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Nuclear fission: The ‘‘onset of dissipation’’ from a microscopic point of view
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Semianalytical expressions are suggested for the temperature dependence of those combinations of transport
coefficients that govern the fission process. This is based on experience with numerical calculations within the
linear response approach and the locally harmonic approximation. A reduced version of the latter is seen to
comply with Kramers’s simplified picture of fission. It is argued that for variable inertia his formula has to be
generalized, as already required by the need that for overdamped motion the inertia must not appear at all. This
situation may already occur aboveT'2 MeV, where the rate is determined by the Smoluchowski equation.
Consequently, comparison with experimental results does not give information on the effective damping rate,
as often claimed, but on a special combination of local stiffnesses and the friction coefficient calculated at the
barrier.

DOI: 10.1103/PhysRevC.64.054316 PACS number~s!: 24.10.Pa, 24.75.1i, 25.70.Jj, 25.70.Gh
tu
c

an
nc

ffe
ge

ri-

et
n.
o
io

e

nt

eeds
ay

the
s’s
-

-
re-

t,

ss

co-

t at
tain
ne

As
to

ess

er,
all
eo-
or
I. INTRODUCTION

It is of considerable interest to understand the tempera
dependence of transport properties associated with slow
lective motion of large scale. Fission is a prime example,
indeed, for this case there is growing experimental evide
@1–5# that damping effectively increases withT. One often
tries to characterize this feature by one parameter, the e
tive damping rateh that is related to the equation of avera
motion for a locally defined damped oscillator

M
d2q

dt2
1g

dq

dt
1Cq~ t !50, ~1!

through

h5
g

2AM uCu
. ~2!

Theq5Q2Q0 measures the deviation of the collective va
ableQ from some fixed valueQ0. In the following we will
also need other combinations of inertiaM, stiffnessC, and
friction g, namely,

tcoll5
g

uCu
5

\

Gcoll
, tkin5

M

g
5

\

Gkin
, and Ã25

uCu
M

. ~3!

The tcoll sets the scale for~local! relaxation of collective
motion in a given potential of~local! stiffnessC. The tkin ,
on the other hand, measures the relaxation of the kin
energy to the equilibrium value of the Maxwell distributio
Typically, for slow collective motion we expect this time t
be smaller than the former. The limit of overdamped mot
applies fortkin!tcoll . Using theh introduced in Eq.~2!, the
following useful relation for their ratio is easily verified

2h5
Gkin

\Ã
5Ãtcoll5Atcoll

tkin
. ~4!
0556-2813/2001/64~5!/054316~16!/$20.00 64 0543
re
ol-
d
e

c-

ic

n

For a positive stiffness (C.0) and underdamped motion, th
Ã would be the frequency of the vibration and theGkin its
width. It should be noted that in the literature a differe
notation is sometimes used whereg stands forh, and often
the Gkin /\ is referred to asb.

To understand the dynamics in phase space one also n
the diffusion coefficients. At small temperatures they m
deviate from the classic Einstein relation~see@6#!, but these
finer details will be neglected here. For such a situation
fission decay rate is commonly calculated within Kramer
‘‘high viscosity’’ limit @7#, for which the dependence on fric
tion is given by

RK
hv~hb!

RK
hv~hb50!

5A11hb
22hb[~A11hb

21hb!21. ~5!

Here, the index ‘‘b’’ refers to the fact that the transport co
efficients are to be calculated at the barrier. It has been
ported, see, e.g., Fig. 5 of@2#, experimental data to sugges
when analyzed on the basis of Eq.~5!, theh to be negligibly
small at very low temperatures but to rise more or le
sharply aroundT.1 MeV. This result is in qualitative
agreement with microscopic calculations of the transport
efficients within linear response theory@6,8,9#, although cau-
tion is still warranted here. Let us leave aside the fact tha
lower temperatures the one-dimensional potential may at
more structure than that found in one minimum and o
barrier, which is the picture underlying formula~5! and that
for the sake of simplicity shall be applied in the sequel.
will be demonstrated below, even then it is not permissible
entirely parametrize the truly complicated transport proc
by the single quantityh. Rather, other combinations ofM ,g,
andC are needed for more realistic descriptions. Moreov
one should be guided by the theoretical fact, that not
transport coefficients are equally well accessible both th
retically as well as numerically, as is true for the inertia, f
instance.
©2001 The American Physical Society16-1
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Unfortunately, when physicists address transport pr
lems, all too often one disregards the importance of the
ertia, and, in particular, its variation with the collective c
ordinate. Indeed, in studies based on the Caldeira-Leg
Hamiltonian ~see, e.g.,@10#! or in applications of the Ran
dom Matrix Theory~see@11#!, the inertia is the one of the
unperturbed collective part of the total Hamiltonian, trea
as a~unknown! parameter. In the case of nuclear physics
situation is more complicated. First, there, no unperturb
inertia exists at all; it may only show up in the final effectiv
equation of motion as one manifestation of the existence
collective dynamics. Second, the inertiaM may depend sen
sitively on the collective degree of freedom. This feature
already well known from the traditional case of undamp
motion at zero thermal excitation@12#. There is noa priori
reason why this should be different at finite temperatu
with perhaps two exceptions or modifications. With incre
ing T, the M gets close to the liquid drop value@13#, which
only varies smoothly withQ and which is quite small. Si-
multaneously the friction strength increases, so that one
quickly reach the situation of overdamped motion, for whi
no trace of the inertia can be seen anymore. Such feat
have been seen within the linear response approach~see@6#!,
but to the best of our knowledge no other transport mo
has so far addressed this question.

