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A general framework for applying radiative corrections &d’ p) coincidence reactions at GeV energies is
presented, with special emphasis to higher-order bremsstrahlung effects, radiation from the scattered hadron,
and the validity of peaking approximations. The sensitivity to the assumptions made in practically applying
radiative corrections tog,e’p) data is extensively discussed. The general framework is tested against experi-
mental data of théH(e, e’ p) reaction at momentum transfer values larger than 1.0 (€gVivhere radiative
processes become a dominant source of uncertainty. The formulas presented here can easily be modified for
any other electron-induced coincidence reaction.
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[. INTRODUCTION to radiatively correct data in different situations and dis-
cussed the advantages of the Tsai over the Meister and Yen-

Coincidence ¢,e’p) reactions off nuclei can allow de- nie results. More recently, de Calan, Navelet, and Pi¢afd
tailed studies of the nuclear wave function as well as quasiderived a third set of formulas that disagree with the results
elastic reaction dynamics. The attractiveness of electron sca@f Tsai[4]. The current paper considers radiative corrections
tering is that the photon couples weakly to the electron andior coincidence ¢,e’p) reactions. Its goal is to emphasize
proton, simplifying the extraction of information from ex- the assumptions and ambiguities involved in radiative cor-
perimental data. Unfortunately, photons are also masslegéction formulas, in particular the differences between Refs.
and can be copiously produced in such experiments. Redf,6], and to produce formulas applicable to coincidence re-
photons are emittetbremsstrahlungwhen the charged par- actions.
ticles involved in the reaction are accelerated by the fields of The primary cross sections of interest are the cross section
either the nucleus involved in the primary hard scatteringfor an electron to scatter off a proton into a solid angf@,
(“internal radiation”), or by the other nuclei encountered by and produce photons with total momentum in the ratde,
the incoming/outgoing particles as they travel through inter-
vening material“external radiation”). The emission of real do
photons causes a discrepancy between the detected particles’ 40 0%0
momenta and their actual momenta at the scattering vertex, e
and so causes distortions in the extracted experimental spec-
tra. Conversely, amplitudes involving the emission of addi-and the cross section for an electron to scatter off a proton
tional virtual photons affect only the magnitude of the mea-into a solid angled(}, without emitting photons whose total
sured cross section. energy is greater thanE,,,

The topic of radiative corrections is an old one, dating
back to Bethe and Heitler, who first calculated the brems-
strahlung spectrum of an electron scattering in a coulomb
potential[ 1], and Schwinger, who first calculated the full first
order radiative correction to this same problgth For soft-
photon emission, lowest order perturbation theory is inadThe former cross section is necessary in order to propagate
equate. Yennie, Frautschi, and Suura generalized this resuhie radiative tail through missing energy and momentum
to higher orders, showing how to deal with soft-photon emis-space, while the later can be used if one only wants to mea-
sion[3]. Tsai[4] and Meister and Yennigb] derived explicit ~ sure the missing energy distribution with the missing mo-
formulas for radiatively correcting inclusive elastic scatter-mentum integrated oyfour-momentum conservation can be
ing of electrons off protons, where only the electron is de-used to determine the missing energy and momentum not
tected. Finally, a review article by Mo and T4&i] summa- accounted for in the detected particles—see Séc. I
rized the approaches and approximations that could be used Within QED it is straightforward to calculate these cross

sections to low orders in the fine structure constantHow-
ever, electron-proton scattering also contains the strong in-
*Present address: Department of Physics, University of lllinoisteraction, which does not factor from the QED corrections. If
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a0,

(w<AEp). 2

Urbana, IL 61801. we were interested in radiatively correcting electron-muon
TPresent address: Sun Microsystems, Inc., Palo Alto, CA 94303.scattering this problem would not be severe. Both the first
*Present address: Arete, Marina del Rey, CA 90292. order elastic and bremsstrahlung cross sections would be un-
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ambiguously determined, and only the vacuum polarizatiorapproximation is discussed in Sec. IV A. We discuss in Sec.
correction to the second order elastic cross section woultV B the spectrum for the emission of “external” radiation,
have some uncertainties. which has essentially been discussed before by [B§aand

In the case of electron-proton scattering, the situation ig=riedrich[10]. We also discuss in this section the generalized
more difficult. Neither the first order elastic or bremsstrah-peaking approximation, which adds the effects of “internal”
lung cross sections are calculable exactly due to the extendehd “external” radiation in a consistent manner in the peak-
structure of the proton. For example, consider the expansiomg approximations applied.
of Eq. (2) to first order ina, which can be parametrized as Section V discusses the Monte Carlo simulation methods
used to enable a comparison of the radiative corrections
framework discussed with experiment&,¢') and (e,e’p)
data. In Sec. V A we describe the general Monte Carlo simu-
lation method used, and how the radiative correction proce-
where dures were applied to this simulation. In Sec. V B compari-
sons of the described Monte Carlo simulation with
experimental data from the Stanford Linear Accelerator Cen-
ter (SLAC) experiment NE18 are shown1]. Sec. V C dis-
cusses a “modified” equivalent radiator method, a straight-
is the one-photon exchang@orn) electron-proton cross sec- forward Monte Carlo simulation method which for most
tion and the orderr radiative correction has been divided (e,e’p) experiments will be satisfactory to apply radiative
into two terms; the first due to bremsstrahlung of real pho-<corrections. Again comparisons of this Monte Carlo method
tons (5;) and the second term caused by virtual particle corwith experimental data from the NE18 experiment are pre-
rections to the elastic cross sectiofy). The choice of kine- sented. Finally, Section VI provides a summary of the work
matics for the quasifree electron-proton scattering case igresented.
discussed in Sec. Il. The first correctiod,(AE,,), which
determines the shape of the Bremsstrahlung spectra is fairly II. KINEMATICS
well-determined and will be discussed in Sec. lll A. The sec- . . _ _ _
ond correction,s, is not well determined and different for- ~ This section considers the kinematics of the process
mulas for radiative corrections to electron-proton scattering
typically differ in their expressions fof,. eA—e'yp(A-1)*,

Fortunately, the choice af, is not too important, as long . )
as it is doneconsistentlyRadiative correction formulas, such Where the residual{—1)* is an unmeasured state @-1)
as Eq.(3), are generally applied to electron-proton scatteringnuCleons D|L.IS. any Other particles produced in the reaction.
data in order to determingo‘?)/d(),. Different choices of Denote the initial and final four-mgmenta of the election
5, change the extracted values a#1/dQ,. If one then ~=(ek) and k'=(e’ k') respectively, the final four-
uses these extracted cross sections in analyzingea@i) momenta of the protop’ =(p %), the four-momentuny
reaction, as long as one uses the safneas was used in =k—k’=(v,q) transferred from the electron, and the four-
extractingo‘?), one will reproduce the correct cross section.momenta of the bremsstrahlung photer- (w° w) where
These points will be discussed in Sec. Il B. 0’=|w|. The electron mass will be denotedand the pro-

The correct calculation 06, on the other hand, is very ton mass denotebll. For the discussion of kinematics in this
important. The lowest order calculations work well for large section, the electron mass will be taken as negligible.
photon energies but break down for small photon energies, The real photorw appears in the energy-momentum con-
where multiple-photon generation dominates. In this regimeservation relation as an additional four-momentum in the fi-
the soft-photon bremsstrahlung diagrams need to be summeghl state:
to all orders, which turns out to be equivalent to exponentia-
tion. Recently, the necessity of including multiphoton emis- k+tpa=k'+p'+w+pia_q- (4)
sion was shown in a practical example for thide(e,e’p)
reaction[8]. In contrast, this work provides a more rigorous All of these variables are four-momenta, representing respec-
framework on applying radiative corrections to coincidencetively the initial electron, the initial target nucleus, the scat-
(e,e'p) reactions, evaluating the effect of the various con-tered electron, the knockout proton, the emitted photon, and
tributions and assumptions in the many-GeV region. We furthe recoiling @— 1) system(possibly in an excited state, as
ther deal with the effects of multiphoton emission in indicated by the asteri$klf one now denotes the values one

Sec. Il C. measuredor the missing momentum and energy jy and

tool ncgﬁ]n(igiiggtatiesm]ultlp?gﬁ g 2TFI]S:I‘gf?egosfsbsrgﬁ?s;faﬁr_ﬁm, and their vertex values the absence of radiatioby
bl Imply v andE,,, one obtains

lung from experimental data. At high energies, the individual®™
photons are largely emitted in the direction of the incoming , ~
or outgoing fermions. This allows the introduction of a peak- Pm=P + @=q=pPn+ o,

ing approximation that greatly simplifies the calculation of

the angular distribution of the emitted photon radiation. This ~ E+T,ec=€—€' —(p EM)— 0?=E 1+ T ec— 0°, (5)

do do®

dQe(w<AEm):_dQe

(1—a[61(AEL)+ 85]), (3)
ep

do®
dQ,

ep
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TABLE |. Kinematics settings used.

Q? € €' O
(GeVic)? (GeV) (GeV) (deg
1 2.01 1.41 37.3
3 3.19 1.47 49.0
5 4.21 1.47 54.2
7 5.12 1.47 57.0
6 12.1 8.9 14.0
9 154 10.6 14.0
FIG. 1. Distribution of counts irE, and|p,,| for (e,e’p) from 12 18.3 119 14.0
hydrogen atQ?=1 (GeVic)?, demonstrating the existence of 19 21.0 13.0 14.0

“tails” due to bremsstrahlung radiation. THe,, axis runs in the
bottom-right direction, from-25 to 125 MeV in bins of 2.5 MeV; 0 . o
the |p,,| axis runs towards bottom-left, from 160 to 160 Meve¢  €nergyw. If, however, the photon direction is parallel to the
in bins of 5 MeVEk. incoming electrone’ is affected by an amount that depends

on the electron scattering ang(®&lote that the scattered pro-
and so ton vector is also affectedThus, when one comes to evalu-
ate the total probability of emitting radiation that affeetby
Pm=Pm— @, less than some cutoff enerdyE,,,, one has to perform inte-
grals over photon energy and direction with interdependent
En=Em+ Trec— Trect @°=Ep+ . (6) integration limits. In the case of coincidence scattering, in-
dependent integrals can be performed as the measurement of
Note that the measured value of the recoil kinetic energyboth scattered particles enables one to select a more “natu-
T ec, depends on the measured missing momentum and sofigl” choice of variables—E, andp,. In the elastic scatter-
also distorted by bremsstrahlung photons. However, the coring example of above, if the missing energy is measured to
tribution of T, to the missing energy is, in general, small an accuracyAE,,, one is guaranteed that all measured
(and nonexistent in the case of elastip scattering. The  events correspond to emitted photons with less thaf,,
approximationT, ..=T,.. is not used in the calculations de- regardless of the photon direction, or, equivalently, the ratio

scribed herein, but merely serves to illustrate the overall efof €€’ . _ . . L
fect of radiation on a measured,p,;) distribution: the The formalism described in this section is based on the

real photons produce long “tails” which, at very high photon WOrk of Mo and Tsa{4,6] which has provided the standard
0 . L~ radiative corrections prescription for three decades of inclu-
energy © >Em_,pm), are (_jescrlbe_d by the relatio, sive electron scattering experiments. The basic formulas of
=ppn=w’. Elasticep scattering provides a clear demonstra- o and Tsai have been reevaluated in a coincidence frame-
tion of these tails, since in the absence of radiation, allyork: one can no longer integrate over all final states of the
strength is localized aE,=p,=0 (see Fig. 1 It is seen  gcattered proton as ire(e’) measurements, but must calcu-
that the radiated events are distributed along the line withate the radiative effect on both the scattered electron and
En=|pml as required for real photons. proton. The resulting distributions are then included in the
The coincidence variablds,, andp,, thus provide a natu- event generation of a Monte Carlo simulation and folded
ral basis in which to evaluate radiative effects. By contrastwith the experimental detection range ki and p’ as de-
radiative corrections have generally been calculated in thecribed earlier. Throughout this work we will use for the
framework of inclusive é,e’) experiments—in terms of numerical examples the kinematics given in Table | and de-
their effect on the measured energy transfdr=e—¢€'). If note the specific kinematics with its momentum transfer
we denote, similarly as above,(3) as the measured energy Squared valu®?. Specifically, some of the kinematics given
(momentun transfer, one obtains in the table are consistent with the kinematics of the NE18
experiment at SLAG11].
=0~ w,
[Il. INTERNAL BREMSSTRAHLUNG
v=rv+to’. () A. First order internal bremsstrahlung
The effect of radiation on these quantities depends on the The probability for radiating a single bremsstrahlung pho-
direction of the emitted photon: Consider elastic scatterington is represented by the four Feynman diagrams of Fig. 2.
with Born-level differential cross sectiodo)/dQ),,. The  Since each of these diagrams involves the same final state,
reaction amplitude is fixed by the direction of the scatteredhe amplitudes must be summed coherently:
electron(and, of course, the incident electron engrdywe

treat this directionk’ as fixed, the radiation of a photon do

A~ i 3 3 ~|Mei+ Mef+Mpi+ Mpf|2. (8)
parallel tok” simply decreases the energy by the photon d°k’'d*w
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FIG. 2. Feynman diagrams contributing to first order brems-

strahlung radiation cross section.

