
PHYSICAL REVIEW C, VOLUME 64, 054610
Radiative corrections for „e,e8p… reactions at GeV energies

R. Ent,1,2 B. W. Filippone,3 N. C. R. Makins,1,* R. G. Milner,1 T. G. O’Neill,3,† and D. A. Wasson4,‡

1Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
2Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606

3W. K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California 94305
4Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

~Received 24 July 2000; published 12 October 2001!

A general framework for applying radiative corrections to (e,e8p) coincidence reactions at GeV energies is
presented, with special emphasis to higher-order bremsstrahlung effects, radiation from the scattered hadron,
and the validity of peaking approximations. The sensitivity to the assumptions made in practically applying
radiative corrections to (e,e8p) data is extensively discussed. The general framework is tested against experi-
mental data of the1H(e,e8p) reaction at momentum transfer values larger than 1.0 (GeV/c)2, where radiative
processes become a dominant source of uncertainty. The formulas presented here can easily be modified for
any other electron-induced coincidence reaction.
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I. INTRODUCTION

Coincidence (e,e8p) reactions off nuclei can allow de
tailed studies of the nuclear wave function as well as qu
elastic reaction dynamics. The attractiveness of electron s
tering is that the photon couples weakly to the electron
proton, simplifying the extraction of information from ex
perimental data. Unfortunately, photons are also mass
and can be copiously produced in such experiments. R
photons are emitted~bremsstrahlung! when the charged par
ticles involved in the reaction are accelerated by the field
either the nucleus involved in the primary hard scatter
~‘‘internal radiation’’!, or by the other nuclei encountered b
the incoming/outgoing particles as they travel through int
vening material~‘‘external radiation’’!. The emission of rea
photons causes a discrepancy between the detected par
momenta and their actual momenta at the scattering ve
and so causes distortions in the extracted experimental s
tra. Conversely, amplitudes involving the emission of ad
tional virtual photons affect only the magnitude of the me
sured cross section.

The topic of radiative corrections is an old one, dati
back to Bethe and Heitler, who first calculated the brem
strahlung spectrum of an electron scattering in a coulo
potential@1#, and Schwinger, who first calculated the full fir
order radiative correction to this same problem@2#. For soft-
photon emission, lowest order perturbation theory is in
equate. Yennie, Frautschi, and Suura generalized this re
to higher orders, showing how to deal with soft-photon em
sion @3#. Tsai@4# and Meister and Yennie@5# derived explicit
formulas for radiatively correcting inclusive elastic scatt
ing of electrons off protons, where only the electron is d
tected. Finally, a review article by Mo and Tsai@6# summa-
rized the approaches and approximations that could be
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to radiatively correct data in different situations and d
cussed the advantages of the Tsai over the Meister and
nie results. More recently, de Calan, Navelet, and Picard@7#
derived a third set of formulas that disagree with the res
of Tsai @4#. The current paper considers radiative correctio
for coincidence (e,e8p) reactions. Its goal is to emphasiz
the assumptions and ambiguities involved in radiative c
rection formulas, in particular the differences between Re
@7,6#, and to produce formulas applicable to coincidence
actions.

The primary cross sections of interest are the cross sec
for an electron to scatter off a proton into a solid angledVe
and produce photons with total momentum in the ranged3v,

ds

dVed
3v

~1!

and the cross section for an electron to scatter off a pro
into a solid angledVe without emitting photons whose tota
energy is greater thanDEm ,

ds

dVe
~v,DEm!. ~2!

The former cross section is necessary in order to propa
the radiative tail through missing energy and moment
space, while the later can be used if one only wants to m
sure the missing energy distribution with the missing m
mentum integrated out~four-momentum conservation can b
used to determine the missing energy and momentum
accounted for in the detected particles—see Sec. II!.

Within QED it is straightforward to calculate these cro
sections to low orders in the fine structure constanta. How-
ever, electron-proton scattering also contains the strong
teraction, which does not factor from the QED corrections
we were interested in radiatively correcting electron-mu
scattering this problem would not be severe. Both the fi
order elastic and bremsstrahlung cross sections would be

,

.
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ambiguously determined, and only the vacuum polarizat
correction to the second order elastic cross section wo
have some uncertainties.

In the case of electron-proton scattering, the situation
more difficult. Neither the first order elastic or bremsstra
lung cross sections are calculable exactly due to the exten
structure of the proton. For example, consider the expan
of Eq. ~2! to first order ina, which can be parametrized a

ds

dVe
~v,DEm!5

ds (1)

dVe
U

ep

„12a@d1~DEm!1d2#…, ~3!

where

ds (1)

dVe
U

ep

is the one-photon exchange~Born! electron-proton cross sec
tion and the ordera radiative correction has been divide
into two terms; the first due to bremsstrahlung of real p
tons (d1) and the second term caused by virtual particle c
rections to the elastic cross section (d2). The choice of kine-
matics for the quasifree electron-proton scattering cas
discussed in Sec. II. The first correction,d1(DEm), which
determines the shape of the Bremsstrahlung spectra is f
well-determined and will be discussed in Sec. III A. The s
ond correction,d2 is not well determined and different for
mulas for radiative corrections to electron-proton scatter
typically differ in their expressions ford2.

Fortunately, the choice ofd2 is not too important, as long
as it is doneconsistently. Radiative correction formulas, suc
as Eq.~3!, are generally applied to electron-proton scatter
data in order to determineds (1)/dVe . Different choices of
d2 change the extracted values ofds (1)/dVe . If one then
uses these extracted cross sections in analyzing an (e,e8p)
reaction, as long as one uses the samed2 as was used in
extractings (1), one will reproduce the correct cross sectio
These points will be discussed in Sec. III B.

The correct calculation ofd1, on the other hand, is ver
important. The lowest order calculations work well for lar
photon energies but break down for small photon energ
where multiple-photon generation dominates. In this regim
the soft-photon bremsstrahlung diagrams need to be sum
to all orders, which turns out to be equivalent to exponen
tion. Recently, the necessity of including multiphoton em
sion was shown in a practical example for the3He(e,e8p)
reaction@8#. In contrast, this work provides a more rigoro
framework on applying radiative corrections to coinciden
(e,e8p) reactions, evaluating the effect of the various co
tributions and assumptions in the many-GeV region. We
ther deal with the effects of multiphoton emission
Sec. III C.

In general, these multiphoton emission cross sections
too complicated to simply remove the effect of bremsstr
lung from experimental data. At high energies, the individ
photons are largely emitted in the direction of the incom
or outgoing fermions. This allows the introduction of a pea
ing approximation that greatly simplifies the calculation
the angular distribution of the emitted photon radiation. T
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approximation is discussed in Sec. IV A. We discuss in S
IV B the spectrum for the emission of ‘‘external’’ radiation
which has essentially been discussed before by Tsai@9# and
Friedrich@10#. We also discuss in this section the generaliz
peaking approximation, which adds the effects of ‘‘interna
and ‘‘external’’ radiation in a consistent manner in the pea
ing approximations applied.

Section V discusses the Monte Carlo simulation meth
used to enable a comparison of the radiative correcti
framework discussed with experimental (e,e8) and (e,e8p)
data. In Sec. V A we describe the general Monte Carlo sim
lation method used, and how the radiative correction pro
dures were applied to this simulation. In Sec. V B compa
sons of the described Monte Carlo simulation w
experimental data from the Stanford Linear Accelerator C
ter ~SLAC! experiment NE18 are shown@11#. Sec. V C dis-
cusses a ‘‘modified’’ equivalent radiator method, a straig
forward Monte Carlo simulation method which for mo
(e,e8p) experiments will be satisfactory to apply radiativ
corrections. Again comparisons of this Monte Carlo meth
with experimental data from the NE18 experiment are p
sented. Finally, Section VI provides a summary of the wo
presented.

II. KINEMATICS

This section considers the kinematics of the process

eA→e8gp~A21!* ,

where the residual (A21)* is an unmeasured state of~A21!
nucleons plus any other particles produced in the react
Denote the initial and final four-momenta of the electronk
5(e,k) and k85(e8,k8) respectively, the final four-
momenta of the protonp85(p80,p8), the four-momentumq
5k2k85(n,q) transferred from the electron, and the fou
momenta of the bremsstrahlung photonv5(v0,v) where
v05uvu. The electron mass will be denotedm and the pro-
ton mass denotedM. For the discussion of kinematics in th
section, the electron mass will be taken as negligible.

The real photonv appears in the energy-momentum co
servation relation as an additional four-momentum in the
nal state:

k1pA5k81p81v1p~A21!
* . ~4!

All of these variables are four-momenta, representing resp
tively the initial electron, the initial target nucleus, the sc
tered electron, the knockout proton, the emitted photon,
the recoiling (A21) system~possibly in an excited state, a
indicated by the asterisk!. If one now denotes the values on
measuresfor the missing momentum and energy byp̃m and
Ẽm , and their vertex valuesin the absence of radiationby
pm andEm , one obtains

pm5p81v2q5p̃m1v,

Em1Trec5e2e82~p802M !2v05Ẽm1T̃rec2v0, ~5!
0-2
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and so

p̃m5pm2v,

Ẽm5Em1Trec2T̃rec1v0>Em1v0. ~6!

Note that the measured value of the recoil kinetic ene
T̃rec , depends on the measured missing momentum and
also distorted by bremsstrahlung photons. However, the c
tribution of Trec to the missing energy is, in general, sm
~and nonexistent in the case of elasticep scattering!. The
approximationT̃rec.Trec is not used in the calculations de
scribed herein, but merely serves to illustrate the overall
fect of radiation on a measured (Em ,pm) distribution: the
real photons produce long ‘‘tails’’ which, at very high photo
energy (v0@Em ,pm), are described by the relationẼm

> p̃m>v0. Elasticep scattering provides a clear demonstr
tion of these tails, since in the absence of radiation,
strength is localized atEm5pm50 ~see Fig. 1!. It is seen
that the radiated events are distributed along the line w
Em5upW mu as required for real photons.

The coincidence variablesEm andpm thus provide a natu-
ral basis in which to evaluate radiative effects. By contra
radiative corrections have generally been calculated in
framework of inclusive (e,e8) experiments—in terms o
their effect on the measured energy transfern (5e2e8). If
we denote, similarly as above,ñ (q̃) as the measured energ
~momentum! transfer, one obtains

q̃5q2v,

ñ5n1v0. ~7!

The effect of radiation on these quantities depends on
direction of the emitted photon: Consider elastic scatteri
with Born-level differential cross sectionds (1)/dVe8 . The
reaction amplitude is fixed by the direction of the scatte
electron~and, of course, the incident electron energy!. If we
treat this directionk̂8 as fixed, the radiation of a photo
parallel tok̂8 simply decreases the energye8 by the photon

FIG. 1. Distribution of counts inEm and upmu for (e,e8p) from
hydrogen atQ251 (GeV/c)2, demonstrating the existence o
‘‘tails’’ due to bremsstrahlung radiation. TheEm axis runs in the
bottom-right direction, from225 to 125 MeV in bins of 2.5 MeV;
the upmu axis runs towards bottom-left, from2160 to 160 MeV/c
in bins of 5 MeV/c.
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energyv0. If, however, the photon direction is parallel to th
incoming electron,e8 is affected by an amount that depen
on the electron scattering angle.~Note that the scattered pro
ton vector is also affected.! Thus, when one comes to evalu
ate the total probability of emitting radiation that affectsn by
less than some cutoff energyDEm , one has to perform inte
grals over photon energy and direction with interdepend
integration limits. In the case of coincidence scattering,
dependent integrals can be performed as the measureme
both scattered particles enables one to select a more ‘‘n
ral’’ choice of variables—Em and pm . In the elastic scatter-
ing example of above, if the missing energy is measured
an accuracyDEm , one is guaranteed that all measur
events correspond to emitted photons with less thanDEm ,
regardless of the photon direction, or, equivalently, the ra
of e/e8.

