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The time-dependent mesh method is applied to the calculation of the Coulomb breakup of a projectile into
two charged fragments. The projectile is described in the potential model and its center of mass is assumed to
follow a classical trajectory. The approach is compared with the first-order time-dependent perturbation ap-
proximation based on an electric dipole interaction under the same model assumptions. The numerical tech-
nique is applied to thé’F+ 2%Pb— %0+ p+ 2%%Pb breakup in order to test the validity of the extraction of the
E1 astrophysica$ factor for the®O(p, y)*F radiative capture reaction to thé ground state. After carefully
testing the validity of the numerical technique, we show that the accuracy of the astropt§ydactbr
extracted in such a way is better than 5% for projectile velocities above aboutifl.@2Bge domains of impact
parameters and relative energies between the fragments. Breakup cross sections are also calculated as a
function of the relative energy between the fragments at different projectile velocities. A test calculation is
performed for the breakup of the weakly bound "1/&xcited state of-’F. A comparison is presented and
discussed with the only existing experimental differential cross section at the projectile energy of 10 MeV/
nucleon.
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[. INTRODUCTION breakup is a transition from a two-particle bound state to the
continuum. The numerical method that we use has already
Coulomb breakup has become an essential tool in sever@een applied in Ref.21] to the Coulomb breakup of'Be
domains of nuclear physics. Breakup cross sections providiéto °Be and one neutron in the Coulomb field 8fPb. In
useful information about the structure of halo nud&j. the present work, both fragments of the projectile are
They can also be used as an indirect method of measuremegftarged contrary to the halo nucleus breakup where a neu-
of astrophysicals factors[2,3]. This topic is the subject of tron is emitted. The fact that agdit?onal Coulomb interactions
intensive experimentd#—11] and theoretical12—19 inves- ~ NOW appear between the projectile fragments on one hand,

tigations. Indeed the Coulomb field of the target nucleund between both fragments and the target on the other hand,

simulates a large number of photons. The photodisintegratiijOes not lead to modifications of the computational scheme

process is enhanced with respect to the time-reversed radi 9scr|b|:1g_the ftm_e evolution cl’(f E[heﬁwa\t/re]: paclll<_e'g. However,
tive capture by kinematic factors. However, the accuracy OF € analysis of this wave packet after the collision process

. . requires taking accurately into account the nuclear and Cou-
the extracted astrophysic8l factor cannot easily be estab- ; X X L -
lomb distortion of the wave functions describing the relative

lished. Higher-order mult|polar|t|es', W.h.'Ch are nggllglble "N motion between the projectile fragments. This will allow us
the capture process, may play a significant role in COUIOml?o compare the obtained results with the first-order perturba-
breakup. The importance of tt&2 component for thé'B i, approximation, which is the basis of Coulomb breakup
breakup has been discussed by several authors but remai§sierminations oS factors.
uncertain12—-16,19. For this reason, this indirect method is e present test of the validity of the Coulomb breakup
not always considered as competitive with direct methods ofechnique presents several advantages due to the fact that
measuremenf20]. Testing the validity of this approach is most model assumptions are identical in the compared nu-
usually based on an evaluation of the importance of highermerical and perturbative approaches. More precisely, both
order corrections. A completely different approach will be calculations involvei) the same nonrelativistic assumption,
followed in the present paper. We shall perform a calculatior(ii) the same classical trajectofg straight line in the follow-
of Coulomb breakup, which is not based on a perturbativéng comparisoi (iii) the same potential between the projec-
scheme nor on a multipole expansion. From this study, weile components, andiv) neglecting in the same way the
shall deduce domains of projectile velocities, impact paramnuclear interaction between the target and projectile. This
eters and relative energies between the fragments where tiraplies that inaccuracies due to those simplifying model as-
accuracy of a determination of the astrophysi€afactor  sumptions are of the same order in the compared numerical
from Coulomb breakup is better than some required value.and perturbative approaches and will essentially cancel each
To this aim, we shall perform a numerical solution of the other during the comparison of the nonperturbative and per-
time-dependent Schdinger equation describing the behav- turbative calculations. In other words, the perturbative ap-
ior of a two-body projectile in the varying Coulomb field proximation is the exact limit of our calculation and the do-
induced by the target nucleus. To a good approximation, thenain of calculation conditions, where both approaches agree,
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must have a physical significance. Moreover, the radiative T (#5Pb) f (p)
capture cross section can be calculated within any necessary

accuracy, under these model assumptions. If the potential R(t) v
model describing the system does not perfectly reproduce the ™
experimental astrophysic8 factor of the studied radiative . (lﬁo)M

capture reaction, the inaccuracies on the potential-m8del
factor should also not significantly affect the physical valid- FIG. 1. Coordinates appearing in the definition of potenial
ity of the conclusions of the comparison. [Eq. 3)].