These four matrix elements refer to the emission of a photon

by the incident electron, scattered electron, incident proto
and scattered proton respectively. To evaluate them, one

quires a knowledge of the coupling of the electron and pro

ton to the photon. The electron coupling is given exactly b
QED and is specified by the electron current

JH(q) =eug(k+q) y*ug(k). (9)

Heree= — 4w« is the electron charge ang is the elec-
tron spinor, normalized to (k)us(k)=2m (m is the elec-

PHYSICAL REVIEW C 64 054610

iy'(k,+w,)+m

Mg=iugk')ey’s,
ef e(k')ey (k’+w)2—m2

2
e R
X y#Ug(K) ———Up(p")T L (dp)up(p),
Op— M
iv'(p,—w,)+M

Mpi=iuy(p)T#(q) =) =M

e? _
X(—e)'"(w)e, uy(p) mue(k’)nue(k),

iy (p,+w,)+M
(p'+0)?=M?

Mp=iuy(p ) (—e)T(w)e,

2

e:
XF“(Q)Up(p)Wue(k')mue(k)- (12

PH_ere g, is the polarization of the bremsstrahlung photon,
%Ip: p’'—p is the momentum transferred to the proton if the
electron emits the photon, argg=k—k’ is the momentum
Yiransferred to the proton if the proton emits the photon. Also,
M IS a parameter representing the photon mass, which will
ultimately be taken to 0. The single ambiguity in E42) is
the assumption that the intermediate proton propagates like a
Dirac particle and that there are no contributions from ex-
cited hadronic states. This should be a good approximation
for small photon energies.

The single photon emission cross section can be calcu-

tron mass The proton-photon coupling is complicated by lated from these expressions, with no further approximations.
the fact that the proton is in general bound and off-shell, andiowever, the formulas simplify greatly in the limit that the

the description of such a proton is only approximately know

nphoton energyw® is much less than the momenta of the

[12]. For the present, we neglect these effects and discud8itial and final state fermions. In this case, the basic one-

elastic scattering from an on-shell proton:

JE(q)=—euy(p+a)T#(q)uy(p). (10)

The deviation of the proton from a point particle is
described by

1
IH(@)=F1(0*) v+ 5 Fa(0?)io""q,, (12)

using the free proton form factors. Again, the proton spinor

is normalized to the proton mass;(k)u,(k)=2M. Using

these couplings, one obtains the following expressions for

the first-order bremsstrahlung matrix elements:

iy"(k,—w,)+m
C(k—w)Z-m?
e _
X ey’e,Ue(K) ———Up(P" )T L (dp)up(p),
Op— M

Mei=iu1<k'>w[

photon exchangéBorn) amplitudeM ) factorizes from the
bremsstrahlung amplitudes, giving

Mo 2],
Mty 25,
Moo D)
Mp=—eM ) %) : (13)

This limit is referred to as theoft photon approximation
(SPA); it can be seen to be reasonable from the distinctive
1/w energy dependence of the emission amplitudes. Part of
this approximation is the use of the elastimradiated val-

ues of the fermion momentg k’, p, andp’ in the above
expressions. These elastic values are also used in the evalu-
ation of the one-photon exchange amplitude,
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_ e? TABLE Il. Ratio of single photon bremsstrahlung cross section
M ,(elp)= iUg(K") Y*Ue(K)———up(p" )T (@) up(p). calculated in the soft photon approximation to the full calculation,
qg——um 2_ 2 ; a0 ; .
14 at Q“=1 (GeV/c)“. Various photon energies” are considered,;
(14) the photon angle is taken to be in the direction of either the initial
(i) or final (f) electron. The values in parentheses are the SPA/full

The resulting total cross section for single-photon brems-" | ’ -y ; X
ratios using a pointlike proton in the calculations.

strahlung is thus given by

do »® (MeV) i f
dQd%w 1 1.0023(1.0002 0.9993(0.9993
o , , 2 10 1.023(1.002 0.993(0.993
_do —a | K P kP 100 1.26(1.02 0.93(0.93
- 2 0 + .
dQe | 47°0° k' w-p’ @k @p 200 1.59(1.04 0.87(0.87)
(15)
: : _ 024, 0 - Pi-Pi (1. [2Emw?dw 1
For later convenience, usin’w=w?dw’d(,,, we write B(pi.p; AEm)= Jf dxf L S
this as a product of photon energy and angle distributions, 2w Jo 0 0" pyo+ u(py)
(1) P (. 1 [AE 1 z
do _do® AQ,) . P p,f dx_2|n< Om)+_2m(p_x2>
d0.d0,de® de | - o 2m Jo i\ Py ) 2Pk \m
Where p2_|px| p2_|px| ng
+ 5 In| — + 5 .
2 |pX| px+|px| px+|px|
AQ,)= i LS L S (17) (22
7 4x? | w-K w-p’ oK op

. We note that the sunk; ;0(p;)O(p;)B(p;,p; AE,) is
depends only on the photon directien Integrating Eq(15  negative, making the total cross sectjamd the angular dis-
over photon angle and energy, one obtains the cross sectigfyytion A(w)] positive.

for emitting a photon of energy less thark,: One observes that this expression contains two non-
AE do physical divergences: when the “photon mags~0 and
(w°<AEm)=J md3w—3 when the energy cutofAE,,— 0. Both of these are due to
0 dQed w approximations made so far, and will be addressed in later
sections. Before continuing, however, it is worthwhile to try
to evaluate the validity of the soft photon approximation. As
(—Za)iEj O(pi)O(p;) mentioned above, the one photon bremsstrahlung calculation
P ' can be computed without this approximation. Accordingly,
XB(pi,pj,AEm), (18)  the ratio of the full to the soft photon calculation is presented
in Table Il for —g?=Q?=1 (GeV/c)? and a variety of pho-
where ton energies, and in Table Ill for a photon energy of 100
MeV and a range oR? from 1 to 15 (GeVt)?. Qualita-
B(p;.p;,AE, )= fAEmde‘w 1 Pi-Pj tively, one sees that the SPA improves at low photon energies
pEREEm 87w’ (w-p))(w-p;)’ and high momentum transfers, as expected. @t
(19 =1 (GeVlc)?, the discrepancy between the two calcula-
tions is less than 1% for photon energies less than 10 MeV,
Here, two pieces of convenient notation have been introwhile for a photon energy of 100 MeV the discrepancy drops
duced.p; for i=1,...,4 isused to represent the four fer-

do

a0,

do®
- dQ,

mion momentak,k’,p,p’ in turn; the constant®(p;) de- TABLE III. Ratio of single photon bremsstrahlung cross section
note the signs accompanying each tefh(k)=0(p’)= calculated in the soft photon approximation to the full calculation,
—1 and®(k')=0(p)=1. This integral can be evaluated for photon energys°=100 MeV. Various momentum transfeg¥
using the expression are considered; the photon angle is taken to be in the direction of
either the initial(i) or final (f) electron.
o-k=w(e—|k|cosh), (20
Q? (GeVic)? [ f

as well as introducing a new variabkeas indicated in Eq.
(11.19) of Tsai[4]: 1 1.26 0.93

5 1.14 0.93

Px=Xpi+(1=x)p;. (21 9 1.05 0.99
15 1.03 0.99

One then obtains
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to 5% atQ?=9 (GeV/c)?. The discrepancies are consider- MED MED

ably higher at the other settings listed, however. Two effects

are involved: the shape of the bremsstrahlung energy spec-

trum, and the evaluation of the matrix elements using elastic +
(w°=0) particle vectordi.e., neglecting the difference be-

tweeng andq in Eg. (12)]. In an attempt to separate these

effects, Table Il also contains the SPA to full ratio using a
pointlike proton, i.e., a proton whose form factors are M2
ep

GR(Q%) =1 andGy(Q?) = pu, (these are th€?=0 values

of the form factors of the physical protbAt Q2

=1 (GeVlc)?, one sees that most of the discrepancy is due + + '
to the g-dependent form factors. To correct this one must

evaluate the cross section using a valuegafhich is cor-

rected for the effect of radiation. In other words, one must

distinguish between photons emitted before and after the F|G. 3. Feynman diagrams representing virtual photon correc-
hard scattering, a task which is complicated by the interfertions to one-photon exchange cross section included here and in
ence terms between the Bremsstrahlung amplitubits, Ref. [4].

Met, M, and M. However, such a correction can be

built into the calculation, as is explained later on. The maxi-by Mo and Tsai. However, the point to be made here is that
mal E,,, range below pion production threshold is about 140the evaluation of\M glp) includes the use of proton form fac-
MeV, so thew®=100 MeV results in Table Il can be con- tors extracted fronpreviousdata. The radiative corrections
sidered a typical worst case. Assuming that the correction tapplied should thus beonsistentwith whatever corrections

g at the hard scattering vertex can be accomplished, one igere used in extracting these form factft8,14). The stan-
faced with a SPA inaccuracy of at most 2% for radiation indard prescription given by Eq. 1.6 of Mo and T$8i is thus

the directionk and 7% for radiation in the directiok’. We  the appropriate choice, with the addition of the Schwinger
point out in passing that these discrepancies are given a@grrection and vacuum polarization from quark and heavy
fractions of the radiativeorrections which are themselves lepton loopg13,15|.

small; the effect of these discrepancies on the final cross The second order diagrams depicted in Fig. 3 are grouped
section is thus much less than the quoted percentages. Norigto three categories depending on their sensitivity to the

theless, the effect may be of relevance for precision measurétrong interaction. We use the same evaluation of these am-
ments. plitudes as Mo and Tsai, and restate them here. Also used is

the notation

B. Virtual photon corrections 1dx p2
X
One of the nonphysical divergences observed in(E8) K(pi,Pj) = Pi- P fo F'“(F) (24
X

was found in the limitu— 0. This is known as an “infrared
divergence,” and is a direct consequence of the fact that thgescribing the form of the infrared divergent terms. Note that
one photon bremsstrahlung cross section is of otdfeand

that other diagrams of the same order have not been included m2

yet. These are amplitudes for the exchange of two virtual K(p; ,pi)zln(—'2>, (25
photons, collectively referred to aMgzp) These must be 2

summed coherently wittM (), which represents the same

final state- ep’ and that the IR divergent term of E(R2) has this form.
' The electron-photon vertex correctiont G is known
M2 = MEP+ MBTMD+ MBTMB +0(a?). exactly from QED. In the limitQ?>m? (which is well sat-
(23) isfied by momentum transfers in the GeWange, one ob-
tains

Figure 3 contains a summary of the second-order amplitudes.

