ... M, the azimuthal angles
v, is the interference with higher harmonias,f , vs,, etc). of the particles seen in an event with multiplicit§, mea-
This interference may hinder the measurement of directegured with respect to a fixed direction in the detectbrs
flow when elliptic flow is larger, which is likely to be the was denoted byp; in Ref. [45]). In this paper, we shall be

A. Cumulants of multiparticle azimuthal correlations

case at RHIC energigg7]. concerned with multiparticle azimuthal correlations, which
Here we present an improvement of this method, which isve write generally in the form{exdin(¢+- -+ @—di1
free from this limitation, and in many respects simpler. In—---—d¢,,,)]), wheren is the Fourier harmonic under study

particular, it no longer involves the event flow vector on(n=1 for directed flow,n=2 for elliptic flow), and the
which most analyses are baddd,18,49. As in our previous brackets indicate an average that is performed in two steps:
method, we perform a cumulant expansion of multiparticlefirst, one averages over all possible combinationsk &fl
azimuthal correlations, which eliminates order by order nonparticles detected in the same event; then, one averages over
flow correlations, and can be used even if the detector doesll events.

not have full azimuthal coverage. Correlations betweehk+1 particles can be generally de-

In Sec. Il, we show how to construct the cumulants ofcomposed into a sum of terms involving correlations be-
multiparticle azimuthal correlations by means of a generatingween a smaller number of particles. Consider for instance
function. These cumulants allow us to reconstruct the intethe  measured  two-particle  azimuthal  correlation
grated flow from the measured correlations. The method ige'"(¢1~42)) It can be written as
extended to differential flow in Sec. Ill. The relation with ) , ) )
other methods is discussed in Sec. IV. Results of Monte (€17 92)=(e"?1)(e™!"%2)+ ((e"(?1792)),  (2)
Carlo simulations are presented in Sec. V. The most technical
points are left to appendices: the construction of cumulants isshere((e™(¥1~#2))) is by definition the second-order cumu-
explained in detail in Appendix A; interpolation formulas lant. To understand the physical meaning of this quantity, we
used to obtain the cumulants from the generating functiorirst consider a detector whose acceptance is isotropic, i.e.,
are given in Appendix B; acceptance corrections, which exwhich does not depend a. Such a detector will be called
tend the validity of the method to detectors with partial azi-a “perfect” detector. Then, the average™?i) vanishes by
muthal coverage, are derived in Appendix C; finally, statisti-symmetry[since ¢; is measured in the laboratory, not with
cal errors on the flow values deduced from the cumulants arfespect to the reaction plang™™?i) does not correspond to
evaluated in Appendix D. the flow v, defined in Eq.(1)]: the first term on the right-

The essential improvement on our previous method is th@and siderhs) of Eq. (2) vanishes and the cumulant reduces
use of a new generating function, defined in Sec. Il B, whichto the measured two-particle correlation.
corrects the limitations encountered in Rgf5]. These im- The relevance of the cumulant appears when considering
provements are discussed in detail in Sec. IV and in Appenthe more realistic case of a detector with uneven acceptance.
dix A; they are seen clearly in the simulations presented imThen, the first term on the rhs of E€®) can be nonvanish-
Sec. V. In addition, the detailed discussions of acceptancgg. But the cumulant vanishes i, and ¢, are uncorre-
correctionAppendix O and statistical erroréAppendix D |ated. Thus the cumularite"(#1~¢2))) isolates the physical
are completely new, although they also apply to our previougorrelation, and disentangles it from trivial detector effects.
method. Apart from these differences, most of the material There are several physical contributions to the correlation
discussed in Secs. Il and Il can be found in R@b], al-  ((e"(¢1~%2))) which separate into flow and nonflofar di-
though the present derivation is more transparent. rech correlations. When the source is isotrofim flow),
only direct correlations remain. They scale with the multi-
plicity M as 1M [32,33, as can be easily understood when
considering correlations between the decay products of a

In Sec. Il A, we illustrate with a few examples the prin- resonance: when @ meson decays into two pions, momen-
ciple of the cumulant expansion of multiparticle azimuthaltum conservation induces an angular correlation of order
correlations, and show how it can be used to perform flomunity between the decay pions; besides, the probability that
measurements with a better sensitivity than the previouswo arbitrary pions seen in the detector result from the same
methods. Then we explain, in Sec. Il B, how to perform thisp decay scales with the total number of pions ad 1All in
expansion in practice, by means of a generating function. Ill, the correlation between two arbitrary pions is of order
Sec. Il C, we derive the relations between the cumulants and/M. If the source is not isotropic, flow, which is by defini-
the flowwv,,, integrated over some phase-space region. Usingjon a correlation between emitted particles and the reaction
cumulants to various orders, one thus obtains different estiplane, generates azimuthal correlations between any two out-
mates forv,. The uncertainties associated with each esti-going particles, and gives a contributimﬁ to the second-

II. INTEGRATED FLOW
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order cumulant, as will be explained in Sec. Il C. One canflow correlations up to ordek+|—1. Only direct correla-
measure the flow using the second-order cumulant if thisions betweerk+| particles remain. Cumulants witk# |
contribution dominates over the nonflow contribution, i.e., ifvanish for a perfect detector and are physically irrelevant.
v,> 1/y/M [32,33. This is the domain of validity of standard The interesting cumulants are the “diagonal” ones, with
flow analyses, which are based on two-particle correlations=1, as in Eqs(2) and(4). The contribution of flow to these

Our main point is that through the construction of higher-cumulants, proportional to?*, will be evaluated precisely in
order cumulants, one can separate flow and nonflow correlagec. Il C. When this contribution dominates over the non-
tions. To illustrate how this works, we consider for simplicity flow contribution, the measured cumulant yields an estimate
a perfect detector. Then, we decompose the measured fousf the value ofv,,, which we denote by {2k}, wherek
particle correlation as follows: >0 is in principle arbitrary.

(exdin(¢1+ do—d3—ha)]) = <ein(¢1*¢3)><ein(¢27¢4)>

B. Generating function

n <ein(¢1f¢4)><ein(¢2*¢3)>

+{(exdin(¢1+ do— ¢3
—¢a)1)). 3

Cumulants can be expressed elegantly, and without as-
suming a perfect detector as in Hg), using the formalism
of generating functions. For each event, we define the real-
valued functionG,,(z), which depends on the complex vari-

ablez=x+ly,
If the particles are correlated pairwise, there are two possible M ‘ _
combinations leading to a nonvanishing value for the left- B z*e"li+ze i
hand side: the pairs can be eitti&r3) and(2,4), or (1,4) and G”(Z)_J-Hl 1+ M
(2,3). This yields the first two terms in the right-hand side.
The remaining tern{{exd in( ¢+ ¢do— dp3— p4)]1)), which M 2xcogne;)+2ysin(neg;)
is by definition the fourth-order cumulant, is thus insensitive :jﬂl (1+ M , (9

to two-particle nonflow correlations. However, it may still be

influenced by higher-order nonflow correlations: if, for in- yherez* =x—iy denotes the complex conjugate. This gen-
stance, a resonance decays into four particles, the regultlr@ating function can then be averaged over events with the
correlations between the reaction products do not factorize agyme multiplicityM. We denote this statistical average by

in Eq. (3). We call such correlations “direct” four-particle (G (z)). Its expansion in power series generates measured
correlations. Fortunately, their contribution to the fourth- 5,imuthal correlations to all orders

order cumulant is very small: it scales with the multiplicity

as 1M?3 [45], while the measured correlatiofexdin (¢, z /M 7| M
+¢y— dh3— ¢b4)1) is generally much larger, of orderM?  (Gn(2))=1+ M< > e"“¢i> +V< > e'”‘f’i>
[the two-particle correlation terms in the rhs of E8). are of =1 =1

order 1M, as explained aboyeOn the other hand, flow 72 22

yields a contribution— v;‘ to the cumulant, as we shall see in + —2< E e-m(¢j+¢k)> +_< E ein(¢j+¢k)>
Sec. Il C. Therefore, the cumulant is dominated by the flow M= 7=k M2\ [<k

as soon as,>1/M%4 This is a major improvement on two- -

particle correlations, which are limited by the much stronger +_2< > ein(¢j¢k)> +...

constrainty ;> 1/\/M. M=\ 7k

Equation(3) can be rewritten as —1+2z(e b1y 4 7% (ein?1)

- e — o/ ain(d1— )\ 2 _ %
(exdin(¢1+ ¢o— h3— da)])=2(e | ) +¥(Z§2<em(¢1+¢2)>+%2<ein(¢l+¢2)>
+((exdin(¢p1+ d2— b3
_¢4)]>>, (4 +Zz*<eiﬂ(¢1—¢2)> +.n, (6)

where we have used the symmetry betwegrand ¢, (resp. _ _
#3 and ¢,). However, Eqs(3) and (4) only hold for a per- Where the averagde"1), (e'"(#1~%2)) etc. are the same as
fect detector, therefore they are of little practical use. It is indefined in Sec. Il A. More generally, expandifG,(z)) to
fact possible to build an expression for the fourth-order cuorder z**z' vyields, up to a numerical coefficient, the
mulant that eliminates both detector effects and nonflow cor(k+1)-particle correlation{exdin(¢;+---+d— dyr1— -
relations, but this expression is very long. This is the reason- ¢.)]). The generating functioG,(z)) thus contains all
why we introduce a generating function of cumulants in Secthe information on measured multiparticle azimuthal correla-
II B. It will enable us to construct easily cumulants of arbi- tions.
trary orders for arbitrary detectors. If the detector is perfect, the statistical averd@,(z))
More generally, the cumulant(exdin(¢,+---+¢, does not depend on the phasezpfit only depends orjz|
—di1— - —da)]), which involvesk+1 particles, is of = Xx?+y?. To see this, one may note that changminto
order M*~¥~! when there is no flow. It eliminates all non- ze"¢ in the generating functio5) amounts to shifting all
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angles by the same quantify — ¢; — «. Now, the probabil-  belonging to the same centrality interval, aktifluctuates
ity for an event to occur is unchanged under a global rotafrom one event to the other. That explains our introducing
tion; therefore(G,(z)) is unchanged under this rotation, the factor 1M in the definition of the generating function
hence the result. In this case, the only terms that remain if5), as explained in more detail in Appendix A. The average
the power-series expansion are the isotropic terms, propopver event§G,(z)) then involves an average oviér, andM
tional to Zz*¥, which involve only relative angles. must be replaced by its average va{i) in the definition
The generating function provides us with a way to obtainof the cumulants, Eq(7). This, however, leads to errors,
a compact expression for cumulants of arbitrary orders. Wespecially when the acceptance is ba@ée Appendix A

define the generating function of the cumulai{éz) by This point will also be illustrated by the simulations pre-
sented in Sec. V. In order to avoid these effects, one may use
Ca(2)=M[(Gp(2))*™—1]. @) only a randomly selected subset of the detected particles,

with a fixed multiplicity M, to construct the generating func-

The expansion of this function in power serieszodind z*

- tion.
defines the cumulants as

* Kl C. Contribution of flow to the cumulants

Ca(2)= 2 e {(exdin(dut -+ ddira =

Let us evaluate the contribution of flow to the cumulants
c.{2k}. For simplicity, we assume that the detector is per-
— ) 1)) 8  fect. The generalization to an uneven acceptance is per-

. . : rmed in Appendix C1 . Under this assumption, one easily
One easily checks that if the particles are uncorrelated, af . . .
the cumulants vanish beyond order one, i.e., Kerl=2. cf;lculates the generating functi¢G,(z)) and, from it, the

Indeed, if all the¢; in Eqg. (5) are independent from each values of the cumulants.