Of course, the present model also has some limitations.
The motion of the projectile is described by a classical tra- P
jectory. We have checked in RdR1] that straight-line and i —W(r,t)=[Ho(r)+VC(r,t)]¥(r,t), (1)
Coulomb trajectories give very close results at the velocities ot
that we consider here. Except in Sec. VG, the following : . .
results are obtained with straight-line trajectories. HoweverVhere the wave packek (r,t) describes the relative motion
the semiclassical approximation does not allow studying’’ the fragment and the core. In this expression,

final-state three-body Coulomb effects. These effects have 52
been analyzed by other authd?]. Ho=— —A,+ V(1) 2)
In the present work, the time-dependent Sclmger 2

equation is solved on a three-dimensional spatial mesh. The
potential only enters through its values at mesh points so tha?
it can be easily modified. The fact that both fragments are_ mime/M, Wheremf’ Me, andM =m+m are the frag- .
charged can thus be introduced without complication. Thé"€nt: core, and projectile masses, respectively. The potential
method[23,24 makes use of values of the wave function at ¥ (") iS the sum of a central potentiglh(r) including a Cou-

. 2 .
mesh points in angular space. The radial functions are agP™MP term tending towardsZ.e“/r whenr is large and of a

proximated with variable-step finite-difference techniques SPin-orbitinteraction/s{r) coupling the relative orbital mo-

The accuracy of the treatment of the radial mesh is improve€ntuml with the spinl of the fragment. Both form factors
with respect to Ref[21]. Vo(r) and Vg (r) may depend on the orbital momentum

The Coulomb breakup reaction that we treat &  quantum numbei. The_int.eractionvc(r,t) of the target
+20%pp 160+ p+ 29%h It is an interesting example for n_ucleus wlth the prOje(_:tlle is as_sumed to be pur_ely Coqlom-
several reasons. THEO(p, y)'F radiative capture has been bic. Notice tha_t the introduction of nuclear interactions
thoroughly studied experimentallg5,26,2q and is well un- ~ Would be easy in the present model. _ ,
derstood theoreticallj27—29. Notice that this capture reac- 1 he time-dependent Coulomb potentiéli(r.t) is defined
tion dominantly proceeds towards the weakly bound"1/2 @S
excited state oft’F while only the ground-state capture can

the projectile internal Hamiltonian with reduced mass

2 2
be studied with Coulomb breakup. THEO+p system con- VE(r,t)= ZeZ1e ZiZ1e
tains a closed-shell core and should rather well be described [mr/M+RO[ - [mer/M=R(b)]
by a simple cluster model. A potential is available that fits (Zo+24)Z1€2
the spectra of thé®0+ p and %0+ n systemg30]. Finally, e SrETE 3)
beams of!’F are becoming available. An experiment has R(D)

already been performed near 10 MeV per nuclgfn i
In Sec. Il, the physical problem is recalled and modelized.Wherezf’ Zc, andZy are the charge numbers of the frag

In Sec. lll, the electric dipole first-order perturbation ap_ment, core, and target, respectively, &) is the relative

proximation whose validity is tested is described. The Com_coordlngte between the pr01e9t|le and the tafgee Fig. 1 .
. . . . . The projectile center of mass is assumed to follow a classical
putational algorithm is summarized in Sec. IV. THéF

+ 2080, 160+ -+ 298P Coulomb breakup reaction is stud- trajectory with the initial velocity at the impact vectob.

ied in detail in Sec. V. After some tests of the accuracy of the r‘:’gltzdelgenfu?étlr(;ns of HamiltoniaH, with energyE are
numerical approach, the obtained results are discussed an%Pj Fim(E.1),

in one case, compared with experiment. Section VI is de- Hod (E.-V=Ed (E.r 4
voted to concluding remarks. 0®1jm(E.1)=Edjm(E,r), (4)

wherel is the relative orbital momentumjs the total angu-
Il. BREAKUP MODEL lar momentum resulting_ fr_om th(_e co_upling lotvith the spi_n
I+ of the fragment, andhis its projection. The wave function
The projectile(P) is a bou_nd system made of the c@o®  ¢);,(E,r) includes angular partg;, () and fragment spin
and.fragment(f)_ nuclei, which are treateql as structurelessparts||fmf> and reads in mixed notations
particles. They interact through the potentigl), wherer is
the coordirjate' betwee'n the core and_the fra.lgment.' If the ¢|jm(E,r)=r_1U|,-(E,r)[Y|(Q)®|If)]jm. (5)
target motion is described by a classical trajectory in the
projectile rest frame, the breakup reaction on the taf@et Bound states are normed and scattering wave functions are
follows the time-dependent Sclilinger equation normalized in such a way that
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ujj(E,r) — cosd(E)F|(E,r)+sing(E)G(E,r), (6) dp® 2u 1
o aE BT a2
whereF; andG, are the standard regular and irregular Cou- "
lomb functions[31] and &, is the phase shift. x> J
The initial condition for solving Eq(1) is then mo ljm [ J —e
2
\P(mO)(r’_w):¢'oiomo(E0’r)’ @) Xei“’t<¢|jm(E,r)|VC|¢|Ojomo(Eo,r)>dt ;
whereE, andlyj,mg are the ground-state energy and quan- (10)
tum numbers, respectively. Equatiéh) must be solved for
each value ofm,. In practice, only positive values ah,  Where
need be considered, since results for negative values can be B
deduced from time reversal. w=(E—-Eo)/h. (11)