The formalism described in this section is based on
work of Mo and Tsai@4,6# which has provided the standar
radiative corrections prescription for three decades of inc
sive electron scattering experiments. The basic formulas
Mo and Tsai have been reevaluated in a coincidence fra
work: one can no longer integrate over all final states of
scattered proton as in (e,e8) measurements, but must calc
late the radiative effect on both the scattered electron
proton. The resulting distributions are then included in t
event generation of a Monte Carlo simulation and fold
with the experimental detection range ink8 and p8 as de-
scribed earlier. Throughout this work we will use for th
numerical examples the kinematics given in Table I and
note the specific kinematics with its momentum trans
squared valueQ2. Specifically, some of the kinematics give
in the table are consistent with the kinematics of the NE
experiment at SLAC@11#.

III. INTERNAL BREMSSTRAHLUNG

A. First order internal bremsstrahlung

The probability for radiating a single bremsstrahlung ph
ton is represented by the four Feynman diagrams of Fig
Since each of these diagrams involves the same final s
the amplitudes must be summed coherently:

ds

d3k8d3v
;uMei1Mef1Mpi1Mpfu2. ~8!

TABLE I. Kinematics settings used.

Q2 e e8 ue

(GeV/c)2 ~GeV! ~GeV! ~deg!

1 2.01 1.41 37.3
3 3.19 1.47 49.0
5 4.21 1.47 54.2
7 5.12 1.47 57.0
6 12.1 8.9 14.0
9 15.4 10.6 14.0
12 18.3 11.9 14.0
15 21.0 13.0 14.0
0-3



to
to

ro
b

y
n

w
cu

is

o

fo

n,
he

so,
will

ke a
x-

tion

lcu-
ns.
e
e

ne-

ive
rt of

valu-

s

R. ENT et al. PHYSICAL REVIEW C 64 054610
These four matrix elements refer to the emission of a pho
by the incident electron, scattered electron, incident pro
and scattered proton respectively. To evaluate them, one
quires a knowledge of the coupling of the electron and p
ton to the photon. The electron coupling is given exactly
QED and is specified by the electron current

Je
m~q!5eūe~k1q!gmue~k!. ~9!

Here e52A4pa is the electron charge andue is the elec-
tron spinor, normalized toūe(k)ue(k)52m (m is the elec-
tron mass!. The proton-photon coupling is complicated b
the fact that the proton is in general bound and off-shell, a
the description of such a proton is only approximately kno
@12#. For the present, we neglect these effects and dis
elastic scattering from an on-shell proton:

Jp
m~q!52eūp~p1q!Gm~q!up~p!. ~10!

The deviation of the proton from a point particle
described by

Gm~q!5F1~q2!gm1
1

2M
F2~q2!ismnqn , ~11!

using the free proton form factors. Again, the proton spin
is normalized to the proton mass:ūp(k)up(k)52M . Using
these couplings, one obtains the following expressions
the first-order bremsstrahlung matrix elements:

Mei5 i ūe~k8!gmF ign~kn2vn!1m

~k2v!22m2 G
3egn«nue~k!

e2

qp
22m2ūp~p8!Gm~qp!up~p!,

FIG. 2. Feynman diagrams contributing to first order brem
strahlung radiation cross section.
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Mef5 i ūe~k8!egn«nF ign~kn81vn!1m

~k81v!22m2 G
3gmue~k!

e2

qp
22m2ūp~p8!Gm~qp!up~p!,

Mpi5 i ūp~p8!Gm~q!F ign~pn2vn!1M

~p2v!22M2 G
3~2e!Gn~v!«nup~p!

e2

q22m2ūe~k8!gmue~k!,

Mpf5 i ūp~p8!~2e!Gn~v!«nF ign~pn81vn!1M

~p81v!22M2 G
3Gm~q!up~p!

e2

q22m2ūe~k8!gmue~k!. ~12!

Here «n is the polarization of the bremsstrahlung photo
qp5p82p is the momentum transferred to the proton if t
electron emits the photon, andq5k2k8 is the momentum
transferred to the proton if the proton emits the photon. Al
m is a parameter representing the photon mass, which
ultimately be taken to 0. The single ambiguity in Eq.~12! is
the assumption that the intermediate proton propagates li
Dirac particle and that there are no contributions from e
cited hadronic states. This should be a good approxima
for small photon energies.

The single photon emission cross section can be ca
lated from these expressions, with no further approximatio
However, the formulas simplify greatly in the limit that th
photon energyv0 is much less than the momenta of th
initial and final state fermions. In this case, the basic o
photon exchange~Born! amplitudeM ep

(1) factorizes from the
bremsstrahlung amplitudes, giving

Mei5eM ep
(1)S 2«•k

v•k D ,

Mef5eM ep
(1)S «•k8

v•k8
D ,

Mpi52eM ep
(1)S 2«•p

v•p D ,

Mpf52eM ep
(1)S «•p8

v•p8
D . ~13!

This limit is referred to as thesoft photon approximation
~SPA!; it can be seen to be reasonable from the distinct
1/v energy dependence of the emission amplitudes. Pa
this approximation is the use of the elastic~unradiated! val-
ues of the fermion momentak, k8, p, and p8 in the above
expressions. These elastic values are also used in the e
ation of the one-photon exchange amplitude,

-

0-4
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M ep
(1)5 i ūe~k8!gmue~k!

e2

q22m2ūp~p8!Gm~q!up~p!.

~14!

The resulting total cross section for single-photon brem
strahlung is thus given by

ds

dVed
3v

5
ds (1)

dVe
U

ep

2a

4p2v0 F k8

v•k8
2

p8

v•p8
2

k

v•k
1

p

v•pG 2

.

~15!

For later convenience, usingd3v5v02dv0dVg , we write
this as a product of photon energy and angle distribution

ds

dVedVgdv0
5

ds

dVe

(1)U
ep

A~Vg!

v0
, ~16!

where

A~Vg!52
av02

4p2 F k8

v•k8
2

p8

v•p8
2

k

v•k
1

p

v•pG 2

~17!

depends only on the photon directionv̂. Integrating Eq.~15!
over photon angle and energy, one obtains the cross se
for emitting a photon of energy less thanDEm :

ds

dVe
~v0,DEm!5E

0

DEm
d3v

ds

dVed
3v

5
ds (1)

dVe
U

ep

~22a!(
i , j

Q~pi !Q~pj !

3B~pi ,pj ,DEm!, ~18!

where

B~pi ,pj ,DEm!5E
0

DEm
d3v

1

8p2v0

pi•pj

~v•pi !~v•pj !
.

~19!

Here, two pieces of convenient notation have been in
duced.pi for i 51, . . . ,4 isused to represent the four fe
mion momentak,k8,p,p8 in turn; the constantsQ(pi) de-
note the signs accompanying each term,Q(k)5Q(p8)5
21 and Q(k8)5Q(p)51. This integral can be evaluate
using the expression

v•k5v~e2ukucosu!, ~20!

as well as introducing a new variablex as indicated in Eq.
~III.19! of Tsai @4#:

px5xpi1~12x!pj . ~21!

One then obtains
05461
-

ion

-

B~pi ,pj ,DEm!5
pi•pj

2p E
0

1

dxE
0

DEmv2dv

v0

1

px
2v21m2~px

0!2

5
pi•pj

2p E
0

1

dx
1

px
2 lnS DEm

px
0 D 1

1

2px
2 lnS px

2

m2D
1

px
02upxu
2upxu

lnS px
02upxu

px
01upxu

D 1 lnS 2px
0

px
01upxu

D .

~22!

We note that the sum( i , jQ(pi)Q(pj )B(pi ,pj ,DEm) is
negative, making the total cross section@and the angular dis-
tribution A(v̂)# positive.

One observes that this expression contains two n
physical divergences: when the ‘‘photon mass’’m→0 and
when the energy cutoffDEm→0. Both of these are due to
approximations made so far, and will be addressed in la
sections. Before continuing, however, it is worthwhile to t
to evaluate the validity of the soft photon approximation.
mentioned above, the one photon bremsstrahlung calcula
can be computed without this approximation. According
the ratio of the full to the soft photon calculation is presen
in Table II for 2q25Q251 (GeV/c)2 and a variety of pho-
ton energies, and in Table III for a photon energy of 1
MeV and a range ofQ2 from 1 to 15 (GeV/c)2. Qualita-
tively, one sees that the SPA improves at low photon ener
and high momentum transfers, as expected. AtQ2

51 (GeV/c)2, the discrepancy between the two calcu
tions is less than 1% for photon energies less than 10 M
while for a photon energy of 100 MeV the discrepancy dro

TABLE II. Ratio of single photon bremsstrahlung cross secti
calculated in the soft photon approximation to the full calculatio
at Q251 (GeV/c)2. Various photon energiesv0 are considered;
the photon angle is taken to be in the direction of either the ini
~i! or final ~f! electron. The values in parentheses are the SPA/
ratios using a pointlike proton in the calculations.

v0 ~MeV! i f

1 1.0023~1.0002! 0.9993~0.9993!
10 1.023~1.002! 0.993~0.993!
100 1.26~1.02! 0.93 ~0.93!
200 1.59~1.04! 0.87 ~0.87!

TABLE III. Ratio of single photon bremsstrahlung cross secti
calculated in the soft photon approximation to the full calculatio
for photon energyv05100 MeV. Various momentum transfersQ2

are considered; the photon angle is taken to be in the directio
either the initial~i! or final ~f! electron.

Q2 (GeV/c)2 i f

1 1.26 0.93
5 1.14 0.93
9 1.05 0.99
15 1.03 0.99
0-5
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to 5% atQ259 (GeV/c)2. The discrepancies are conside
ably higher at the other settings listed, however. Two effe
are involved: the shape of the bremsstrahlung energy s
trum, and the evaluation of the matrix elements using ela
(v050) particle vectors@i.e., neglecting the difference be
tweenq and q in Eq. ~12!#. In an attempt to separate the
effects, Table II also contains the SPA to full ratio using
pointlike proton, i.e., a proton whose form factors a
GE

p(Q2)51 andGM(Q2)5mp ~these are theQ250 values
of the form factors of the physical proton!.At Q2

51 (GeV/c)2, one sees that most of the discrepancy is d
to the q-dependent form factors. To correct this one m
evaluate the cross section using a value ofq which is cor-
rected for the effect of radiation. In other words, one m
distinguish between photons emitted before and after
hard scattering, a task which is complicated by the inter
ence terms between the Bremsstrahlung amplitudesMei ,
Mef , Mpi , and Mpf . However, such a correction can b
built into the calculation, as is explained later on. The ma
mal Em range below pion production threshold is about 1
MeV, so thev05100 MeV results in Table II can be con
sidered a typical worst case. Assuming that the correctio
q at the hard scattering vertex can be accomplished, on
faced with a SPA inaccuracy of at most 2% for radiation
the directionk̂ and 7% for radiation in the directionk̂8. We
point out in passing that these discrepancies are given
fractions of the radiativecorrections, which are themselves
small; the effect of these discrepancies on the final cr
section is thus much less than the quoted percentages. N
theless, the effect may be of relevance for precision meas
ments.

B. Virtual photon corrections

One of the nonphysical divergences observed in Eq.~22!
was found in the limitm→0. This is known as an ‘‘infrared
divergence,’’ and is a direct consequence of the fact that
one photon bremsstrahlung cross section is of ordera3 and
that other diagrams of the same order have not been inclu
yet. These are amplitudes for the exchange of two virt
photons, collectively referred to asM ep

(2) . These must be
summed coherently withM ep

(1) , which represents the sam
final state:

M ep
2 5uM ep

(1)u21M ep
(2)†M ep

(1)1M ep
(1)†M ep

(2)1O~a4!.
~23!

Figure 3 contains a summary of the second-order amplitu
Unfortunately, several of these depend implicitly on t
strong interaction via the poorly known proton current. T
point of view advocated by Mo and Tsai and espoused h
is to include only those terms which do not unambiguou
depend on the strong interaction. Certain amplitudes suc
M ep

(2.3) in the figureare calculated, but only infrared diver
gent terms necessary to cancel those from the bremsstrah
cross section are kept; the rest are left buried in the elect
proton cross section. It should be noted that other work
@7# have derived alternative expressions for the virtual rad
tive correction, by including some of the components left o
05461
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by Mo and Tsai. However, the point to be made here is t
the evaluation ofM ep

(1) includes the use of proton form fac
tors extracted frompreviousdata. The radiative correction
applied should thus beconsistentwith whatever corrections
were used in extracting these form factors@13,14#. The stan-
dard prescription given by Eq. II.6 of Mo and Tsai@6# is thus
the appropriate choice, with the addition of the Schwing
correction and vacuum polarization from quark and hea
lepton loops@13,15#.