) Let us call® the azimuthal angle of the reaction plane of
other, the mean value of the product Is the product of th% given event. The average over events can be performed in
mean values, so that

two steps: one first estimates the average over all events with

74 (") 4 z(e~ In®)\ M the samedy; then one averages ovdry. We denote by
(G(2))=| 1+ v (90  (x|®g) the average of a quantity for fixed ®g. With this
notation, the definition od,,, Eq. (1), gives
t‘l;)he generating function of cumulants, E@), then reduces (€M%i|d ) = v ", (12)
Co(2)=17* (€M) + 2(e~ %) (10) Neglecting, for simplicity, nonflow correlations between par-
n - .

ticles, we obtain from Eq(5)

Comparing with Eq.(8), cumulants of order 2 and higher

vanish when particles are uncorrelated, as expected. (Gn(2)|DR)=
The cumulant((e"(¥1~#2))) obtained when expanding

Egs.(7) and(8) to orderzz* coincides with the second-order

cumulant defined in Eq(2) in the limit of large M (see

Appendix A. ExpandingC,(z) to orderz?z*2, one obtains 27 ddg

an expression for the cumulag{e™(®1*¢2~ 43~ %4))) that <Gn(Z))=f (Gn(Z)|CDR>2—- (14

reduces to Eq(4) for a perfect detector. But the expression 0 7

derived from Eqs(7) and(8) is still valid with an imperfect

detector, while Eq(4) is not.

ZvnefintbR_i_z*vnein(bR M
1+ N . (13

One must then average ovérg:

Inserting Eq.(13) in this expression, one obtains

As mentioned in Sec. Il A, cumulants wikh| vanish for [M/2] ! v\ 2K
a perfect detector, since the generating functigfz) in Eq. (Gn(2))= 2, W(ﬁ) |z|%
(8) depends only orjz|. The interesting cumulants are the o ( (k)
diagonal terms wittk=1, which are related to the flow. We ~1o(2v,/2)), (15)

denote them by, {2k},
, where, in the last equation, we have assumedNhit large,
Crf2Kp= (NP1t AT AT T d)) (1) g0 thatM1/(M—2k)! =M and one may extend the sum
overk to infinity. |, denotes the modified Bessel function of
the first kind. The result depends only ¢rj, as expected
Grom the discussion in Sec. Il C.
The generating function of the cumulart® now reads

In practice, expanding the generating functi@yiz) analyti-
cally is rather tedious beyond order 2. The simplest way t
extractc,{2k} is to tabulate the generating functi¢r), and
then compute numerically the coefficients of its power-series
expansion, using interpolation formulas that can be found in Cn(z)zM(lo(Zvn|Z|)1/M— 1)=Inly(2v,2]). (16)
Appendix B1.

Finally, we have assumed here that the multiplidityis ~ This equation can be expanded in power series. Comparing
exactly the same for all events involved in the analysis. Inwith Eq. (8), the cumulants witlk+# | vanish, as expected for
practice, one performs the flow analysis for a class of eventa perfect detector, while the diagonal cumulacyi§2k} de-
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fined by Eq.(11) are related tov,. From the measured vn{Zk}Zk_vﬁk:(f)(Ml—Zk), (19
cn{2k}, one thus obtains an estimatewgf, which is denoted
by v,{2k}. The lowest-order estimates are which is an estimate of the systematic erfar,{2k} due to
5 nonflow correlations. Obviously, flow can be measured only
vn{2t=cn{2}, (178 if uZ>M?"2 For large ordersks>1, this condition be-
vaf4}'=—cof4}, ary O
vp>1M, (20)
vnl6}°=c,{6}/4. (179

which is a necessary condition for the flow to be measurable
When the detector acceptance is far from isotropic, as is thp;5]_ We believe there is no way to extract a flow of order
case of the PHENIX detector at RHIB1], which covers  1/M or smaller.
approximately half the range in azimuth, these relations no | this paper, we always assume that conditi@) is
longer hold. The issue of acceptance corrections, discussggifilled. If this is the case, the systematic error @ngiven
in detail in Appendix C, is more subtle than might be thoughtby Eq. (19), dv,{2k}~(Mv,) "%, becomes smaller and
first, for the following reason: when there is some flow, thesmaller ask increases: thus one should construct cumulants
probability that a particle be detected depends on the oriers orders as high as possible.
tation of the reaction plan®r, if the detector only has partial  one must also take into account the statistical error, due
azir_nuthal coverage. Hence_, if a fixed ljumber of particles ar¢q the finite number of eventd,, available. The order of
emitted, the number of particles seen in the detector dependgagnitude of statistical errors can easily be understood. The
on ®g. Reciprocally, for a fixed value of the multiplicity!  cymulantc,{2k} involves correlations betweerkarticles
seen in the detector, the probability distributiondaf is not belonging to the same event. There are roughii§f ways
uniform, which creates an important bias in the flow analy—(for large enoughM) to choose R particles among thé/
sis. In the calculations of Appendix C1, we assume the ceénparticles detected, and one averages over all possible combi-
trality selection is done by amdependentletector(for in-  nations. Since this is done for all,,, events, there is a total
stance, a zero-degree calorimgterhich has (at least of \j2kN, . subsets of R particles involved in the evaluation

approximately full azimuthal coverage, so that the distribu- of the cumulants. The resulting statistical error is therefore
tion of ® is uniform for the sample of events used in the

flow analysis.
Under this assumption, one can derive general relations vn{Zk}z“—vﬁk=(’)
between the cumulants and the flow. It turns out that, in
general,c,{2k} depends not only on,, but also on other
harmonicsv, with p#n. In order to obtain the correspond-
ing relations, we introduce the acceptance functq(),
which is the probability that a particle with azimuthal angle
¢ be detected. The Fourier coefficients of this acceptan
function are

(21)

1
JMZRNM) '

Unlike the systematic error, the statistical error generally in-
creases with increasing cumulant ordée @ may in fact
decrease in some cases, but only slightly, see Appendjx D2
Therefore, the orderRthat gives the best compromise is the
Bne for which both statistical and systematic errors are of the
same magnitude. Equating the right-hand sides of E3.

o do and(21), one obtains the optimal cumulant ordds]
a,= f e PIA(¢) 5. (18)
0 2w INNgyts
2k0pt22+ W (22

The relations between the cumulamg{2k} and the esti-

matesv ,{2k} involve these coefficients. They are derived in|n most of the practical cases, the fourth-order cumulant

Appendix C1, to leading order i, . The results for directed (2k=4), that is, removing two-particle nonflow correlations,

flow and elliptic flow are given by Eq€C6) and (C7), re- s to be preferred.

spectively. Statistical errors are discussed more thoroughly in Appen-

dix D2. There, we derive exact formulas for the standard

D. Errors deviations of the cumulants, and for their mutual correla-

éions. Two regimes can be distinguished, depending on the

We now examine the orders of magnitude of systemati I ¢ the di ol M. which h
errors, arising from unknown nonflow correlations, and staY2/ue of the dimensionless paramegeruv,yM, which has

tistical errors, due to the finite number of events availablePE€N Used previously as a measure of the reaction plane reso-

More precisely, we estimate the differende, {2k} between Igtion [20]'.” x<1, the staqdard devia_tions agree with the
the true integrated flow, and its values reconstructed from SIMPIe estimate(21), and different estimates {2k} and

the cumulantsy ,{2k}, defined in Eqs(17). We show which va{2l} with k#| are uncorrelated. If>1, on the othe_r .

value of & minimizes the total uncertainty. hand, they are strongly correlated and the standard statistical
As explained in Sec. Il A, nonflow R particle correla- error becomes

tions give a contribution of ordeM 2 to the cumulant

c,{2k}. This is to be compared with the contribution of flow 8(v | 2K}) gt ———, (23

derived in Sec. Il C, of ordes2*. We may thus write " " V2MNeys
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independent of the orderk2 and much larger than the esti- for instance, w(py) = \/p?+ p2—po, With py=100 MeV:

mate(21). . . . . .
. . . . this weight, quadratic at lo and linear at highpy,
We also discuss in Appendix D2 the non-Gaussian char. gnt 9 b ghpr

. ; " “roughly reproduces the measunggd dependence af ,.
acte_r of the qu_ctuatlo_ns of the estimateg 2k}, due to t_he|r With a nonunit weightw, the following modifications
nonlinear relations with the cumulants, E¢E7). In particu-

L . AR L ccur.
lar, statistical fluctuations may result in a “wrong” sign for v« relations between the cumulants and the flow, i.e.,

fche cumglant, n jche Sense thaﬂt{Zk}Zk defined by Eqs(17) EQgs.(17) for integrated flow, Eqs.34) and(35) for differen-
is negative. If this happens., the flow clearly cannot be estiy | flow, and the equations of Appendix &, now stands for
mated from the corresponding cumulant. (we"($~ PRy Comparing with the previous definition, Eq.
o (1), the flow is now weighted by, as can be expected from
E. Nonunit weights the definition of the generating function, EQ@4).
In the definition of the generating function, E(($_)' each In the formulas glVIng the statistical errors, derived in

particle was given the same weight. A more general form isAppendix D, one must in addition replatéby M/(w?). As
a consequence, the resolutigd appearing in Eqs(D21),

M 2
Wi . . (D22, (D35, and (D36) now stands for
Gn(z)zﬂ 1+ Mj(z*e'”‘/’iJrze"”‘/’i) . (24) = M{(Wo )2/ (W?). X
= In the interpolation formulas of Appendix B, the value of

The weightw; can be any arbitrary function of the rapidiyy [Eq. (B1)] should be scaled by the typical valuewf for
of the particle, its transverse momentyoq, its mass. instance by(w?).
In order to obtain the highest accuracy on the flow mea-
surementy; should be chosen proportional to the flow itself, Il DIFFERENTIAL FLOW
as shown in Refl45] (see alsd48,49): the ideal weightis  \hen one has measured the flow integrated over phase
w(pr,y)*vn(pr,y), which is intuitively clear: one must space, the next step is to move on to the “differential flow”
give higher weights to particles with stronger flow. This is analysis, i.e., the measurement of flow in a narrower phase-
also the best choice if one uses the standard method, invol\gpace window. We call a particle belonging to the window of
ing the determination of the reaction plane. interest a “proton” (although it can be anything elseéWe
Ideally, the flow analysis should be performed twice: agenote byy its azimuthal angle, and;, its flow harmonics
first measurement of the flow can be done with reasonablghe so-called “differential flow?, v/ =(e"V"PR)  The
guesses for the weights; measuring differential flow as &5icles used to estimate the integrated floyare named
function ofy and py for various particlegsee Sec. ll), the “pions.”
values obtained can be used as the new weights in a second, |, order to measure the differential flow of the protons,

more accurate analysis. This is the procedure recently folg,e correlate their azimuthy with the pion azimuthsep;
. n Ref.[24]. Once the integrated flow,, is known, one can reconstruct

&he differential flows . from this correlation, and also higher
directed flowv . Sincev, changes sign at midrapidity, the Won . g

weight must be an odd function of the rapidity in the Cemer_harmo’nlcs%n, U3n, EIC. It fOIIOV\.IS th".’“ dlﬁerent|al eIhptlc
of-mass frame. Most often, the weight is simply the sign ofﬂOW vz can be recon;tr_ucted using ellther integrated directed
y, with [17] or without [50] a gap at midrapidity. A linear oW Or integrated elliptic flow. Following Re(18], we de-
dependence iy was used in Ref§51-53. The latter choice  "Ot€ byvp, the differential floww, measured with respect to

is better, since, is itself linear near midrapidity. The trans- Integrated flowv,, wherep is a multiple ofn. At interme-
verse momentum dependencenofs most often linear, as in  diate energies, one usually measusgg [21] while vy, is

the original papef17]. Unit weights, independent qf;, are ~ More accurate at ultrarelativistic energies wheyeecomes
also widely used21,26,54,55 They are convenient, be- Very small[26].