When the solution of Eq(1) is known fort—«, the C: . . S
breakup probability is obtained as a function of the impactWhenV Is approximated by its external electric dipole term

parameteb as

m; mg| r-R(t)
VE =—Z¢| Ze— — f—>e2 (12)
dP . 2u 1 M M R
de" ™ mh?k 2jot1 and the trajectory is a straight line
=b+
X3 3 (b ENTr )] @ Rit)=btot, 13
0

the time-dependent part of the integral in E#&j0) contains

with E=#%2k%2u. In this expression, an average is per-the integrals

formed over the possible values of,. The first factor is

related to the choice of normalizatio®) and (6) for the fm el ot qu[QR(t)]dt
scattering waves of the core-fragment system. In(Bg.the —w R(1)?

final state is projected on the exddistorted scattering state

of the core-fragment system at enefgyThis is a generali- 3 2x . q
zation with respect to Ref§21,32,33. Such a generalization =N Z7bg | KoX¥) o1 EKl(X) Ol |» (14)

is essential to allow a comparison with the Coulomb breakup
extraction of the astrophysica factor. Notice another dif- \yherek, andK, are modified Bessel functio81] and
ference with earlier works: the wave functid(™o(r, + )
need not be projected out of the bound-state subspace as, for X=wb/v. (15
example, W, (r,+«) in Ref.[21]. Indeed the distorted final
wave functions,(E,r) for positive energies are automati- Let us introduce the totdt1 radiative capture cross section
cally orthogonal to this subspace. to the bound state, ; m (Eo.r),

The breakup cross section can then be calculated as

() 8 . my . m.\? 2
do, = dP M T e VI I VI B
dE (E)—Zijmind—E(E,b)bdb. 9 .

X
The lower boundb,,, is a cutoff related to the range of (2lc+1)(21+1)

nuclear effects. The upper bound is in practice replaced by
some valueb,,, whose choice must be carefully tested. X, |2 [{15omq(Eo DTl dijm(E, 1))
mg ljm

lll. FIRST-ORDER PERTURBATION APPROXIMATION (16)

The extraction of theE1l astrophysicalS factor from  The photon wave number is related to the initial enegy
breakup cross sections relies on the validity of the first-ordefhroughk, = (E+[Eo|)/Ac. Combining Eqgs(10), (14), and
perturbation approximation. Before describing the numerical16) leads to the expression of the breakup probabja]
algorithm for solving the time-dependent Sctimger equa-

tion (1), let us summarize this simple approximation to dPgy b= b~ E  (2+1)(214+1)

which we shall compare our results in Sec. V. dE (E,.b)=M )ﬁ E+|Eo| 2jo+1 oex(E).
At high enough velocities, Eq1) can be solved approxi- (17)

mately by using the first-order perturbation thefi®y,35 to

give In Eq. (17), the coefficient reads
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ZZ
Nib)="""2

C 4
—(;) {TKoOOP+[Ky(0T3, (19

ks

wherea is the fine structure constant. TB4 radiative cross
section(16) can be calculated 420,29

ahc 3 )
og1(BE)= ﬁNElky[lEl(E)] : (19
In Eq. (19), the normalization factor is given by
2
i)

(2] +1)(2j o+ 1) (21 +1)(21 o+ 1)
(21.+1)(21;+1)
2
¥ i

o 1 |
The one-dimensional integrét; (E) is given by

mg Mme
MM

Ng1= 3

It
1

2 .
jo lo

I (20

ooo)

|E1(E):J:oU|oj0(Eo,r)rU|j(E,r)dr, (21)

where u,OjO(EO,r) and uj;(E,r) are the radial parts of
®1,igme(Eo.T) and éyjm(E.1), respectively{Eq. (5)]. Notice

that the normalization of the scattering wave function

ui;(E,r) is the same as in Ref20] but differs from Ref.
[29].
IV. NUMERICAL ALGORITHM

For solving the time-dependent four-dimensional Sehro
dinger equation(1), we apply a nonperturbative approach

[24,21). The angular part of the wave function is expanded

over N angular basis function¥,(2), whereN is a squared
integer, 0=(60,¢), and v=(I,m;). The angular basis con-
sists in standard spherical harmoni¥gy () with |m,|
<i(JN-1) andls\/ﬁ—_l, complemented by a few addi-
tional angular functionsY (2) with JN<I<|m|+ N
—1 necessary to have the same numighr of basis states

for each of theyN values of the projectiom,. The con-
struction of the modified Legendre polynomial part of the