The second order diagrams depicted in Fig. 3 are grou
into three categories depending on their sensitivity to
strong interaction. We use the same evaluation of these
plitudes as Mo and Tsai, and restate them here. Also use
the notation

K~pi ,pj !5pi•pjE
0

1dx

px
2 lnS px

2

m2D , ~24!

describing the form of the infrared divergent terms. Note t

K~pi ,pi !5 lnS mi
2

m2D , ~25!

and that the IR divergent term of Eq.~22! has this form.
The electron-photon vertex correctionM ep

(2.1) is known
exactly from QED. In the limitQ2@m2 ~which is well sat-
isfied by momentum transfers in the GeV/c range!, one ob-
tains

M ep
(2.1)5

a

2pF2K~k,k8!1 lnS m2

m2D1
3

2
lnS 2q2

m2 D22GM ep
(1) .

~26!

The vacuum polarization correction,M ep
(2.2) , contains

contributions from both lepton and hadronic loops. T
former are known unambiguously from QED, the latter a
calculated in a similar manner. They contribute

M ep
(2.2)5aF(

i
d i

vpGM ep
(1) , ~27!

FIG. 3. Feynman diagrams representing virtual photon corr
tions to one-photon exchangeep cross section included here and
Ref. @4#.
0-6
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where

d i
vp5

1

3p S 2
5

3
2

4mi
2

q2 1S 11
2mi

2

q2 DA12
4mi

2

q2

3 logF 11A12
4mi

2

q2

A12
4mi

2

q2 21
G D ~28!

and ( i sums over the different flavors of leptons and lig
quarks with massmi . In the limit Q2@m2 one obtains

d i
vp5

1

3p F2
5

3
1 lnS 2q2

mi
2 D G . ~29!

As there are no IR divergent terms in the vacuum polari
tion amplitude, further contributions from the strong intera
tion are neglected. Finally,M ep

(2.3) includes two-photon ex-
change and nucleon self-energy graphs, both of wh
depend intrinsically on the strong interaction. Only the
divergent terms are used:

M ep
(2.3)5

a

2p FK~k,p!1K~k8,p8!2K~k8,p!2K~k,p8!

2K~p,p8!2 lnS M2

m2 D G . ~30!

The total cross section for emitting a photon with ener
less thanDEm is now obtained by adding all of these term
to Eq. ~18!. The dependence on the photon mass cancel
required, leaving

ds

dVe
~v0,DEm!5

ds (1)

dVe
U

ep

„12dsoft~DEm!2dhard…,

~31!

where

dsoft~DEm!52a(
i , j

Q~pi !Q~pj !B̄~pi ,pj ,DEm! ~32!

and

dhard52aF2
3

4p
ln~2q2/m2!1

1

p
2(

i
d i

vp~q2!G .
~33!

Here, ds (1)/dVeuep represents the one-photon exchangeep
cross section,dhard is the contribution from the second ord
virtual photon diagrams, anddsoft(DEm) is due to one photon
bremsstrahlung.B̄(pi ,pj ,DEm) is simplyB(pi ,pj ,DEm) of
Eq. ~22! without the IR divergent term. The subscript ‘‘hard
refers to the dominance of high momentum virtual photo
in the dhard correction after cancellation of the IR dive
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gences. The subscript ‘‘soft’’ refers to the assumptionv0

,e,e8 used in the derivation ofdsoft ~cf. the SPA in Sec.
III A !.

In order to separate out the contribution of the proton
divide dsoft(DEm) into three parts,

dsoft~DEm!5dsoft
ee ~DEm!1dsoft

ep ~DEm!1dsoft
pp ~DEm!.

~34!

dsoft
ee is the electron bremsstrahlung contribution, invol

ing B̄(k,k,DEm), B̄(k8,k8,DEm), and 22B̄(k,k8,DEm).
dsoft

ep includes the electron-proton interference term

22B̄(k,p,DEm), 2B̄(k,p8,DEm), 2B̄(k8,p,DEm), and
22B̄(k8,p8,DEm); while dsoft

pp is entirely due to proton ra-

diation and includes the remaining termsB̄(p,p,DEm),
B̄(p,p8,DEm), and 22B̄(p8,p8,DEm). Table IV contains
values of these terms as well asdhard at various kinematics.
Note thatdhard is negative, and so causes a netincreasein the
total ep cross section. Its magnitude is also small: less th
10% up toQ2 of 15 (GeV/c)2. The direct proton contribu-

TABLE IV. Values for the radiative correction functionsd,
evaluated at various momentum transfers and for cutoff photon
ergies of 10 and 140 MeV. Note that the virtual correctiondhard is
independent of this cutoff parameter. Note also that the results
pend on the choice of electron scattering angle as well as onQ2.
The final column is the percentage contribution of the proton-pro
and electron-proton interference terms to the total bremsstrah
correction@(dsoft

ep 1dsoft
pp )/dsoft#.

Q2 DEm dhard dsoft
ee dsoft

ep dsoft
pp dsoft psoft

ep1pp

(GeV/c)2 ~MeV! %

1 10 20.07 0.332 0.015 0.007 0.354 6.2
140 0.158 0.007 0.003 0.169 5.9

3 10 20.08 0.377 0.038 0.019 0.434 13.1
140 0.190 0.020 0.009 0.219 13.2

5 10 20.08 0.398 0.056 0.028 0.482 17.4
140 0.205 0.030 0.014 0.249 17.7

7 10 20.09 0.424 0.070 0.035 0.529 19.8
140 0.226 0.038 0.019 0.283 20.1

6 10 20.09 0.519 0.019 0.032 0.569 9.0
140 0.323 0.011 0.017 0.351 8.0

9 10 20.09 0.545 0.024 0.041 0.610 10.7
140 0.345 0.014 0.022 0.382 9.4

12 10 20.09 0.564 0.028 0.049 0.641 12.0
140 0.360 0.017 0.028 0.405 11.1

15 10 20.09 0.579 0.032 0.056 0.667 13.2
140 0.372 0.020 0.032 0.424 12.3
0-7
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tion dsoft
pp varies from 2%~lowestQ2) to 10%~highestQ2) of

the electron contributiondsoft
ee . The electron-proton interfer

ence is about twice the size of the direct proton term for
first four kinematics, leading to a net 6–20 % contribution
proton bremsstrahlung, but only about half the size of
direct proton term for the last four kinematics. This is go
erned by the ratio ofe8 to e (dsoft

ep is zero in the limite8
5e). From Table IV it is clear that proton radiation, thoug
afflicted by strong interaction uncertainties, cannot be
glected at large momentum transfer.

A complete evaluation of the functionsB̄(pi ,pj ,DEm),
and thus of Eq.~32!, is often done numerically. Howeve
analytic evaluation is possible, as outlined in the Append
In general, numerous Spence functionsF must be computed
where

F~x!5E
0

x2 ln~ u12yu!
y

dy. ~35!

As an aside, the contributions of these functions turn ou
be important only when their arguments are large (uxu@1),
and in this case an excellent approximation is provided b

F~x!>
1

2
ln2~ uxu!. ~36!

The formulas fordsoft simplify, however, in the ‘‘ultrarelativ-
istic ~UR! limit’’ where the momentum transfer and verte
momentum of the final electron are large compared to b
the nucleon and electron mass. In this limit, one obtains
following closed forms:

dee
ur 5

a

p
lnS kk8

~DEm!2D F lnS 2q2

m2 D21G ,
dpp

ur 5
Z2a

p F lnS p0p08

~DEm!2D F lnS 2q2

M2 D21G1
1

2
ln2S p08

M
D G ,

dep
ur 5

Za

p F lnS p0p08

DEm
2 D lnS k

k8
D 1 lnS kk8

DEm
2 D lnS k

k8
D

1
1

2
lnS kk8

M2D lnS k

k8
D G . ~37!

The atomic numberZ is retained in these forms to remind th
reader that the results are also valid for electron-nucleus s
tering, barring the neglect of earlier mentioned off-shell
fects. Furthermore, this allows for easy differentiation b
tween contributions involving the electron bremsstrahlun
(;Z0), the electron-proton interference (;Z1), and the pro-
ton bremsstrahlung terms (;Z2). These forms reveal the es
sential features of one-photon emission: all of the dep
dence ofdsoft(DEm) on DEm takes the form ln(1/DEm), but
additional terms independent of the photon energy cutoff
also present. These expressions will prove very useful l
on, and so it is worthwhile to see how good the UR appro
mation is. A comparison ofdsoft(DEm) computed using Eq
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~22! and Eq.~37! is presented in Table V. One sees that
the chosen kinematics the approximation is accurate to
least 2%. This is because the electrons are always hig
relativistic and the contribution tod due to the final nucleon
is small when nonrelativistic. The nucleon contribution b
comes significant only when relativistic~it is equal to the
electron’s in the very high energy limit! and in that case Eq
~37! provides a good approximation.

It is worthwhile to compare our results, given by Eqs.~32!
and~33! with those of Mo and Tsai~Eq. II.6!, denoteddMT .
The only difference between the two calculations is that
calculation integrates the photon emission up to a maxim
photon energy ofDEm ~corresponding to a missing energy
DEm), while the calculation by Mo and Tsai integrates ov
all photons corresponding to an energy loss of less thanDe8.
The two calculations are equal only in the limit that th
proton mass is large in which case the electron energy
equals the energy of the emitted photon. In general, for fin
proton mass, photon emission additionally affects the re
energy, and thus the energy of the emitted photon is gre
than the electron energy loss. This implies that the calcu
tion by Mo and Tsai at a given value ofDe8 contains also
contributions of additional photons with energiesDEm larger
thanDe8. The degree to which this energy can be differen
determined by the ratio ofe to e8. Table VI compares the
results of both calculations. As expected from the previo
discussion it is always true that

dMT~De85DE!<d~DEm5DE!5dhard1dso f t~DEm5DE!,
~38!

where the largest difference occurs whene is far larger
thane8.

TABLE V. Single photon bremsstrahlung spectrum, evaluated
several kinematic settings and integrated up to photon energie
10 and 140 MeV.dsoft is calculated using the full SPA expression
of Eq. ~22!; dsoft

ur is from the closed form expressions of Eq.~37!
found in the ultrarelativistic limit. The final column presents th
percentage discrepancy of the UR calculation relative to the
SPA.

Q2 DEm dsoft dsoft
ur Discrep.

(GeV/c)2 ~MeV! %

1 10 0.354 0.347 22.0
140 0.169 0.166 21.8

5 10 0.482 0.474 21.7
140 0.249 0.246 21.2

9 10 0.610 0.609 20.2
140 0.382 0.383 0.3

15 10 0.667 0.668 0.2
140 0.424 0.427 0.7
0-8
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Similarly, to revisit the role the proton is playing, it i
useful to contrast our formulas with the Schwinger formu
@2# that ignores proton recoil and radiation,

dSchw5
2a

p F lnS k

DED2
13

12GF lnS 2q2

m2 D21G1
17

36
. ~39!

Table VI verifies that the Schwinger correction, in its sim
plicity, gives a fairly good approximation of our results, th
only gradually becomes worse at higher energies. This is
to the overestimate of the electron bremsstrahlung contr
tion in the Schwinger correction, partly compensating
positive contribution of the proton radiation.

C. Higher order bremsstrahlung

In the previous section, we removed the infrared div
gence from the first order bremsstrahlung cross section.
other divergence that needs to be understood also occu
the limit DEm→0: the number of photons emitted becom
infinite asv→0. In other words, the first order perturbatio
expansion breaks down asDEm becomes very small, and on
must include the possibility to emit many soft photons.
actuality, the probability of scattering without losing any e
ergy to bremsstrahlung is zero so the actual cross sec
approaches zero asDEm→0.