cause no particle identification is required. However, since The differential flow is reconstructed by taking the cumu-
v, is linear inpy (at least at lowp [49]), the original choice  lants of azimuthal correlations between the proton and the

weepy s likely to give more accurate results, although thePions. These are constructed in Sec. Ill A by means of an
opposite conclusion was reached in R&#]. At intermedi- apprpprlat(_e generating function. The suptractlon of aytocor—
ate energies one can in addition choose a weight proportion&lations,” in the case where the proton is one of the pions, is

to the mass of the particle, to take into account the fact tha@riefly discussed in Sec. Ill B. In Sec. Il C, we derive the
nuclear fragments flow more than do protg68,57. relations between the cumulants and the differential flow,

Unlike directed flow, elliptic flow is an even function of vpn-As in the case of integrated flow, cumulants of different
the center-of-mass rapidity; therefore, the weights are usuallgrders yield different estimates of,,,. The optimal choice
chosen independently of rapidity. The weights are either inis the one that minimizes uncertainties, discussed in Sec.
dependent of transverse moment{2y18,26,35,36or pro- Il D.
portional to p% [39,48,58. The latter choice is more appro-
priate if pr is measured, sinaeg, is proportional tqﬁ at low
pr [49]. At ultrarelativistic energies, however, is almost To measure a proton differential flows,, we first con-
linear in pr above 100 MeV[2,59]. A better choice may be, struct a generating function of measured azimuthal correla-

A. Cumulants
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tions between the proton and pions. This function is the avone finally obtainSDp,n(z)=D’,§,n(z*), from which one eas-
erage value over all protons ef°’G(z), whereG(2) is il deduces that the coefficients in the expansiad) are

the generating function defined by H§), evaluated for the real. They are in general complex with a realistic detector,
event to which the proton belongs. Note that the averaggyt only the real part is relevant.

procedure is not exactly the same as when studying inte- Furthermore, most cumulants vanish if the detector is per-
grated flow. One must first average over the protons in theect. In order to see this property, we shift all angles by the
same evenfi.e., with the same5,(2)]; then, average over same quantityr, which does not change the probability of
the events where there are “protonsff the “proton” is  the event. The angles of the pions are changedjte ,
some rare particle, or if the phase-space window is smallyhich amounts to changing into zé"® in G,(2), as ex-

there may be events without a pro}on* _ plained in Sec. Il B. Similarly, the angle of the protgnis
Expanding in power series afandz*, one obtains changed to y—¢—a, so that €P'G,(z) becomes
(€PVG,(2)) = (€P¥) + 2(&l(PU=b0)y 4 7% (giPU+dD)) 1. e'PYe PG (z€"*). Averaging overa gives 0 unles® is a

(25) multiple of n, which is the case we are interested in. Writing

p=mn, the only terms that remain in the power series ex-
This generates measured azimuthal correlations between tR@nsion of(e®/G(2)) are the terms iz**z“*™. To obtain
proton and an arbitrary number of pions. The generatinghe generating function of cumulari,,(z), one must di-
function of the cumulants is a complex-valued function ofvide by(G(z)). Since this quantity depends only {m}, as

the complex variable, explained in Sec. Il B, the only nonvanishing cumulants in
. Eq. (27) are those with =k+ m. Other cumulants are physi-
(e'PG(2)) cally irrelevant.
Dpn(2)= W (26) Finally, the relevant quantities are

where(G(z)) denotes an average ovalt events, as in Sec. d 2k+m+1=Rd ({exdin(my+ b+ ...+
[l B. The cumulants are by definition the coefficients in the oot j=Re{(exilin(my+ ¢y P

power-series expansion of this function: — ki1 -~ darm N (29
7% kZI ' . ]
me(z)EE m<<equp‘/’+ln(¢l+"'+¢k_ b1 where Re denotes the real pgrt, and the notg{@lmm
+1} means that the cumulant involves correlations between
2k+m+1 particles(one proton and R+ m pions.
— =) ])) 27

When there is no flowd,y{2k+m+1} is of order

_zk_m . . . .
The physical significance of these cumulants is the same a¥ : I,:Ic;\liv+%lves a contribution to this cumulant, propor-

for the cumulants used in the analysis of integrated flowtional tovpv™ ™, which is calculated in Sec. Il C. If this is

They eliminate detector effects and lower-order correlationsth® dominant contribution, one obtains an estimate of the

so that only the direct correlation betwelet | pions and the ~ differential flowv , from the cumulant,,{2k+m+1}, us-

proton, of ordetM ~%~!, and the correlation due to flow re- ing a previously determined value of the integrated flgw

main. If the proton is not correlated with the pions, for in- This estimate will be denoted hy},,{2k+m+1}.

stance, Eq(26) giveS'Dp/n(Z):<eID'/’>, independent of, and Analytical expressions of higher-order cumulants, de-

all cumulants withk+1=1 vanish according to Eq27). In  duced from Eq(27), are long. As in the case of integrated

the more general case when there are correlations, expandifigw, the simplest way to extract them consists in tabulating

Eq. (26) to orderz and identifying with Eq(27), one obtains the generating functiorDy,y,(2), and then computing nu-

merically the coefficients of its power-series expansion,
((e'Pr=ndayy=(gl(PyndD)y _ (glP¥)(e=N%1)  (28)  through interpolation formulas that are given in Appendix
B2.
This cumulant is analogous to E@), and can be interpreted
in the same way. _
If the detectors used to measure protons and pions are B. Autocorrelations

perfect, simplifications occur: first, the cumulants defined in  When studying the azimuthal correlations between the

Eq.(27) are real. To show this, we use the property that if the*proton” and the “pions,” the “proton” must not be one of

detector is perfect, the probability that an event occurs ishe “pions,” otherwise trivial autocorrelations would appear.

unchanged when one reverses the sign of all azimuthafhis problem is well known in the standard flow analysis,

angles(i.e., y— — ¢ and ¢;— — ¢;), therefore,D,;n(2) is  [17]: in order to avoid it, one excludes the particle under

unchanged under this transformation. Now, the transformastudy (the “proton”) from the definition of the flow vector

tion ¢;— — ¢; amounts to changinginto z* in G,(z), ac-  used to estimate the reaction plane, which usually involves

cording to Eq.(5). Thus, Eq.(26) can also be written as all the other particlegthe “pions”).

Dyin(2) =(e"PYG(2*))/(Gn(z*)). Comparing with the Here, the proton is one of the pions, one simply removes

original definition, Eq(26), z has been changed #5 andy  its contribution by dividing G,(z) by 1+(z*e"?

to —. Now, changingy to —¢ in Eq. (26) amounts to  +ze "¥)/M in the numerator of Eq(26). The generaliza-

taking the complex conjugate &f,,,(2), sinceG,(z) isreal.  tion of this procedure to nonunit weights is straightforward.

054901-7



BORGHINI, DINH, AND OLLITRAULT PHYSICAL REVIEW C 64 054901

C. Contribution of flow to the cumulants Uén/n{3}5d2n/n{3}/vﬁl (353
Let us now calculate the contribution of flow to the cu- .
mulantsd,yai2k+m-+1}. As in Sec. Il C, we neglect non- Vol 5=~ o5}/ (207). (35b)

flow correlations and assume a perfect detector for simplic- .
ity. Under these assumptions, we can compute the generatiftp in the case of integrated flow, a nonperfect acceptance

function of the cumulant®,,,(z). We first average over all
events with a fixed orientation of the reaction plabg, and
over the protons in each single event:

(ePV|dg)y=v PR, (30
Hence, Eq(26) becomes
2
L ePPR(G,(2)|PR)AD /27
Dp/n(z) = U;, ) (3D

(Gn(2))

where the denominator is given by E45), and(G,(2)|Pg)
by Eqg.(13). The numerator vanishes unlgss a multiple of
n, i.e.,p=mnwith minteger. Integrating ovebg, one then
obtains

2w dod
imnd R
fo e™R(Gy(2)| )

[(M+m)/2] M

(M—m-—2k)!k!(2k+m)!

k=0

v 2k+m
Zn ZHkk+m
M

zlm(Zvn|Z|)(i) ) (32

7

where, in the last identity, we have assumed tas large,
so thatM!/(M —m—2k)! =M?*™ and we may extend the
sum overk to infinity. Equation(31) gives

|m(2|Z|Un) (i)m ,

Dmn/n(z):m 7 Umn- (33

This equation can be expanded in power series arfid z* .

may induce interference between the various harmarnjics
van, etc., modifying Eqs(34) and (35). The corresponding
relations between the cumulants and the flow are derived in
Appendix C2. We have taken into account the possibility that
integrated and differential flows may be measured using de-
tectors with different azimuthal coverages, which is often the
case in practicésee, for instancg21]). In particular, if the
detector used for integrated flow is perfect, we show that no
correction is required fov;,, whatever the detector used for
differential flow may be, which is intuitively obvious: the
only difference when using a smaller detector for the recon-
struction of differential flow is then a loss in “proton” mul-
tiplicity, resulting in higher statistical errors, which we now
discuss.

D. Errors

As in Sec. II D, we now evaluate the contributions of
nonflow correlations and statistical fluctuations to the cumu-
lants. This will allow us to determine the optimal cumulant
order to be used, which minimizes the total uncertainty on
UVy,.
pAs discussed in Sec. lll A, nonflow correlations give an
unknown contribution of ordeM 2™ to the cumulant
dpn{2k+m+1}, which must be compared with the contri-
bution of flow, proportional tov/,{2k+m+1}v2*™ as
shown in Sec. Il C. The systematic errordf,,, thus reads

Urlnnln{2k+m+1}_Ur,nn/n:O((MUn)72k7m)- (36)
According to Eq.(20), this systematic error becomes smaller
and smaller a& increases: the same behavior was observed
for the systematic error on the integrated flow in Sec. Il D.

The order of magnitude of statistical errors can be esti-
mated in the same way as for integrated flow. The cumulant
dpmi2k+m+1} involves correlations of the proton with
2k+m pions belonging to the same event. There are roughly
M2kt M ways (if M is large enoughto choose R+ m pions

The coefficients of the power-series expansion are real, agmongM. Denoting byN’ the total number of protons in-
expected from the discussion in Sec. Il A. Comparing withvolved in the analysis, there is a total /" ™N’ subsets of

Eqg. (27), cumulants withl #k+m vanish, which was also
expected; cumulants with=k+m, which are thed,yn{2k
+m-+1} introduced in Eq(29), are proportional te /,,. We
thus obtain estimates of the differential flav,,, which we

denote by, y{2k+m+1}, from the measured cumulants.
For m=1 (the proton is correlated with pions in the same

flow harmonig these estimates are given by
vé/n{z}zdn/n{z}lvn )

vr,1/n{4}E - dn/n{4}lvﬁ )

while for m=2 (useful when measuring differential elliptic
flow v with respect to the integrated directed flow)

(34a

(34b)

particles involved in evaluating the cumulants. The resulting
statistical error is therefore

1 1
Umn/n{2k+m+1}_vmn/n=0 \/WW v2k+m.
n

(37

As was the case for integrated flow, the statistical error usu-
ally increases with the order of the cumulant, while the sys-
tematic error decreases. Therefore, the cumulant order that
gives the best compromise is the one for which both statis-
tical and systematic errors are of the same order of magni-
tude. Equating the right-hand sides of E(&6) and(37), one
obtains the optimal cumulant ordpt5],
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N’ The difference between the two approaches can be easily
T (38 understood by expanding the two generating functions in
InM

powers ofz andz*. To second order, for instance, E¢40)

Statistical errors are evaluated in detail in Appendix D3.and (41) give
We show that the simple estimat87) is correct only if y -
=v,Y/M<1. In this limit, different estimates,,{2k+m Go(2)=---+ Z_< D ein(¢j¢k)>
+1} and v,ya{2l+m+1} with k#| are uncorrelated. M\ Tk
When y>1, the correlation becomes strong and the standard

(2k+Mm+1) gp=1+

* 2
error is approximately Z— e N+ ) 4 z > et
T om s M\ Tx
1
5(Ur’nn/n{2k+ m-+ 1})stat: Wl (39) + ... (44)
while our new generating function givésee Eq6)]
independent of the orderk2-m+1, and much larger than
the estimatg37). z7z* ,
d 7) (Gn(z)>:...+—2 2 e'n(¢j_¢k)
M\ Fk
IV. COMPARISON WITH OTHER METHODS
z .
The method proposed in this paper is closely related to + W< ;k e"“(¢i+¢k)>
our first cumulant-based methdd5], since it is aimed at !
correcting some of the latter’s limitations. This is discussed
in Sec. IV A. Then, in Sec. IV B, we compare our method <2 '“(¢J*¢k)> e (45)
with the two-particle correlation techniq(i2g] and with the 2M #k

subevent methofil7,1§.
The essential difference is the restrictipt k in the sums:

our new method is free from the autocorrelations correspond-
ing to the terms withj =k in Eq. (44). This remains true to
The cumulant expansion proposed in Réb] was based higher orders irz and z*.

on the flow vector rather than on particles themselves. The Autocorrelations have two effects: in the first term of Eq.