Yim () is explained in Ref[21]. This angular basis is as-
sociated with a set of mesh poinfl in a two-dimensional
angular grid. For thed variable, the (N mesh points are

chosen as the zeros of the Legendre polynomial of degree

JN. For the ¢ variable, they'N mesh points are uniformly

PHYSICAL REVIEW C 64 054612

It N

vr=r-t > >

mf:*“ v,i=

YO0 my).
(22)

In this section, the initiaing value on which¥ (r,t) and the
z//imf(r,t) depend is understood. The coefficients ¢) ,; are
elements of the inverse of the matixwith elements Y);,
=Y,(Q;). Notice that a misprint in the order of the sub-
scripts of matrixe in Ref.[21] is corrected here foY. Each
complex radial partial wave functianim‘(r ,t) corresponds to
the value of the component df(r,t) with a specific projec-
tion m; for the fragment spini;, calculated at th€); mesh
point,

It

V(rt)g-a=r"" 2 #"(r,0]lm).

mf:—lf

(23

The superscripin; corresponds to the spin component while
the subscript refers to the angular mesh point.
Let us introduce the (2+1)N-component vector

W(r,t)={\{"%"(r,t)}, where\; is the weight coefficient

of the Gauss quadrature corresponding to the selected mesh

[31] (see Ref[21] for detailg. With respect to the unknown
coefficients in expansiof22), the problem is reduced to a
Schralinger-type system of radial equations

m%qr(r,t):[ﬂo(r)+Vc(r,t)]‘1’(r,t)- (24

In this system, Ho(r) and VS(r,t) are (2;+1)N
X (21++1)N matrix operators representiry, [Eq. (2)] and
VC [Eq. (3)] on the grid. The elements &f,(r) are defined

by
mem! 2 (92
i - s , oy 12
0ii ! (r)_ 2# ar25n’5mfmf+()\|')\|)
N
x 2 (Y
' =1
h2
X S+ +Vo(r) | 8, Sy +Vsd 1)
2ur =

X<|m||fmf||'|f||m|’|fmf’>5n'}(Y1)Vi, (25

distributed over the unit circle. To this grid is associated aVhereVo(r) andVy{r) are the form factors for the poten-

Gauss quadrature. The basis functiong(}) are exactly

tials between the fragment and the core in thie partial

orthonormal when their scalar product is calculated with thisvave. Notice that the bracketed expression dependsand

Gauss quadrature. The total number of grid poif¥s is
equal to the numbeN of basis functions in expansioi22)
[23,24.

The wave function¥ (r,t) is expanded in spherical coor-
dinates as

v" throughl, m; andl’, m/ .
The elements of/°(r ,t) read

Cmymy

V (r7t):VC(r!Qi 1t)5ii’5mfm;- (26)

i’
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The Coulomb operator defined in E®) is diagonal in such 1.0
a representation.

The time-dependent equations are solved as described i
Sec. I C of Ref[21]. The initial states are described at time 0.8
T, by the (Z,+1)/2 ground-state wave functions
b1,i4me(Eo.T) of Ho with positivemg [Eq. (5)]. After a num-
ber of time stepat, each calculation is stoppedBf;. It is
shown in Ref[24] that the computational time is approxi-
mately proportional tdN whenN is not too large.

For discretizing with respect to the radial variablea
sixth-order(seven pointfinite-difference approximation on a
quasiuniform grid has been used on the intemval O ,].
The grid has been realized by the mappingx of the initial
interval ontoxe[0,1] by the formular=r,(e®—1)/(e® 0.2
—1) [23]. This is an important difference between Refl]
and earlier work$32,33 where uniform grids are used. The
eigenvalue problen) for the initial bound state and for the
final scattering states is solved on the same grid.

0.6

0.4

SEl (keV b)

0.0

0.0

V. APPLICATION TO THE F BREAKUP

A. Physical aspects FIG. 2. E1 astrophysicab factor for the'®O(p, y)*’F radiative

The present numerical technique is applied to e capture regction tg the grounq state’dF (in keVb) as a funcf[ion
+ 208pp, 1604 p+ 208p, breakup. Thé”F nucleus is well of the relative motlo_n energl;‘z_(ln MeV). Thep wave(dashed ling
described by artfo+ p cluster structure. Thé®0 core has ano!f wave (dotted ling contributions are also presented. The ex-
spin 0 and the proton has spip=1/2. The *’F ground state perimental data are from ReL26].
with binding energy|Ey|~0.605 MeV has quantum num-
bersly=2 andj,=5/2. The energies of thid5/2 ground
state and of thes1/2 bound excited state of’F are well
reproduced by the potential of Rd80], which provides a E b)= 277 2jo+1 h2 E+|Eq| dP -
simultaneous fit of the’O and ’F single-particle levels. Sl E,b) =€ (21+1)(21;+1) & Mb) d_E( D),
This potential contains central and spin-orbit terms, and a (29
point-sphere Coulomb interaction. A Woods-Saxon form fac-

tor is used for the central pgrt and its de_rlvat|ve for the SPINy here the last factor is given by E(). This expression has
orbit part. All masses are integer multiples of the nucleo