It was originally determined by Yennie, Frautschi, a
Suura ~Ref. @3#! that the emission of soft photons can
summed to all orders via exponentiation:

ds

dVe
~v i

0,DEm!5
ds (1)

dVe
U

ep

e2dsoft(DEm)~12dhard!.

~40!

The notation (v i
0) indicates that this expression represe

the cross section for emitting any number of soft photo
eachwith energy less thanDEm . In practice, however, one i
interested in thetotal photon energy emitted. This case
discussed in the remainder of this section, and found to a
with the preceding formula to within a correction of ord
a2.

Recall that the probability for emitting a single brem
strahlung photon has a 1/v0 energy dependence that facto
from the angular distributionA(v̂) @Eq. ~16!#. In order to
maintain a handle on theDEm→0 divergence for the mo
ment, we write the cross section to emit one photon w
energyv1

0.E0, along with any number of photons each wi
energy less thanE0:

TABLE VI. Comparison ofd with dMT and dSchw at various
kinematics withv0510 MeV.

Q2 (GeV/c)2 d dMT dSchw

1 0.284 0.266 0.277
5 0.402 0.315 0.363
9 0.520 0.496 0.478
15 0.577 0.542 0.517
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ds

dVedv1
0dV1

~n51,E0!

5
ds (1)

dVe
U

ep

e2dso f t(E0)~12dhard!
A~v̂1!

v1
0

u~v1
02E0!. ~41!

Here, u is the usual step function, anddV1 indicates the
emission angle of the photonv1. Similarly, the cross section
to emit two photons with energyv1

0.E0 andv2
0.E0, along

with any number of photons with individual energy less th
E0 is

ds

dVedv1
0dV1dv2

0dV2
~n52,E0!

5
ds (1)

dVe
U

ep

e2dsoft(E0)~12dhard!

3
1

2

A~v̂1!

v1
0

u~v1
02E0!

3
A~v̂2!

v2
0

u~v2
02E0!. ~42!

Generalizing this to the case ofn photons of ‘‘large’’ energy,
one obtains

ds

dVedv1
0dV1•••dvn

0dVn
~n,E0!

5
ds (1)

dVe
U

ep

e2dsoft(E0)~12dhard!
1

n!

A~v̂1!

v1
0

3u~v1
02E0!•••

A~v̂n!

vn
0

u~vn
02E0!. ~43!

The differential cross section for emitting atotal energy
( iv i

05Etot can be determined by multiplying the above wi
a delta function and integrating over individual photon en
gies. Also, we sum over all numbersn of emitted photons:

ds

dVdEtot
~E0!5 (

n50

` E
E0

Etot
dv1

0dV1•••E
E0

Etot
dvn

0dVn

3
ds

dVedv1
0dV1•••dvn

0dVn
~n,E0!

3d~v1
01•••1vn

02Etot!. ~44!

One observes that the angular integration can be don
once for each photon, and for convenience we write

l5E dVgA~v̂ !. ~45!

We then combine Eqs.~43! and ~44! to obtain
0-9
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ds

dVdEtot
~E0!5

ds (1)

dVe
U

ep

e2dsoft(E0)~12dhard!

3 (
n50

`
1

n! S )i 51

n E
E0

Etot
dv i

0 l

v i
0D

3d~v1
01•••1vn

02Etot!. ~46!

This is a form that we will encounter again later on. It can
evaluated by substituting an integral form for the delta fu
tion:

dS (
i

v i
02EtotD 5

1

2pE2`

`

eix((
i

v i
0
2Etot)dx, ~47!

which gives Eq.~46! the familiar form (n50
` (zn/n!) 5ez.

Carrying through the computation, one finds that theE0
→0 divergence ine2dsoft(E0) is canceled by the similar term
due to theE0 lower integration limit. Taking the limitE0
→0, the following relatively simple form is obtained:

ds

dVedEtot

5
ds (1)

dVe
U

ep

~12dhard!„2dsoft8 ~Etot!…e
2dsoft(Etot)F~l!.

~48!

The functionF(l) is expressed in terms of the gamma fun
tion and Euler’s constantC>0.577; if we recall thatl is of
ordera, we can expand this function in powers ofl:

F~l!5
e2Cl

G~11l!
512

p2l2

12
1•••. ~49!

Our main result for the higher order bremsstrahlung cas
summarized in Eq.~48!, ~45!, and~49!. Additionally, one can
obtain the cross section for total emitted energy less t
DEm by integrating Eq.~48! from Etot50 to Etot5DEm :

ds

dV
S ( v0,DEmD
5Uds (1)

dVe
U

ep

~12dhard!e
2dsoft(DEm)@11O~a2!#. ~50!

This agrees with the previous exponentiated formula,
~40!, to within a correction of ordera2.

Exponentiatingdsoft thus provides a good approximatio
to the bremsstrahlung cross section for emitting atotal pho-
ton energy up to a certain cutoff value. The exponentia
cross section also has the correct limiting behav
limDEm→0(ds/dVe)((v0,DEm)50, since dso f t(DEm)

;B̄(pi ,pj ,DEm); ln(DEm). Note, however, thatdhard is not
exponentiated. Mo and Tsai@6# take the point of view that
whether or not to exponentiate this term is an open quest
As with the choice of which second order diagrams to
clude in dhard, the crux of the matter is that experimen
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comparing results with one another must use thesamepre-
scription. In the case ofdhard, however, this is generally a
moot point since the correction itself is small:dhard varies
from 0.07 to 0.09, and so the difference between (12dhard)
ande2dhard is at most 0.4%.

In Table VII we compare as a numerical example the fi
order and the exponentiated radiative corrections for vari
kinematics and total photon energies emitted. As one can
the difference can be quite noticable, supporting the findi
of @8#, where the inclusion of multiphoton emission show
a drastic improvement in the agreement betwe
3He(e,e8p) data and a Monte Carlo simulation. As e
pected, this difference grows especially large for small v
ues of the total photon energy emitted. However, the eff
can be as large as 10% up to a total photon energy of
MeV as Q2 becomes as large as 15 (GeV/c)2. Likewise,
multiphoton emission alters the radiative correction at
10% level down to a photon energyDEm of 1~10! MeV at
the chosen kinematics forQ251(7)(GeV/c)2. These are
some relevant scales to keep in mind to deal with multip
ton emission when analyzing experimental data.

IV. PEAKING APPROXIMATIONS AND EXTERNAL
BREMSSTRAHLUNG

A. Peaking approximations

We have now calculated the energy distribution for m
tiphoton bremsstrahlung to all orders, given the soft pho
approximation and to within an ordera2 correction. How-
ever, to calculate radiative effects in a coincidence fram
work, one must know the effect of the emission cross sec
on all measured particle vectors. The integrated probabi
up to an energy cutoff is not enough, and one needs to kn
the angular distribution of photons as well.

The angular distribution of single photon bremsstrahlu
is given by Eq.~17!, and is plotted in Fig. 4 forQ251, 7,
and 15 (GeV/c)2. One salient feature of the distribution
immediately apparent: the radiation is strongly peaked al
the directions of the incoming and outgoing electron. Onl

TABLE VII. Importance of multiphoton emission on radiativ
correction factors for various kinematics and three values of t
photon energy emitted.

Q2 DEm exp(2dsoft)(12dhard) 1-dso f t-dhard

(GeV/c)2 ~MeV!

1 1 0.638 0.554
10 0.750 0.716
100 0.882 0.877

7 1 0.519 0.347
10 0.642 0.561
100 0.796 0.776

15 1 0.453 0.212
10 0.560 0.423
100 0.692 0.635
0-10
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very broad peak is seen in the direction of the scattered
ton at Q251 (GeV/c)2, but it becomes more sharply de
fined asQ2 increases. These features suggest a simple
proach to the angular distribution, known as the ‘‘peaki
approximation:’’ the single photon bremsstrahlung spectr
may be divided into three discrete photon directions, alo
each of the vectorsk̂, k̂8, andp̂8. In other words, we replace
A(v̂) in Eq. ~16! with the simple form

Apeaking~v̂ !5led~v̂2 k̂!1le8d~v̂2 k̂8!1lp8d~v̂2 p̂8!,
~51!

where*dVgd(v̂)51.
The terms of the exact one-photon angular distribut

A(v̂) may be divided into three groups, due to the electro
the electron-proton interference, and the protons, res
tively:

A~v̂ !52
av02

4p2 F S k8

v•k8
2

k

v•kD 2

22S k8

v•k8
2

k

v•kD
3S p8

v•p8
2

p

v•pD 1S p8

v•p8
2

p

v•pD 2G . ~52!

In order to better understand the structure of the peaks,
sider the expansion of the first term in a polar coordin

FIG. 4. Angular distribution of first order bremsstrahlung ph
tons from Eq.~17!, calculated atQ251,7, and 15 (GeV/c)2 and
showing the improvement in the peaking approximation with
creasing momentum transfer. The photon angle is measured
respect to the direction of the incoming electron and given in
grees. The directions of the scattered electron and proton are
cated by dotted lines and the notationue , up .
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angleu describing the direction of photon emission relati
to the k̂ direction. Using Eq.~20! one obtains, in the region
u!m/uku!1,

v2S k8

v•k8
2

k

v•kD 2

;4
uku4

m4
u2, ~53!

indicating that extremely close to thek̂ peak, the emission
probability actually drops to zero. This feature is too small
be seen in the electron peaks of Fig. 4, but is apparent in
much broader proton peak atQ2515 (GeV/c)2 ~since
M /up8u is of order 1021). Further away from the peak, in th
region m/uku!u!1, the angular distribution falls off qua
dratically with u:

v2S k8

v•k8
2

k

v•kD 2

;
4

u2 . ~54!

This behavior is especially apparent in the electron pea
where m/uku is of order 1024. We will refer to this 1/u2

shape later on.
We next need to determine the values ofle , le8 , and

lp8 , by integrating the various terms ofA(v̂) and distribut-
ing the results among the three peaks. The first~electron!
term of Eq.~52! produces two terms of the form

2
av02

4p2 E dVg

k2

~v•k!2
52

a

p
~55!

~one for each ofk and k8). Since the integrand is highly
peaked in the directionk ~or k8), it is assumed that all this
strength contributes in thek ~or k8) direction. Next consider
the integral of the cross term,

2
av02

4p2 E dVg

k•k8

~v•k!~v•k8!
. ~56!

In this case the integrand peaks in thek and k8 directions.
We evaluate it using

E dVg

k•k8

~v•k!~v•k8!

>E dVg

k•k8

~v•k!~k•k8!

uku

v0
1E dVg

k•k8

~k8•k!~v•k8!

uk8u

v0

5
2p

v2 lnS e1uku
e2uku D1

2p

v2 lnS k801uk8u

k802uk8u
D . ~57!
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This expression approximately integrates over the two pe
separately; the first and second integrals are assumed to
tribute to thek andk8 peaks, respectively. Combining the
equations, one obtains for (k,k8)@0 the ‘‘typical’’ peaking
approximation for electron bremsstrahlung:

le5
a

p F lnS 4k2

m2 D 21G , le85
a

p F lnS 4k82

m2 D 21G . ~58!

We can further assume that the third term of Eq.~52!, al-
though only broadly peaked at intermediate energies, c
tributes entirely to the final proton peak, yielding

lp85
a

pF p80

up8u
lnS p801up8u

p802up8u
D 22G . ~59!

Some bremsstrahlung strength still remains, due to
electron-proton interference term of Eq.~52! and to the non-
peaked contributions missed by the approximation of
~57!. This is true even in the ultrarelativistic limit, where on
expects the peaking approximation to be the most valid~see
Fig. 4!. If one uses the closed form UR limit expressions
Eq. ~37! to determine the differencedsoft(E1)2dsoft(E2) be-
tween two energies, and compares this with the result u
only the peaked strength described by Eqs.~58! and ~59!,
one finds two missing terms. These are

a

p
lnS E2

E1
D4 lnS uku

uk8u
D ~60!

due to the electron-proton interference termdsoft
ep , and

D5
a

p
lnS E2

E1
D2 lnS 12cos~ue!