2 2
Unfortunately, several of these depend implicitly on the , ,1_ & , m 3. (~d (1)
. o=vE =—]— + +=In|—|— .
strong interaction via the poorly known proton current. The™ ¢P 27 K(kk+In ;2 2In m 2| Mep

point of view advocated by Mo and Tsai and espoused here, (26)

is to include only those terms which do not unambiguously

depend on the strong interaction. Certain amplitudes such as The vacuum polarization correction\ &2, contains
MéZPS) in the figureare calculated, but only infrared diver- contributions from both lepton and hadronic loops. The
gent terms necessary to cancel those from the bremsstrahluffmer are known unambiguously from QED, the latter are
cross section are kept; the rest are left buried in the electrorf:alculated in a similar manner. They contribute

proton cross section. It should be noted that other workers

[7] have derived alternative expressions for the virtual radia- M gp-Z): a

tive correction, by including some of the components left out

> 5?’%9,}, 27)
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where
w1 5 4m? 2m? 4m;
Si=3-| T3¢ T\t 7 —7
™ q q q
am?
N
X log A (28

and Z; sums over the different flavors of leptons and light
quarks with massn; . In the limit Q?>m? one obtains

—q?
m? ||
As there are no IR divergent terms in the vacuum polariza

tion amplitude, further contributions from the strong interac-

tion are neglected. FinallyMm ffp'e" includes two-photon ex-

5-i—l

w_ 1

' 37 (29)

PHYSICAL REVIEW C 64 054610

TABLE V. Values for the radiative correction functions,
evaluated at various momentum transfers and for cutoff photon en-
ergies of 10 and 140 MeV. Note that the virtual correcti®g,q is
independent of this cutoff parameter. Note also that the results de-
pend on the choice of electron scattering angle as well a@%on
The final column is the percentage contribution of the proton-proton
and electron-proton interference terms to the total bremsstrahlung
correction (Se5+ o5/ Ssordl -

change and nucleon self-energy graphs, both of which

depend intrinsically on the strong interaction. Only the IR
divergent terms are used:

M (23—

a
e 27

K(k,p)+K(k",p") —K(k’,p) = K(k,p’)

2

ol

(30

2

—K(p,p’)—ln<

The total cross section for emitting a photon with energy

less thamAE,, is now obtained by adding all of these terms

to Eqg. (18). The dependence on the photon mass cancels as

required, leaving

do 0 do®
o) (0"<AE) =0 (1~ 5o AEm) — Shard
e e
P (3D
where

5soﬂ(AEm>=2aiZj O(p))O(p;)B(p; p;, AEy) (32

and
Srani= 20| — ——In(—qImd) + =~ &%(q?)
hard— A q T i i (g .
(33

Here,doM/dQ |, represents the one-photon exchamege
cross sectiongy,qis the contribution from the second order
virtual photon diagrams, andl( AE,,) is due to one photon
bremsstrahlungB(p; ,p; ,AE) is simply B(p; ,p; ,AEy) of
Eq. (22) without the IR divergent term. The subscript “hard”

Q2 AEm 5hard 5§§ﬁ 5§§ﬁ 52&1 5soft ptsegf:rpp
(GeVic)? (MeV) %

1 10 —-0.07 0.332 0.015 0.007 0.354 6.2

140 0.158 0.007 0.003 0.169 5.9

3 10 -—0.08 0.377 0.038 0.019 0.434 13.1

140 0.190 0.020 0.009 0.219 13.2

5 10 -—0.08 0.398 0.056 0.028 0.482 17.4

140 0.205 0.030 0.014 0.249 17.7

7 10 —-0.09 0.424 0.070 0.035 0.529 19.8

140 0.226 0.038 0.019 0.283 20.1

6 10 -—0.09 0.519 0.019 0.032 0.569 9.0

140 0.323 0.011 0.017 0.351 8.0

9 10 —-0.09 0.545 0.024 0.041 0.610 10.7

140 0.345 0.014 0.022 0.382 9.4

12 10 —0.09 0.564 0.028 0.049 0.641 12.0

140 0.360 0.017 0.028 0.405 11.1

15 10 —0.09 0.579 0.032 0.056 0.667 13.2

140 0.372 0.020 0.032 0.424 123

gences. The subscript “soft” refers to the assumptioh

<€,e’ used in the derivation of; (cf. the SPA in Sec.
A).

In order to separate out the contribution of the proton we
divide é5,1( AE,,) into three parts,

Osol AEm) = ggc?ft(AEm) + 5§gﬂ(AEm) + 5spgft(AEm)-

(34)
555t is the electron bremsstrahlung contribution, involv-
ing B(k,k,AE,), B(k',k',AE,), and —2B(k,k’,AE,,).
55h includes the electron-proton interference terms
—2B(k,p,AE,), 2B(k,p’,AE.), 2B(K',p,AE,), and
—2B(k',p’,AE,); while 5% is entirely due to proton ra-
diation and includes the remaining ternE(p,p,AEm),
B(p,p’,AE,), and —2B(p’,p’,AE,,). Table IV contains
values of these terms as well &g, at various kinematics.
Note thatd,,qiS Nnegative, and so causes a imereasein the

refers to the dominance of high momentum virtual photongotal ep cross section. Its magnitude is also small: less than

in the &4 correction after cancellation of the IR diver-
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tion 52& varies from 2%(IowestQ2) to 10%(highestQ2) of TABLE V. Single photon bremsstrahlung spectrum, evaluatgd at
the electron Contributiorﬁeeﬁ. The electron-proton interfer- several kinematic set_tlngs and mtegr_ated up to photon energies of
ence is about twice the s?;e of the direct proton term for the10 and 140 MeVaoq is calculated using the full SPA expressions
first four kinematics. leading t o0 I of Eq. (22); 84y is from the closed form expressions of Eg7)
. gtoanet6 20/ocontr|but|onoff din the ul lativistic limit. The final col h

ton bremsstrahlung, but only about half the size of th ound In the ultrarefativistic imit. The final column presents the
gro f h | f Ki . his i epercentage discrepancy of the UR calculation relative to the full
irect proton term for the last four kinematics. This is gov-gpa

erned by the ratio ok’ to e (5f is zero in the limite’

=¢€). From Table IV it is clear that proton radiation, though Q? AE,, Ssoft St Discrep.
afflicted by strong interaction uncertainties, cannot be ne- (GeVic)? (MeV) %
glected at large momentum transfer.

A complete evaluation of the functiorB(p;,p;,AEn), 1 10 0.354 0.347 —2.0
and thus of Eq(32), is often done numerically. However, 140 0.169 0.166 —18
analytic evaluation is possible, as outlined in the Appendix.

In general, numerous Spence functidnsnust be computed, 5 10 0482 0474 17
where 140 0.249 0.246 -1.2
x=In([1-y]) 9 10 0.610 0.609 ~0.2

(D(X)_J y (35 140 0382  0.383 0.3

As an aside, the contributions of these functions turn out to 15 10 0.667 0.668 0.2

be important only when their arguments are larpgs 1), 140 0.424 0.427 0.7

and in this case an excellent approximation is provided by

1

d(x)= Eln2(|x|). (36)
(22) and Eq.(37) is presented in Table V. One sees that in

the chosen kinematics the approximation is accurate to at

least 2%. This is because the electrons are always highly

Iqelativistic and the contribution té due to the final nucleon

'és small when nonrelativistic. The nucleon contribution be-

comes significant only when relativisti@ is equal to the

electron’s in the very high energy limiand in that case Eq.

The formulas forssy; Simplify, however, in the “ultrarelativ-
istic (UR) limit” where the momentum transfer and vertex
momentum of the final electron are large compared to bot
the nucleon and electron mass. In this limit, one obtains th
following closed forms:

o KK’ —q? (37) provides a.good approximation. .
U'=—In | ( > ) - 1}, It is worthwhile to compare our results, given by E(32)
T\ (AEp)? m and(33) with those of Mo and TsaiEq. 11.6), denotedsy, .
The only difference between the two calculations is that our
o 2 p°p®’ -q? [P calculation integrates the photon emission up to a maximum
] - In (AE)? In M2~ 1+ E'” IRk photon energy oAE,, (correspondlng toa missing energy of
m AE,,), while the calculation by Mo and Tsai integrates over
2 0.0’ K KK/ K all photons corresponding to an energy loss of less then
5ur__a In PP inl = | +n Inl — The two calculations are equal only in the limit that the
T AEfn k'’ AE% k' proton mass is large in which case the electron energy loss
equals the energy of the emitted photon. In general, for finite
1 [kkK k proton mass, photon emission additionally affects the recoil
+§In W In P : (37 energy, and thus the energy of the emitted photon is greater

than the electron energy loss. This implies that the calcula-

The atomic numbeZ is retained in these forms to remind the tion by Mo and Tsai at a given value dfe’ contains also
reader that the results are also valid for electron-nucleus scagontributions of additional photons with energieg, larger
tering, barring the neglect of earlier mentioned off-shell ef-thanAe’. The degree to which this energy can be different is
fects. Furthermore, this allows for easy differentiation be-determined by the ratio oé to €'. Table VI compares the
tween contributions involving the electron bremsstrahlung results of both calculations. As expected from the previous
(~Z29, the electron-proton interference-¢?), and the pro- ~ discussion it is always true that

ton bremsstrahlung terms-(Z2). These forms reveal the es-

sential features of one-photon emission: all of the depen- ' _ _ _

dence ofd.,((AE,,) on AE,, takes the form In(WE,,), but Our(A€'=AE)<O(AER=AE)=harat 5S°ft(AEm_A(§%’)
additional terms independent of the photon energy cutoff are

also present. These expressions will prove very useful later

on, and so it is worthwhile to see how good the UR approxi-where the largest difference occurs whenis far larger
mation is. A comparison 0., AE,,) computed using Eq. thane’.
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TABLE VI. Comparison ofé with dy,1 and s, at various do
kinematics withw®=10 MeV. —————(nN=1EF
“’ dQedwldﬂl( o)
Q2 (GeV/C)2 é Sut Sschw do,(l) A((:)l)
_ —8501E0) (1 — 0_

1 0.284 0.266 0.277 =40, | ° 2ot (1 = Shard o @1mBo). (4D
5 0.402 0.315 0.363 ep !
9 0.520 0.496 0.478 Here, 6 is the usual step function, ard); indicates the
15 0.577 0.542 0.517 emission angle of the photan,. Similarly, the cross section

to emittwo photons with energw{>E, and w3>E,, along

- - . . .. with any number of photons with individual energy less than
Similarly, to revisit the role the proton is playing, it is E i

useful to contrast our formulas with the Schwinger formula

[2] that ignores proton recoil and radiation, do
n=2E
2u K\ 13 - 17 dQedw‘{dQldwngZ( Fo)
5Schw_? In E)_l_Z In(W -1 +3—6. (39 do
= do e lsSOﬂ(EO)(l_ 5hard)
Table VI verifies that the Schwinger correction, in its sim- elep
plicity, gives a fairly good approximation of our results, that N
only gradually becomes worse at higher energies. This is due E Alwy) (%~ Eo)
to the overestimate of the electron bremsstrahlung contribu- 2 o) e
tion in the Schwinger correction, partly compensating the R
positive contribution of the proton radiation. A(wy) o
X 0 (w,—Ep). (42
2