. 2 = 2 "the dimensions of ai$ factor. However, it depends on the
massmy fixed by %/ Z_mN_20'7366 Mevlf7 o selected impact parameterAccording to Eq(17), when the
The E1 cross section for thé®O(p,y)!F radiative cap-

, o i first-order andE1l approximations are valid, i.e., when, re-
ture reaction to_th F ground state contains two compo- spectively, the velocity and the impact parametér are
nents withl =1 (j=3/2) andl=3 (j=7/2 and 5/2. TheE1

large enough, the expressi E,b) should be nearly in-
astrophysical factor is related to this cross section by degendentgob and eqFl)JaI toét?\él S) factor (27). y

Sea(E)=E€™ 0y (E), (27)

Let us introduce the quantity

B. Numerical aspects
where n=2Z;Z.e*(u/2EA?)Y2, It can be calculated as ex-

plained in Ref[20] for E>0 and in Ref[29] for E=0. It is
represented as a function of the relative enegligelow 2
MeV in Fig. 2. The contributions of the andf initial waves
are displayed separately. Tipewave capture dominates but . .
thef component is not negligible at energies higher than 0.3 out thegmﬁ st?mto,l'trlled.numb'eN.of ang'ular me;hr?mlnts,
MeV. The theoretical curve underestimates the experimenta{r‘e humberl\, ‘of radial |scret|zat|o_n pomts,_an t € loca-
data points of Ref[26] by about 25% around 0.4-0.5 MeV t|o_n Fm Of the last ra(_jlal mesh point. In this section, we
and by progressively smaller amounts at higher energies. Aﬁr'e.ﬂy explalrj the _chou:e of those yalues. Except otherwise
low energies, this can be explained by an underestimation dpdmgted, trajectories are straight lines. .

the asymptotic normalization constant by the selected poten- Alf'rs,t guess fo_r tr}le twe:ﬁm anle out aN be obtained by
tial [27]. As emphasized in the Introduction, this should not€valuating numerically the integrals

affect comparisons between two different techniques of de- Ny

termination of theSfactor. Finally, let us mention that higher JT"“tei “’thtme el ot Y1al Qr(t)]
multipole contributions to thé& factor are negligible at the i=1 R(t,—)2

The physical variables of the problem are the projectile
velocity v, the relative energ¥ between the fragments, and
the impact parametds. The numerical method depends on a
number of parameters: the initial timg,, the final time

Tin R(t)z
scale of the figuré28]. (29
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with t;=Tj,+(j —1/2)At and N;=(T,,— Tin)/At. The ob-  gressively reduced because the final relative scattering waves
tained values depend eanand must be valid for all selected start oscillating more rapidly. The 1% numerical accuracy is
b. With these starting values, full numerical tests have beewbtained under the plausible assumption that the full line
performed by varying the parametens,, Toy, and At (b=100 fm) should almost coincide with unity. Keeping in
around the initial guesses. The value &f is 0.05%2/MeV ~ mind the 1% accuracy and using the full line as a reference,
throughout. one obtains thaE1l Coulomb breakup requires impact pa-

For the Coulomb breakup evaluation $factors, the cal- rameters larger than 50 fm to reach an accuracy of about 1%
culations are performed witf = —T;,=30 A/MeV for  on theSfactor atv/c=0.3. A5% accuracy is reached for all
v/c=0.25 and 404/MeV for v/c<0.25. The numbeN of  considered energies and impact parameters.
angular mesh points is 81, i.e., nirlevalues and ninep For v/c=0.25, the breakup component is somewhat
values. The corresponding basis includes all spherical hatarger in the wave packet and the accuracy of the numerical
monics with orbital momenta up to=4 and some compo- technique is slightly better. The range of impact parameters
nents up td =12. The choice of a radial mesh is similar to for which the first-order approximation is valid within 1% is
the one in Ref[21]: r,,=800 fm andN,=2000. reduced tob>70 fm. Here also a 5% accuracy is reached

For the calculation of cross sections, a good accuracy ifor all considered energies fix=40 fm. Forv/c=0.2, the
obtained withT,,=—T;,=20 A/MeV, like in Ref. [21].  time evolution requires a largef,,. The validity of the
The numberN of angular mesh points is 49, i.e., sevén first-order approximation is reduced both in energy and im-
values and seve values. The corresponding basis includespact parameter. Only a small energy region (0B
all spherical harmonics with orbital momenta upgte3 and <1.0 MeV) might provide thes factor to 1% for large im-
some components up 16=9. The radial mesh is obtained pact parametersde70 fm). Within 5%, impact parameters
with r ,=800 fm andN,=500. The integrations over impact larger than 50 fm are enough on most of the energy range but
parameters are performed with,,=12 fm and up to 110 the extraction of thes factor would involve some distorted
fm with steps of 1 fm below 52 fm and 2 fm above that energy dependence. At the lowest velocity that we have con-
value. sidered ¢/c=0.15), the accuracy of th factor would be-
come much poorer and the distortion more important. We
can already say that this velocity is too low for astrophysical
) o purposes.