2 D ~61!

due to the nonpeaked strength indsoft
ee . In Table VIII we

compare the exact calculation of the radiative correction f
tor in the UR limit @as given by Eq.~37!# with the factor
generated in the peaking approximation. At all kinemat
shown reasonable discrepancies show up, which can be

TABLE VIII. Comparison of the exact values (dexact) of radia-
tive correction factors with the ‘‘typical’’ peaking approximatio
values (dpeak) as given by Eq.~58!, in the UR limit. The two
additional columns indicate the main sources of the discrepanc
given by Eqs.~60! and ~61!.

Q2 (GeV/c)2 dexact dexact - D dexact - D - dep dpeak

1 0.185 0.215 0.207 0.203
3 0.215 0.236 0.218 0.216
5 0.233 0.252 0.225 0.225
7 0.246 0.263 0.231 0.231
6 0.218 0.271 0.263 0.262
9 0.228 0.281 0.272 0.271
12 0.236 0.289 0.278 0.278
15 0.243 0.295 0.283 0.283
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derstood by also tabulating the effects of removing the t
missing terms. To resolve this our approach is to preserve
total strength~as evaluated in the UR limit! by distributing
the contributions of these nonpeaked terms among the t
photon peaks. We choose to split the two terms evenly
tween the electron peaks:

l̃e5le1
a

pF2 lnS uku

uk8u
D 1 lnS 12cos~ue!

2 D G ,

l̃e85le81
a

p F2 lnS uku

uk8u
D 1 lnS 12cos~ue!

2 D G ,

l̃p85lp8 . ~62!

This set of formulas can be termed the ‘‘extended peak
approximation’’ for single photon bremsstrahlung. To faci
tate notations, we will use the notationl below to meanl̃,
i.e., we will keep on assuming the ‘‘extended peaking a
proximation.’’

From Sec. III C, we know that including higher orde
bremsstrahlung is critical in evaluating the energy spectr
for low photon energies. One is then led to consider its eff
on the angular distribution. Calculating such higher ord
contributions directly from Eq.~17! is a formidable task.
Instead, we observe that the single photon peaking appr
mation,

ds

dVedv
5

ds (1)

dVe
U

ep

1

v0 „led~v̂2 k̂!1le8d~v̂2 k̂8!

1lp8d~v̂2 p̂8!…, ~63!

effectively provides us with three independent single pho
energy distributions, each for radiation in a fixed directio
We can then proceed in the manner of Sec. III C and de
mine a multiphoton spectrum, this time in terms ofthree
energies: the total photon energiesEe , Ee8 , andEp8 emitted
in each of the three peaked directions. Thetotal radiated
three-vector is then simply

vtotal5Eek̂1Ee8k̂81Ep8p̂8. ~64!

Furthermore, radiationalong the direction of a given particle
can be interpreted as radiationdue to that particle. In this
way we correct theq vector used to evaluateds (1)/dVeuep at
the scattering vertex for energy radiatedbeforethe scattering
~i.e., radiated by the incoming electron!. This was seen in
Sec. III A to be the source of the largest discrepancy betw
the soft photon approximation and full calculation for sing
photon radiation.

By analogy with Eq.~46!, we obtain the cross section t
all orders for radiating a total energyEe alongk, Ee8 along
k8, andEp8 alongp8, as well as any number of soft photon
with energy less thanDEm :

as
0-12



s of

g

xi-

RADIATIVE CORRECTIONS FOR (e,e8p) REACTIONS . . . PHYSICAL REVIEW C 64 054610
ds

dVdEedEe8dEp8

~DEm!5
ds (1)

dVe
U

ep

e2dsoft~12dhard!(
l 50

`

(
m50

`

(
n50

`
1

l ! S )i 51

l E
DEm

Ee
dve

i
0 l

ve
i
0D d~ve

1
01•••1ve

l
02Ee!

3
1

m! S )i 51

m E
DEm

Ee8
dve8

i
0 l

ve8
i
0D d~ve8

1
01•••1ve8

m
0 2Ee8!

1

n! S )i 51

n E
DEm

Ep8
dvp8

i
0 l

vp8
i
0D

3d~vp8
1
01•••1vp8

n
02Ep8!. ~65!

Using the same technique as in determining Eq.~48!, one obtains

ds

dVedEedEe8dEp8

5
ds (1)

dVe
U

ep

e2dsoft(DEm)~12dhard!e
leln(Ee /DEm)

le

Ee
F~le!e

le8ln(Ee8 /DEm)
le8

Ee8

F~le8!e
lp8ln(Ep8 /DEm)

lp8

Ep8

F~lp8!. ~66!

Again, thel ’s are of ordera, and soF(l i) @Eq. ~49!# is 1 to within a correction of ordera2. We see that the 1/ln(DEm)
dependence ofdsoft(DEm) will be canceled by the other terms of the expression, taking care of theDEm→0 divergence of the
single photon spectrum. By construction, thel̃ ’s of the extended peaking approximation provide a subdivision of the term
dsoft(DEm) which depend onDEm :

dsoft~E1!2dsoft~E2!5 lnS E2

E1
D ~ l̃e1l̃e81l̃p8!, ~67!

whereE1 andE2 are two energies~note that this is true only in the UR limit!. However,dsoft contains additional terms. Usin
Eq. ~37!, we find that these terms can also be subdivided in terms of thel ’s:

de~DEm!5lelnSAee8

DEm
D ,

de8~DEm!5le8lnSAek80

DEm

D ,

dp8~DEm!5lp8lnSAMp80

DEm

D . ~68!

Employing these definitions, we can take the limitDEm→0 to produce our final result for the multiphoton peaking appro
mation:

ds

dVedEedEe8dEp8

5
ds (1)

dVe
U

ep

~12dhard!e
2de(Ee)

„2de8~Ee!…e
2de8„Ee8…„2de8

8 ~Ee8!…e
2dp8(Ep8)

„2dp8
8 ~Ep8!…

5
ds (1)

dVe
ep~12dhard!

lele8lp8

~Akk8!le~Akk8!le8~AMp08!lp8

1

Ee
12le

Ee8
12le8

Ep8
12lp8

. ~69!
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The cross section thus factorizes neatly into three indep
dent functions, for the total energy emitted in each of
three radiative tails.

The angular distribution implied by the above equati
can be evaluated easily by a Monte Carlo program by r
domly generating the energies emitted in each direction
adjusting the fermion vectors accordingly. However, it
worth studying the multiphoton angular distribution analy
05461
n-
e
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cally, to determine the approximate shape of the multipho
peaks. For our calculation to be valid~or useful!, we must
confirm that these peaks are substantially broader than
single photon peaks, which were approximated as delta fu
tions in Eq.~51!. To accomplish this, we employ a change
variables: fromEe , Ee8 , andEp8 to E, u, andv. Here,E is
the total radiated energyEe1Ee81Ep8 , while the emission
direction is fixed byu andv:
0-13
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u5
Ee

Ee8

,

v5
Ee

Ep8

. ~70!

Note thatu and v vary from 0 to ` with u,v→` corre-
sponding to emission in thee direction,u→0 corresponding
to emission in thee8 direction, andv→0 corresponding to
emission in thep8 direction. The Jacobian between these t
sets of variables is straightforward:

dEedEe8dEp8

EeEe8Ep8

5
dEdudv

Euv
. ~71!

Consequently, the multiphoton emission cross section@Eq.
~69!# can be rewritten easily in terms of the new variabl
The dependence on the total energyE factorizes completely
from the angular distribution, and the integration over em
sion angles can be accomplished, yielding

ds

dVedE

5
ds (1)

dVe
U

ep

~12dhard!
1

~Akk8!le~Akk8!le8~AMp08!lp8

3
1

E12le2le82lp8
3~le1le81lp8!

3
G~11le!G~11le8!G~11lp8!

G~11le1le81lp8!
. ~72!

Recalling that thel ’s are of ordera, one finds that the ratio
of gamma functions on the last line is 1 to within the usu
O(a2) correction. To within this accuracy, this distributio
agrees with the previous multiphoton formula, Eq.~48!.

The analysis of the photon distribution simplifies grea
if one neglects proton radiation. Taking, in the peaking
proximation,u to be the angle between the photon andk,
and ue8 to be the usual scattering angle betweenk and k8
~note that in the peaking approximation the photon is emit
in the plane defined byk andk8), one finds foru!1

ds

dVedEdu
;

sin~ue8!
2le8

u12le8
, ~73!

and foru2ue8!1,

ds

dVedEdu
;

sin~ue8!
2le

~u2ue8!
12le

. ~74!

The photon spectrum thus drops away from the peaks a
rate;1/u. As this is more gradual than the;1/u2 falloff of
the single photon peaks, our calculation of the multipho
05461
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distribution from perfectly peaked single photons is reas
able. To quantify the effect of multiphoton emission on t
angular distribution, Table IX shows the fraction of photo
emitted at an angle greater thanDu from either the initial or
final electron directions for both the exact single-phot
emission cross section and the multiphoton emission c
section, as calculated in the peaking approximation. ForDu
;1°, typically around 10% of the photons emitted in th
multiphoton peaking approximation are in the intermedi
region. This number increases slowly withQ2. In contrast,
the single-photon emission distribution gives about 3% in
intermediate region atQ251 (GeV/c)2 and this number de-
creases rapidly withQ2. Thus the multiphoton angular dis
tribution does dominate the single-photon distribution in t
intermediate region and as long as one is not probing
angular distribution of the photons on scales less then;1° it
is consistent to calculate the angular distribution using
multiphoton peaking approximation.

Of course, in the case of proton radiation, the peak
approximation is suspect from the very beginning. Its u
hinges on the relatively small bremsstrahlung contribution
the proton, and on the resolution of the experiment. Also
pointed out at the beginning of this section, at sufficien
high photon energies all radiative tails converge on the sa
Ẽm5 p̃m kinematic path. The sensitivity to the precise ang
lar distribution is thus most apparent at low photon energ
The effect of the peaking approximation will be examined
Sec. V for one of the NE18 kinematics.

B. Inclusion of external bremsstrahlung

External bremsstrahlung refers to the spectrum for
emission of bremsstrahlung photons in the field of nuc
other than the one participating in the hard scattering. T
more massive outgoing proton is subject to much sma
accelerations, and emits a negligible amount of external
diation. On the other hand, the electrons will experien
these losses as they move through the target material
traverse vacuum chamber windows and air gaps. Exte

TABLE IX. Effect of multiphoton emission on the angular dis
tribution of emitted radiation. The fraction of photons emitted
angles larger than a cutoff valueDu from either the initial or final
electron direction are given for both single-photon emission a
multiphoton emission.

Q2 Du frac1g fracng

(GeV/c)2 ~deg!

1 0.1 0.22 0.18
1.0 0.03 0.11
2.0 0.01 0.09

7 0.1 0.11 0.22
1.0 0.01 0.14
2.0 0.01 0.12

15 0.1 0.023 0.25
1.0 0.003 0.18
2.0 0.001 0.10
0-14
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bremsstrahlung can be treated essentially exactly, as has
shown, e.g., in@9,10#. In the remainder of this section w
discuss how to add external bremsstrahlung in a consis
manner to our previous peaking approximations.

A numerical solution, in the complete screening appro
mation, for the probability that an electron of momentumuku
radiates a total energy ofEext when traversingt radiation
lengths of material has been given by Early@16#. We will use
the following analytic form for this probability distribution
@9#

1

G~11bt!

bt

EextS Eext

uku D bt

FextS Eext

uku D , ~75!

where the parameterb depends on the atomic chargeZ of the
target material:

b5
1

9 S 121
Z11

ZL11L2
D ,

L15 ln~184.15!2
1

3
ln~Z!,

L25 ln~1194!2
2

3
ln~Z!. ~76!
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The functionFext is a correction for large photon energie
expanded to second order inEext/uku:

Fext~x!512x1
3

4
x2. ~77!

This analytic form differs from the numerical solution by
fraction that varies between aboutt/10 andt/5 asEext varies
between 0 and 0.8e for t,0.1 @16#. For example, the devia
tion at Eext.0 is ;1% for a t510% radiator. The discrep
ancy increases forEext.0.8e, but this is typically outside the
experimental acceptances.

