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Time-dependent analysis of the Coulomb breakup method for determining
the astrophysicalS factor
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The time-dependent mesh method is applied to the calculation of the Coulomb breakup of a projectile into
two charged fragments. The projectile is described in the potential model and its center of mass is assumed to
follow a classical trajectory. The approach is compared with the first-order time-dependent perturbation ap-
proximation based on an electric dipole interaction under the same model assumptions. The numerical tech-
nique is applied to the17F1 208Pb→ 16O1p1 208Pb breakup in order to test the validity of the extraction of the
E1 astrophysicalS factor for the16O(p,g)17F radiative capture reaction to the17F ground state. After carefully
testing the validity of the numerical technique, we show that the accuracy of the astrophysicalS factor
extracted in such a way is better than 5% for projectile velocities above about 0.25c in large domains of impact
parameters and relative energies between the fragments. Breakup cross sections are also calculated as a
function of the relative energy between the fragments at different projectile velocities. A test calculation is
performed for the breakup of the weakly bound 1/21 excited state of17F. A comparison is presented and
discussed with the only existing experimental differential cross section at the projectile energy of 10 MeV/
nucleon.

DOI: 10.1103/PhysRevC.64.054612 PACS number~s!: 25.60.Gc, 25.70.De, 25.40.Lw, 02.70.Jn
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I. INTRODUCTION

Coulomb breakup has become an essential tool in sev
domains of nuclear physics. Breakup cross sections pro
useful information about the structure of halo nuclei@1#.
They can also be used as an indirect method of measure
of astrophysicalS factors@2,3#. This topic is the subject o
intensive experimental@4–11# and theoretical@12–19# inves-
tigations. Indeed the Coulomb field of the target nucle
simulates a large number of photons. The photodisintegra
process is enhanced with respect to the time-reversed ra
tive capture by kinematic factors. However, the accuracy
the extracted astrophysicalS factor cannot easily be estab
lished. Higher-order multipolarities, which are negligible
the capture process, may play a significant role in Coulo
breakup. The importance of theE2 component for the8B
breakup has been discussed by several authors but rem
uncertain@12–16,19#. For this reason, this indirect method
not always considered as competitive with direct methods
measurement@20#. Testing the validity of this approach i
usually based on an evaluation of the importance of high
order corrections. A completely different approach will
followed in the present paper. We shall perform a calculat
of Coulomb breakup, which is not based on a perturba
scheme nor on a multipole expansion. From this study,
shall deduce domains of projectile velocities, impact para
eters and relative energies between the fragments wher
accuracy of a determination of the astrophysicalS factor
from Coulomb breakup is better than some required valu

To this aim, we shall perform a numerical solution of t
time-dependent Schro¨dinger equation describing the beha
ior of a two-body projectile in the varying Coulomb fiel
induced by the target nucleus. To a good approximation,
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breakup is a transition from a two-particle bound state to
continuum. The numerical method that we use has alre
been applied in Ref.@21# to the Coulomb breakup of11Be
into 10Be and one neutron in the Coulomb field of208Pb. In
the present work, both fragments of the projectile a
charged contrary to the halo nucleus breakup where a n
tron is emitted. The fact that additional Coulomb interactio
now appear between the projectile fragments on one ha
and between both fragments and the target on the other h
does not lead to modifications of the computational sche
describing the time evolution of the wave packet. Howev
the analysis of this wave packet after the collision proc
requires taking accurately into account the nuclear and C
lomb distortion of the wave functions describing the relati
motion between the projectile fragments. This will allow
to compare the obtained results with the first-order pertur
tion approximation, which is the basis of Coulomb break
determinations ofS factors.

The present test of the validity of the Coulomb break
technique presents several advantages due to the fact
most model assumptions are identical in the compared
merical and perturbative approaches. More precisely, b
calculations involve~i! the same nonrelativistic assumptio
~ii ! the same classical trajectory~a straight line in the follow-
ing comparison!, ~iii ! the same potential between the proje
tile components, and~iv! neglecting in the same way th
nuclear interaction between the target and projectile. T
implies that inaccuracies due to those simplifying model
sumptions are of the same order in the compared nume
and perturbative approaches and will essentially cancel e
other during the comparison of the nonperturbative and p
turbative calculations. In other words, the perturbative
proximation is the exact limit of our calculation and the d
main of calculation conditions, where both approaches ag
©2001 The American Physical Society12-1
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must have a physical significance. Moreover, the radia
capture cross section can be calculated within any neces
accuracy, under these model assumptions. If the pote
model describing the system does not perfectly reproduce
experimental astrophysicalS factor of the studied radiative
capture reaction, the inaccuracies on the potential-modS
factor should also not significantly affect the physical val
ity of the conclusions of the comparison.

Of course, the present model also has some limitatio
The motion of the projectile is described by a classical t
jectory. We have checked in Ref.@21# that straight-line and
Coulomb trajectories give very close results at the veloci
that we consider here. Except in Sec. V G, the followi
results are obtained with straight-line trajectories. Howev
the semiclassical approximation does not allow study
final-state three-body Coulomb effects. These effects h
been analyzed by other authors@22#.