C. Higher order bremsstrahlung

In the previous section, we removed the infrared diver-C€Neralizing this to the case niphotons of “large” energy,

gence from the first order bremsstrahlung cross section. Tha"® obtains

other divergence that needs to be understood also occurs in do

the limit AE,,—0: the number of photons emitted becomes 3 3 (n,Ep)
infinite asw— 0. In other words, the first order perturbation dQedw dQ; - - - dw,d,
expansion breaks down A€, becomes very small, and one

must include the possibility to emit many soft photons. In :d‘f_(l) e %soi(Eo)(1— § d)i A1)
actuality, the probability of scattering without losing any en- dQ. ep hard’ny 2
ergy to bremsstrahlung is zero so the actual cross section )

approaches zero asE,—0. A(wy)

0 0
It was originally determined by Yennie, Frautschi, and X 0(w;—Ep)- - 0 6(w,—Eo). (43
Suura (Ref. [3]) that the emission of soft photons can be n

summed to all orders via exponentiation: The differential cross section for emitting tatal energy

do do® >, w?=E, can be determined by multiplying the above with
m(wP<AEm):W e OsolABm)(1— 5, 0. a delta function and integrating over individual photon ener-
e elep (40) gies. Also, we sum over all numbensof emitted photons:

do ~ E
The notation §?) indicates that this expression represents q0dE_(Eo= tmdw?dﬂl- . f tOtdwﬂdﬂn
the cross section for emitting any number of soft photons, tot n=0 J&o Eo
eachwith energy less thaAE,,,. In practice, however, one is do

interested in thetotal photon energy emitted. This case is X 5 o

discussed in the remainder of this section, and found to agree dQedw;d(d;- - -dwpd€d,
with the preceding formula to within a correction of order % 5(wg+ . +wg_Etot)- (44)

a2

(nvEO)

Recall that the probability for emitting a single brems- one gpserves that the angular integration can be done at
strahlung photon has ad? energy dependence that factors once for each photon, and for convenience we write

from the angular distributiod\(w) [Eq. (16)]. In order to

maintain a handle on thAE,,—0 divergence for the mo- A

ment, we write the cross section to emit one photon with )‘:J' dQ,A(w). (45)
energng> E,, along with any number of photons each with

energy less thak: We then combine Eq4$43) and (44) to obtain
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do dot TABLE VII. Importance of multiphoton emission on radiative
dOdE (Ep) Ty e Isof(Bo)(1— &, 10 correction factors for various kinematics and three values of total
tot elep photon energy emitted.
o n
<> AT f B0 Q AEn  eXP-don)(1=dad  1-BsorcOnara
azontliz1 Jg, ! (GeVic)>  (MeV)
X 5((02_’_ R wg_ Etot)- (46) 1 1 0.638 0.554
10 0.750 0.716
This is a form that we will encounter again later on. It can be 100 0.882 0.877
evaluated by substituting an integral form for the delta func-
tion: 7 1 0.519 0.347
1 = 10 0.642 0.561
5<2 W0 Etot) :2_j eix(> of ~Etodglx, (47) 100 0.796 0.776
i T) e i
_ ) - . , 15 1 0.453 0.212
wh|ch_ gives Eq.(46) the fam|I|a_r form En:_o(z /n!)=¢% 10 0.560 0.423
Carryllng throug_h Ehﬁe chmputatlon, one f|nds_ tr_\at the 100 0.692 0.635
—0 divergence ire” %o js canceled by the similar terms
due to theE, lower integration limit. Taking the limitE,
—0, the following relatively simple form is obtained: comparing results with one another must use samepre-
scription. In the case 06,4, however, this is generally a
do ) X o . )
- moot point since the correction itself is smadl;,4 varies
dQdE;q from 0.07 to 0.09, and so the difference betweer @)
do® ande™ %hadjs at most 0.4%.
=g0_ | (1~ Shard (— o Eror))e™ FsoilEod F (). In Table VIl we compare as a numerical example the first
elep order and the exponentiated radiative corrections for various

(48) kinematics and total photon energies emitted. As one can see
the difference can be quite noticable, supporting the findings
The functionF()\) is expressed in terms of the gamma func-of [8], where the inclusion of multiphoton emission showed
tion and Euler’s constar€=0.577; if we recall thah is of a drastic improvement in the agreement between

order a, we can expand this function in powers )of %He(e,e’'p) data and a Monte Carlo simulation. As ex-
pected, this difference grows especially large for small val-
B e & B w2 ues of the total photon energy emitted. However, the effect
F(V)= T(1+)) =lmm e 49 ¢an be as large as 10% up to a total photon energy of 100

MeV as Q? becomes as large as 15 (GeY. Likewise,
Our main result for the higher order bremsstrahlung case imultiphoton emission alters the radiative correction at the
summarized in Eq(48), (45), and(49). Additionally, one can  10% level down to a photon energyE,, of 1(10) MeV at
obtain the cross section for total emitted energy less thathe chosen kinematics foD?=1(7)(GeV/c)2. These are
AE,, by integrating Eq(48) from E;,;=0 t0 E;;;=AE: some relevant scales to keep in mind to deal with multipho-
q ton emission when analyzing experimental data.
d_g(E wO<AEm)

do®)
dQ,

IV. PEAKING APPROXIMATIONS AND EXTERNAL
BREMSSTRAHLUNG

_ - AE) 2

ep(l Sharg @ "=t 2E[ 1+ O(a?)]. (50 A. Peaking approximations
We have now calculated the energy distribution for mul-

tiphoton bremsstrahlung to all orders, given the soft photon

approximation and to within an order? correction. How-

ever, to calculate radiative effects in a coincidence frame-
ork, one must know the effect of the emission cross section

n all measured particle vectors. The integrated probability

This agrees with the previous exponentiated formula, Eq
(40), to within a correction of ordes?.

Exponentiatingdsy; thus provides a good approximation
to the bremsstrahlung cross section for emittinttal pho-
ton energy up to a certain cutoff value. The exponentiate
Cross section also has the correcj[ limiting behavior,up to an energy cutoff is not enough, and one needs to know
l'm_AEm—*O(d"/dQe)(E“’O<AEm)=O’ since Jsor{AEm)  the angular distribution of photons as well.
~B(pi,p; ,AEy) ~In(AE,). Note, however, thab,,q is not The angular distribution of single photon bremsstrahlung
exponentiated. Mo and Ts§f] take the point of view that is given by Eq.(17), and is plotted in Fig. 4 foQ?=1, 7,
whether or not to exponentiate this term is an open questiorand 15 (GeVé¢)2. One salient feature of the distribution is
As with the choice of which second order diagrams to in-immediately apparent: the radiation is strongly peaked along
clude in 8,4, the crux of the matter is that experiments the directions of the incoming and outgoing electron. Only a
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angle 6 describing the direction of photon emission relative

to thek direction. Using Eq(20) one obtains, in the region
o<m/|k|<1,

0 H H 2
10'2'._\.,.Llo‘vil...\..JQWMl,.i%(..lJ..\. w2< _ )~4_02’ (53)
’ m

indicating that extremely close to thepeak, the emission
probability actually drops to zero. This feature is too small to
be seen in the electron peaks of Fig. 4, but is apparent in the
much broader proton peak d@?=15 (GeVk)? (since
M/|p’| is of order 10°1). Further away from the peak, in the
region m/|k|< #<1, the angular distribution falls off qua-
dratically with 6:

Number of Photons

wsE Q% = 15 (GeV/c)

TITT T TTT

1 ) H 2
102 I ©/Y BN ° 9\ S VT 2 k'’ k 4
-80 0 -40 20 [} 20 40 60 80 0| — | ~—=. (54)
Photon Angle w k' ok 0

FIG. 4. Angular distribution of first order bremsstrahlung pho-
tons from Eq.(17), calculated aQ?=1,7, and 15 (GeW)? and  This behavior is especially apparent in the electron peaks,
showing the improvement in the peaking approximation with in-where m/|k| is of order 10%. We will refer to this 142
creasing momentum transfer. The photon angle is measured wi@hape later on.
respect to the direction of the incoming electron and given in de- \We next need to determine the values)yf, Ao, and
grees. The directions of the scattered electron and proton are |nd}\ , by integrating the various terms Af(fo) and distribut-
cated by dotted lines and the notatiag, 6, |ng the results among the three peaks. The fied¢ctron
term of Eq.(52) produces two terms of the form
very broad peak is seen in the direction of the scattered pro-
ton atQ?=1 (GeV/c)?, but it becomes more sharply de-
fined asQ? increases. These features suggest a simple ap- aw®? k2
proach to the angular distribution, known as the “peaking - 2 f Y. N2
g , 4 (0-k)
approximation:” the single photon bremsstrahlung spectrum
may be divided into three discrete photon directions, along

each of the vectork, k', andp’. In other words, we replace (one for each ofk andk’). Since the integrand is highly

o
=—— (59
T

A(®) in Eq. (16) with the simple form peaked in the directiok (or k'), it is assumed that all this
R o o o strength contributes in thie (or k") direction. Next consider
Apeaking @) =Ned(0—K)+ N 8(0—K' )+ Ny S(w—p'), the integral of the cross term,
(51

(56)

. aw®? k-k’

where [d(,8(o)=1. 2— J Q.
The terms of the exact one-photon angular distribution 4 (@-K)(w-k')
A(fo) may be divided into three groups, due to the electrons,

the electron-proton interference, and the protons, respegn this case the integrand peaks in thendk’ directions.

tively: We evaluate it using
Ay 2] Kk )2 Kk ) K-k’
w)=— - 4T T T _
477_2 w-k’' w-K w-k' w-K J dﬂy(wk)(wk’)
! ! 2
P p p p K L ,
o e s I M SR PP Py G
w-p w-p "(w-k)(k-K') ° "(k"-k)(w-k') @°
10 ’
In order to better understand the structure of the peaks, con- 27T| (E+|k| +2_727 L'M ] (57)
sider the expansion of the first term in a polar coordinate —lkl o k'O—|Kk'|

054610-11



R. ENT et al. PHYSICAL REVIEW C 64 054610

TABLE VIII. Comparison of the exact valuesi{,,.) of radia-  derstood by also tabulating the effects of removing the two
tive correction factors with the “typical” peaking approximation missing terms. To resolve this our approach is to preserve the
values @peal as given by Eq.(58), in the UR limit. The two  total strength(as evaluated in the UR limitby distributing
additional columns indicate the main sources of the discrepancy afe contributions of these nonpeaked terms among the three
given by Egs(60) and (61). photon peaks. We choose to split the two terms evenly be-
tween the electron peaks:

Q2 (GeV/C)2 5exact 5exact' A 5exact' A - 5ep 5peak

1 0.185  0.215 0.207 0.203 ~ @ K| 1—cog 6,)

3 0.215 0.236 0.218 0.216 Ne=Net 1 21In Pl +|H(T) :

5 0233  0.252 0.225 0.225 [K']

7 0.246  0.263 0.231 0.231

6 0.218 0.271 0.263 0.262 - a K| 1—cog 6,)

9 0228  0.281 0.272 0.271 Ner=Nert —12 '”(_,) +'”(—”'
T |k | 2

12 0.236  0.289 0.278 0.278

15 0.243  0.295 0.283 0.283

)\pr:)\pr . (62)

This expression approximately integrates over the two peakshis set of formulas can be termed the “extended peaking
separately; the first and second integrals are assumed to coghproximation” for single photon bremsstrahlung. To facili-
tribute to thek andk’ peaks, respectively. Combining these tate notations, we will use the notatianbelow to meark,

equations, one obtains fokk')>0 the “typical” peaking o e will keep on assuming the “extended peaking ap-
. (58 bremsstrahlung is critical in evaluating the energy spectrum
m
We can further assume that the third term of E8@), al-  contributions directly from Eq(17) is a formidable task.