External radiation is far simpler to treat than internal. Fi
of all, the particles radiate independently and so incoheren
and this eliminates the nonpeaked strength caused by
interference terms of internal bremsstrahlung. Furtherm
proton radiation is suppressed relative to electron radia
by the factor (m/M )2,1026, and so can be neglected e
tirely. Equation~69! can thus be extended in a straightfo
ward way to include the contributions from external rad
tion along thek andk8 directions:
ds

dVedEi
intdEi

extdEf
intdEf

ext
5

ds (1)

dVe
U

ep

~12dhard!
1

G~11bti !

bti

Ei
extS Ei

ext

uku D
bti

3
l i

Ei
int S Ei

int

Aukk8u
D l i 1

G~11btf !

btf

Ef
extS Ef

ext

uk8u
D btf l f

Ef
int S Ef

int

Aukk8u
D l f

. ~78!
ntri-
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Here, the internal proton contribution has been omitted
convenience, and the subscriptsi andf have been introduced
to indicate the initial and final electron arms. Equation~78!,
when taking into account the internal proton contributio
following Eq. ~69!, represents the result of adding intern
and external bremsstrahlung in a consistent fashion, an
the final result of a generalized peaking approximation. Si
both Ei

int andEi
ext are emitted in the same direction, we c

again rewrite the distribution in terms of the total energiesEi
and Ef radiated alongk and k8. This problem is exactly
analogous to the transformation made between Eqs.~69! and
~72!, where a change of variables was made from three
ergiesEe , Ee8 , Ep8 to a total energyE and angle variablesu
andv. The result is

ds

dVedEidEf
5

ds (1)

dVe
U

ep

~12dhard!
1

G~11bti !

1

G~11btf !

3
~bti1l i !

kbti~Akk8!l i

~btf1l f !

k8btf~Akk8!l f

3
1

Ei
12l i2bti

1

Ef
12l f2btf

. ~79!
r

s
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We thus see that thel ’s of internal radiation play much the
same role as the material thicknessbt of external brems-
strahlung. One can also express the external radiation co
bution in terms of the usual bremsstrahlung functio
dso f t . One obtains forms which are very similar to those
Eq. ~68!:

de
ext~DEm!5bti lnS k

DEm
D ,

de8
ext

~DEm!5btf lnS k8

DEm
D . ~80!

These functions can simply be added to the correspond
d(DEm) values for internal radiation in Eq.~69!, yielding the
same result as Eq.~79!.

Thus far, the correction functionFext(Eext/uku) has been
neglected. At NE18 kinematics, the ratioEg /uku in which the
function is expanded is small (<0.1). Consequently we tak
only the first order term ofFext(x) of Equation 77 and in-
clude it in Eq.~78!. Carrying through the angular integratio
one obtains multiplicative factorsF̄ i

ext andF̄ f
ext to include in

Eq. ~79!:
0-15
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F̄ i
extS Ei

uki u
D512

bti
bti1l i

Ei

uki u
. ~81!

~The same form applies forF̄ f
ext with i→ f everywhere.!

V. EXPERIMENTAL SIMULATIONS

This section describes two independent Monte Carlo p
grams used to simulate the NE18 experiment. Radiative
fects are simulated using three separate methods, eac
volving different approximations. The three methods, t
described in Sec. V A and one in Sec. V C, are found
produce consistent results.

A. Description of the experimental simulation

A Monte Carlo program, namedSIMULATE @17#, randomly
generated the momenta and angles of the scattered ele
and proton vectors~i.e., the 6 quantities in terms of whic
the differential cross section is defined! with a flat distribu-
tion over limits calculated to exceed the experimental acc
tance. The energy and position of the incident electron at
target were also generated randomly, to match the energy
spatial spread of the beam, and the beam energy was
rected for ionization losses in the target. With a basic even
the scattering vertex now determined, the possibility that
or all of the particles emitted real or virtual photons w
modeled and the particle vectors were adjusted accordin
The scattered electron and proton vectors were then tr
ported through the target, applying ionization losses an
multiple scattering distribution, and subsequently transpo
through the spectrometers. Monte Carlo models of the op
apertures, and interfering materials of the spectrometers w
employed. Both forward and backward sets of matrix e
ments were used, to simulate the optical resolution of
magnetic systems. Once the particle vectors were rec
structed back to target, they were corrected to the scatte
vertex using the same mean energy loss calculations
ployed in the actual data analysis, andEm and pm were de-
termined@17,18#. The successful events were stored in h
tograms, with each event being assigned a weight
KsepS@1/(12dhard)#Wgen. In the case of theA(e,e8p) re-
actionK equals a kinematic factor,S represents the spectra
function or the probability to find a proton with certain mis
ing momentum and certain binding energy inside the tar
nucleusA, andsep is the electron-proton cross section co
rected for off-shell effects according to the prescription
DeForest@12#. Note that this is the form encountered in th
plane-wave impulse approximation~PWIA! description of
A(e,e8p) reactions. In the case of the1H(e,e8p) reactionK
equals unity,S equals a delta function, andsep is the stan-
dard electron-proton scattering cross section. The facto
2dhard)

21 is the correction for radiative diagrams involvin
hard virtual photons. The ‘‘generation weight’’ (Wgen)
comes from the following source. To increase compu
speed, the limits in which event quantities are generated
be refined once partial information about an event is kno
These refinements are based on the acceptance limits o
spectrometers, the cuts imposed on reconstructedEm , pm ,
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and particle vectors, and the range inEm ~at the vertex! over
which the spectral function is defined. These refined lim
are especially important in the generation of radiation. F
example, to take into account the possibility that a scatte
electron ‘‘radiated into’’ the spectrometer momentum acc
tance from a higher momentum, one must use genera
limits in momentum which are much wider than the acce
tance. However, once the electron’s momentum has b
generated, one can determine the range of photon en
required to produce a successful event. The genera
weight reduces the event weight to compensate for the
stricted limits employed. Finally, the results histograms w
normalized so that the number of events in each bin wo
correspond to the number of counts expected from
experiment. The results were thus multiplied b
L(De8DVe8De8DVp8)gen/Ngen whereL is the experimen-
tal luminosity, and the other terms refer to the phase sp
volume and total number of events used by the generat
Each histogram bin was assigned an inverse fractional e
equal to the square root of the total Monte Carlo weig
contributing to the bin.

Two models of the radiative effects are included in t
Monte Carlo programSIMULATE. ~A third method for includ-
ing radiative effects, also included in the Monte Carlo pr
gram, is described in Sec. V C.! The first uses the multipho
ton energy distribution of Eq.~48!, evaluated using the ful
SPA expressions of Eqs.~32! and~33!. The angular distribu-
tion is taken to be the pure peaking approximation of E
~51!. The strength is distributed among the three tailsi
51,2,3 using the fractionsl i /( il i ( i is shorthand for the
usual tail subscriptse, e8, p8). The second method tries in
stead to obtain the correct multiphoton angular distribut
by generating the total photon energiesEe , Ee8 , Ep8 emitted
along each direction, and summing the resulting photon v
tors according to Eq.~64!. The distributions are generate
according to the independent forms found for each tail in E
~69!. These energy distributions were calculated using
approximate closed form expressions of Eq.~37!, found in
the ultrarelativistic limit of high momentum transfer and pa
ticle momenta. These two choices represent a tradeoff
tween the best available forms for the photon energy~first
technique! and angular~second technique! distributions. The
first method can thus be referred to as the ‘‘peaking’’ tec
nique, and the second as the ‘‘multiphoton’’ technique. N
that these names are somewhat misleading: the ‘‘peaki
formalism certainly involves contributions from bremsstra
lung radiation to all orders, and the ‘‘multiphoton’’ prescrip
tion involves the peaking approximation at the one pho
level. One hopes, of course, that the two prescriptions g
very similar results and this indeed turns out to be the ca
The distributions of counts calculated bySIMULATE using the
two techniques are sufficiently similar that one is ha
pressed to see any differences on a plot of the projection
Em andpm . The integrated yields are less than 1% differe
at all Q2. This excellent agreement indicates the lack of s
sitivity of our results to the fine details of the photon angu
distribution, and the validity of the UR limit at the energie
we consider.
0-16
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B. Comparison with experimental results

The distribution of hydrogen datacounts in Em and pm
compared with the Monte Carlo calculation provides a p
cise test of many aspects of the calculation. The true dis
bution of elastic events is precisely localized atEm50 and
pm50; any deviation from this must be due to the improp
understanding of kinematics, deviations from the mean
ergy loss corrections, experimental resolution, and part
radiation. The last two effects should be correctly mode
by the Monte Carlo. In particular, a comparison of the d
and Monte Carlo on the hydrogen radiative tail provide
precise test of the radiative procedure, unclouded by o
physics. Finally the1H(e,e8) data ~corrected for possible
proton absorption losses in the target, spectrometer, and
tector materials! must be consistent with previous1H(e,e8)
data.

The distribution of1H(e,e8p) data counts as a functio
of Em is presented for the four values ofQ2 in Fig. 5. Su-
perimposed on these figures is the corresponding Mo
Carlo calculation. In this Monte Carlo simulation we us
the dipole form factor for the proton electric form factor a
the parametrization of Gari and Kru¨mpelmann for the proton
magnetic form factor@19,14#. Also included here are theEm
distributions for2H(e,e8p) ~Fig. 6!, as the single deuterium
bound state is very sharply peaked at the binding energ
2.2 MeV and so2H data in this coordinate provide the sam
precise test of the radiative procedure as1H. Here we used
the off-shell prescription used by DeForest@12# to account
for the electron-proton scattering cross section of the bo
proton, and the Bonn nucleon-nucleon potential@20# to ac-
count for the proton momentum distribution in the2H target
nucleus~see also Ref.@21#!. Note that all the calculations
include the contribution from the recoiling proton in appl
ing the radiative corrections. The figures clearly demonst

FIG. 5. Distribution inEm of coincidence events recorded fo
the hydrogen target, compared with the prediction of the Mo
Carlo programSIMULATE, for Q251 ~a!, 3 ~b!, 5 ~c!, and 6.8~d!
(GeV/c)2, respectively.
05461
-
i-

r
n-
le
d
a
a
er

e-

te

of

d

te

that the radiative prescription describes the data to within
statistical uncertainty. As a quantitative measure of theEm
and pm dependent agreement one can evaluate the rati
the hydrogen experimental data to the hydrogen Monte C
data with a variety ofEm cuts. One finds that this ratio varie
by an amount well within the statistical error of the data f
upperEm cutoffs from 50 to 130 MeV. The statistics provid
a precision from 1% atQ251 (GeV/c)2 to 4% at Q2

57 (GeV/c)2.
The angular distribution of the emitted photons can

reconstructed from the measuredpm @22#. We will here con-
sider theQ251 (GeV/c)2 case and only consider even
with a missing energy (.v0) larger than 30 MeV since in
the regionv0→0 MeV the experimental resolutions, 8 Me
(10 MeV/c) in missing energy~momentum!, do not permit
an accurate reconstruction of the photon angle. Fig. 7 sh
the angular distribution of the count rate for events w
Em.30 MeV. It is seen that electron radiation is predom
nantly in the direction of the initial and final electrons,
accordance with the peaking approximation@23#. Note that a
broad distribution of events is seen in the direction of t
outgoing proton. Next, the angular distributions were cal
lated in the soft-photon limit. In this case the proton cont
bution corresponds to radiation from a Dirac particle with t
usual form factorsF1(Q2) and F2(Q2). The differential
cross section was reduced to the cross section for~multi-!
photon emission with total energyv and angleqv in the
scattering plane. For this we used polar coordinates, integ
ing over the range of tan(fg) accepted by the phase spac
Effects arising from imperfect knowledge of the phase sp
were suppressed through an energy cut,v0,80 MeV, ap-
plied for radiated photons along the incident electron bea
No normalization factors were used. As Fig. 7 shows,
agreement between data and simulation is excellent~note
that only about 33103 out of a total of 53104 events have

e

FIG. 6. Distribution inEm of coincidence events recorded fo
the deuterium target, compared with the prediction of the Mo
Carlo programSIMULATE, for Q251.2 ~a!, 3 ~b!, 5 ~c!, and 6.8~d!
(GeV/c)2, respectively.
0-17
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radiated more than 30 MeV!. To enhance the sensitivity t
the proton contributions to the radiative corrections, we h
highlighted in the inset of Fig. 7 the region sensitive to the
proton contributions. That such a region exists was ill
trated before in Fig. 4. One can argue that a better desc
tion is obtained including both proton and electron contrib
tions ~solid curve in inset! @22#.