In the present work, the time-dependent Schro¨dinger
equation is solved on a three-dimensional spatial mesh.
potential only enters through its values at mesh points so
it can be easily modified. The fact that both fragments
charged can thus be introduced without complication. T
method@23,24# makes use of values of the wave function
mesh points in angular space. The radial functions are
proximated with variable-step finite-difference techniqu
The accuracy of the treatment of the radial mesh is impro
with respect to Ref.@21#.

The Coulomb breakup reaction that we treat is17F
1 208Pb→ 16O1p1 208Pb. It is an interesting example fo
several reasons. The16O(p,g)17F radiative capture has bee
thoroughly studied experimentally@25,26,20# and is well un-
derstood theoretically@27–29#. Notice that this capture reac
tion dominantly proceeds towards the weakly bound 1/1

excited state of17F while only the ground-state capture ca
be studied with Coulomb breakup. The16O1p system con-
tains a closed-shell core and should rather well be descr
by a simple cluster model. A potential is available that fi
the spectra of the16O1p and 16O1n systems@30#. Finally,
beams of 17F are becoming available. An experiment h
already been performed near 10 MeV per nucleon@7#.

In Sec. II, the physical problem is recalled and modeliz
In Sec. III, the electric dipole first-order perturbation a
proximation whose validity is tested is described. The co
putational algorithm is summarized in Sec. IV. The17F
1 208Pb→ 16O1p1 208Pb Coulomb breakup reaction is stu
ied in detail in Sec. V. After some tests of the accuracy of
numerical approach, the obtained results are discussed
in one case, compared with experiment. Section VI is
voted to concluding remarks.

II. BREAKUP MODEL

The projectile~P! is a bound system made of the core~c!
and fragment~f! nuclei, which are treated as structurele
particles. They interact through the potentialV(r), wherer is
the coordinate between the core and the fragment. If
target motion is described by a classical trajectory in
projectile rest frame, the breakup reaction on the target~T!
follows the time-dependent Schro¨dinger equation
05461
e
ary
ial
he

-

s.
-

s

r,
g
ve

he
at
e
e
t
p-
.
d

ed

.

-

e
nd,
-

s

e
e

i\
]

]t
C~r,t !5@H0~r!1VC~r,t !#C~r,t !, ~1!

where the wave packetC(r,t) describes the relative motio
of the fragment and the core. In this expression,

H052
\2

2m
D r1V~r! ~2!

is the projectile internal Hamiltonian with reduced massm
5mfmc /M , wheremf , mc , and M5mf1mc are the frag-
ment, core, and projectile masses, respectively. The pote
V(r) is the sum of a central potentialV0(r ) including a Cou-
lomb term tending towardsZfZce

2/r whenr is large and of a
spin-orbit interactionVso(r ) coupling the relative orbital mo-
mentuml with the spinI f of the fragment. Both form factors
V0(r ) and Vso(r ) may depend on the orbital momentu
quantum numberl. The interactionVC(r,t) of the target
nucleus with the projectile is assumed to be purely Coulo
bic. Notice that the introduction of nuclear interactio
would be easy in the present model.

The time-dependent Coulomb potentialVC(r,t) is defined
as

VC~r,t !5
ZcZTe2

umfr/M1R~ t !u
1

ZfZTe2

umcr/M2R~ t !u

2
~Zc1Zf !ZTe2

R~ t !
, ~3!

whereZf , Zc , andZT are the charge numbers of the fra
ment, core, and target, respectively, andR(t) is the relative
coordinate between the projectile and the target~see Fig. 1!.
The projectile center of mass is assumed to follow a class
trajectory with the initial velocityv at the impact vectorb.

The eigenfunctions of HamiltonianH0 with energyE are
denoted asf l jm(E,r),

H0f l jm~E,r!5Ef l jm~E,r!, ~4!

wherel is the relative orbital momentum,j is the total angu-
lar momentum resulting from the coupling ofl with the spin
I f of the fragment, andm is its projection. The wave function
f l jm(E,r) includes angular partsYlml

(V) and fragment spin

partsuI fmf& and reads in mixed notations

f l jm~E,r!5r 21ul j ~E,r !@Yl~V! ^ uI f&] jm . ~5!

Bound states are normed and scattering wave functions
normalized in such a way that

FIG. 1. Coordinates appearing in the definition of potentialVC

@Eq. ~3!#.
2-2
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TIME-DEPENDENT ANALYSIS OF THE COULOMB . . . PHYSICAL REVIEW C 64 054612
ul j ~E,r ! →
r→`

cosd l~E!Fl~E,r !1sind l~E!Gl~E,r !, ~6!

whereFl andGl are the standard regular and irregular Co
lomb functions@31# andd l is the phase shift.