A. Comparison with our previous method

flow vector is defined for each event 7,18 (44), they give a constant, trivial contribution that must then

" be removed. This fixes the choice of the weigh{\¥/ in the

_ i E eind; (40) definition of the flow vector, Eq(40). With another weight,

Qn M j= ' the contribution of autocorrelations would depend\vdnand

it would not be easy to subtract them whighis allowed to
A generating function was then defined as fluctuate. With the new generating function, we are free to
choose another weight, and we show in Appendix A that the

go(z)5<eZQ§+Z* Qn), (41)  weight 1M [Eg. (5)] gives more accurate results whighis

allowed to fluctuate.
The expansion of this generating function generates all the In the second and third terms of Ed4), autocorrelations
moments of the distribution d, that is,(Q*Q*'). One eas- create terms ire*2"%i which interfere with higher harmon-
ily shows thatG,(z) is closely related to the generating func- ics. This was the main limitation of the method exposed in
tion used in the present paper. Using the identity Ref.[45]. Eliminating all autocorrelations represents a major
) ) ) , improvement. In particular, our method should enable
z*e"?i+ze " zve"?i+ze N directed flow to be measured at RHIC, if any.
M =&X M . (42 Finally, let us comment on our definition of the cumulants
through the generating functiaf(z) in Eq. (7). This defi-
valid for largeM, we may rewrite the generating functi¢s) nition ensures that cumulants of order 2 and higher vanish if
as particles are uncorrelatddee the discussion following Eq.
(8)]. In the limit when M is large, one recoverg,(z)
=In{G,(2)), in agreement with the standard definition of cu-
n(2)= exp( 2 e'”"’1+—2 e '“"’J) mulants in probability theor{60], and with the definition we
adopted in Ref{45].

1+

(43 B. Comparison with standard methods

p( z* N z
ex \/MQH \/MQFI

Reference[28] proposed analysis of flow using two-
Thus the average over event$5,(z)) coincides with particle azimuthal correlations. More specifically, one defines
Go(z/\\M). This shows that both methods are equivalent inby P (A ®) [resp.P oA #)] the distribution of the rela-
the largeM limit, up to a rescaling of the variable tive angleA ¢= ¢, — ¢,, whereg, and ¢, are any two par-
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ticles belonging to the same evemesp. belonging to two to flow, then the distribution cA ® is universal, and depends

different events One then constructs the ratio only on the resolutiony=v,yM that characterizes the reac-
tion plane resolutiorf19]. A comparison of the calculated

C(Ad)= Peor(A¢) . (46) distribution with experimental data was recently done at en-
Puncorl A @) ergies of 250 MeV per nucledid]. The agreement is perfect,

which shows that the observed correlations are dominated by
This so-called “mixed event” technique enables the extrac-flow at these energies. To our knowledge, no such compari-
tion of the physical correlations between the particles, elimi-son has been carried out so far at ultrarelativistic energies.
nating the effects of an uneven detector acceptance. Neglect-

ing nonflow correlations, one has in general V. RESULTS OF MONTE CARLO SIMULATIONS
+oo We have performed various Monte Carlo simulations to
C(Ag)= Z vﬁeinAd)' (47) check the validity of the procedures explained in this paper.
n=— In each simulationN.,:s events are simulated; in a given

event, the reaction plan@gy is chosen randomly, then

so that the Fourier expansion of the measured correlatiofpions” and “protons” are generated according to the distri-
function C(A ¢) simply yields the integrated flow,. Simi-  butions
larly, if one replacesp; with the azimu;:l&al angle) of a dN
particle in a narrow phase space winday, in Eq. (47) is _ B
replaced withv /v, wherev/, is the differential flow of the d¢>m1+2vlcos(¢ Pr)+20;c042(4-PR)] (48
particle of interest.

The values ofy, andv/, obtained with this method coin-
cide with the values we obtain from the cumulant of order 2, /
which are denoted by, {2} andv,{2} in this paper; while —— o1+ 2v; cog—dg)+2v, cog 2(p—Dg)],
we do not need mixed events, we must apply correction fac- ¥
tors to our reconstructed,{2} and v, {2} if the detector (49)

does not have full azimuthal coverage, as eXplained at th%spectiveb/. We then reconstruct the integraq:sdc_ VA)
end of Secs. Il C and Il C. With the mixed-event technique,and differential(Sec. V B flows following the procedures

this correction is not requiref@1]. presented in Secs. Il and IIl.
The essential limitation of the two-particle correlation

technique is that it is not possible to separate flow correlation
from nonflow correlation: therefore the results may be
strongly biased by nonflow correlations, which are elimi- In the first set of simulations, we generatbid,=10°
nated in our method by the construction of higher order cu€vents withM =200 pions emitted with an integrated elliptic
mulants. flow v,=6%, which we then tried to reconstruct. No inte-
The same limitation applies to the much more widelygrated directed flow was simulated. We first assumed a per-
used subevent methdd7]. This method involves two steps: fect detector. The optimal cumulant order, defined by Eq.
in each event, one constructs the flow vec¢dd) to estimate  (22), is 2K, =4.2. The estimatey,{4} derived from the
the orientation of the reaction pladeg, and a study of the fourth-order cumulant is thus likely to give the best compro-
azimuthal correlation between the flow vectors of two ran-mise between systematic and statistical errors, but we also
domly chosen “subevents” yields the accuracy of this esti-calculated the estimates{2} andv,{6}.
mate (the so-called “reaction plane resolution"This first The results are presented in Table I. The error bars are
step amounts to measuring the integrated flow. Then, in ordestatistical only. They are asymmetric fo{6}: this reflects
to measure differential flow, one studies the azimuthal correthe fact that the statistical fluctuations of{2k} are not
lation between a single particle and the flow vector. Since th&aussian when the error is large, as explained in Appendix
latter involves a summation over many particles, the correD2. When working with a fixed multiplicityM =200, the
lation between a single particle and the flow vector is muctreconstructed values coincide with the theoretical value
stronger than the correlation between two single particlesyithin expected statistical errors. Note that the statistical er-
which is probably the reason why this method is used saor onuv,{6} is only slightly larger than that on,{4} in this
often. However, the relative weights of nonflow and flow case. When the multiplicity/l is randomly chosen between
correlations are the sanjd5| as in the much simpler two- 150 and 250, the reconstructed flow deviates from the theo-
particle correlation technique discussed above, so that bottetical value by more than two standard deviations, but the
suffer from the same limitations. accuracy is still good, and moreover, the statistical errors
Flow and nonflow correlations could in fact be distin- were calculated assuming a fixed detected multiplicity, while
guished in the subevent method, through a more detailethe real errors are probably larger.
study of the azimuthal correlation between subevents. In- In order to check the ability of our method to eliminate
deed, flow and nonflow correlations yield a different shape otwo-particle nonflow correlations, the latter were simulated
the distribution of the relative azimuthal angleb between by emitting particles in pairs, where both particles in a pair
subevents, as shown in RE61]. If correlations are only due have the same azimuthal angle. 100 pairs were emitted in

and

A. Integrated flow
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TABLE |. Reconstruction of integrated elliptic flowN=10° events withv;=0 andv,=6% were
generated in each simulation. The three columns give the values of %, reconstructed using cumulants
to order 2, 4, and 6, respectively.

va{2} vo{4} v,{6}
Full acceptanceM =200 6.01-0.02 6.03:0.04 6.08-0.05
Full acceptance, 150M <250 6.01-0.02 6.110.04 6.13:0.05
Nonflow correlationsM =200 9.210.02 6.16-0.04 6.19-0.05
“Bow tie” acceptance,M =100 5.99-0.04 6.09-0.12 6.34" 32
“Bow tie” acceptance, 75M <125 5.85-0.04 5.40-0.12 5.74° 53
each event, resulting in a multiplicityl =200. The recon- Co{4}=—0.384,{4}*. (50)

structed value with the cumulant of order 2 , i.e., without

i - i i i 0,
Iraer]g'wtrr]]ge ;\;\;ong:rrgcﬁet?]%géo\\:vvoSﬁjrreil\?gosr;ﬁ{ig rgg lﬁ)tstog ﬁAn interesting feature of this bow-tie acceptance is that there
thego,ther hand, the values obtained ugsing higher-order c.umlij§ no inte(ference betweenf]l _andvz, because_ alk, with
' . i odd p vanish. However, this is not the case in gendsale
lants are much closer to the theoretical value; they are be;

yond statistical error bars, but this is not surprising sinceAppendlx Q. The results are given in Table I. Note that the

error bars were calculated assumiMg=200 independent estimate of statistical errors was done assuming a full accep-

articles, while the effective multi Iicit_ here is rart)ther 100 tance, so they may be underestimated here. When the multi-
par ’ : ultipheity ' plicity M is fixed, the reconstructed values agree with the
which results in larger fluctuations.