approximation for electron bremsstrahlung: proximation.”
N o
¢ for low photon energies. One is then led to consider its effect
though only broadly peaked at intermediate energies, connstead, we observe that the single photon peaking approxi-

v

4K2 4K'2 From Sec. Il C, we know that including higher order
o
In(—z)—l , )\e:;{ln(F)_l
on the angular distribution. Calculating such higher order

tributes entirely to the final proton peak, yielding mation,
‘o T €
al p° [ p%|p| do _do ~ G i
)\p’_; mln p'o_—|p,| -21. (59) dQed(D - dQe epr()\eﬁ(w k)+)\e’6(w Kk )

Some bremsstrahlung strength still remains, due to the Ay d(0=p’)), (63

electron-proton interference term of E§2) and to the non- ) ) ) _ )

peaked contributions missed by the approximation of Eqéffectively provides us with three independent single photon
(57). This is true even in the ultrarelativistic limit, where one energy distributions, each for radiation in a fixed direction.
expects the peaking approximation to be the most ske: Ve can then proceed in the manner of Sec. Il C and deter-
Fig. 4). If one uses the closed form UR limit expressions of Mine a multiphoton spectrum, this time in terms tofee

Eq. (37) to determine the differencyu(E;) — Sson(E,) be- ~ €nergies: the total photon energkes, E.., andE,, emitted
tween two energies, and compares this with the result usinty €ach of the three peaked directions. Tiogal radiated
only the peaked strength described by E@S) and (59), three-vector is then simply

one finds two missing terms. These are

wiora—Eck+Eo k' +E,p'. (64)
a (B K|
—In| =4 In| — (60) . o . .
m By k'] Furthermore, radiatioalongthe direction of a given particle
can be interpreted as radiaticlue to that particle. In this
due to the electron-proton interference tesfi,, and way we correct the| vector used to evaluatlazr(l)/dQe|ep at
the scattering vertex for energy radiateeforethe scattering
Az E E; 21 1-cog 6e) 1) (i.e., radiated by the incoming electjorThis was seen in
oo n E, n 2 Sec. Il Ato be the source of the largest discrepancy between

the soft photon approximation and full calculation for single
due to the nonpeaked strength &35;. In Table VIIl we  photon radiation.
compare the exact calculation of the radiative correction fac- By analogy with Eq.(46), we obtain the cross section to
tor in the UR limit[as given by Eq(37)] with the factor all orders for radiating a total enerdy, alongk, E.s along
generated in the peaking approximation. At all kinematicsk’, andE, alongp’, as well as any number of soft photons
shown reasonable discrepancies show up, which can be umith energy less thadE,,:
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do do® S e
_ S, e0 e0 e0
— = — SO — f— e 4+ ... 4 —
deEedEerdEpr(AEm) a0, |, -t 2y 2 27| L jAEmdw PO iR
1 (" (e A 15 (Ey N
el e’0 e'0, . e'0 _p p'o__"
i |1:[1 fAEmdw 'we’i()) lomit - HoinEe )n! (lnl fAEmdw 'P'?
X80P 9+ + P - Ep). (65)

Using the same technique as in determining &), one obtains

do
dQdEE. dE,,

doV)
T dQ

A Ner Ny
e ﬁsoﬂ(AEm)(l_ 5hard)e)\e|n(Ee/AEm) E_eF()\e)e)\erln(Ee/ IAE ) _eF()\e,)e)\p/ln(Ep/ /AE ) _pF()\pr) (66)
e ep e e’ p/
Again, the\’s are of ordera, and soF(\;) [Eq. (49)] is 1 to within a correction of orden?. We see that the 1/IAE,,
dependence ofs(( AE,,) will be canceled by the other terms of the expression, taking care dfEye—0 divergence of the

single photon spectrum. By construction, #is of the extended peaking approximation provide a subdivision of the terms of
Osoi( AE,,) which depend o\E,,;:

=
Osof E1) — Osol E2) = In( E_l

(et Xer+Xp0), (67)

whereE; andE, are two energiefnote that this is true only in the UR limitHowever, 55, contains additional terms. Using
Eq. (37), we find that these terms can also be subdivided in terms aof ‘te

Jee
5e(AEm):)\eIn(A—Em>,

ek’
e/ (AE) =ANe/In A—Em )

]

5y (AEw) =y In| e

(68)

Employing these definitions, we can take the lildE,,— O to produce our final result for the multiphoton peaking approxi-
mation:

do do® —5o(E — 5o/ (E ' —5,/(E '
dQ.dE.dE..dE :dQ (1_5hard)e el e)(_ae’(Ee))e e e,)(_ﬁe'(Ee’))e 'l p’)(—5p,(Ep,))
eYUle e’ p’ elep
dU'(l) )\e)\e’)\p’ 1 ( )
= —— (1= Shard 69
dQeep ar

(VK kK N (Mp? e ELVEL N B

pl

The cross section thus factorizes neatly into three indepereally, to determine the approximate shape of the multiphoton
dent functions, for the total energy emitted in each of thepeaks. For our calculation to be validr usefu), we must
three radiative tails. confirm that these peaks are substantially broader than the

The angular distribution implied by the above equationsingle photon peaks, which were approximated as delta func-
can be evaluated easily by a Monte Carlo program by rantions in Eq.(51). To accomplish this, we employ a change of
domly generating the energies emitted in each direction andariables: fromg,, E./, andE, to E, u, andv. Here,E is
adjusting the fermion vectors accordingly. However, it isthe total radiated energy.+ E. +E,/, while the emission
worth studying the multiphoton angular distribution analyti- direction is fixed byu andv:
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E TABLE IX. Effect of multiphoton emission on the angular dis-
u= _e, tribution of emitted radiation. The fraction of photons emitted at
Eo angles larger than a cutoff valued from either the initial or final
electron direction are given for both single-photon emission and
Ee multiphoton emission.
v=—1. (70
Epr Q2 A6 fract” frac"”
. GeVic)? de
Note thatu andv vary from 0 too with u,v—« corre- ( ) (deg
sponding to emission in thedirection,u— 0 corresponding 1 0.1 0.22 0.18
to emission in thee’ direction, andv —0 corresponding to 1.0 0.03 0.11
emission in the' direction. The Jacobian between these two 2.0 0.01 0.09
sets of variables is straightforward:
7 0.1 0.11 0.22
dEd Ee/dEp/ _ dEdud 71 1.0 0.01 0.14
EcEe Ep ~ Ew 2.0 0.01 0.12
Consequently, the multiphoton emission cross secfemn 15 0.1 0.023 0.25
(69)] can be rewritten easily in terms of the new variables. 1.0 0.003 0.18
The dependence on the total enefgyactorizes completely 2.0 0.001 0.10

from the angular distribution, and the integration over emis

sion angles can be accomplished, yielding

do
d0.dE
do® 1
a0 e i e
1
X ——————X(Aet Ner A pr)

El*)\e*}\erf)\p/

T(1+ AT (LH+Ne)T(1+Npr)
X .

(72)
T(1+Ne+her+Ap)

Recalling that the\’s are of ordera, one finds that the ratio
of gamma functions on the last line is 1 to within the usual
O(a?) correction. To within this accuracy, this distribution
agrees with the previous multiphoton formula, E48).

The analysis of the photon distribution simplifies greatly

distribution from perfectly peaked single photons is reason-
able. To quantify the effect of multiphoton emission on the
angular distribution, Table 1X shows the fraction of photons
emitted at an angle greater thA from either the initial or
final electron directions for both the exact single-photon
emission cross section and the multiphoton emission cross
section, as calculated in the peaking approximation. &ér
~1°, typically around 10% of the photons emitted in the
multiphoton peaking approximation are in the intermediate
region. This number increases slowly wi@f. In contrast,
the single-photon emission distribution gives about 3% in the
intermediate region @?=1 (GeV/c)? and this number de-
creases rapidly witfQ?. Thus the multiphoton angular dis-
tribution does dominate the single-photon distribution in the
intermediate region and as long as one is not probing the
angular distribution of the photons on scales less thén it
is consistent to calculate the angular distribution using the
multiphoton peaking approximation.

Of course, in the case of proton radiation, the peaking
approximation is suspect from the very beginning. Its use
hinges on the relatively small bremsstrahlung contribution of

if one neglects proton radiation. Taking, in the peaking apthe proton, and on the resolution of the experiment. Also, as

proximation, 6 to be the angle between the photon dnd
and 6., to be the usual scattering angle betwdeand k’

(note that in the peaking approximation the photon is emittedé

in the plane defined bl andk’), one finds for6<1

do Sin(Gg) e’
dQ.dEde

v 73

and for6— 6., <1,

do S|n( 991)7}\8
dQedEd)  (g— g, )1 re’

(74

pointed out at the beginning of this section, at sufficiently
high photon energies all radiative tails converge on the same

= Pm kinematic path. The sensitivity to the precise angu-
lar distribution is thus most apparent at low photon energies.
The effect of the peaking approximation will be examined in
Sec. V for one of the NE18 kinematics.

B. Inclusion of external bremsstrahlung

External bremsstrahlung refers to the spectrum for the
emission of bremsstrahlung photons in the field of nuclei
other than the one participating in the hard scattering. The
more massive outgoing proton is subject to much smaller
accelerations, and emits a negligible amount of external ra-

The photon spectrum thus drops away from the peaks at thdiation. On the other hand, the electrons will experience

rate ~1/6. As this is more gradual than the1/6? falloff of

these losses as they move through the target material and

the single photon peaks, our calculation of the multiphotortraverse vacuum chamber windows and air gaps. External
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bremsstrahlung can be treated essentially exactly, as has be€he function®®" is a correction for large photon energies,
shown, e.g., iM9,10]. In the remainder of this section we expanded to second order EFY|K|:
discuss how to add external bremsstrahlung in a consistent
manner to our previous peaking approximations.