The initial condition for solving Eq.~1! is then

C (m0)~r,2`!5f l 0 j 0m0
~E0 ,r!, ~7!

whereE0 and l 0 j 0m0 are the ground-state energy and qua
tum numbers, respectively. Equation~1! must be solved for
each value ofm0. In practice, only positive values ofm0
need be considered, since results for negative values ca
deduced from time reversal.

When the solution of Eq.~1! is known for t→`, the
breakup probability is obtained as a function of the imp
parameterb as

dP

dE
~E,b!5

2m

p\2k

1

2 j 011

3(
m0

(
l jm

u^f l jm~E,r!uC (m0)~r,1`!&u2 ~8!

with E5\2k2/2m. In this expression, an average is pe
formed over the possible values ofm0. The first factor is
related to the choice of normalization~5! and ~6! for the
scattering waves of the core-fragment system. In Eq.~8!, the
final state is projected on the exact~distorted! scattering state
of the core-fragment system at energyE. This is a generali-
zation with respect to Refs.@21,32,33#. Such a generalization
is essential to allow a comparison with the Coulomb brea
extraction of the astrophysicalS factor. Notice another dif-
ference with earlier works: the wave functionC (m0)(r,1`)
need not be projected out of the bound-state subspace a
example,Cbu(r,1`) in Ref. @21#. Indeed the distorted fina
wave functionsf l jm(E,r) for positive energies are automat
cally orthogonal to this subspace.

The breakup cross section can then be calculated as

dsbu

dE
~E!52pE

bmin

` dP

dE
~E,b!bdb. ~9!

The lower boundbmin is a cutoff related to the range o
nuclear effects. The upper bound is in practice replaced
some valuebmax whose choice must be carefully tested.

III. FIRST-ORDER PERTURBATION APPROXIMATION

The extraction of theE1 astrophysicalS factor from
breakup cross sections relies on the validity of the first-or
perturbation approximation. Before describing the numer
algorithm for solving the time-dependent Schro¨dinger equa-
tion ~1!, let us summarize this simple approximation
which we shall compare our results in Sec. V.

At high enough velocities, Eq.~1! can be solved approxi
mately by using the first-order perturbation theory@34,35# to
give
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dP(1)

dE
~E,b!5

2m

p\4k

1

2 j 011

3(
m0

(
l jm

U E
2`

`

3eivt^f l jm~E,r!uVCuf l 0 j 0m0
~E0 ,r!&dtU2

,

~10!

where

v5~E2E0!/\. ~11!

WhenVC is approximated by its external electric dipole ter

VE1
C 52ZTS Zc

mf

M
2Zf

mc

M De2
r•R~ t !

R~ t !3
~12!

and the trajectory is a straight line

R~ t !5b1vt, ~13!

the time-dependent part of the integral in Eq.~10! contains
the integrals

E
2`

`

eivt
Y1q@VR~ t !#

R~ t !2
dt

5A 3

4p

2x

bv FK0~x!dq02 i
q

A2
K1~x!d uqu1G , ~14!

whereK0 andK1 are modified Bessel functions@31# and

x5vb/v. ~15!

Let us introduce the totalE1 radiative capture cross sectio
to the bound statef l 0 j 0m0

(E0 ,r),

sE1~E!5
8p

3kE S Zc

mf

M
2Zf

mc

M D 2

e2kg
3

3
1

~2I c11!~2I f11!

3(
m0

(
l jm

u^f l 0 j 0m0
~E0 ,r!uruf l jm~E,r!&u2.

~16!

The photon wave number is related to the initial energyE
throughkg5(E1uE0u)/\c. Combining Eqs.~10!, ~14!, and
~16! leads to the expression of the breakup probability@2,3#

dPE1
(1)

dE
~E,b!5N~b!

m

\2

E

E1uE0u
~2I c11!~2I f11!

2 j 011
sE1~E!.

~17!

In Eq. ~17!, the coefficient reads
2-3
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N~b!5
ZT

2a

p2 S c

v D 4

$@K0~x!#21@K1~x!#2%, ~18!

wherea is the fine structure constant. TheE1 radiative cross
section~16! can be calculated as@20,29#

sE1~E!5
a\c

2kE
NE1kg

3@ I E1~E!#2. ~19!

In Eq. ~19!, the normalization factor is given by

NE15
16p

3 S Zc

mf

M
2Zf

mc

M D 2

3
~2 j 11!~2 j 011!~2l 11!~2l 011!

~2I c11!~2I f11!

3S l 0 1 l

0 0 0D
2H j 0 l 0 I f

l j 1 J 2

. ~20!

The one-dimensional integralI E1(E) is given by

I E1~E!5E
0

`

ul 0 j 0
~E0 ,r !rul j ~E,r !dr, ~21!

where ul 0 j 0
(E0 ,r ) and ul j (E,r ) are the radial parts o

f l 0 j 0m0
(E0 ,r) and f l jm(E,r), respectively@Eq. ~5!#. Notice

that the normalization of the scattering wave functi
ul j (E,r ) is the same as in Ref.@20# but differs from Ref.
@29#.