We would like to emphasize the differences between F
4 and 7. In Fig. 4 the prominent dip along the proton an
reflects the character of dipole radiation boosted along
particle’s momentum, emphasized in the single-photon lim
The electron radiation peaks also have sharp minima at t
maxima, but because the boost of the dipole pattern is
large, the minima are so narrow that they are not visible
Figure 7 a complete angular distribution of radiated photo
is calculated, whereall multiphoton contributions are take
into account.

C. Modified equivalent radiator method

In Sec. IV A we determined values forle , le8 , andlp
by integrating the various terms of the photon angular dis
bution A(v̂) and distributing the results among the thr
particle directions. This can be arbitrary, e.g., we decide
split the contributions from Eqs.~60! and ~61! evenly
amongst the electron and scattered electron direction.

Alternatively, for thin targets (bt,0.1) in inclusive elec-
tron scattering it has been shown@9# that the full effect of
bremsstrahlung can be simply approximated by dividing
target in two equivalent-length radiators. This is termed
equivalent radiator approximation. In this section we w
give a generalization of this approximation for theA(e,e8p)
reaction, termed the ‘‘modified equivalent radiator metho

FIG. 7. Calculated angular distribution of radiated events
comparison with NE18 data forv0.30 MeV @22#. The solid~dot-
ted; see inset! curve shows the prediction in the soft-photon limit
the Monte Carlo programSIMULATE for electron and proton contri
butions~electron only!. The central angleqv for the incident~scat-
tered! electron and outgoing proton are 0° (37.3°) and243.3°,
respectively. Note that the inset shows the region260°,qv,
220° with a different vertical scale.
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~MERM! @18#. In this method we choose the distributio
amongst the variousl ’s, again termedle , le8 , and lp ,
different than in Sec. IV A: two constraints are given by t
theoreticalenergy dependence~i.e., integrated over the pho
ton angular distribution! of the radiated events in energ
transfer and in missing energy. A third constraint we w
impose.

Based upon the similarity of Eqs.~68! and~80!, the stan-
dard equivalent radiator approximation simulates inter
bremsstrahlung by passing the incident and scattered elec
through two effective external radiators, both withbt5lEQ:

lEQ5
a

pF lnS Q2

m2D21G . ~82!

Note that for internal bremsstrahlungb and t are separately
meaningless. The value is typicallylEQ;3.5% ~see Table
X!. The equivalent radiator method assumes the angle p
ing approximation, where the radiation changes the mag
tude but not the direction of the electron’s momentu
Similarly, Borie and Drechsel@24# included internal brems-
strahlung assuming such peaking approximation, using
cross sections for first-order photon emission. Results us
this method do not differ distinctly from the equivalent r
diator approximation.

The modified equivalent radiator method relies on a sim
lar technique to simulate the effects of internal radiation
the count rates and kinematics of anA(e,e8p) reaction. The
modification is necessary to reproduce both the exact en
loss (n5e2e8) dependence due to radiation, as given
Eq. II.6 of Ref.@6#, and the exact missing energy dependen
due to radiation, given by Eqs.~32! and~33!. This is impor-
tant because events aresimultaneouslysubject to theDe8
range given by the electron arm momentum acceptance
the DEm range applied in the coincidence analysis.~Here
De85eel8 2e8 andDEm5Em

el2Em are the radiation-induced
reductions in the energiese8 andEm from their elastic val-
ues.! The MERM differs from the standard equivalent radi
tor approximation in two ways. First, as the scattering ene
increases, a few percent of the radiation becomes pea
near the scattered proton direction~the large acceleration o
the proton in the scattering begins to overcome the supp
sion of radiation by its high mass!. Thus, the scattered proto
is also passed through an equivalent external radiator, w
bt values between 0.00037@at Q251 (GeV/c)2# and
0.00524 @Q257 (GeV/c)2# ~see Table X!. Second, the

TABLE X. Comparison of the equivalent radiator thicknessesl
for various kinematics. ValueslEQ are from Eq.~82!, l are from
Eqs.~58! and ~59!, andlmod are from Eqs.~86!–~90!.

Q2 lEQ le le8 lp8 le
mod le8

mod lp8
mod

(GeV/c)2 ~%! ~%! ~%! ~%! ~%! ~%! ~%!

1 3.322 3.936 3.767 0.042 3.502 3.614 0.03
3 3.561 4.149 3.790 0.326 3.652 4.282 0.28
5 3.669 4.279 3.790 0.485 3.786 4.619 0.42
7 3.736 4.369 3.790 0.590 3.883 4.836 0.52
0-18
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three equivalent radiators have three different thicknes
~the equality of the incoming and outgoing electron radiat
in the standard equivalent radiator approximation is o
valid in the limit of no target recoil!. The thicknesses ar
adjusted to reproduce the theoretical radiation tail distri
tion of the 1H(e,e8p) reaction simultaneously as function
of the scattered electron energye8 and the missing energ
Em . It is convenient to determine the necessary thicknes
in the limit De8, DEm!e,e8; validity at higherDe8 and
DEm is discussed below. Referring to Eq.~22!, we observe
that Eq. ~32! has a logarithmic dependence onDEm :
dsoft(DEm)5lEm

ln(DEm)1ln NEm
. For elastic kinematics in

the soft photon approximation,lEm
andNEm

are functions of

e andue8 only. Thus theEm dependence of the tail as give
by Eq. ~40! is

e2dso f t(Em)5NEm
~DEm!lEm. ~83!

Inspection of Eq. II.6 of Ref.@6# immediately yields analo-
gous functional forms fordso f t(De8) ande2dso f t(De8):

e2dso f t(De8)5Ne8~De8!le8. ~84!

As discussed in the last part of Sec. III B, the only differen
betweendso f t(Em) anddso f t(De8) is a change in the integra
tion region. Thus one finds the exponentlEm

5le8[l tot at
all kinematics. This fact will allow simultaneous matching
both energy dependences. In practicel tot is determined nu-
merically by evaluating Eq.~32! for two different values of
Em .

In the MERM, the internal radiation is simulated by pas
ing the beam electron, scattered electron, and outgoing
ton through external radiators withbt valuesle , le8 , and
lp8 . Analytic expressions for the resultingDEm and De8
dependences are used to choosel values that reproduce th
theoretical energy dependence of internal radiation@Eqs.~83!
and ~84!#. The expression for theDe8 dependence induce
by three external radiators, valid for smallDe8 @where
Fext(x).1#, is derived in Appendix F of Ref.@18#:

ds

dVe
~e8>eel8 2De8!5

ds (1)

dVe
U

ep

1

G~11le1le81lp8!

3S ReDe8

e D leS De8

eel8
D le8S RpDe8

p80
D lp8

.

~85!

The recoil factorRe (Rp) takes into account that radiation o
energyv by the beam electron~outgoing proton! changese8
by a amountRev (Rpv). HereRe,1 because the energyv
radiated by the beam electron comes from a reduction ine8
and in the kinetic energy of the recoil proton; for small ph
ton energiesRe'(e/eel8 )2. The Monte Carlo using the
MERM technique determines the amount of energy radia
by the proton before computinge8;e8 is chosen so that the
proton is left on shell after it emits the real photons. F
small photon energies the resulting proton recoil correct
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Rp'@M12e sin2(ue8/2)#/(p802up8u). The equation for
ds(Em<Em

el1DEm)/dVe is obtained from Eq.~85! using
the substitutionsDe8→DEm and Re ,Rp→1 @cf. Eq. ~6!#.
The resulting formula satisfies an important consisten
check: for a trivial scattering process@ds (1)/dVe51#, it re-
duces to the integral of Eq.~75! over Eext with bt5le
1le81lp8 andEext5DEm ~assumingFext.1).

Choosing thel parameters according to Eqs.~58! and
~59!, while an improvement over the standard equivalent
diator technique@Eq. ~82!#, still would not satisfy the theo-
reticale8 andEm dependences of Eqs.~83! and~84!. Such an
approach would e.g., neglect the ‘‘missing’’ terms of Eq
~60! and ~61!, and, indeed, using Eq.~62! instead of Eqs.
~58! and~59! gives closer agreement. Instead, we require
modified equivalent radiator approximation to reproduce
theoretical values ofNe8 , NEm

, andl tot . Conveniently, Eq.

~85! exhibits the sameDe8 dependence as the theo
@;(De8)l tot# for small De8, so long as thel ’s used in the
calculation are chosen so that

le1le81lp85l tot . ~86!

Multiplication of the cross section by the proper normaliz
tion factor ~representing, among other things, the contrib
tion of the hard corrections! allows the calculation to agre
with Eq. ~84! at smallDe8. BecauselEm

5le8 (5l tot), the
calculation cansimultaneouslysatisfy Eqs.~83! and ~84! at
all small values ofDe8 andDEm if it usesle andlp8 that
satisfy

Re
leRp

lp85
Ne8
NEm

5ede82dEm. ~87!

Reproducing the theoreticalNe8 , NEm
, and l tot places

three conditions on the four unknowns (le , le8 , lp8 , and
the normalization!. The theoretical integral of the cross se
tion over another observable~for instancep80! could provide
a fourth condition (Np8) and remove the remaining ambigu
ity. However, the calculation is insensitive at the,0.5%
level to even a 50% change in the ratio oflp8 to le . For
definiteness, we choose the ratiolp8 /le to be equal to
lp8

peak/le
peak given by Eqs.~58! and ~59!:

le5 f tle
peak, ~88!

lp85 f tlp8
peak, ~89!

where the fractionf t varies between 0.88 and 0.89:

f t5
de82dEm

ln~R
e

le
peak

R
p

l
p8
peak

!
. ~90!

The l values resulting from these prescriptions are lis
as lmod in Table X. The equivalent radiator parameters a
evaluated for central kinematics, and are not adjusted for
kinematics of each event. The errors produced by neglec
variations inE andue8 are negligible for the NE18 acceptan
0-19
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R. ENT et al. PHYSICAL REVIEW C 64 054610
ces@18# (,0.04% in the normalization and,0.0012 in the
l values!. Due to approximations in the formulas forde8 and
dEm

, Eqs. ~84! and ~83! are not valid for De8>e8/(1

12e/M ) @4#. The equations neglect two effects, whic
are actually present in the modified equivalent radia
technique: ds (1)(E2ReDe8)/dVe.ds (1)(E)/dVe , and
Fext(v/E),1. Thus, the modified equivalent radiator calc
lation maintains good agreement (,0.5%) with exact calcu-
lations of the radiation even for largeDe8.

One might wonder why external radiation is able to e
actly reproduce the energy dependence for internal radia
at small photon energies. The single-photon expressions
internal and external radiation have the same 1/v depen-
dence. Agreement is maintained in the infinite-photon lim
because thecoherentmultiple-photon exponentiation in Eq
~85! serves the same role as theincoherentmultiple-collision
factor (Eext)bt in Eq. ~75!. To see this, recall Eqs.~83! and
~84!, ed5Nvl. The tail height ~divided by the electron-
proton scattering cross section! is ded/dv5Nlvl21. For
l5bt, this has the same energy (v or Eext) dependence a
Eq. ~75!, the multicollision form for external radiation. Now
consider the single-photon version of the above, found
taking the logarithm: d5l ln v1ln N, with tail height
dd/dv5l/v. The single-photon form for external radiatio
is found in the t→0 limit of Eq. ~75!: bt/Eext @taking
Fext(Eext/uku).1#. Thus the internal and external radiatio
have the same energy dependence in both the multi-
single-photon limits, and the conversion from the sing
photon to the coherent multiple-photon form is mathem
cally identical to the conversion to the incoherent multip
collision form.