In Sec. lll, two different approximations are described: Ngtice that a reasonable convergence with respedi to
first-order perturbation theory and electric dipole approxima-_. - is obtained in all cases. This means that reliable cross
tion. In order to disentangle their effects, we first performgections can be obtained when performing numerically the
numerical calculations with a1l Coulomb potential. In integral in Eq.(9). The convergence becomes, however,
other words, we numerically solve the Sctlimger equation  gjower when the projectile velocity decreases.

C. Test with an electric dipole interaction

9
|ﬁ5‘1’(r,t) =[Ho(N)+VE(r,H)]¥(r,t), (30 D. Validity of the Coulomb breakup approach

The results of the previous section were obtained with the
which differs from Eq.(1) by the use of the approximate E1 multipole only and are therefore not realistic. However
Coulomb potential12). The resulting wave function can be they allow us to trust the results of calculations with the full
used to measure the validity of first-order perturbations. Con€oulomb interaction.
versely, we can also use it to test the accuracy of the numeri- The ratio S;,,/Sg; calculated with the full Coulomb po-
cal scheme when the first-order approximation is accuratdential VC [Eq. (3)] is presented in Fig. 4. This ratio is useful
The following conclusions will be improved in the next sec- to test theS factor determination from breakup differential
tion when all multipoles will be taken into account. cross sections. This technique is simulated here by the ex-

The ratioS,,,/Sg; of the approximateS factor extracted traction of Sg; from dP/dE with Eq. (28). For the highest
from Coulomb breakudEg. (28)] calculated with theE1l  colliding velocity v/c=0.3, the Coulomb breakuf factor
potentiaIVE1 [Eq. (12)] and of the exacE1 Sfactor within ~ becomes progressively smaller th&g, when E increases.
the present moddEq. (19)] is presented in Fig. 3. For the The contribution of higher multipolegnostlyE2 herg leads
highest colliding velocityy/c=0.3, the Coulomb breakup to an underestimation of th factor. It reaches 1-3 % at
factor agrees withSg; within 1% for the highest impact most for impact parameters larger than 50 fm. A 5% accu-
parameters >80 fm) in the energy range E racy is obtained over the full energy range =40 fm.
=0.3-1.7 MeV. The value 1% can be considered as an up- The situation is similar ab/c=0.25 but the systematic
per bound of the accuracy of our calculation for that highenergy distortion becomes more important. Impact param-
velocity. At relative energies smaller than 0.3 MeV, the cap-eters larger than 60 fm should be used to get a 5% accuracy.
ture cross section becomes very small because of the effeét v/c=0.2, the shape of the curves becomes similar to that
of the Coulomb barrier. A reliable value f&,, cannot be observed in Fig. 3, but downscaled by more than 5%. The
extracted from the small breakup component in the waveenergy distortion is much stronger thanudt=0.25. Only
packet at those small energies. The small oscillation obvery large impact parameters would allow keeping a 5%
served near 0.5 MeV for large values originates from the accuracy at that velocity. Ak/c=0.15, the role of higher
same problem. FOE>1.7 MeV, the accuracy is also pro- multipoles is considerable. However, we could not get really
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FIG. 3. RatioS,,/Sg; of the approximatés factor extracted from Coulomb break[#q. (28)] calculated with th€E1 potentialVE; [Eq.
(12)] and of the exacE1l Sfactor within the present modfEqg. (19)]. The ratio is calculated for different projectile velocitiesind impact
parameter®. Notice the different vertical scale fer/c=0.15.

stable results for the largebtvalues, which are not shown. The cross section at 72 MeV/nucleon peaks arot&nd
Anyway, as expected in the previous section, this velocity=2.5 MeV. We assume that it is somewhat underestimated
seems to be too low for a usefBIfactor extraction. at lower energies by an amount that can be obtained from the
ratio of the theoretical and experimentfactors in Fig. 2.
The breakup cross sections at different colliding energies are

) ) compared in Fig. 6. The cross section is slightly larger at 36
Total breakup cross sections can be obtained by numeriye\/nycleon and somewhat smaller at 18 MeV/nucleon.

cally integrating Eq(9) over the impact parameter In Fig.  The shape does not vary much, with a slow shift of the
5, the convergence with respecttigs checked as a function  maximum towards largeE values where increases.