IV. NUMERICAL ALGORITHM

For solving the time-dependent four-dimensional Sch¨-
dinger equation~1!, we apply a nonperturbative approac
@24,21#. The angular part of the wave function is expand
over N angular basis functionsYn(V), whereN is a squared
integer,V[(u,f), and n5( l ,ml). The angular basis con
sists in standard spherical harmonicsYlml

(V) with uml u
< 1

2 (AN21) and l<AN21, complemented by a few add
tional angular functionsȲlml

(V) with AN< l<uml u1AN

21 necessary to have the same numberAN of basis states
for each of theAN values of the projectionml . The con-
struction of the modified Legendre polynomial part of t
Ȳlml

(V) is explained in Ref.@21#. This angular basis is as

sociated with a set of mesh pointsV i in a two-dimensional
angular grid. For theu variable, theAN mesh points are
chosen as the zeros of the Legendre polynomial of deg
AN. For thef variable, theAN mesh points are uniformly
distributed over the unit circle. To this grid is associated
Gauss quadrature. The basis functionsYn(V) are exactly
orthonormal when their scalar product is calculated with t
Gauss quadrature. The total number of grid pointsV i is
equal to the numberN of basis functions in expansion~22!
@23,24#.

The wave functionC(r,t) is expanded in spherical coo
dinates as
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mf52I f
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(
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N

Yn~V!~Y21!n ic i
mf~r ,t !uI fmf&.

~22!

In this section, the initialm0 value on whichC(r,t) and the
c i

mf(r ,t) depend is understood. The coefficients (Y21)n i are
elements of the inverse of the matrixY with elements (Y) in
5Yn(V i). Notice that a misprint in the order of the sub
scripts of matrixw in Ref. @21# is corrected here forY. Each
complex radial partial wave functionc i

mf(r ,t) corresponds to
the value of the component ofC(r,t) with a specific projec-
tion mf for the fragment spinI f , calculated at theV i mesh
point,

C~r,t !uV5V i
5r 21 (

mf52I f

I f

c i
mf~r ,t !uI fmf&. ~23!

The superscriptmf corresponds to the spin component wh
the subscripti refers to the angular mesh point.

Let us introduce the (2I f11)N-component vector
C(r ,t)5$l i

1/2c i
mf(r ,t)%, wherel i is the weight coefficient

of the Gauss quadrature corresponding to the selected m
@31# ~see Ref.@21# for details!. With respect to the unknown
coefficients in expansion~22!, the problem is reduced to
Schrödinger-type system of radial equations

i\
]

]t
C~r ,t !5@Ĥ0~r !1V̂C~r ,t !#C~r ,t !. ~24!

In this system, Ĥ0(r ) and V̂C(r ,t) are (2I f11)N
3(2I f11)N matrix operators representingH0 @Eq. ~2!# and
VC @Eq. ~3!# on the grid. The elements ofĤ0(r ) are defined
by

H
0i i 8

mfmf8~r !52
\2

2m

]2

]r 2
d i i 8dmfmf8

1~l i 8l i !
21/2

3 (
nn851

N

~Y21!n8 i 8
!

3H F \2

2mr 2
l ~ l 11!1V0~r !Gdnn8dmfmf8

1Vso~r !

3^ lml I fmf u l•I f u lml8I fmf8&d l l 8J ~Y21!n i , ~25!

whereV0(r ) and Vso(r ) are the form factors for the poten
tials between the fragment and the core in thel th partial
wave. Notice that the bracketed expression depends onn and
n8 throughl, ml and l 8, ml8 .

The elements ofV̂C(r ,t) read

V
ii 8

Cmfmf8~r ,t !5VC~r ,V i ,t !d i i 8dmfmf8
. ~26!
2-4
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The Coulomb operator defined in Eq.~3! is diagonal in such
a representation.

The time-dependent equations are solved as describe
Sec. II C of Ref.@21#. The initial states are described at tim
Tin by the (2j 011)/2 ground-state wave function
f l 0 j 0m0

(E0 ,r) of H0 with positivem0 @Eq. ~5!#. After a num-

ber of time stepsDt, each calculation is stopped atTout. It is
shown in Ref.@24# that the computational time is approx
mately proportional toN whenN is not too large.

For discretizing with respect to the radial variabler, a
sixth-order~seven point! finite-difference approximation on
quasiuniform grid has been used on the intervalr P@0,r m#.
The grid has been realized by the mappingr→x of the initial
interval onto xP@0,1# by the formula r 5r m(e8x21)/(e8

21) @23#. This is an important difference between Ref.@21#
and earlier works@32,33# where uniform grids are used. Th
eigenvalue problem~4! for the initial bound state and for th
final scattering states is solved on the same grid.