In summary, the results obtained so far show thd#l} is theoretical values within eror bars. If the acceptance correc-
Y, ) e : ; tion had not been applied, the reconstructed values would be
to be preferred here: the statistical errorgfi6} is (slightly)

: X 2 below 5%.
larger, while nonflow correlations may give a large, uncon-

. - If M is allowed to fluctuate, the discrepancy between re-
trolled, contr|but|qn towa{2}. To test_the .Va“d'ty of Our aC-  constructed and theoretical values is much larger than statis-
ceptance corrections, we then did simulations with th

Sical errors, and also much larger than in the case of a full
“bow-tie” detector schematically represented in Fig. 1, ' 9

which mimics the azimuthal acceptance of the PHENIX de_acceptance. As explained in Appendix A, a fluctuaii in

tector[31]: particles are detected only within two quadrantsmump“mty induces some errors, which scale&fmz and are

of 90° eaéh with 100% efficiency. Since only half the par_comparatlve_ly Iqrger when the acce ptance is not good. In
ticles are détected with this detect.or the valueMothosen order to avoid this effect, the analysis can be done by select-
) o ; ’ ing randomly a subset of the detected particles, with fixed
in this simulation was half the value chosen above for

. . amultiplicity, as explained at the end of Sec. Il B.
perfect detector. The optimal cumulant o_rder_ls noltg2 We then performed a second set of simulations, with both
=4.5, so that the fourth-order cumulant is still to be pre-

ferred. Si th imuthal . I ial directed and elliptic flow, in order to test possible interfer-
erred. since the azimuthal coverage Is only partial, EBB. ences between the two. Such uncontrolled interferences were
relating the cumulant to the flow are no longer valid. In the

. the main limitation of our previous cumulant methptb],
case of eI_Ilptlc flow, they are repla_ced by E¢E7). These but are avoided here, as explained in Sec. IV A. Interference
formulas involve the Fourier coefficients, of the accep-

. . . of a different kind may in fact still occur when the detector
tance f_unct_|on, def'ned by EEL8). \_N'th t_he acceptance de- has partial azimuthal coverage, as explained in Appendix C1,
picted in Fig. 1, a ;lmple calculatlorj gives =2/ anq a1 put they are under control. Events were generated with a
=ag=2,=0. Inserting these values into E4E7), one finds o) girected flows; =2%, and with an elliptic flowo,
C,{21=0.518,{2)2, =0 orv,=6%. The goal was to reconstruct. Since 2% is

a very small value, the number of events generated were
larger than that in the previous set of simulations. With the
values ofNsandM given in Table I, the optimal cumulant
order is still 4: all the results presented in Table Il are recon-
structed from the fourth-order cumulant. In the case of the

TABLE Il. Reconstruction of a theoretical directed flow;
=2%. Ngue=5X10° events were generated in each simulation,
with M =200 detected particles in each event. The table gives the
values ofv1{4} in %.

FIG. 1. Schematic picture of the PHENIX detector at RHIC. The

. . . ) Vo= 0 Vo= 6%
shaded area indicates the azimuthal coverage of the detector, while
the darker area at the right of the figure corresponds to a smafull acceptanceiV =200 2.01°3% 2.19'8%;
time-of-flight detector with an extension of 45°, which can be used“Bow-tie” acceptance,M = 200 1.87°32 1.88"323

to measure the differential flow of identified particles.
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TABLE lll. Reconstruction of differential elliptic flow with respect to integrated elliptic flow, ig,5. In
each simulationN’ =5x 10° protons were generated witth=6% andv;=0. The integrated flow was also
v,=6% andv,=0. The last two columns give the valueswdf (in %) reconstructed from the cumulants to
order 2 and 4, respectively.

Pions Protons v 2} v 4}

Full acceptanceM =200 Full acceptance 5.860.15 6.10:0.44
“Bow-tie” acceptance,M =100 “Bow-tie” acceptance 6.0¥0.20 5.83:0.99
“Bow tie” acceptance,M =100 45° acceptance 6.62.20 5.71-0.99

bow-tie acceptance, the relation betwagf4} and the cu- mulants and flow, Eq4C15), are
mulant, Eq.(17b), must be replaced by EqC6h), which ,
gives A 2}=0.59% 50 5{ 2},

ci{4}=—2.78%,{4}*. (51) dyf 4} = — 040630}, 4}. (52)

The reconstructed value of; is always compatible with the Second, we assumed the protons were detected with a small
theoretical valuev,=2% within the statistical error, even 45° detector(see Fig. 1 The Fourier coefficients of its ac-

with the bow-tie acceptance. This is a major improvement Ofzeptance ~ function A’ () are a,=1, aéal
our previous method45], where the reconstruction af; =8 sin(m/8)/(p), which yields the relations
would have been impossible if,=6%, even in the case of
a perfect detector. oo 2}=0.33% 50 { 2},
B. Differential flow dyf 4y =—0.183v5,,{4}. (53

We then performed various simulations to test our recon—N te that the last tion i h factor of 5
struction of the differential flow. In the first set of simula- o nat the last correction Is moreé than a factor of o, com-

. - ared to a full acceptance. In all cases, the resutible IlI
tions (see Table 1), only elliptic flow was generated. Events gre in excellent ag[r)eement with the theoretic$al value) This
i e =1 i - *
were g’enerated W'th’z. v2=6%, and.we trleq to recon shows that with our method, it is possible to measure differ-
sftru_c toy. AS explame_d in Sec. I.”’ the f|r§t step in the, analy- ential flow with any detector provided the relevant accep-
sis is the reconstruction af,. Since no integrated directed e corrections are performed.
flow v, is presgntpg can then be reconstructed only with e then did a second set of simulations. The only differ-
respect tov,: this is denoted by, in Sec. Ill. One can  ence with the first set is that directed flow is also generated,
reconstruct it from the lowest order cumulant. This yields theyith the same magnitude as elliptic flow, i.64=0,=6%.
estimatev,/,{2}, equivalent to the standard flow analysis. |n this case, it is also possible to measure differential elliptic
One can also reconstruct the higher order cumuipf4},  flow with respect to integrated directed flow,; . We recon-
which eliminates nonflow correlations between the protonstyycted only the lowest-order estimatg,{3}, which is also
and the pions. _ given by the standard flow analysis. Note that it is already
In the first simulation, we assumed that the detector wagsensitive to two-particle nonflow correlations. In the case
perfect, both for integrated gnd f(_)r differential flow. Wlth the \when the bow-tie acceptance applies to both integrated and
values of the parqmeters given in Table I, the optimal cu-yifferential flow, Eq.(C14) does not give any correction, so
mulant order, defined by Eq38), is (2k+m+1)e,=3.5,  that Eq.(359 still holds. When protons are measured with a

.e.,vy{4} is to be preferred. Nevertheless, we also includegmgaj| 45° detector, on the other hand, EG14) gives
the lowest-order estimates,,{2}. Since no nonflow corre-

lations are generated between the proton and the pions, this d2,1{3}zl.258;§v;’1,1{3}. (54)
estimate should be good. Indeed, both estimates are found to
be in very good agreement with the theoretical value. Results are given in Table IV. With a full acceptance, the

We then turned to the case when the detecto_rs no longgeconstruction of bothy 5, andv’, is good, within the ex-
have a perfect acceptance. In this case, corrections mUSt(E@cted error bars. With a partial acceptance, however, dis-
applied, as explained in Appendix C2. For the integrate repancies are much larger. In particular, the value of

flow, we used the “bow-tie” detector of Fig. 1. As in Sec. \yith g 45° acceptance differs by four standard deviations
V A, the multiplicity of each event with this detector M from the theoretical value.

=100, instead ofM =200 with the full acceptance. This
modification does not affect the optimal cumulant order,
which is still 4. For differential flow, two different detectors
were considered. First, the same bow-tie acceptance as for We have presented a new, general method for analyzing
pions, i.e., the relevant Fourier coefficients age=2/ and  the flow. This method can be used by all heavy-ion experi-
a;=a;=a,=0. In this case, the relations between the cu-ments that implement the standard analysis of Danielewicz

VI. CONCLUSIONS
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TABLE IV. Same as Table IlI, except that a directed flow=v;=6% was generated in addition to the
elliptic flow. The third column gives the differential elliptic flow recontructed with respect to integrated
directed flow, to lowest order.

Pions Protons von{3} vyA2} vy {4}

Full acceptanceM =200 full acceptance 6.470.32 5.8%0.15 6.03:0.44
“Bow-tie” acceptance,M =100 “bow-tie” acceptance 5.080.54 5.83:0.20 5.5%0.99
“Bow tie” acceptance,M =100 45° acceptance 5.2M.54 6.81-0.20 7.95-0.99

and Odynied17], since it uses the same input, namely thethis quantity, depending on whether the reaction plane is
azimuthal angles of outgoing particles. As in the standardneasured using directed ,) or elliptic (v5;,) flow. The
analysis, one proceeds in two steps. One first reconstructs thiest of these two estimates,;, which involves correlations
average value of the flow over phase space, with an apprasetween three particles, is insensitive to two-particle nonflow
priate weight: this “integrated flow, is related to the re-  correlations, even in the standard analysis. In this paper, we

action plane resolution in the standard analysis. One mayptain several estimates for bath, andv,, which can be
then perform detailed analyses in narrower phase-space Wifsed as further consistency checks.

dows, i.e., measure “differential flows, . The strong points Finally, we have also included a detailed discussion of
of our method are the following: acceptance corrections, which allow us to work even if the
It systematically eliminates azimuthal correlations that arejetector has only partial azimuthal coverage. One may argue
not due to flow. that the corresponding formulas, given in Appendix C, are
One obtains several different estimateswgf and v);  very heavy. However, these formulas are required only if the
comparison between these estimates provides a useful coaeceptance is far from isotropic: corrections corresponding to
sistency check. weak inhomogeneities of the acceptance are automatically
The detectors need not have full azimuthal coverage. taken care of by the cumulant expansion itself. Furthermore,
Let us comment on these three points in more detail. the correction factors need only be calculated once for a

Nonflow correlations are eliminated by means of a cumugiven detector, and it is a simple calculation. When they are
lant expansion of multiparticle azimuthal correlations. Thisapplied, accurate results can be obtained even with a very
cumulant expansion applies to both integrated and differenpoor acceptance, as illustrated by the simulations performed
tial flow. In the case of integrated flow, one constructs ain Sec. V. Although several methods have been proposed to
series of cumulants,{2k}, wherek is an arbitrary positive correct for detector inefficiencies in the standard analysis
integer.c,{2k} involves correlations betweenk2particles, [18], we do not know of any systematic study of their limits.
but is insensitive to correlations involving less thak 2ar-
ticles. Now, flow is by definition a collective phenomenon,
which induces correlations between all the produced par- ACKNOWLEDGMENTS
ticles: ask increases, its relative contribution eq{2k} also
increases.

Using the cumulant,{2k}, one obtains an estimate of
v,, denoted by {2k} in this paper. The lowest-order{2}
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independent estimates of,, which can be used as a consis-
tency check. The reader might believe that constructing cu-
mulants of six-particle correlations requires a huge statistics,
and is practically impossible. This is not true. Statistical er-
rors on higher-order estimates,{2k} are discussed thor-
oughly in Appendix D. They strongly depend on the strength  |n this appendix, we justify the definition of the cumulants
of the flow itself, and more precisely on the parameter from the generating functiori7) by discussing a few ex-
=v,yM, which characterizes the resolution of the reactionamples.

plane reconstructiod ® in the standard analysis. =1, We begin with the second-order cumulamt,{2}
corresponding to a resolutichd®z=45°, which is achieved = ((e"(¥1~42))) Inserting Eq.(6) in expression7) and ex-

in many experiments, the statistical error on bogfj4} and  panding to ordezZ*, we obtain from Eq(8),

v,{6} is only 60% higher than the error an{2}, as can be

seen in Fig. 2.

APPENDIX A: CUMULANTS OF MULTIPARTICLE
AZIMUTHAL CORRELATIONS

The same discussion can be repeated for differential flow.  ins —gy _M=1 o o g aming,
In the case of differential elliptic flow,, however, the stan- ((e N= M (e )—{em™)(e 2
dard analysis also provides us with two different estimates of (A1)
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If particles are uncorrelated, i.e., (e"(¢17%2) We now turn to the expression of the fourth-order cumu-
=(e'"?1)(e"""?2) the cumulant vanishes, as it should. In thelant. For simplicity, we restrict the discussion to a perfect
limit when M> 1, one recovers definitio(®). detector and a fixed multiplicityM. Then the generating

The standard definition of the cumulants &,(z)  function(G,(z)) is
=In(G,(2)), rather than Eq(7) [60]. However, with this defi-

nition we would obtain, instead of E¢AL), (Gy(2))=1+ M'\; 1 |2[2(e- 62
: M-1 : :
<<em(</’17</’2)>>: <em(¢’1*</’2)>_<em</’1><e7'n</’2> (M_l)(M_Z)(M—3) -
M 4
+ 3 |z|*(exdin(¢1+ ¢
M—1 4M
= (@174 — (e e N e+ . (A6)
1 indps /ming Inserting this expression in E47) and expanding to order

+ M<e (e "%2). (A2)  |z|* one obtains

If particles are uncorrelated, the last term in the equation} exd in( b+ ér— ba—
remains if the acceptance is not perfect. This may result in4<< Hin(¢1t d2= b3 = da))
large errors when the flow is small.