Figure 8 demonstrates the success of the modified equ
lent radiator technique in describing the distribution of t
NE18 1H(e,e8p) data counts as a function ofEm at a mo-
mentum transfer squaredQ2 of 1 (GeV/c)2 ~see Table I!.
One can see that also in this method the falloff in count r
over three orders of magnitude is well described by
Monte Carlo simulation. The equivalent radiator proced
used in this Monte Carlo simulation implicitly makes tw
assumptions about the effect of internal bremsstrahlung
kinematics:~1! photons can be treated as being emitted

FIG. 8. Em distribution of 1H(e,e8p) events at Q2

51 (GeV/c)2. The data~points with error bars! are from the NE18
experiment@11# and the calculation~histogram! is performed with
the modified equivalent radiator method.
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actly parallel to the outgoing particles~the angle peaking
approximation!, and ~2! photons emitted along the inciden
electron, scattered electron, or scattered proton direction
be treated as if they were emitted by that particle, and t
cause a change in energy only for that particle~the latter
assumption is especially relevant for the cross sec
weighting in Monte Carlo simulations!. In Fig. 9 one finds
that the modified equivalent radiator approximation doe
good job of reproducing the observed widths of the peaks
the angular distribution of the photon events. To reduce
sensitivity to the finite resolutions, only events withEm
.20 MeV are displayed. The events atqv'15° are the
result of radiation by the electron both before and after
scattering. The incoherent addition of the radiation bef
and after the scattering in the equivalent radiator approxim
tion underpredicts the strength given by the coherent in
ference of the corresponding radiative diagrams. Howe
the missing strength is less than 10% of the counts
20 MeV/c,v,200 MeV/c—that is, less than 1% of the
total counts. In only a fraction of these events would t
exact photon angle make the difference between the outg
particles being inside or outside of the experimental acc
tance, and thus the error is insignificant unless one is in
ested in a detailed and high-precision understanding of
angular distributions of radiated (e,e8p) events.

The validity of assumption~2!, that photons emittedalong
one of the particle directions can be treated as if emittedby
that particle, is demonstrated by Fig. 10. Kinematics ens
that radiation along the scattered electron direction haR
51, and radiation in the incident beam direction hasR
'Re . However, the resemblance of data and Monte Ca
simulation also supports the numerical procedure~of vertex
cross section evaluation! we chose to calculate the effects
radiation. In the figure, the cross over from theqv,15° to
qv.15° occurs atR'1.4 for both data and Monte Carl
calculation. The calculation’s underestimate of events aQ
'15 mr, discussed above, maps here to an underestima
R'1.4.

FIG. 9. Comparison between the1H(e,e8p) data and the modi-
fied equivalent radiator Monte Carlo simulation for the angleqv

5tan21(Pm,x /Pm,z) at Q251 (GeV/c)2. Note thatqv is the pro-
jected angle of the radiation in the horizontal plane rather than
spherical coordinateqg . To reduce the effects of the finite resolu
tion, only events withEm.20 MeV are displayed. The peaks from
radiation directed along the incident beam and the scattered ele
direction are clearly visible atqv5ue50 andqv5ue8537.3°.
0-20
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The MERM is effectively very similar to the ‘‘peaking’
technique described in Sec. V A, which uses the best av
able form for the photon energy. Both techniques reprod
the theoreticalEm dependence and provide a reasonable
scription of the angular distribution of the radiation by inco
porating simultaneous radiation along thee, e8, and p8 di-
rections. The MERM technique improves on the ‘‘peakin
technique by reproducing thee8 dependence as well. Thel
values~or effective radiator thicknesses! used are mathemati
cally unique up to a freedom in the ratio oflp8 /le . This
feature helps to minimize potential systematic errors in
radiative corrections.

Obviously, a disadvantage of this simple technique is t
it neglects the exact angular distributions of radiated eve
Thus, improvement on the MERM technique is possible
either determining the exact multiphoton angular distrib
tions of the internal radiation numerically solving Eq.~46!,
or using the multiphoton peaking approximations describ
in Sec. IV A, and subsequently folding in these more ex
multiphoton angular distributions in an experimental Mon
Carlo simulation. However, this is in many cases unw
ranted because~i! the only failing of this technique is a sligh
underestimate of the angular distributions between the
ticle directions; and~ii ! the systematic error in the interna
and external radiative effects may be dominated by un
tainties in the theory itself.

Lastly, the MERM technique provides significant gains
computation speed when simulating small experimental
ceptances wherele , le8 , andlp8 are approximately constan
and can therefore be evaluated during Monte Carlo initiali
tion. Since the effect of external radiation must be calcula
anyway, the effect of internal radiation is included simply
increasing the external radiationbt values by the correspond
ing l values. This computational advantage disappears
larger acceptances where the time-consuming determina
of the l ’s @via evaluation of Eq.~31! and of Eq. II.6 of Ref.

FIG. 10. Comparison between the1H(e,e8p) data and the
modified equivalent radiator Monte Carlo simulation for the rec
ratio R5Em /De8 at Q251 (GeV/c)2. To reduce the effects of the
finite resolution, only events withEm.20 MeV are displayed. The
solid circles and left-hand histogram are the data points and M
Carlo prediction forqv.15°, corresponding to the peak atue8 in
Fig. 9. Note these events have the ratioR'Re851. The open
circles and right-hand histogram are for the peak atue50 (qv

,15°), and haveR'Re52.07.
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@6## must be performed separately for each event. In suc
case one might prefer choosing thel ’s according to Eq.~62!,
and utilize the techniques described in Sec. V A.

VI. DISCUSSION AND SUMMARY

The attractiveness of electron scattering is that the pho
couples weakly to the electron and hadrons, simplifying
extraction of information from experimental data. Howev
in order to extract nuclear structure information or inform
tion on the reaction dynamics, one needs to understand
radiative contribution to the measured cross section in de
In particular, as the momentum transfer increases in elect
induced hadron knockout or hadron production reactions,
internal bremsstrahlung contributions of the hadronic ter
cannot be neglected anymore. Up to now the standard for
calculation of radiative effects has been the work of Mo a
Tsai @6#. They derived explicit formulas for radiative correc
tions in an inclusive (e,e8) framework, and provided a pre
scription for unfolding spectra in terms of the energy trans
n5e2e8. It is important to note here that in analyzing r
sults from the (e,e8p) reaction, one must for consistency u
form factors derived from previous scattering data using
same radiative correction formulas.

The emphasis of this work is the extension of radiat
corrections to coincidence (e,e8p) experiments. Though this
work only deals with the (e,e8p) reaction, the formalism
presented to apply radiative corrections is general and
easily be adapted for other electron-induced hadron prod
tion reactions. For the (e,e8p) reaction one can, in the plane
wave impulse approximation, define a spectral funct
S(pm ,Em) representing the probability of finding a proton
the nucleus with missing energyEm and momentumpm . The
difference between the calculation presented here and th
Mo and Tsai is that we describe the radiative tails in terms
Em rather thanv. Specifically, the measured variableEm is
shifted from its value at the scattering vertex by, for elas
ep scattering, exactly the energy of any photon that w
emitted during the reaction; it thus provides an ideal coor
nate with which to perform radiative computations. Rad
tion from the scattered proton is taken into account, and c
stitutes >10% of the internal correction for Q2

>1 (GeV/c)2. Also, this contribution varies inversely with
the ratioe8/e. The relatively large magnitude of the hadron
contributions to the bremsstrahlung cross sections warran
detailed investigation of the assumptions and approximati
made in the work of Mo and Tsai, in order to successfu
apply radiative corrections to electron-induced coinciden
reactions.

In order to radiatively correct the fullEm and upmu distri-
bution, one must consider the angular distribution for em
ting multiple photons. We have determined that the distrib
tion for emitting a total photon energyDEm is, up to order
a2, equivalent to the emission of any number of soft ph
tons, each with energy less thanDEm . Therefore exponenti-
atingdso f t provides a good approximation to the bremsstra
lung cross section for emitting a total photon energy up t
certain cutoff value, the case of practical interest for anal

l

te
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ing experiments. For practical purposes, one employs p
ing approximations to estimate radiative effects. This
sumes that the emission of photons will take place in
direction of the initial and final electron, with an addition
contribution in the direction of the final proton as its ener
becomes highly relativistic. At low to intermediate mome
tum transfers @Q2'1 (GeV/c)2 to '10 (GeV/c)2#, a
broad peak will begin to form around the final proton dire
tion. In the full peaking approximation however, th
electron-proton interference term is taken to be zero. Thu
one wants to maintain the correct number of photons emi
but allows an error in the angular distribution due to t
peaking approximation, one can assign all the nonpea
photons to the different peaked directions~‘‘extended’’ peak-
ing approximation!. One can also add the external brem
strahlung in a consistent manner to these peaking appr
mations.

We have compared the radiative correction procedu
found in this work with experimental data of the NE18 e
periment@11,21,22#. We have used two separate procedur
via Monte Carlo, to simulate the event distributions. In t
first procedure we could incorporate in the simulation pa
age either several of the peaking approximations prese
or the complete angular distributions for bremsstrahlu
This procedure produced very good agreement withEm dis-
tributions of both the1H(e,e8p) and 2H(e,e8p) reactions,
at momentum transfers between 1 and 7 (GeV/c)2. It was
also used to simulate a detailed angular distribution of
1H(e,e8p) events for photon energies above 20 MeV, a
excellent agreement was found. The second procedure hi
on the peaking approximations and extends the usual equ
lent radiator method to reproduce both the event distribu
of the 1H(e,e8) reaction in terms of the scattered electr
energy and the1H(e,e8p) reaction in terms of missing en
ergy. These constrain the choice of three equivalent radia
of different thickness~for the incoming and outgoing elec
tron and the proton!. It is shown that this simple procedur
describes the1H(e,e8p) tail distribution in terms ofEm very
well. Since the method hinges on the~angle! peaking ap-
proximation, we also show from the NE181H(e,e8p) data
why this assumption works well. Unless one is interested
a detailed and high-precision understanding of angular
tributions of (e,e8p) reaction, the ‘‘modified’’ equivalent ra-
diator method provides a simple, effective procedure for
diative corrections.
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APPENDIX: EVALUATION OF BREMSSTRAHLUNG
INTEGRALS

This appendix evaluates the integrals necessary for
evaluation ofB(pi ,pj ,DE) as given by Eq.~32!. The two
casesi 5 j and iÞ j are considered separately.

First consider the casei 5 j which requires the evaluation
of B̄(p,p,DE). In this casepx

25p2 and the integrands in Eq
~32! are independent ofx, yielding

B̄~p,p,DE!

54pF lnS DE

p0 D1
p02upu

2upu
lnS p02upu

p01upu
D 1 lnS 2p0

p01upu
D G .

~A1!

For the caseiÞ j , consider theDE dependent part of
B(pi ,pj ,DE) @note that the other two terms go to zero in t
relativistic limit (upu→`)#,

E
0

1dx

px
2 lnF DE

pj
01x~pi

02pj
0!G . ~A2!

The evaluation of this integral in terms of Spence functio
is standard. Writing

px
25a~x2x1!~x2x2!, ~A3!

where

a5~pi2pj !
2 ~A4!

and

x65
2pj

222pi•pj6A4~pi•pj !
224pj

2~pi2pj !
2

2a
~A5!

implies
E
0

1dx

px
2 lnF DE

pj
01x~pi

02pj
0!G

5
1

a~x22x1! F lnS pj
01x1~pi

02pj
0!

DE D lnS x121

x1
D2 lnS pj

01x2~pi
02pj

0!

DE D lnS x221

x2
D

2FS ~pi
02pj

0!~x121!

pj
01x1~pi

02pj
0!

D 1FS ~pi
02pj

0!x1

pj
01x1~pi

02pj
0!

D 1FS ~pi
02pj

0!~x221!

pj
01x2~pi

02pj
0!

D 2FS ~pi
02pj

0!x2

pj
01x2~pi

02pj
0!

D G . ~A6!

Here the usual identity
0-22
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E
0

1log~b2cx!

x2a
5 log~b1ac!logS a21

a D2FS 2c~12a!

b1ac D1FS ac

b1acD ~A7!

has been used.
ty
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