V. APPLICATION TO THE 17F BREAKUP

A. Physical aspects

The present numerical technique is applied to the17F
1 208Pb→ 16O1p1 208Pb breakup. The17F nucleus is well
described by an16O1p cluster structure. The16O core has
spin 0 and the proton has spinI f51/2. The 17F ground state
with binding energyuE0u'0.605 MeV has quantum num
bers l 052 and j 055/2. The energies of thisd5/2 ground
state and of thes1/2 bound excited state of17F are well
reproduced by the potential of Ref.@30#, which provides a
simultaneous fit of the17O and 17F single-particle levels.
This potential contains central and spin-orbit terms, an
point-sphere Coulomb interaction. A Woods-Saxon form f
tor is used for the central part and its derivative for the sp
orbit part. All masses are integer multiples of the nucle
massmN fixed by \2/2mN520.736 MeV fm2.

The E1 cross section for the16O(p,g)17F radiative cap-
ture reaction to the17F ground state contains two comp
nents withl 51 ( j 53/2) andl 53 ( j 57/2 and 5/2!. TheE1
astrophysicalS factor is related to this cross section by

SE1~E!5Ee2phsE1~E!, ~27!

where h5ZfZce
2(m/2E\2)1/2. It can be calculated as ex

plained in Ref.@20# for E.0 and in Ref.@29# for E50. It is
represented as a function of the relative energyE below 2
MeV in Fig. 2. The contributions of thep andf initial waves
are displayed separately. Thep wave capture dominates bu
the f component is not negligible at energies higher than
MeV. The theoretical curve underestimates the experime
data points of Ref.@26# by about 25% around 0.4–0.5 Me
and by progressively smaller amounts at higher energies
low energies, this can be explained by an underestimatio
the asymptotic normalization constant by the selected po
tial @27#. As emphasized in the Introduction, this should n
affect comparisons between two different techniques of
termination of theS factor. Finally, let us mention that highe
multipole contributions to theS factor are negligible at the
scale of the figure@28#.
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Let us introduce the quantity

Sbu~E,b!5e2ph
2 j 011

~2I c11!~2I f11!

\2

m

E1uE0u
N~b!

dP

dE
~E,b!,

~28!

where the last factor is given by Eq.~8!. This expression has
the dimensions of anS factor. However, it depends on th
selected impact parameterb. According to Eq.~17!, when the
first-order andE1 approximations are valid, i.e., when, re
spectively, the velocityv and the impact parameterb are
large enough, the expressionSbu(E,b) should be nearly in-
dependent ofb and equal to theE1 S factor ~27!.

B. Numerical aspects

The physical variables of the problem are the projec
velocity v, the relative energyE between the fragments, an
the impact parameterb. The numerical method depends on
number of parameters: the initial timeTin , the final time
Tout, the time stepDt, the numberN of angular mesh points
the numberNr of radial discretization points, and the loca
tion r m of the last radial mesh point. In this section, w
briefly explain the choice of those values. Except otherw
indicated, trajectories are straight lines.

A first guess for the timesTin andTout can be obtained by
evaluating numerically the integrals

E
Tin

Tout
eivt

Y1q@VR~ t !#

R~ t !2
dt'Dt(

j 51

Nt

eivt j
Y1q@VR~ t j !#

R~ t j !
2

~29!

FIG. 2. E1 astrophysicalS factor for the16O(p,g)17F radiative
capture reaction to the ground state of17F ~in keV b! as a function
of the relative motion energyE ~in MeV!. Thep wave~dashed line!
and f wave ~dotted line! contributions are also presented. The e
perimental data are from Ref.@26#.
2-5
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with t j5Tin1( j 21/2)Dt and Nt5(Tout2Tin)/Dt. The ob-
tained values depend onv and must be valid for all selecte
b. With these starting values, full numerical tests have b
performed by varying the parametersTin , Tout, and Dt
around the initial guesses. The value ofDt is 0.05\/MeV
throughout.

For the Coulomb breakup evaluation ofS factors, the cal-
culations are performed withTout52Tin530 \/MeV for
v/c>0.25 and 40\/MeV for v/c,0.25. The numberN of
angular mesh points is 81, i.e., nineu values and ninef
values. The corresponding basis includes all spherical
monics with orbital momenta up tol 54 and some compo
nents up tol 512. The choice of a radial mesh is similar
the one in Ref.@21#: r m5800 fm andNr52000.

For the calculation of cross sections, a good accurac
obtained withTout52Tin520 \/MeV, like in Ref. @21#.
The numberN of angular mesh points is 49, i.e., sevenu
values and sevenf values. The corresponding basis includ
all spherical harmonics with orbital momenta up tol 53 and
some components up tol 59. The radial mesh is obtaine
with r m5800 fm andNr5500. The integrations over impac
parameters are performed withbmin512 fm and up to 110
fm with steps of 1 fm below 52 fm and 2 fm above th
value.