In Sec. Il B, we also considered the possibility that the _ M-11(M-2)(M-3) : o
multiplicity M is not strictly the same for all events. If it ~ 4M M2 (exHin(du+ b2 b= da)])
fluctuates around an average val{ié), then the generating
function (6) must also be averaged oviel, andM must be (M—1)>2 (1 b\ 2
replaced by(M) in the definition of the cumulants, E¢). _2T<e SRCONF (A7)
Equation(Al) is then replaced by

M—1 1 which gives Eq.(4) in the limit of largeM.
<<ein(</>1¢z)>>:<_><ein(¢1¢z)>_(1_ _)<ein¢1> More generally, the cumulantg({exgin(¢;+---+ ¢y
M (M) —dsi1— - — 1)) derived from the generating equation
X (e~ ind2y, (A3) (7) coincide with the quantities of physical interest, that is,

only the (+1)-particle direct correlations when there is no
The magnitude of the fluctuations bf can be characterized flow, up to subleading terms of relative magnitu@é1/Mm).
by their standard deviatiorsM?=(M?2)—(M)2. If M
<<|\/|>, then(l/M):]_/<|\/|>+ 5M2/<M>3' and Eq.(A3) be- APPENDIX B: INTERPOLATION FORMULAS

comes In this Appendix, we give interpolation methods to com-

‘ M—1 . ' _ pute numerically the cumulants from their generating
((e'“(¢1‘¢2))>=<T>((e'“("’l“f’Z))—(e'”4’1><e"”‘f’2)) functions. Generally, one wishes to reconstrictcumu-
lants for integrated flow, i.ec,{2k} for k=1, - - ki, andky
SM2 . cumulants for differential flow, i.e.dyy{2k+m+1} for
_<M>3<e'n¢l><ef'n¢2>, (A4) k=0, --,kq—1. Typical values ark;=3, m=1,2, andky
=2. One thus obtains three independent estimates of inte-
to be compared with EqAL). If SM<M andM>1, the 9rated flowv,, and two estimates of eaatf, .
correction should be negligible. The cumulants are defined as coefficients in the power-
This is why the factor M associated with each particle Series expansions of the generating functii) [Eqg. (8)]
in the generating functiofb) is important. If this factor had and Dmwn(2) [EQ. (27)]. To extract the cumulants numeri-
not been included, the coefficient in front o#* in C,(z)  cally, one first computes the generating functions at the

would be POINtS Z, 4=Xp gt 1Y p,q With
(M(M = D)(" ™ 42)— (M)((M) — 1)(E" (e %) Xp’qzrofpcos( 2%),
=(M(M—1))((e"#1- 92} — (giNd1)(eind2)) max
ing, —ing, (2
+ oM2(en1) (e n%2), (A5) yp_qzro\/ﬁan( qu), (B1)

In this equation, the second term in the rhs appears with a

coefficient of ordeM?/{M )? with respect to the coefficient for p=1, -+, Kyax and q=0, - - ,gmax— 1. These equations
of the first term. This should be compared with E44), define a set OKy,4,0X Qmax POINtS In the complex plane, where
where the coefficient of the second term is of magnitudekia, and gmax Must satisfyky,.,=Ki ,Kg and gmac 2k, 2(Kg
SM?/(M)3, i.e., much smaller. Thus the weightM/in Eq.  +m—1). With the values ok; , m, andky given above, one
(5) minimizes the effects of a fluctuating multiplicity. can choose, for instanck,,,,=3 andqm,,,=7 or 8.
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The numberrg in Egs.(B1) is in principle a small num- The cumulantsd,yn{2k+m+1}, defined in Eq.(29), are
ber, since we are interested in the behavior of the generatinge real parts of the terms proportional 262¢*™ in the
functions near the origin. If, is too small, however, large power-series expansidi27). In order to isolate these terms,
numerical errors occur. In practice, the numerical simulation®ne multipliesD,,,yn(2) by z*™, takes the real part, and av-
presented in Sec. V were done with double precision numerages over angles:
bers(16 digitg, and with the valuegy=1.5. A much smaller

value was given in Ref45]. This is due to a rescaling of the D = (rovp)™ qmi_l 2qm N
variablez by a factor of\VM, as discussed in Sec. IV [see I cogm )P
Eqg. (43)]. In any case, the interpolation should be done with
two different values of in order to check the stability of . 2qm
the results +sin m Yp.al- (B7)
’ max
1. Integrated flow The values oD, for p=1,... ky are related to the cumu-

lantsd,yn{2k+m+1} with k=0,... kg—1 by the follow-
ing linear system ok, equations:

kg 2(k+m)
Co.a=Cn(Zp.0)- B2 D=3 %

The cumulants,{2k} correspond to the terms with=1I in (B8)
the power-series expansid@8). In order to eliminate terms
with k#1, one averages over the phasezof

We denote byC, , the values of the generating function
C(z) evaluated at the point®1):

dpwni2k+m+1},  1<p=<ky.

Forky=2 andm=1, the solution of this system is

_ 1
1 mact dunf{2}= 2 (2D1—3Dy),
CpE 2 Cp,q- (B3) n/n{ } r_g( 172 2)
max =0
1
Then, theC,, with p=1,... k;, are related to the cumulants dynid}t=—2(-2D;+Dy), (B9)
c,{2k} with k=1, ... k; by the following linear system d; "o
equations: while for ky=2 andm=2,
k:
| (roVp)* 1 1
Cp_kgl WC”{ZK}’ 1=p=k. B4 donn{3}= a(4D1— EDZ) ,
The solution of this system fdg;=3 reads 1 3
d2n/n{5}: r_e - 6Dl+ EDz) . (BlO)
0

Cn{2}=—(3C;—3C,+3C5)
n r(Z) 1~ 2%2T3%3),
APPENDIX C: ACCEPTANCE CORRECTIONS

We derive here the relations between the cumulants and
the flow when the detector has only partial azimuthal cover-
age. As explained in Sec. Il C, we assume that the class of

6 events used in the flow analygissually corresponding to a
Cni6}= r—g(3C1—3C2+ Ca). (B5  given centrality cutis selected by means of a detector that

0 has, at least approximately, full azimuthal coverage, so that
we may assume that the probability distribution ®f is
niform.

We wish to recall that the first step in our accounting for
acceptance inhomogeneities is the choice of “nonisotropic”
cumulants, as explained in Sec. Il B: while the simple cumu-
lant deduced from Eq3) is valid for a perfect detector, a

The generating functio®,,y,(z) is complex. From defi- more general definition is that deduced from Eg$and(8).
nition (26), its real and imaginary parts at the poiafs, are ~ For “almost” perfect detectors, this first step should be
enough, and the following results oversophisticated.

2
Cnid}= %( —5C;+4C,—Cy),

Solving Egs.(B4) with a larger value ok; provides more
accurate values of the first three cumulants, as well a¥
higher-order cumulants,{2k}.

2. Differential flow

_ _{cogmny)G(zp,q))
Xp,a=RE Dmn(Zp,q)] (Gn(Zpq)) 1. Integrated flow
. Let us describe the detector characterisiasceptance
Y =Im[ Dy (2 )]=<sm(mn¢/;)Gn(zp,q)). B6)  and efficiency by a real-valued functiod(¢), which is the
P munea (Gn(zp,9)) probability that a particle emitted at angfebe detected. We
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choose to normalize this function accordingﬂ%ffA(qS)dcﬁ (Gn(2)|PR)
=2. The functionA(¢) can be expanded into a Fourier

: z - .
series, =|1+—|a,+ 2 (@yn—andyv PR |+c.c.
+ o0 M ps&O
Ald)= 2 ae®?, (CD ‘
p=—c :eza\#c-c-ex;{zE (ap+n—anap)vpe'pq’R+c.c.. (CH
p#0

where thea, coefficients, Eq(18), satisfy ap=a;, and |, the second identity, we have assumed tMais large, so
ap=1 due to the normalization choice. For a perfect detecy5¢ (1+x/M)M=expx. Equation(C5) can be compared to

tor, @, 0= 0_- _ ) ] ) ) . Eq.(19), to which it reduces when the acceptance is perfect.
. The distribution of outgoing particles in a given collision \wnen it is not the case, the generating function depends in
IS general on harmonics, with p+n.
The generating function must still be averaged obgy,
+oo as in Eq.(14). The first term expa,+2z*ay;) is independent
P(¢—Dr)x >, v,eP¢ PR, (C2)  of ® and factors out. This term does not contribute to the
p=-—x

cumulants of order 2 and higher, since it gives a linear con-
tribution to the generating function of the cumularn®,
where®p, is the reaction plane azimuth of the collisian, ~ Which is INGy(2)) in the largeM limit.
=1, and thev,=v _, are real valued. In the general case, there is no simple analytic expression
We now evaluate the generating function of azimuthalfor the average ovebg of (G,(2)). To obtain the cumulant
correlations(G,(z)), with G,(z) defined by Eq.(5), and  at a given order, one must expand EG5) to the desired
compute the cumulants as a function of the flow coefficient®rder, and then integrate ovdrz. Then Eq.(8) yields the

v, and the acceptance coefficiemts. cumulants. . _ .
For a given orientation of the reaction plane, the average Keeping only the first harmonias, andv,, which corre-
value ofe™"? for a particle seen in the detector is spond to the termp=*1,=2 in Eq. (C4), one finally ob-
tains forn=1 (i.e., for a measurement of directed flow
2m . — _ 2\2 _ a2|27,,2 _ * |2
d¢e_'”¢A(¢)P(d)—®R) C1{2} [(1 |a1| ) +|a2 a1| ]U1+[|al a2a1|
. 0
(e dg)= o +]ag—aa,|°Jvs. (C6a
0 APA($IP($= D) Both harmonics interfere, and one cannot measyrandv ,
. independently. Similarly, the cumulant to order 4 becomes
ipd
pzz_oc apnvpe PR ci{4}=—[(1-]ai|?)*+4(1-]ay|?)?a,—aj|?
= = , C3
: ©9 +lag—a2|“loi-[la, — aat|*+ 4la,— azal [?
> awePiR
p==o X |ag—aja,|?+ |ag—a,a,|*]vs. (Céb)

where n is the harmonic that one wants to measure. Thé:Or n=2 (integrated elliptic flow, the first two cumulants

denominator is the probability that a pion be detected, whictf'®

depends orby, if there is flow. _ * |2 29,2 2,2

; . . C{2}=[la;—aaj|“+|az—aa +[(1-|a
To obtain the cumulants to leading order in the flow co- A2} =21~ 2,81 "+ [as— a2, Joi +[(1-[azl")
efficientsv, with p# 0, one can linearize this expression in +|a,—a3|?Jv3. (C79

vp With p#0:
and

(e""?|dRy=a,+ ;O (8p+n— anap)vpeip(DR. (C9 co{4t=—[la;—aza}|*+4|a;—aza7|?|ag—asa,|?