A numerical solution, in the complete screening approxi-

. . ex _1_ 2

mation, for the probability that an electron of momentikh O(x)=1—x+ 4x . (77)
radiates a total energy d&® when traversing radiation
lengths of material has been given by E4ig]. We will use

the following analytic form for this probability distribution g analytic form differs from the numerical solution by a

9] fraction that varies between abdut0 andt/5 asE®*! varies
1 bt [ E®Y Pt o E° between 0 and Oesfor t<0.1[16]. For example, the devia-
T(1+bt) gex| Tk T/ (79 tion at E®=0 is ~1% for at=10% radiator. The discrep-

) ancy increases fdE®">0.8e, but this is typically outside the
where the pa_lrametérdepends on the atomic chargef the experimental acceptances.
target material: External radiation is far simpler to treat than internal. First
1 Z+1 of all, the particles radiate independently and so incoherently,
b:§ 12+ ZL,+L,)’ and this eliminates the nonpeaked strength caused by the
interference terms of internal bremsstrahlung. Furthermore,
L,=In(184.15— lln(Z), proton radiation is suppressed relative to electron radiation
3 by the factor m/M)?<10 ®, and so can be neglected en-
tirely. Equation(69) can thus be extended in a straightfor-

= 2 ward way to include the contributions from external radia-
L2=In(1194= §In(Z). (76) tion along thek andk’ directions:
d(f da’(l) s 1 bt| EiEXI bt;
dQedEgntdEiextdEifntdE?xt_ dQe ep( - hard)r(1—+ bti) Ext W
(BT by (BT (N s
E:nt |kk/| F(1+btf) Efe)(t |k/| Eifm |kk/| )

Here, the internal proton contribution has been omitted foMe thus see that the’s of internal radiation play much the
convenience, and the subscrip@sndf have been introduced same role as the material thickness of external brems-

to indicate the initial and final electron arms. Equati@8),  strahlung. One can also express the external radiation contri-
when taking into account the internal proton contributionspution in terms of the usual bremsstrahlung functions

following Eq. (69), represents the result of adding internal 5_ .= One obtains forms which are very similar to those of
and external bremsstrahlung in a consistent fashion, and isy, (6g):

the final result of a generalized peaking approximation. Since

both E™ and E®™" are emitted in the same direction, we can y K
again rewrite the distribution in terms of the total enerdies SS(AE) = btiln(ﬁ) :
and E; radiated alongk and k’. This problem is exactly m
analogous to the transformation made between &$.and

(72), where a change of variables was made from three en- soAEL) =btin
ergiesE,, E./, Ep/ to atotal energ¥ and angle variables
andv. The result is

k' )
AE.) (80)

These functions can simply be added to the corresponding

do do® 1 1 S8(AE,,) values for internal radiation in E¢69), yielding the
= (1— Shara) same result as Eq79).
dQdEdE; dQ I'(1+bt) I'(1+bt
e ¢ lep ( ) I 2 Thus far, the correction functio®®{(E®Y|k|) has been
y (bti+N;)  (bti+\;) ?eglgcteq. At NE%j8(Ij<i.nemati|(§6t;1)e rélﬁ‘uq/|k| in vvlhich thek
bL, LN /b RN unction is expanded is smal<0.1). Consequently we take
KPA(VKK) ™M K (VRK) ™M only the first order term ofb®{(x) of Equation 77 and in-

1 1 clude itin Eq.(78). Carrying throu_gh the zﬂ\gular integration,
TN bt TN bt - (79  one obtains multiplicative factod ™ and®$* to include in
E; E; Eq. (79):

X
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— | E bt E; and patrticle vectors, and the rangebip (at the vertexover
q)ieXt(m) =1- bt+ N m (81)  which the spectral function is defined. These refined limits
' o are especially important in the generation of radiation. For
example, to take into account the possibility that a scattered
electron “radiated into” the spectrometer momentum accep-
tance from a higher momentum, one must use generation
limits in momentum which are much wider than the accep-

This section describes two independent Monte Carlo protance. However, once the electron’s momentum has been
grams used to simulate the NE18 experiment. Radiative efenerated, one can determine the range of photon energy
fects are simulated using three separate methods, each ifequired to produce a successful event. The generation
volving different approximations. The three methods, twoweight reduces the event weight to compensate for the re-
described in Sec. VA and one in Sec. V C, are found tostricted limits employed. Finally, the results histograms were

(The same form applies fob& with i —f everywhere.

V. EXPERIMENTAL SIMULATIONS

produce consistent results. normalized so that the number of events in each bin would
correspond to the number of counts expected from the
A. Description of the experimental simulation experiment. The results were thus multiplied by

L(A€'AQ e A€’ AQ ) gen/Ngen Where L is the experimen-
Bar* luminosity, and the other terms refer to the phase space
volume and total number of events used by the generation.

and proton vectorgi.e., the 6 quantities in terms of which Each hi bi ianed an i fractional
the differential cross section is definedith a flat distribu- ach histogram bin was assigned an inverse fractiona grror
equal to the square root of the total Monte Carlo weight

tion over limits calculated to exceed the experimental accep g g
tance. The energy and position of the incident electron at thgontributing to the bin. _ _

target were also generated randomly, to match the energy and Two models of the radiative effects are included in the
spatial spread of the beam, and the beam energy was cdylonte Carlo progransIMULATE. (A third method for includ-
rected for ionization losses in the target. With a basic event dhg radiative effects, also included in the Monte Carlo pro-
the scattering vertex now determined, the possibility that ang@ram, is described in Sec. V)CThe first uses the multipho-

or all of the particles emitted real or virtual photons waston energy distribution of Eq(48), evaluated using the full
modeled and the particle vectors were adjusted accordinglysPA expressions of Eq§32) and(33). The angular distribu-
The scattered electron and proton vectors were then trangion is taken to be the pure peaking approximation of Eq.
ported through the target, applying ionization losses and #1). The strength is distributed among the three tails
multiple scattering distribution, and subsequently transporteé-1,2,3 using the fractions;/=;\; (i is shorthand for the
through the spectrometers. Monte Carlo models of the opticgjsual tail subscripts, €', p’). The second method tries in-
apertures, and interfering materials of the spectrometers wekgead to obtain the correct multiphoton angular distribution
employed. Both forward and backward sets of matrix ele-by generating the total photon energigs E., E, emitted
ments were used, to simulate the optical resolution of thelong each direction, and summing the resulting photon vec-
magnetic systems. Once the particle vectors were reconers according to Eq(64). The distributions are generated
structed back to target, they were corrected to the scatteringccording to the independent forms found for each tail in Eq.
vertex using the same mean energy loss calculations enie9). These energy distributions were calculated using the
ployed in the actual data analysis, aleg andp,, were de-  approximate closed form expressions of Egj7), found in
termined[17,18. The successful events were stored in his-the ultrarelativistic limit of high momentum transfer and par-
tograms, with each event being assigned a weight oficle momenta. These two choices represent a tradeoff be-
KoepS 1/(1— Shard |Wgen- In the case of thé\(e,e’p) re-  tween the best available forms for the photon enefiggt
actionK equals a kinematic facto§ represents the spectral techniquée and angulaisecond techniquedistributions. The
function or the probability to find a proton with certain miss- first method can thus be referred to as the “peaking” tech-
ing momentum and certain binding energy inside the targehique, and the second as the “multiphoton” technique. Note
nucleusA, and o, is the electron-proton cross section cor- that these names are somewhat misleading: the “peaking”
rected for off-shell effects according to the prescription offormalism certainly involves contributions from bremsstrah-
DeFores{12]. Note that this is the form encountered in the lung radiation to all orders, and the “multiphoton” prescrip-
plane-wave impulse approximatiof®WIA) description of tion involves the peaking approximation at the one photon
A(e,e’p) reactions. In the case of thed(e,e’p) reactionk  level. One hopes, of course, that the two prescriptions give
equals unity,S equals a delta function, ang,, is the stan- very similar results and this indeed turns out to be the case.
dard electron-proton scattering cross section. The factor (The distributions of counts calculated ByULATE using the

— Shard 1 is the correction for radiative diagrams involving two techniques are sufficiently similar that one is hard
hard virtual photons. The “generation weight"\(e) pressed to see any differences on a plot of the projections in
comes from the following source. To increase computelE,, andp,,. The integrated yields are less than 1% different
speed, the limits in which event quantities are generated caat all Q. This excellent agreement indicates the lack of sen-
be refined once partial information about an event is knownsitivity of our results to the fine details of the photon angular
These refinements are based on the acceptance limits of thléstribution, and the validity of the UR limit at the energies
spectrometers, the cuts imposed on reconstrugtgd p,,, we consider.

A Monte Carlo program, namesIMULATE [17], randomly
generated the momenta and angles of the scattered electr
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FIG. 6. Distribution inE,, of coincidence events recorded for

theFrlsariQeDr:sigl:;eutonccl)rrfpgg dcs\;intr?(:ﬁgcp()er:c\j/ii?if)snr(e)?otLie?\/I?r:tethe deuterium target, compared with the prediction of the Monte
' 2=1. , and 6.8(d
Carlo programsimMULATE, for Q%=1 (a), 3 (b), 5 (c), and 6.8(d) Carlo programsiMuLATE, for Q°=1.2(a), 3 (b), 5 (c), an @

2 X
(GeVic)2, respectively. (GeVic)“, respectively.

that the radiative prescription describes the data to within its
statistical uncertainty. As a quantitative measure of Eqe
The distribution of hydrogen dateountsin E,, andp,,  and p,, dependent agreement one can evaluate the ratio of
compared with the Monte Carlo calculation provides a prethe hydrogen experimental data to the hydrogen Monte Carlo
cise test of many aspects of the calculation. The true distridata with a variety ok, cuts. One finds that this ratio varies
bution of elastic events is precisely localizedEgt=0 and by an amount well within the statistical error of the data for
Pm=0; any deviation from this must be due to the improperupperE,, cutoffs from 50 to 130 MeV. The statistics provide
understanding of kinematics, deviations from the mean ena precision from 1% atQ?=1 (GeVlc)? to 4% at Q?
ergy loss corrections, experimental resolution, and particle=7 (GeV/c)?.
radiation. The last two effects should be correctly modeled The angular distribution of the emitted photons can be
by the Monte Carlo. In particular, a comparison of the datareconstructed from the measureg [22]. We will here con-
and Monte Carlo on the hydrogen radiative tail provides asider theQ?=1 (GeV/c)? case and only consider events
precise test of the radiative procedure, unclouded by othewith a missing energy »°) larger than 30 MeV since in
physics. Finally the'H(e,e’) data (corrected for possible the regiono®—0 MeV the experimental resolutions, 8 MeV
proton absorption losses in the target, spectrometer, and d¢t0 MeV/c) in missing energymomentun), do not permit
tector materialsmust be consistent with previod$i(e,e’) an accurate reconstruction of the photon angle. Fig. 7 shows
data. the angular distribution of the count rate for events with
The distribution of'H(e,e’p) data counts as a function E,,>30 MeV. It is seen that electron radiation is predomi-
of E,, is presented for the four values @ in Fig. 5. Su- nantly in the direction of the initial and final electrons, in
perimposed on these figures is the corresponding Montaccordance with the peaking approximatj@3]. Note that a
Carlo calculation. In this Monte Carlo simulation we usedbroad distribution of events is seen in the direction of the
the dipole form factor for the proton electric form factor and outgoing proton. Next, the angular distributions were calcu-
the parametrization of Gari and Kmpelmann for the proton lated in the soft-photon limit. In this case the proton contri-
magnetic form factof19,14]. Also included here are thg,,  bution corresponds to radiation from a Dirac particle with the
distributions for?H(e,e’p) (Fig. 6), as the single deuterium usual form factorsF;(Q?) and F,(Q?). The differential
bound state is very sharply peaked at the binding energy afross section was reduced to the cross sectionrfrti-)
2.2 MeV and so’H data in this coordinate provide the same photon emission with total energy and angled,, in the
precise test of the radiative procedure & Here we used scattering plane. For this we used polar coordinates, integrat-
the off-shell prescription used by DeFor¢&®] to account ing over the range of taw{,) accepted by the phase space.
for the electron-proton scattering cross section of the bounéffects arising from imperfect knowledge of the phase space
proton, and the Bonn nucleon-nucleon potenf20] to ac-  were suppressed through an energy af<80 MeV, ap-
count for the proton momentum distribution in tRE target  plied for radiated photons along the incident electron beam.
nucleus(see also Ref[21]). Note that all the calculations No normalization factors were used. As Fig. 7 shows, the
include the contribution from the recoiling proton in apply- agreement between data and simulation is excellrate
ing the radiative corrections. The figures clearly demonstratéhat only about X 10° out of a total of 5< 10* events have

B. Comparison with experimental results
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800 T TABLE X. Comparison of the equivalent radiator thicknesses
I for various kinematics. ValuesE® are from Eq.(82), N are from
Egs.(58) and (59), and\™°% are from Eqs(86)—(90).