C. Test with an electric dipole interaction

In Sec. III, two different approximations are describe
first-order perturbation theory and electric dipole approxim
tion. In order to disentangle their effects, we first perfo
numerical calculations with anE1 Coulomb potential. In
other words, we numerically solve the Schro¨dinger equation

i\
]

]t
C~r,t !5@H0~r!1VE1

C ~r,t !#C~r,t !, ~30!

which differs from Eq.~1! by the use of the approximat
Coulomb potential~12!. The resulting wave function can b
used to measure the validity of first-order perturbations. C
versely, we can also use it to test the accuracy of the num
cal scheme when the first-order approximation is accur
The following conclusions will be improved in the next se
tion when all multipoles will be taken into account.

The ratioSbu/SE1 of the approximateS factor extracted
from Coulomb breakup@Eq. ~28!# calculated with theE1
potentialVE1

C @Eq. ~12!# and of the exactE1 S factor within
the present model@Eq. ~19!# is presented in Fig. 3. For th
highest colliding velocityv/c50.3, the Coulomb breakupS
factor agrees withSE1 within 1% for the highest impac
parameters (b.80 fm) in the energy range E
50.3–1.7 MeV. The value 1% can be considered as an
per bound of the accuracy of our calculation for that hi
velocity. At relative energies smaller than 0.3 MeV, the ca
ture cross section becomes very small because of the e
of the Coulomb barrier. A reliable value forSbu cannot be
extracted from the small breakup component in the w
packet at those small energies. The small oscillation
served near 0.5 MeV for largeb values originates from the
same problem. ForE.1.7 MeV, the accuracy is also pro
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gressively reduced because the final relative scattering w
start oscillating more rapidly. The 1% numerical accuracy
obtained under the plausible assumption that the full l
(b5100 fm) should almost coincide with unity. Keeping
mind the 1% accuracy and using the full line as a referen
one obtains thatE1 Coulomb breakup requires impact p
rameters larger than 50 fm to reach an accuracy of about
on theS factor atv/c50.3. A 5% accuracy is reached for a
considered energies and impact parameters.

For v/c50.25, the breakup component is somewh
larger in the wave packet and the accuracy of the numer
technique is slightly better. The range of impact parame
for which the first-order approximation is valid within 1%
reduced tob.70 fm. Here also a 5% accuracy is reach
for all considered energies forb>40 fm. Forv/c50.2, the
time evolution requires a largerTout. The validity of the
first-order approximation is reduced both in energy and
pact parameter. Only a small energy region (0.5,E
,1.0 MeV) might provide theS factor to 1% for large im-
pact parameters (b>70 fm). Within 5%, impact parameter
larger than 50 fm are enough on most of the energy range
the extraction of theS factor would involve some distorted
energy dependence. At the lowest velocity that we have c
sidered (v/c50.15), the accuracy of theS factor would be-
come much poorer and the distortion more important.
can already say that this velocity is too low for astrophysi
purposes.

Notice that a reasonable convergence with respect tb
→` is obtained in all cases. This means that reliable cr
sections can be obtained when performing numerically
integral in Eq. ~9!. The convergence becomes, howev
slower when the projectile velocity decreases.

D. Validity of the Coulomb breakup approach

The results of the previous section were obtained with
E1 multipole only and are therefore not realistic. Howev
they allow us to trust the results of calculations with the f
Coulomb interaction.

The ratioSbu/SE1 calculated with the full Coulomb po
tentialVC @Eq. ~3!# is presented in Fig. 4. This ratio is usef
to test theS factor determination from breakup differentia
cross sections. This technique is simulated here by the
traction of SE1 from dP/dE with Eq. ~28!. For the highest
colliding velocity v/c50.3, the Coulomb breakupS factor
becomes progressively smaller thanSE1 when E increases.
The contribution of higher multipoles~mostlyE2 here! leads
to an underestimation of theS factor. It reaches 1 –3 % a
most for impact parameters larger than 50 fm. A 5% ac
racy is obtained over the full energy range forb>40 fm.

The situation is similar atv/c50.25 but the systematic
energy distortion becomes more important. Impact para
eters larger than 60 fm should be used to get a 5% accur
At v/c50.2, the shape of the curves becomes similar to t
observed in Fig. 3, but downscaled by more than 5%. T
energy distortion is much stronger than atv/c50.25. Only
very large impact parameters would allow keeping a 5
accuracy at that velocity. Atv/c50.15, the role of higher
multipoles is considerable. However, we could not get rea
2-6
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FIG. 3. RatioSbu/SE1 of the approximateS factor extracted from Coulomb breakup@Eq. ~28!# calculated with theE1 potentialVE1
C @Eq.

~12!# and of the exactE1 S factor within the present model@Eq. ~19!#. The ratio is calculated for different projectile velocitiesv and impact
parametersb. Notice the different vertical scale forv/c50.15.
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stable results for the largestb values, which are not shown
Anyway, as expected in the previous section, this veloc
seems to be too low for a usefulS factor extraction.