of the relative energ¥ for a projectile energy of 72 MeV/  The ¥F nucleus possesses a single excited state near 0.5
nucleon. In the present nonrelativistic model, we consistentlyeV of excitation energy. The binding energy of this state is
use e=3myu? for the laboratory projectile energy per only 0.106 MeV. For this reason, this state has a broad spatial
nucleon. The value of 72 MeV/nucleon thus correspondextension. We use the breakup 0F* as a preliminary con-
here tov/c~0.392. The contribution of impact parameters vergence test for a calculation of tf8 Coulomb breakup.
larger than 50 fm is small and a good convergence is obThis reaction is of prime significance to determine 8fac-
tained forb,,,=100 fm. tor of the important’Be(p, y)®B radiative capture reaction.

E. Breakup cross sections
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FIG. 4. RatioS,,/Sg; of the approximaté factor extracted from Coulomb break[ipq. (28)] calculated with the full Coulomb potential
VC [Eq. (3)] and of the exacE1 Sfactor within the present modEEq. (19)]. The ratio is calculated for different projectile velocitiesand
impact parameters. Notice the very different vertical scale fofc=0.15.

It has been the object of many experimeri&6,8,10 and 8B breakup is thus feasible with the full Coulomb interac-
theoretical[12-19 efforts. Some previous time-dependent tion.
calculationg 13,15 were based on a multipole expansion of The F* breakup cross section at 72 MeV/nucleon
the Coulomb interaction. The present approach is not base@dcaled by 0.Lis represented as a dotted line in Fig. 6. As
on such an expansion, in addition to being nonpertubativeexpected, it is much larger than for the ground state, by a
As a test of the validity of our method for th#8 breakup, factor of about 25. Although it is not experimentally measur-
we have applied it to the breakup 6fF* since the binding able, it offers a testing ground for the accuracy of other
energies of this state and 8B are comparable. We have Methods based on perturbative and/or multipole expansions.
tested the accuracy of tHéF* breakup cross section at high
projectile velocity. We have found a much slower conver-
gence of the integrdb) with respect to the impact parameter ~ The inelastic cross section to the 1/2xcited state of 'F
b. For keeping the same order of accuracy, we had to inis displayed in Fig. 7 as a function of the projectile energy
creaseb, . to 200 fm, which renders the computation more per nucleone. This cross section is calculated as
time consuming. Nevertheless the breakup of a weakly "
l:l);)und state can be studied with th_e same accuracy as for the o1 (€)= zwf Pe(b)bdb, (31)

F ground state and an accurate time-dependent study of the min

F. Inelastic cross section
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FIG. 5. Convergence with respect to the impact paranetr
the breakup cross sectidgin b/MeV) as a function of the relative
energyE of the %0 and proton fragment§n MeV) for a projectile
energy of 72 MeV/nucleonu/c~0.392).

FIG. 7. Inelastic cross section to the 1/8xcited state of’F (in
mb) as a function of the projectile energy(in MeV/nucleon).

E1 transitions. The advantage of the present approach is that
all mechanisms and all multipoles are automatically in-

where the excitation probability of amj bound state cluded.

's given by One observes a regular decrease of the inelastic cross sec-
tion over the considered energy range.
PibI= 5t 3 S (ym(EN[FM(r, 4]
) 2jo+1 W = jm= ’ G. Comparison with experiment

(32) Finally we perform a comparison with the only existing

experimental data poirft7] for the projectile energy of 10

Since the ground and excited states have angular momen{ae\//nucleon(see Fig. 8 In fact this point has been ana-
differing by two units and the same parity, the simplest tranqy ;e in two different ways, with{full circle) and without
sition mechanisms require &?® transition or two successive (open circle postacceleration correction.

In this section, because of the large values of the scatter-

0.04 L S A B A B A ing angle, we use Rutherford trajectories with parameter
L . 1 ZH(Z+2,)€
—_ - ; 72 MeV/nucleon T a= C—Z, (33
% i ! | MRV
= ; X 0.1 . -
~ L : i where u1p is the target-projectile reduced mass. The calcu-
2 h lation of the differential cross section is performed with the
m 202 T semiclassical approximatidi34,35
= o .
3 9 by 0) 2 34
el - —_—
b dQ bU( ) dQ ] ( )
ﬁ -
| wheredog/d() is the Rutherford cross section. The breakup
probability P, which depends here on the deflection angle
0.00 0, reads

E (MeV)

=dP
Pl )= | SEIED(OIGE 3
FIG. 6. Breakup cross section &fF (in b/MeV) as a function of 0

the relative energfe (in MeV) for various projectile energies 18,

36, and 72 MeV/nucleonu(c~0.196, 0.277, and 0.392, respec- By using the closure relation on the projectile states, this
tively). The breakup cross section ofF* (E,=0.495 MeV) for  probability can be rewritten as a function of bound-state
the projectile energy 72 MeV/nucleon, scaled by 0.1, is representefirobabilities calculated like in Eq.32) but with Coulomb

as a dotted line. trajectories, as
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L L L A S B B S s B S B sion of nuclear effects might improve the agreement with
I v/e=0.146 (10 MeV/nucleon) ] experiment. This point requires further theoretical consider-
ation but further experimental data would also be welcome.