600-— q — QZ )\EQ )\e )\e’ )\p’ )\(ranod )\mod )\r;,od

e’

(Gevle)> (%) () () (%) (%) (%) (%)

E r 1 1 3.322 3936 3.767 0.042 3.502 3.614 0.037
2 400 ! ] 3 3561 4.149 3.790 0.326 3.652 4.282 0.287
© 5 3.669 4.279 3.790 0.485 3.786 4.619 0.429
I 7 3.736 4.369 3.790 0.590 3.883 4.836 0.524
200 - —
i
(MERM) [18]. In this method we choose the distribution
0 . | amongst the varioug’s, again termed\e, Aer, and\,,

_50 ' 0 ' '50 different than in Sec. IV A: two constraints are given by the
theoreticalenergy dependendee., integrated over the pho-
ton angular distribution of the radiated events in energy

FIG. 7. Calculated angular distribution of radiated events inf[r"’mSfer and in missing energy. A third constraint we will

comparison with NE18 data fas®>30 MeV[22]. The solid(dot- ~ 'MPOSE. o

ted; see insgtcurve shows the prediction in the soft-photon limitof ~ Based upon the similarity of Eqé58) and(80), the stan-

the Monte Carlo prograrsiMuLATE for electron and proton contri- dard equivalent radiator approximation simulates internal

butions(electron only. The central anglé,, for the incident(scat- ~ bremsstrahlung by passing the incident and scattered electron

tered electron and outgoing proton are 0° (37.3°) and3.3°,  through two effective external radiators, both with=\E<:

respectively. Note that the inset shows the regiof0°<J,< Q2
2

—20° with a different vertical scale. )\EQ:E In
T m

¥ (degrees)

—1]. (82)

radiated more than 30 M@V To enhance the sensitivity to

the proton contributions to the radiative corrections, we hav te that for int b irahl dt tel

highlighted in the inset of Fig. 7 the region sensitive to thes ote that forinternal bremsstra u@gn are separately
meaningless. The value is typical\F®~3.5% (see Table

proton contributions. That such a region exists was illus- i :

trated before in Fig. 4. One can argue that a better descri ). The eq_uwal_ent radiator metho_d assumes the angle pea_k-

tion is obtained including both proton and electron contriby-N9 approximation, vyher(_e the radiation chan,ges the magni-
tude but not the direction of the electron’s momentum.

tions (solid curve in inset[22]. L . . .
We would like to emphasize the differences between FigS_S|m|IarIy, Borie and Drechsgl24] included internal brems-

4 and 7. In Fig. 4 the prominent dip along the proton anglestrahlung assuming such peaking approximation, using the
ross sections for first-order photon emission. Results using

reflects the character of dipole radiation boosted along tht ) thod d t differ distinctly f h valent
particle’s momentum, emphasized in the single-photon limit. IS method do not arfier distinctly from the equivalent ra-

The electron radiation peaks also have sharp minima at theﬂ'ator approximation. . . -
maxima, but because the boost of the dipole pattern is s The modified equivalent radiator method relies on a simi-

large, the minima are so narrow that they are not visible. | ar technique to simul_ate th? effects of Enternal r_adiation on
Figure 7 a complete angular distribution of radiated photonsthe qqunt. rates and kinematics of Age,e’p) reaction. The

is calculated, wherall multiphoton contributions are taken modification is necessary to reproduce b.Oth the exagt energy
into account. loss (v=¢€—€') dependence due to radiation, as given by
Eq. I1.6 of Ref.[6], and the exact missing energy dependence
due to radiation, given by Eq§32) and(33). This is impor-

tant because events as@multaneouslysubject to theA e’

In Sec. IV A we determined values far,, Aer, and\,  range given by the electron arm momentum acceptance and
by integrating the various terms of the photon angular distrithe AE,, range applied in the coincidence analygidere
bution A(®) and distributing the results among the threeAe’ = el — €’ andAE,,=E&—E,, are the radiation-induced
particle directions. This can be arbitrary, e.g., we decide taeductions in the energies and E, from their elastic val-
split the contributions from Eqgs(60) and (61) evenly ues) The MERM differs from the standard equivalent radia-
amongst the electron and scattered electron direction. tor approximation in two ways. First, as the scattering energy

Alternatively, for thin targetsi{t<0.1) in inclusive elec- increases, a few percent of the radiation becomes peaked
tron scattering it has been shoy@) that the full effect of near the scattered proton directitthe large acceleration of
bremsstrahlung can be simply approximated by dividing théhe proton in the scattering begins to overcome the suppres-
target in two equivalent-length radiators. This is termed thesion of radiation by its high magssThus, the scattered proton
equivalent radiator approximation. In this section we will is also passed through an equivalent external radiator, with
give a generalization of this approximation for thée,e’p) bt values between 0.00037at Q?=1 (GeV/c)?] and
reaction, termed the “modified equivalent radiator method”0.00524 [Q?=7 (GeV/c)?] (see Table X Second, the

C. Modified equivalent radiator method
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three equivalent radiators have three different thicknesseg ~[M+Zesinz(ee,/2)]/(p'°—|p’|). The equation for

(the equality of the incoming and outgoing electron radiatorsdf;(E <E®'+ AE,)/dQ, is obtained from Eq(85) using
in the standard equivalent radiator approximation is onIy,[he ssbstitnl]Jtionsge’aAeE and R,,R,—1 [cf. Eq. (6)]
m er’'\p . . .

vzpd tm dtrt]e r“mlrt gf no tLar%ﬁt r?c;)i)l -Ir?e d?hifk:fsﬁe; ?rrig The resulting formula satisfies an important consistency
adjusted fo reproduce the theoretical radiation tan distribUep oy for 4 trivial scattering procedo/dQ=1], it re-

. 1 12 B - B
tion of the “H(e,e’p) reaction smultaneously as functions duces to the integral of Eq75) over E™ with bt=\,
of the scattered electron energy and the missing energy NN dE= AE , ext_
E.,. It is convenient to determine the necessary thicknesses "5, "P' an o om (assummgb. =1).
m: Choosing thex parameters according to Eq&8) and

in the limit Ae’, AE,<e¢,€’; validity at higherAe’ and (59), whil : ;
L X , e an improvement over the standard equivalent ra-
AE, is discussed below. Referring to 5@2), we observe ;40 techniqud Eq. (82)], still would not satisfy the theo-

that Eq. (32 has a logarithmic depen.den.ce ch.Em:. reticale’ andE,, dependences of Eq&3) and(84). Such an
Osor{ AEm) =Ae IN(AER)+INNg . For elastic kinematics in - o551 5ach would e.g., neglect the “missing” terms of Egs.
the soft photon approximatiom,Em andNEm are functions of  (60) and (61), and, indeed, using Edq62) instead of Egs.

€ and 0., only. Thus theE,, dependence of the tail as given (58) and(59) gives closer agreement. Instead, we require the
by Eq.(40) is modified equivalent radiator approximation to reproduce the
theoretical values oN.., Ng _, and\,. Conveniently, Eq.
(85) exhibits the sameAe’ dependence as the theory

. . . . [~(Ae")Mot] for small Ae’, so long as the\’s used in the
Inspection of Eq. 1.6 of Ref[6] immediately yields analo- calculation are chosen so that

gous functional forms fob,y(Ae’) ande™ sordA€):

e %soflEm = Ng_(AE) en. (83

)\e+)\e’+)\p’:)\tot' (86)
e sorAN=N (A€ e, 84 o . .
Multiplication of the cross section by the proper normaliza-
As discussed in the last part of Sec. Ill B, the only differencetion factor (representing, among other things, the contribu-
betweens,,«(En) andd.s(A€’) is a change in the integra- tion of the hard correctionsallows the calculation to agree
tion region. Thus one finds the exponent =\, =\ at ~ With Eq. (84) at smallAe’. Because\g =Ao (=)ioy), the

all kinematics. This fact will allow simultaneous matching of calculation carsimultaneouslysatisfy Eqs.(83) and (84) at

both energy dependences. In practigg is determined nu- all small values ofAe’ and AE,, if it usesh, and X that

merically by evaluating Eq32) for two different values of ~satisfy

En.
In the MERM, the internal radiation is simulated by pass- RAeR%p':£:e(sef—5Em_ (87)

ing the beam electron, scattered electron, and outgoing pro- € P Ng

ton through external radiators witht values\., A, and

\pr . Analytic expressions for the resultingE,, and Ae’ Reproducing the theoreticdl.., Ng , and Ay, places

dependences are used to chohsealues that reproduce the three conditions on the four unknowns Ne/, A, and

theoretical energy dependence of internal radidti€os.(83)  the normalization The theoretical integral of the cross sec-

and (84)]. The expression for thd e’ dependence induced tion over another observabiior instancep’®) could provide

by three external radiators, valid for smalle’ [where  a fourth condition N,/) and remove the remaining ambigu-

®*(x)=1], is derived in Appendix F of Ref18]: ity. However, the calculation is insensitive at the0.5%
level to even a 50% change in the ratio Xaf, to A¢. For
d(f( —el - Ae) dott) 1 definiteness, we choose the ratig, /\, to be equal to
€ =€, — A€ )= .
dQ, el dQe [ T(14 et her+Np) )\E?ak/)\geakglven by Eqs(58) and (59):
, , — peak
X(ReAe’))‘e Ae'\ e RpAe’ M Ne=fihe ™, (88)
€ € 00 | Npr=TA2eK (89)
(85 _ .
where the fractiorf, varies between 0.88 and 0.89:
The recoil factoiR, (R,) takes into account that radiation of
energywo by the beam electrofoutgoing protoh changes’ Oer = Og
by a amounR.w (Ryw). HereR,<1 because the energy fﬁw. (90
radiated by the beam electron comes from a reductiosl in In(R,® Rpp’ )

and in the kinetic energy of the recoil proton; for small pho-

ton energiesR,~(e/e.)?. The Monte Carlo using the The \ values resulting from these prescriptions are listed
MERM technique determines the amount of energy radiateds A\™°¢ in Table X. The equivalent radiator parameters are
by the proton before computing ;€' is chosen so that the evaluated for central kinematics, and are not adjusted for the
proton is left on shell after it emits the real photons. Forkinematics of each event. The errors produced by neglecting
small photon energies the resulting proton recoil correctiorvariations inE and 6., are negligible for the NE18 acceptan-
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FIG. 8. E, distribution of H(e,e'p) events at Q?
=1 (GeV/)2. The datapoints with error bansare from the NE18
experimen{11] and the calculatiorthistogram is performed with
the modified equivalent radiator method.