E. Breakup cross sections

Total breakup cross sections can be obtained by num
cally integrating Eq.~9! over the impact parameterb. In Fig.
5, the convergence with respect tob is checked as a function
of the relative energyE for a projectile energy of 72 MeV
nucleon. In the present nonrelativistic model, we consiste
use e5 1

2 mNv2 for the laboratory projectile energy pe
nucleon. The value of 72 MeV/nucleon thus correspon
here tov/c'0.392. The contribution of impact paramete
larger than 50 fm is small and a good convergence is
tained forbmax5100 fm.
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The cross section at 72 MeV/nucleon peaks aroundE
52.5 MeV. We assume that it is somewhat underestima
at lower energies by an amount that can be obtained from
ratio of the theoretical and experimentalS factors in Fig. 2.
The breakup cross sections at different colliding energies
compared in Fig. 6. The cross section is slightly larger at
MeV/nucleon and somewhat smaller at 18 MeV/nucleo
The shape does not vary much, with a slow shift of t
maximum towards largerE values whene increases.

The 17F nucleus possesses a single excited state nea
MeV of excitation energy. The binding energy of this state
only 0.106 MeV. For this reason, this state has a broad sp
extension. We use the breakup of17F* as a preliminary con-
vergence test for a calculation of the8B Coulomb breakup.
This reaction is of prime significance to determine theS fac-
tor of the important7Be(p,g)8B radiative capture reaction
2-7
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FIG. 4. RatioSbu/SE1 of the approximateS factor extracted from Coulomb breakup@Eq. ~28!# calculated with the full Coulomb potentia
VC @Eq. ~3!# and of the exactE1 S factor within the present model@Eq. ~19!#. The ratio is calculated for different projectile velocitiesv and
impact parametersb. Notice the very different vertical scale forv/c50.15.
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It has been the object of many experimental@5,6,8,10# and
theoretical@12–19# efforts. Some previous time-depende
calculations@13,15# were based on a multipole expansion
the Coulomb interaction. The present approach is not ba
on such an expansion, in addition to being nonpertubat
As a test of the validity of our method for the8B breakup,
we have applied it to the breakup of17F* since the binding
energies of this state and of8B are comparable. We hav
tested the accuracy of the17F* breakup cross section at hig
projectile velocity. We have found a much slower conv
gence of the integral~9! with respect to the impact paramet
b. For keeping the same order of accuracy, we had to
creasebmax to 200 fm, which renders the computation mo
time consuming. Nevertheless the breakup of a wea
bound state can be studied with the same accuracy as fo
17F ground state and an accurate time-dependent study o
05461
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8B breakup is thus feasible with the full Coulomb intera
tion.

The 17F* breakup cross section at 72 MeV/nucleo
~scaled by 0.1! is represented as a dotted line in Fig. 6. A
expected, it is much larger than for the ground state, b
factor of about 25. Although it is not experimentally meas
able, it offers a testing ground for the accuracy of oth
methods based on perturbative and/or multipole expansi

F. Inelastic cross section

The inelastic cross section to the 1/21 excited state of17F
is displayed in Fig. 7 as a function of the projectile ener
per nucleone. This cross section is calculated as

s1/21~e!52pE
bmin

`

Ps1/2~b!bdb, ~31!
2-8
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where the excitation probability of anl j bound state
is given by

Pl j ~b!5
1

2 j 011 (
m0

(
m

u^f l jm~E,r!uC (m0)~r,1`!&u2.

~32!

Since the ground and excited states have angular mom
differing by two units and the same parity, the simplest tra
sition mechanisms require anE2 transition or two successiv

FIG. 5. Convergence with respect to the impact parameterb of
the breakup cross section~in b/MeV! as a function of the relative
energyE of the 16O and proton fragments~in MeV! for a projectile
energy of 72 MeV/nucleon (v/c'0.392).

FIG. 6. Breakup cross section of17F ~in b/MeV! as a function of
the relative energyE ~in MeV! for various projectile energiese:18,
36, and 72 MeV/nucleon (v/c'0.196, 0.277, and 0.392, respe
tively!. The breakup cross section of17F* (Ex50.495 MeV) for
the projectile energy 72 MeV/nucleon, scaled by 0.1, is represe
as a dotted line.
05461
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-

E1 transitions. The advantage of the present approach is
all mechanisms and all multipoles are automatically
cluded.

One observes a regular decrease of the inelastic cross
tion over the considered energy range.

G. Comparison with experiment

Finally we perform a comparison with the only existin
experimental data point@7# for the projectile energy of 10
MeV/nucleon~see Fig. 8!. In fact this point has been ana
lyzed in two different ways, with~full circle! and without
~open circle! postacceleration correction.

In this section, because of the large values of the sca
ing angle, we use Rutherford trajectories with parameter

a5
ZT~Zc1Zf !e

2

mTPv2
, ~33!

wheremTP is the target-projectile reduced mass. The cal
lation of the differential cross section is performed with t
semiclassical approximation@34,35#

ds

dV
5Pbu~u!

dsR

dV
, ~34!

wheredsR /dV is the Rutherford cross section. The break
probability Pbu, which depends here on the deflection ang
u, reads

Pbu~u!5E
0

`dP

dE
@E,b~u!#dE. ~35!