+ag—a1a,| T —[(1—-]ay?)*+4(1-]ay?)?|a,

In this expression, the term proportionaladga, comes from —a§|2+ |a4—a§|4]v‘2‘. (C7b
the denominator of Eq.CJ). It reflects thed g dependence
of the probability that a pion be detected. If the acceptance is perfect, EqQ¥6) and (C7) reduce to

The average valu¢C4) can then be introduced in the Egs. (179 and (17b), as they should. In the general case,
generating function(G,(z)). We neglect nonflow correla- Egs.(C6a and(C7a represent a linear system of equations,
tions for simplicity. Then, the angles of the particles are stawhich can easily be solved to givg andv, (or more pre-
tistically independent and we obtain cisely, v,{2} andv,{2}) as a function of the cumulants.
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Similarly, Egs.(C6b) and (C7b) can be solved to obtain In this expression{G(z)|®g) is given by Eq.(C5 and

v{4} andv,{4} as functions of the cumulants. (e'PY|®g) by an equation similar to EGC3), with a,, (resp.
We do not include the expressions of the cumulaa{é} v ) replaced bya,, (resp.v,). Using Eq.(C8), we may thus

and c,{6}. In addition to the expected terms iff andvS,  write

they involve a term proportional tjv3.

Note that in going from Eq(C3) to Eq. (C4), we have , 27 dy
kept only the leading-order termsin,, so that the values of (eP/|DR)p(Pr)= fo ePIA (PP (¢) 5
v, andv, obtained by the above method may have system-
atic errors of relative ordey, anduv,: for instance, if the te _
elliptic flow is v,=5%), one may find instead 5.25% due to = > aé,pvée'qq’R. (C1)
this effect. a=-=

Finally, it should be noted that all corrections for accep- ) ] .
tance inhomogeneities, in EqEC6) and (C7), involve at  Inserting Eqs(C10 and(C11) in expressior(C9), the gen-
least the squared norfa,|? of the acceptance Fourier coef- €rating function of the cumulants, E(6), reads
ficients. Therefore, we believe that if @}, are smalle(in
norm) than 0.1, then the procedure discussed in this subsec-
tion is superfluous: the relative magnitudes of the corre- e
sponding acceptance corrections are at most of a few percent, Dyn(z)= E a&_pv(’] Py
much too small to be significant. Moreover, this also applies a=-= J (Gn(2)|Dr)dDg
to differential flow, since as we shall see shortly, in the case 0
of a perfect detector for integrated flow, there are no accep- (C12
tance correction even fary .

2
f e1PR(G(2)| DR)dDr
0

Comparing with Eq.(31), to which this equation reduces
when the acceptance is perfect, one sees that the cumulants
2. Differential flow involve, in general, all harmonias; .

For the protons whose differential flow is measured, we Expanding in powers of andz* and performing the in-
introduce two function®\’ () andP’ (— ®g) that play the tegrals overdg, one finally obtains for differential directed
same role a&\(¢) andP(¢— ®y) for the pions(please note  flow
that A’ and P’ are not the derivatives ofA and P). Their

expansion in Fourier series reads as in HG) and (C2), d1/1{2}=Re[l—|al|2+(a£)*(az—a§)]vivl+ Rdaj(a¥
with a, (resp.v,) replaced bya (resp.v,). . e ,
In order to calculate the generating function of the cumu- —azay)t(ag)*(az—a1a,) Juovy, (C139

lants, Eq.(26), we need to evaluate'??G(z)), where the

average is taken over all the detected protons. In computingghere Re means that one must take the real part: when the
this average, one must take into account carefully that thecceptance is not perfect, the coefficient is in general com-
probability p(®g) that an emitted proton be detected de-plex. The higher-order cumulant is given by

pends on the orientation of the reaction plabg:

om dy dia{4}=—Re (1-]ay?){(1-|ay|?)?+2|a,~af|?}
N L +(8)* (2= ad)2(1~ay|) >+ |~ a3} oo

—Rda;(aj —aja;)(|aj —aja|’

With this notation, we may write 2 o
+2|az—a18,|%) +(ag)* (az—asayp)

2 X (2|af —aja,|*+|az—a;a,/9)Jvjvs.  (C13b
(eP'Gp(2)|PR)P(PR)ADR

(eip*”Gn(z)): . (C9Y Differential elliptic flow measured with respect to integrated

(@) ddy directed flow yields
don{3} = Re[ (1 |ay|*)*+(a)* (2~ a})*Jozv]

The denominator is egual tor,= 27 since we normalize +2Rd (a))* (a* —a%a,)(a,—ad)

the acceptance function k),=1. In order to evaluate the

numerator, we neglect nonflow correlations. Then, the proton +(az)* (ag—axay)(1— lay|?) Jvivqv,.

and the pions are emitted independently for a fideg, so

that averages factorize as (C19

. ' The differential elliptic flow with respect to integrated ellip-
(ePVG(2)|PR)=(eP!|DRWG,(2)|PR). (C10 tic flow is given by
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dao{ 2} =Re 1-[a,|*+(a))* (a,—a5) Jvv>
+Re(a))*(a;—azai) +(ag)*(az—ajay) vy,
(C15a
and to higher order
da4} = — Re[(1-]az|){(1~[az|?)?+2|a,— a3}
+(ay)* (a—a3){2(1—|agl?)?+|as—a3|? v 5w}
—Rd(a))* (a;—axa})(|ai —a5ay|?

2
+2laz—aja,|) +(ag)* (ag—aja,)

PHYSICAL REVIEW C 64 054901

standard deviation ofx} from the exact averagéx), which
scales as 3/Ng,s This result will prove useful later on.

1. Two-point correlation function

As explained in Sec. Il B, one constructs for each event a
generating functiorG,(z), defined by Eq(5). The generat-
ing function of azimuthal correlations is the statistical aver-
age of this function{G,(z)). This quantity, given by Eq.
(15), does not depend on the phasezdifecause of isotropy.
On the other hand, one measures experimentally a sampling
average|{G,(2)}, which generally has aveak dependence
on the phase of, due to statistical fluctuations.

In the following, we shall need to evaluate the statistical

2 2 1.3
X(2lay —ajay|*+|ag—aiap|*)Juivy.  (C15B  fyctuations of the sampling averaf@,(z)} around the true

rst_atistical averagéG,(z)). These statistical fluctuations are
Eharacterized by the two-point correlation function

<{Gn(z)}{Gn(Z’)}>_ <Gn(z)><Gn(Z,)>

When the acceptance of the detector used for the measu
ment of integrated flow is perfect, i.e,=0 for p# 0, these
formulas reduce to Eq$34) and (35), i.e., they do not de-
pend on the differential acceptance coefficiemfs L
=——({G(2)G,(2"))—{(GL(2)){(Gx(Z"))), (D3
APPENDIX D: STATISTICAL ERRORS Nevts(< (DG(2)) = (GolD)Gnl(2))). (B3I
In this appendix, we calculate the statistical fluctuations
of the reconstructed integrated and differential flows, due tovhere we have used E@D2). To evaluate the rhs of Eq.

the finite number of events, . More precisely, we calcu- (D3), we first perform the average for a fixed orientation of
late the covariance matrices the reaction plan@y. Using Egs.(5) and(12), we obtain

(vnf2ktv{21}) = (vai2k})(va{21})
and (Gn(2)Gp(2")|Pr)=

(Vmwnt2k+m+ 1 o yt2l+m+ 11 — (v gyl 2k+m+ 1})

(z+2")v,e "PrR+c.c.

J’_
1 M

M
z*z' +c.c.

X (vl d2l+m+11) e

* -/

that contain the standard error on each estinog{@k} and

:exy{ (z+2')v,e” "PR+

vhwni2k+m+1}, and also the linear correlation between tec.,
estimates of different orders. Throughout the appendix, we
neglect nonflow correlations and assume that the detector is (D4)

perfect.
We first introduce some notations. Xfis an observable \yhere c.c. denotes the complex conjugate. One must then
measured in an everimultiplicity, transverse energy, €l¢. average ovefDy:
we denote by{x} the average value of over the available
sample of events, which we also call teempling average

N de(I)R
1 News <Gn(z)Gn(z')>=f §<Gn(z)Gn(z’)|ch>. (D5)
D= 2 X (DY) 0

The exact statistical average, corresponding to the limifThis function is invariant under a global rotatiomz,%’)
Newis—, Will be denoted byx). Note that({x})=(x). —(z€%,2'€'"), but depends on the relative phast’

If y denotes another observable associated with eackz*z'/|zZ| betweenz’ andz We can expand it in Fourier
event, then the covariance of the sampling averdgieand  series with respect té, in the form

iytis

(Gu(2)Ga(2 )= 3 9’m(|z|,|z'|><Z Z) . (06)

|2Z|

(AN~ 000) = (G =), (02

where we have used the property that events are statistically
independent. Whep=Xx, the square root of the rhs gives the where the Fourier coefficients are given by
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<Cn(Z)Cn(Z')>— <Cn(z)><cn(z,)>

0 . )
5.6 ™4Gu(lze")Gy([2']))
_ <{Gn(z)}{Gn(Z,)}> _<Gn(z)><Gn(Z’)>

, 27d
Guil2 2=

=J27%e‘m"J2W%exp( 2|0 e (0-1g) (Gn(2))(Gn(2"))
i n L [ (Gy(2)G(2)
n(2)G(z
, = ~1], (D14)
+12'|v,e "PR+ |ZM—Z|e”’+c.c. . (D7) News| (Gn(2))(Gn(2'))

where we have used E@3). According to Eq.(D13), we
must isolate the terms proportional {a|?|z’|?" in the
power-series expansion, i.e., terms that do not depend on the
phases ofz and z’'. The denominator, given by Ed15),
depends only ofz| and|z’|. On the other hand, the numera-
(D8)  tor depends on the relative phasezaindz’. The isotropic

part is the termm=0 in the Fourier expansiofD6). We thus

If flow is small, more precisely if,<1/JM, we can set
v,=0 in this equation. Then, the integral ov@x is trivial,
while the integral ove# yields

2|z7 |

gm(|z|1|z,|):|m M

When flow is larger, the integrations can be performed usiné)btam:

the following identity, valid for reak: (cn{2k}cn{21}) — (cn{2k})(cn{21})
+ 00
EXFXXei¢+ Xefi‘ﬁ): E eiqd’lq(ZX). (D9) = ! g0(|z|'|Z,|) -1 | 2k|1 (21
= News| 15(2/zlo)lo(212'[on) /122
Note thatl _4(2x) =14(2x). Applying Eq.(D9) to the three (D15)

terms in the exponential in EGD7), one obtains
whereGy(|z|,|2'|) is given by Eq.(D10) with m=0.
) ) 2|zZ| The estimate of integrated flow,{2k} is obtained by
In(l2l.|2 |):q;m 14(2[zvn)14(2]2 |”n)|q+m(T)' expanding Eq.(16) to order|z|?%. Using Eq.(D12), it is
(D10)  felated toc,{2k} by

+ oo

Whenv,=0, all terms in the sum vanish bgt=0, and one Cni{ 2K} =1l o(2|Z[vp{ 2K}) | g k. (D16)

recovers Eq(D8).
Using this equation, one easily relates the covariance matrix

of the estimates {2k} to that of the corresponding cumu-

. ) ) lants. Noting that
Experimentally, the generating function of the cumulants