30 - 7 VI. CONCLUSION

L - In this paper, we have improved and extended the numeri-
- . cal method presented in Rg21] to simulate the Coulomb
- Rmin=16.5 fm 1 breakup determination of an astrophysi&factor. To this
20 - 7 end we have introduced a distortion of the scattering state
between the fragments, which was not taken into account in
Ref. [21]. The validity of the present approach has been
tested with a purelfE1 Coulomb interaction. It is remark-
i able that theS factor extracted by this technique from the
- theoretical breakup probabilities agrees within 1% with a
. direct and completely independent calculation of Sfactor
. under the same model conditions.
] The main simplifying assumption of the present model is
probably the use of a classical trajectory in a time-dependent
approach. Fixing this trajectory prevents studying the com-
O(deg) plicated three-body Coulomb effects in the final state. Nev-
ertheless the present model takes into account the different
FIG. 8. Differential breakup cross section HF (in mb/sp as a (Coulomb and nucleapostacceleration effects between the
function of the c.m. anglén dggree}sfor the projectile.energy 10 fragments of the projectile.
MeV/nucleon ¢/c~0.146). Different values of the distan€in The main results of the present work concern the validity
of closest approach are indicated. The experimental data points wntgf the Coulomb breakup method for deriving the astrophysi-
(full circle) and without(open circle postacceleration correction cal S factor. The study is performed on thEE+ 20%h
are from Ref[7]. — 180+ p+ 2%8Pp reaction. The!’F nucleus is a good ex-
ample of weakly bound nucleus. It possesses a well-defined
Pou(0)~1—Pysd b(6)]—Psyd b(6)]. (36) cluster structure. Moreover, beams of this unstable nucleus
) ) o are now available. This reaction can, in principle, be used to
Equation(36) would be exact if the potential did not support jetermine the'®0(p, y)17F radiative capture factor to the
additional bound states. Indeed the potential of Raf)] F ground state. We observe that a minimal velocity of

contains deep bound states in 81¢2, p3/2, andp1/2 partial  ( o5 (about 30 MeV per nucledris necessary to get accu-

waves, simulating Pauli forbidden states. These states afgie information(better than 5%) on the extract&factor.
very weakly populated during the collision process. We haverpe jmpact parameter must be larger than 60 fm. It is inter-

checked that Eqs35) and(36) are numerically equivalentin - ggting to note that, even with a purei interaction(Fig. 3),
our model. Equ_atlom36) is obviously easier to evaluate. higher-order effects become smaller than 5% only for
The differential breakup cross section 5F at 10 MeV/ 0 fm at this velocity. We have rather arbitrarily consid-

nucleon ¢/c~0.146) is displayed in Fig. 8 as a function of greq 5 504 accuracy as a goal for the extraction of the astro-

the c.m. deflection anglé of the projectile. Notice that the v sjcal S factor. Domains of validity for other accuracies
fact that our approach includes all orders of perturbation and,, pe studied in a similar way from Figs. 3 and 4.

all muItipoIe§ is important at.the experimental'energy. Vari- The present work opens the way to an analysis without
ous mechanism/] such as direct and sequential breakup tomultipole expansion of the breakup 88, which is made

single-particle states are automatically included. The Calcur']umerically more difficult by the smaller binding energy

lated differential cross section displays a maximum near 207, i, respect tot’F. The Coulomb breakup J1B is of prime

like the results obtained in several models discussed in Refmportance to determine th@factor of the "Be(p, y)°B ra-

[7]. However the present calculated values are smaller an&iative capture reactiof6]. As a preliminary test, we have

the disagreement with the experimental point is less imporg - 1ated the Coulomb breakup &fF in its excited 1/2

tant. In order to specullate on the origin of the discrepancystate whose binding energy is even smaller. Because of the
several values of the distance of closest approach weakness of the binding, this state is spatially quite ex-
tended, which renders the calculation more time consuming.
Rmin=2a(1+ cot; ) (37) We performed a comparison with the only experimental
point existing to date for thé’'F breakup on?°%b. Like
with a~3.1 fm are shown in the figure. At the angular lo- other model approaches, we obtain too large a theoretical
cation of the experimental point, this distance is only aboutesult but the disagreement with experiment is somewhat
11 fm so that the dotted part of the curiat least should be  smaller than in other models. We speculate that the introduc-
recalculated by including a nuclear interaction between théion of a nuclear interaction between projectile and target
projectile and target. Therefore it is possible that the incluimight still improve the situation.

do/dQ (mb/sr)
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