By using the closure relation on the projectile states, t
probability can be rewritten as a function of bound-sta
probabilities calculated like in Eq.~32! but with Coulomb
trajectories, as

ed

FIG. 7. Inelastic cross section to the 1/21 excited state of17F ~in
mb! as a function of the projectile energye ~in MeV/nucleon!.
2-9
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Pbu~u!'12Pd5/2@b~u!#2Ps1/2@b~u!#. ~36!

Equation~36! would be exact if the potential did not suppo
additional bound states. Indeed the potential of Ref.@30#
contains deep bound states in thes1/2, p3/2, andp1/2 partial
waves, simulating Pauli forbidden states. These states
very weakly populated during the collision process. We ha
checked that Eqs.~35! and~36! are numerically equivalent in
our model. Equation~36! is obviously easier to evaluate.

The differential breakup cross section of17F at 10 MeV/
nucleon (v/c'0.146) is displayed in Fig. 8 as a function
the c.m. deflection angleu of the projectile. Notice that the
fact that our approach includes all orders of perturbation
all multipoles is important at the experimental energy. Va
ous mechanisms@7# such as direct and sequential breakup
single-particle states are automatically included. The ca
lated differential cross section displays a maximum near
like the results obtained in several models discussed in
@7#. However the present calculated values are smaller
the disagreement with the experimental point is less imp
tant. In order to speculate on the origin of the discrepan
several values of the distance of closest approach

Rmin5a~11cot12 u! ~37!

with a'3.1 fm are shown in the figure. At the angular l
cation of the experimental point, this distance is only ab
11 fm so that the dotted part of the curve~at least! should be
recalculated by including a nuclear interaction between
projectile and target. Therefore it is possible that the inc

FIG. 8. Differential breakup cross section of17F ~in mb/sr! as a
function of the c.m. angle~in degrees! for the projectile energy 10
MeV/nucleon (v/c'0.146). Different values of the distanceRmin

of closest approach are indicated. The experimental data points
~full circle! and without ~open circle! postacceleration correctio
are from Ref.@7#.
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sion of nuclear effects might improve the agreement w
experiment. This point requires further theoretical consid
ation but further experimental data would also be welcom

VI. CONCLUSION

In this paper, we have improved and extended the num
cal method presented in Ref.@21# to simulate the Coulomb
breakup determination of an astrophysicalS factor. To this
end we have introduced a distortion of the scattering s
between the fragments, which was not taken into accoun
Ref. @21#. The validity of the present approach has be
tested with a purelyE1 Coulomb interaction. It is remark
able that theS factor extracted by this technique from th
theoretical breakup probabilities agrees within 1% with
direct and completely independent calculation of thisS factor
under the same model conditions.

The main simplifying assumption of the present mode
probably the use of a classical trajectory in a time-depend
approach. Fixing this trajectory prevents studying the co
plicated three-body Coulomb effects in the final state. N
ertheless the present model takes into account the diffe
~Coulomb and nuclear! postacceleration effects between t
fragments of the projectile.

The main results of the present work concern the valid
of the Coulomb breakup method for deriving the astrophy
cal S factor. The study is performed on the17F1 208Pb
→ 16O1p1 208Pb reaction. The17F nucleus is a good ex
ample of weakly bound nucleus. It possesses a well-defi
cluster structure. Moreover, beams of this unstable nuc
are now available. This reaction can, in principle, be used
determine the16O(p,g)17F radiative captureS factor to the
17F ground state. We observe that a minimal velocity
0.25c ~about 30 MeV per nucleon! is necessary to get accu
rate information~better than 5%) on the extractedS factor.
The impact parameter must be larger than 60 fm. It is in
esting to note that, even with a purelyE1 interaction~Fig. 3!,
higher-order effects become smaller than 5% only forb
.40 fm at this velocity. We have rather arbitrarily consi
ered a 5% accuracy as a goal for the extraction of the as
physical S factor. Domains of validity for other accuracie
can be studied in a similar way from Figs. 3 and 4.

The present work opens the way to an analysis with
multipole expansion of the breakup of8B, which is made
numerically more difficult by the smaller binding energ
with respect to17F. The Coulomb breakup of8B is of prime
importance to determine theS factor of the 7Be(p,g)8B ra-
diative capture reaction@5#. As a preliminary test, we have
calculated the Coulomb breakup of17F in its excited 1/21

state whose binding energy is even smaller. Because of
weakness of the binding, this state is spatially quite
tended, which renders the calculation more time consum

We performed a comparison with the only experimen
point existing to date for the17F breakup on208Pb. Like
other model approaches, we obtain too large a theore
result but the disagreement with experiment is somew
smaller than in other models. We speculate that the introd
tion of a nuclear interaction between projectile and tar
might still improve the situation.

ith
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