2. Integrated flow

Cn(z) is obtained by replacingG,(z)) with the sampling 11(2]Z|v,)
average{G,(z)} in Eq. (7). The cumulants,{2k} used to Inlo(2|z[(v,+ 5”))_|n|0(2|2|vn):2|2|W&)'
estimate the integrated flow are then obtained through a 0 " (D17)

power-series expansion. We first introduce the notation
we obtain from Eq(D16)

k &l
f(2)| kpr 1= f(z D11
@) =551 12| P (erfaigenay) ~(enf2k)en21))
With this notation, the cumulam,{2k}, defined by Eqs(8) =4 /||1(2|Z|U“) 11(2]2 |U”)‘ (va{2Klv{21})
and(11), can be written as lo(2lzlvn) 14(2]2'|0,)] 12[2K27]2!
Col 2K} = Co(2) | e (D12) — (o 2K (v f21})). (D19)
The statistical fluctuations of the cumulawtg 2k} are char-  yUsing the expression of the covariance matrix of the cumu-
acterized by their covariance matrix: lants obtained above, E¢D15), one thus obtains a compact
expression for the covariance matrix of the estimatd2k}.
(Caf2K}ea{21}) —(cn{2k})(cni2l}) Before giving explicit results for the lowest-order cumu-
:<Cn(z)cn(zl)>_<Cn(2)><cn(2,)>|‘Z|2k‘zr‘2l (D13) lants, let us discuss the weak flow and strong flow limits. If

va<1/\YM, Go(|2],|z’|) reduces to Eq(D8), and the rhs of
Let us evaluate the rhs of this equation. We assume that theg. (D15) depends only ofzZ |, thus terms withk#1 van-
multiplicity is large enough, so that,(z), defined through ish: correlations between different cumulants vanish in this
Eq. (7), reduces to {G,(2)} for the sample of events. Ex- limit, so that different estimates af, are uncorrelated. If
panding the logarithm to first order arout@,(z)), one ob-  v,>1/\/M, one can expand E¢D10) to order 1M, which
tains yields
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Go(lz],12')=10(2|z]vp)10(2]2'[vy) 01 ' ' ' 7 p—
Sv{d}
2|1zZ| N p—
+ M 11(2[zlv)14(2]2'[v,). (D19
Inserting this expression into E¢D15), and comparing with
Eqg. (D18), we obtain 1
1 0.75 | I
(vn{2Kjvn{21}) —(vn{2k})(vn{21})= :
2MNgyis
(D20) 05 [ /
is limi i . 0.25 |- e Cla 4y~
In this limit, all estimates ,{2k} coincide and the error on S @rie
the integrated flow is 42MN.,s independent ok. This 0 = 05 : e . ‘e _25

result can be easily understood: whenis large compared

to 1/A/M, the reaction plan&g can be reconstructed with

very good accuracy. Then, the integrated floyy2k} can be FIG. 2. Top: statistical errors on,{2}, v,{4} andv,{6} for

obtained as the average over all particles of all events ofl,,=10° andM =200, as a function of=v,M. Bottom: linear

cogn(¢—Pg)]. Since the total number of particles is correlationcyy o, between each pair of estimates{2k} and

MN,s, ONe evaluates (MNethEj:1MN9VISCOS{H(¢I‘_(DR)], va{2l}, with 1<k<=3 and I=I<3.

and the average value of the square of this quantity is

1/(2M Ny for random angles. Thus the resulting statistical While the lowest-order estimate,{2} always has the

error is 14/2M Ngys smallest statistical error, the statistical error o6} is
Finally, in more general case when and 14/M are of  slightly smaller(by at most 5%than the error ow {4} for

the same order of magnitude, explicit expressions for the>1. ) _ ) )

lowest-order estimates are obtained by expanding m) ) The correlation between estimates of different orders is

and (D18) in power series ofz|2 and|z’|2. The standard 9iven by

deviations on the first-order estimates are given by

(vn{2}vf4}) — (V{2 (v {4} = ZMLM;

2 2 2 1 1+2)(2
(80n21)"=(uni2}) = (vl 21)°= FuN . 22 1
(vni2}vni6}) —(vnl2{(vnl6h) = s
evts
(Bu{4})°=(vn{4}?) — (vn{4})? e
R T S A <Un{4}vn{6}>_(Un{4}><vn{6}>=ZMT\I 3x +2X 8+2)( |
2MNgyis 2X6 ' evts X 022
(80n{6})*=(vn{6}*) ~(vn{6})? Figure 2 displays the linear correlatiany o between

vnf2k} andv {21} with k#1. We recall that the linear cor-
1 34182+ 9x*+28y°+12y8+ 24y 10 relationc between two random variablesandy is defined as

" 2MN A 10 !
o X e - 00) 023
(bz1) A= (0P ()P
with XZEMvﬁ. In the limit y>1, the results reduce to Eq. c always lies betweer-1 and 1; these two limiting cases
(D20). corresponding to a linear relatigr= ax, while c=0 if x and

The values ofSv {2k} given by Egs(D21) are plotted in y are uncorrelated. As expected from the discussion follow-
Fig. 2 as a function of. We have takeM.=10° events, ing Eq.(D20), different estimates are uncorrelatedyi<1,
with multiplicity M =200 each. With these valueg=1 cor-  but the correlation becomes stronger and stronger as the
responds tw,=7%. Some comments on these results: resolutiony increases.

The statistical error increases rapidly ;s decreases: if Finally, we would like to point out that the statistical fluc-
va=3% (i.e., x=0.42), the statistical error using the fourth- tuations of the estimate,{2k} around the true value, are
order cumulant is reasonably small, less than 0.2%. But ifiot Gaussian. Indeed, it can be shown that the fluctuations of
v,=1.5% (y=0.21) the statistical error becomes of thethe cumulants are generally Gaussian. Thus, according to
same magnitude as the flow itself. Such small values of th&gs. (17), the fluctuations of the variablé=uv {2k} are
flow can be studied only with a higher multiplicity and/or a Gaussian, but not the fluctuations wf{2k} itself. We may
very large number of events. write

054901-20



FLOW ANALYSIS FROM MULTIPARTICLE AZIMUTHAL . ..

3+ ; 5 “Yn{2} _
N V{d} e
25 | nfBh o

val2k} /vy

FIG. 3. Distribution ofv {2}, v.,{4} andv,{6}, scaled by the
theoretical value, .

dN 1 <§—vﬁk>2)

——= exp — , (D24)

d¢  \2mo F{ 207

where o is the standard deviation of It is related to the

deviation v ,{2k}, Egs.(D21), by

o=2kv* 150 ,.{2k}. (D25)

PHYSICAL REVIEW C 64 054901

Svonmi3t— |
Sviyn{d} - Svopyn{B} -

o1 b %

0.25 - §

6(2);{4) """

. “lap5
o o5 1 15 2 0 05 1 15 2 25

FIG. 4. Left (resp. right: statistical properties of the estimates
of vy, (resp.vyyy,). Top: statistical errors on;,,{2} andv;,.{4}
(resp.v i3} and vy, ,{5}) for N'=5x10° and M =200, as a
function of y=v,yM. Bottom: linear correlation betweerf,,{2}
andvr;/n{‘"} (resp-vénln{:g} andvénln{s})-

distribution is isotropic, so thgtD,,(z))=0, and only fluc-

tuations remain. Using E¢D2) and the definitio{D26), we
thus obtain

<Dp/n(Z)Dp/n(Z,)>:0

In order to illustrate the non-Gaussian character of the fluc-
tuations ofv {2k}, we display in Fig. 3 the distribution of 1
vn{2}, v,{4} andv {6} when the average value &fin Eq. Do (2)D* (2')) = — D28
(D25) is only one standard deviation above zero, i.e., when { pin(2) p’“( ) N’ <Gn(z)><Gn(Z,)>. ( )
o=v2%. Then, using Eq(D24), the probability tha&<0 is

about 16%, in which case,{2k} is undefined. One notes We recognize in the last equation the two-point function

(Gn(2)Gn(2")

that for the 84% remaining cases, the distribution g2k}
becomes narrower akdncreases.

3. Differential flow

studied in Appendix D1. The covariance matrix of the cumu-
lants (D27) can thus be written

(dmynd 2K+ M+ 1}dpynd 2l +m+1})

The generating function of the cumulants used for differ-
ential flow, Dy/n(2), is the ratio of two quantities: the nu- =
merator of the rhs of Eq26) is evaluated from a sample of
N’ protons, while the denominator is calculated from the
same sample of events as for the integrated flow, that is,
Nevis- Since the measurement of differential flow is usually
performed in a narrow phase-space window, we neglect the

(Gn(2)Gy(2'*))
(Gn(2))(Gn(z'))
L (Gn(z)Gn(2)) )
(Gn(z*)){(Gn(2"))

1
4N’

ZK+mzxkzrl+mgr x|

contribution of the denominator to the statistical error. We _ 1 [(Gn(z")Gn(Z')) (029)
thus write 2N’ <Gn(z)><Gn(Zl)>’Zk+mz*kzrl+mz/*l.
{eP’Gn(2)} . . "
Dpin(2)= (D26)  Using Eg.(15) and the Fourier decomposition of the two-

(Gn(2))

where the denominator is given by Ed5).
The cumulantsd,y,{2k+m+ 1} defined by Eqgs(27)
and(29) can be written in the form

point function(D6), we obtain

<dmn/n{2k+ m+ 1}dmn/n{2| +m+ 1}>
Amnl 2k+ M+ 1} =3[ Diun(2) + DE yn(Z) ]| gt mpe k.
(D27)

_ 1 GulldlZD 27 )'“
2N’ 1o(2|z[vp)10(2]2'[vn) \ [2Z]

We now evaluate their covariance matrix. For simplicity, we

shall assume that there is no differential flow, i.e., thatsthe whereG,(|z|,|z'|) is given by Eq.(D10).

ZK+mzx kzrl+mzr x|

(D30)
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The estimate of differential flow,,,{2k+m+1} is ob-  This result can be simply understood by repeating the argu-
tained by expanding Eq31) to orderz¢*™z*X. Using Eq. ment used in the case of integrated flow.
(D27), it is related tod,,yn{2k+m+1} by In the more general case whep and 1A/M are of the
same order of magnitude, the following lowest-order formu-

Im(2]2]v,)( 2 )m las are derived by expanding E@32) in power series. For
ik +m+1 =" =
ot P 1o@Zoa T2 | s m=1,
X vl 2k+m+ 1} D31 , , 1 1+x°
ol oo 03 (W21~ o 2P= = =

Using this equation, one easily relates the covariance matrix
of the estimates |, ,{2k+m+ 1} to that of the correspond- 1
ing cumulants, given by EqD30): (vynl2bvinfd}) = (i 2H (v nld)) =—

2N’
|m(2|Z|Un) |m(2|z,|vn)
, (Vmwnt2k+m+ 1o gy, , , 1 2+6x*+x*+x°
21242 16(212' o) (a4~ )= 2
x{2l+m+1}) (D35
T S _
1 G (lz.1z with y*=Muvy; . Form=2,
2N 142 |m(|>|| |<2||)| >; | 032 24 x4
" o(2]zlvn)lo(2[Z" [vn)] 2,2 , , 1 2+4x“+yx
. (03t 31 = {31 =2 —— 7
Let us discuss the weak flow and strong flow limits. When
va<1/\YM, Gu(lz],|Z’]) is given by Eq(D8), and terms with .
k#1 vanish: as in the case of integrated flow, correlations (,)  131y)  (51)—(uy [31)(vpynlBH) =—— —7—
between estimates of different orders vanish in this limit. 2N X
Whenv,>1/4/M, expanding Eq(D10) to leading order in , ,
1/M, we obtain (Vo532 = (v ol B})?
Onl|2 2 = 1n(2l2lon (@2 lop). (D33 _ 1 6+24*+Ox' 110 +4y® (039
T AN, 8

i i 2N’ 4x
Then, the covariance matrix, EGP32), reduces to

When x> 1, these results reduce to Efp34). Figure 4 dis-

plays the variation withy of the standard errors on the vari-

1 ous estimates and the linear correlation between cumulants

(vl {21+ m+ 1}y = —. (D34)  of djfferent orders. The behavior is qualitatively the same as
2N’ for integrated flow.

(Vmnf2k+ M+ 1}o fy{21+ M+ 1} = (v yaf2k+ m+ 1})
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