FIG. 9. Comparison between thél(e,e’p) data and the modi-
fied equivalent radiator Monte Carlo simulation for the anglg
=tan }(Px/Pm,) atQ?*=1 (GeVk)?. Note thatd, is the pro-
jected angle of the radiation in the horizontal plane rather than the

. L . spherical coordinate}, . To reduce the effects of the finite resolu-
ces[18] (<0.04% in the normalization and0.0012 in the tion, only events withE,>20 MeV are displayed. The peaks from

A values. Due to approximations in the formulas f6r and  ragiation directed along the incident beam and the scattered electron
o, Egs. (84) and (83) are not valid forAe’=€'/(1  girection are clearly visible af,= 6,=0 and9,= 6, =37.3°.
+2e/M) [4]. The equations neglect two effects, which
are actually present in the modified equivalent radiato
technique: do(E—R.A€’)/dQ>doM(E)/dQ,, and

'actly parallel to the outgoing particleghe angle peaking
approximation, and (2) photons emitted along the incident
o . . electron, scattered electron, or scattered proton direction can
q;e.xt(w/E).<1__ Thus, the modified eqlouvale_nt radiator calcu- be treated as if they were emitted by tha? particle, and thus
lation maintains good agreement 0.5%) with exact calcu- 5,56 4 change in energy only for that partittee latter
lations of the radiation even for largke’. assumption is especially relevant for the cross section
One might wonder why external radiation is able t0 ex-yejghting in Monte Carlo simulationsin Fig. 9 one finds
actly reproduce the energy dependence for internal radiatioghat the modified equivalent radiator approximation does a
at small photon energies. The single-photon expressions fQjood job of reproducing the observed widths of the peaks in
internal and external radiation have the same #iepen- the angular distribution of the photon events. To reduce the
dence. Agreement is maintained in the infinite-photon limitsensitivity to the finite resolutions, only events wif,
because theoherentmultiple-photon exponentiation in Eq. >20 MeV are displayed. The events éf,~15° are the
(85) serves the same role as tineoherentmultiple-collision  result of radiation by the electron both before and after the
factor (E®9)! in Eq. (75). To see this, recall Eq$83) and  scattering. The incoherent addition of the radiation before
(84), e°=Now". The tail height(divided by the electron- and after the scattering in the equivalent radiator approxima-
proton scattering cross sectjois de’/do=NAw 1. For  tion underpredicts the strength given by the coherent inter-
A =bt, this has the same energy (or E®*Y) dependence as ference of the corresponding radiative diagrams. However,
Eq. (75), the multicollision form for external radiation. Now the missing strength is less than 10% of the counts at
consider the single-photon version of the above, found b0 MeV/c<w<200 MeV/c—that is, less than 1% of the
taking the logarithm: =\ Inw+InN, with tail height total counts. In only a fraction of these events would the
ds/dw=\/w. The single-photon form for external radiation exact photon angle make the difference between the outgoing
is found in thet—O0 limit of Eq. (75): bt/E®! [taking particles being inside or outside of the experimental accep-
®Y(ESY|k|)=1]. Thus the internal and external radiation tance, and thus the error is insignificant unless one is inter-
have the same energy dependence in both the multi- angsted in a detailed and high-precision understanding of the
single-photon limits, and the conversion from the single-angular distributions of radiatec e’ p) events.
photon to the coherent multiple-photon form is mathemati- The validity of assumptioi2), that photons emittedliong
cally identical to the conversion to the incoherent multiple-one of the particle directions can be treated as if emibted
collision form. that particle, is demonstrated by Fig. 10. Kinematics ensure
Figure 8 demonstrates the success of the modified equivéhat radiation along the scattered electron direction Ras
lent radiator technique in describing the distribution of the=1, and radiation in the incident beam direction Has
NE18 H(e,e’p) data counts as a function &, at a mo- ~R,. However, the resemblance of data and Monte Carlo
mentum transfer square@? of 1 (GeV/c)? (see Table)l simulation also supports the numerical procedfevertex
One can see that also in this method the falloff in count rateross section evaluatipmve chose to calculate the effects of
over three orders of magnitude is well described by theadiation. In the figure, the cross over from tiig<<15° to
Monte Carlo simulation. The equivalent radiator procedured,>15° occurs atR~1.4 for both data and Monte Carlo
used in this Monte Carlo simulation implicitly makes two calculation. The calculation’s underestimate of event® at
assumptions about the effect of internal bremsstrahlung or-15 mr, discussed above, maps here to an underestimate at
kinematics:(1) photons can be treated as being emitted exR~1.4.
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[6]] must be performed separately for each event. In such a
E case one might prefer choosing this according to Eq(62),
2 and utilize the techniques described in Sec. V A.

VI. DISCUSSION AND SUMMARY
The attractiveness of electron scattering is that the photon

, couples weakly to the electron and hadrons, simplifying the
: extraction of information from experimental data. However,

: in order to extract nuclear structure information or informa-
4 tion on the reaction dynamics, one needs to understand the
radiative contribution to the measured cross section in detail.
FIG. 10. Comparison between thkH(e,e’p) data and the [N particular, as the momentum transfer increases in electron-
modified equivalent radiator Monte Carlo simulation for the recoil induced hadron knockout or hadron production reactions, the
ratio R=E,, /A€’ atQ?=1 (GeV/c)2. To reduce the effects of the internal bremsstrahlung contributions of the hadronic terms
finite resolution, only events witk,,>20 MeV are displayed. The cannot be neglected anymore. Up to now the standard for the
solid circles and left-hand histogram are the data points and Montéalculation of radiative effects has been the work of Mo and
Carlo prediction ford,>15°, corresponding to the peak @t in  Tsai[6]. They derived explicit formulas for radiative correc-
Fig. 9. Note these events have the raRe=-R.,=1. The open tions in an inclusive ¢,e’) framework, and provided a pre-
circles and right-hand histogram are for the peakdat0 (9,  scription for unfolding spectra in terms of the energy transfer
<15°), and havéeR~R,=2.07. v=¢€—€'. It is important to note here that in analyzing re-
sults from the €,e’p) reaction, one must for consistency use
The MERM is effectively very similar to the “peaking” form factors derived from previous scattering data using the
technique described in Sec. V A, which uses the best availsame radiative correction formulas.
able form for the photon energy. Both techniques reproduce The emphasis of this work is the extension of radiative
the theoreticakE,, dependence and provide a reasonable decorrections to coincidencee(e’p) experiments. Though this
scription of the angular distribution of the radiation by incor- work only deals with the &,e’p) reaction, the formalism
porating simultaneous radiation along thee’, andp’ di- presented to apply radiative corrections is general and can
rections. The MERM technique improves on the “peaking” easily be adapted for other electron-induced hadron produc-
technique by reproducing the dependence as well. The  tion reactions. For theg(e’p) reaction one can, in the plane-
values(or effective radiator thicknessessed are mathemati- wave impulse approximation, define a spectral function
cally unique up to a freedom in the ratio af, /\.. This  S(pn,Enm) representing the probability of finding a proton in
feature helps to minimize potential systematic errors in theéhe nucleus with missing enerdgy,, and momentunp,,,. The
radiative corrections. difference between the calculation presented here and that of
Obviously, a disadvantage of this simple technique is thaMo and Tsai is that we describe the radiative tails in terms of
it neglects the exact angular distributions of radiated eventds,, rather thanw. Specifically, the measured varial#g, is
Thus, improvement on the MERM technique is possible byshifted from its value at the scattering vertex by, for elastic
either determining the exact multiphoton angular distribu-ep scattering, exactly the energy of any photon that was
tions of the internal radiation numerically solving E46),  emitted during the reaction; it thus provides an ideal coordi-
or using the multiphoton peaking approximations describedhate with which to perform radiative computations. Radia-
in Sec. IV A, and subsequently folding in these more exaction from the scattered proton is taken into account, and con-
multiphoton angular distributions in an experimental Montestitutes =10% of the internal correction forQ?
Carlo simulation. However, this is in many cases unwar=1 (GeV/c)?. Also, this contribution varies inversely with
ranted becaus@) the only failing of this technique is a slight the ratioe’/e. The relatively large magnitude of the hadronic
underestimate of the angular distributions between the parcontributions to the bremsstrahlung cross sections warrants a
ticle directions; andii) the systematic error in the internal detailed investigation of the assumptions and approximations
and external radiative effects may be dominated by uncemade in the work of Mo and Tsai, in order to successfully
tainties in the theory itself. apply radiative corrections to electron-induced coincidence
Lastly, the MERM technique provides significant gains inreactions.
computation speed when simulating small experimental ac- In order to radiatively correct the ful,, and|p,,| distri-
ceptances wherg, A, and\ | are approximately constant bution, one must consider the angular distribution for emit-
and can therefore be evaluated during Monte Carlo initializating multiple photons. We have determined that the distribu-
tion. Since the effect of external radiation must be calculatedion for emitting a total photon energ¥E,, is, up to order
anyway, the effect of internal radiation is included simply by @2, equivalent to the emission of any number of soft pho-
increasing the external radiatit values by the correspond- tons, each with energy less thaik,,. Therefore exponenti-
ing \ values. This computational advantage disappears foating 85, provides a good approximation to the bremsstrah-
larger acceptances where the time-consuming determinatidang cross section for emitting a total photon energy up to a
of the \'s [via evaluation of Eq(31) and of Eq. 11.6 of Ref.  certain cutoff value, the case of practical interest for analyz-
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ing experiments. For practical purposes, one employs peak- ACKNOWLEDGMENTS
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tion. In the full peaking approximation however, the
electron-proton interference term is taken to be zero. Thus, if
one wants to maintain the correct number of photons emitted
but allows an error in the angular distribution due to the This appendix evaluates the integrals necessary for the
peaking approximation, one can assign all the nonpeakegvaluation ofB(p; .p; ,AE) as given by Eq(32). The two
photons to the different peaked directidtiextended” peak-  caseg =j andi#| are considered separately.

ing approximatiol One can also add the external brems-  First consider the case=j which requires the evaluation
stra_hlung in a consistent manner to these peaking approxjg §(p,p,AE). In this casqaf(:pz and the integrands in Eq.
mations. : A
o . 32) are independent of, yieldin
We have compared the radiative correction procedureg ) P y g
found in this work with experimental data of the NE18 ex- B(p,p,AE)
periment[11,21,23. We have used two separate procedures,

APPENDIX: EVALUATION OF BREMSSTRAHLUNG
INTEGRALS

via Monte Carlo, to simulate the event distributions. In the AE\ p°=|p| [p°—Ip| 2p°

first procedure we could incorporate in the simulation pack- =4m |n(—o + 2/p| In 0 0 .
age either several of the peaking approximations presented P P P>+ [pl P°+[pl

or the complete angular distributions for bremsstrahlung. (A1)
This procedure produced very good agreement &jthdis- o ]

tributions of both the'H(e,e’p) and 2H(e,e’p) reactions, For the case #], consider theAE dependent part of

at momentum transfers between 1 and 7 (G®¥%/It was B(pi_,pj ’.AE.) [note that the other two terms go to zero in the
also used to simulate a detailed angular distribution of thdelativistic limit (|p[—z)],
'H(e,e’p) events for photon energies above 20 MeV, and
. 1dx AE

excellent agreement was found. The second procedure hinges f —In|——o— |-
on the peaking approximations and extends the usual equiva- o Px LP;+X(pi—pj)
lent radiator method to reproduce both the event distributionl_ . L . .

1 , o he evaluation of this integral in terms of Spence functions
of the *H(e,e") reaction in terms of the scattered electron. o

, L o is standard. Writing

energy and theé'H(e,e’p) reaction in terms of missing en-
ergy. These constrain the choice of three equivalent radiators p2=a(Xx—X,)(X—X_), (A3)
of different thicknesgfor the incoming and outgoing elec-
tron and the proton It is shown that this simple procedure where
describes théH(e,e’p) tail distribution in terms oE,, very

(A2)

()2
well. Since the method hinges on tli@ngle peaking ap- @=(pi=pj) (Ad)
proximation, we also show from the NET$(e,e’p) data and
why this assumption works well. Unless one is interested in
a detailed and high-precision understanding of angular dis- 2p7—2p;- Py = VA(pi- pj)?—4p7(pi—p;)?
tributions of (e,e’p) reaction, the “modified” equivalent ra- Xse= 5w (AS5)
diator method provides a simple, effective procedure for ra-
diative corrections. implies

J'ldxI AE }
JR— n —_—
ops |PY+x(pP—p))
o PO+, (pP—p?) NS p2+x_(pP—p) X1
Ca(x_—xy) AE N AE X_
- (p?—p?)(x+—1)> ) (P = p)x.. )+ (p?—p?)(x_—l)) [ e=p)x- ” 6
pY+x.(pP—p) P+ X (P! p}) pY+x_(p{—p}) p)+x_(pP—p)) /|

Here the usual identity

054610-22



RADIATIVE CORRECTIONS FOR ¢é,e'p) REACTIONS. . .. PHYSICAL REVIEW C 64 054610

Llog(b—cx) (a—l) —c(l—a) ac
J;) a =log(b+ac)log a [} bTac bTac (A7)
has been used.
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