II. RATE FORMULAS

Like in the analysis underlying@3,4# we want to make use
of a simple formula for the decay rate. In slight modificati
of Kramers’s@7# classic one we write1

RK
hv~hb!5

Ãa

2p
AMa

Mb
exp~2Eb /T!~A11hb

22hb!. ~6!

The indices ‘‘a’’ and ‘‘ b’’ refer to the minimum and maxi-
mum of the potentialV(Q), located atQa andQb , respec-
tively. The Eb stands for the height of the barrierEb

5V(Qb)2V(Qa). The factorAMa /Mb, not contained in
Kramers’s original work, is meant to account for the mo
fication one gets for variable inertia. Notice, that this iner
both influences the current over the barrier as well as
number of ‘‘particles’’ ~phase space points! sitting in the
well. Commonly both quantities are calculated with the sa
M that then drops out; see, e.g., Eqs.~4.30! and ~4.31! of
@10#. General reasons for the presence of this additional
tor will be given in Appendix A. At first, in Sec. A 1 we
follow the more common derivation involving the constru
tion of the densities at the barrier and at the minimum, wh
in Sec. A 3 is reduced to the Smoluchowsky limit~see be-
low!. In Sec. A 4 we follow the arguments of Strutinsky@14#,
which lead to exactly the same formula. Unfortunately,
Ref. @14# this feature is disguised by the very fact that in t

1Since we are only looking at stationary situations we leave
the time dependent factor that sometimes is taken into accou
simulate the ‘‘transient time’’ it takes before the stationary curr
has built up.
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-
-

ett

d
e
d

of

s
d

,
-

ay

es

l

-

e

e

c-

h

final expression Eq.~16!, like in large parts of the derivation
primed and unprimed quantities are interchanged. It is
this reason that we feel compelled to redo the short calc
tion. The form~6! has recently been derived also in Ref.@15#
by applying a generalized version of the ‘‘perturbed sta
path approximation~PSPA!.’’

Notice please that the dependence of the rate on the
fective damping strengthhb still is given by Eq.~5!. Using
the relationÃ25uCu/M @see Eq.~3!# the limiting value at
zero dampingRK

hv(hb50) may be written in the two equiva
lent forms

RK
hv~hb50!5

Ãa

2p
AMa

Mb
exp~2Eb /T!

[
Ãb

2p
A Ca

uCbu
exp~2Eb /T!. ~7!

The influence of dissipation is visualized by plotting in Fig.
the ratio RK

hv(hb)/RK
hv(hb50). In addition to the result of

formula ~5! we also show two other cases. First, we show
simplified version of thelow viscosity limit

RK
lv~hb!

RK
hv~hb50!

52hb

Eb

T
. ~8!

It is valid for very small viscosity only@see Eq.~11! below#
and provided@10# the action for the motion on top of th
barrier may be approximated byI (Eb)'Eb /Ãb . As demon-
strated in@8#, for the nuclear case such a situation is fou
only at very small temperatures, much below the critic
temperature for pair correlations to become important. S
ond, we explicitly indicate the limit that the ratio Eq.~5!
takes on for overdamped motion

RK
hv~hb!

RK
hv~hb50!

5
1

2hb
for hb@1. ~9!

t
to
t

FIG. 1. Kramers’s correction factor to the rate as a function
h: the solid and dotted curves correspond to the high@Eq. ~5!# and
low @Eq. ~8!# viscosity limit ~the latter is calculated for a barrie
height ofEb55.8 MeV, for 224Th at 1 MeV) and the dashed one
to the overdamped limit~9!.
6-2
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NUCLEAR FISSION: THE ‘‘ONSET OF . . . PHYSICAL REVIEW C 64 054316
Whenever the ‘‘high viscosity limit’’ applies, the influenc
of dissipation manifests itself in a reduction of the decay r
over the value given by Eq.~7!. This deviation is claimed to
allow for deducing a possible temperature dependence
dissipation through the ‘‘measurable’’ rate. It must be not
however, that for overdamped motion it is not the effect
damping factorhb that one deduces. Indeed, overdamp
motion is governed by the Smoluchowski equation in wh
no inertia appears~see Appendix A!. But the latter not only is
present inhb but in RK

hv(hb50) as well. A better way of
writing the rate formula in this case is

Rovd5RK
hv~hb*1!

5
1

2p
A Ca

uCbu
uCbu
gb

exp~2Eb /T!

[
1

2p
A Ca

uCbu
1

tcoll
b

exp~2Eb /T!. ~10!

Here, the time scaletcoll
b appears, which is relevant for ove

damped motion across the barrier, see below. As can be
ferred from Fig. 1 this limit is actually given for values ofhb
just above unity. Notice, please, that it is only with the ad
tional factorAMa /Mb included in Eq.~6!, on top of Kram-
ers’s classic version, that the inertia drops out in the ov
damped limit.

A few comments are in order on the validity of the ra
formulas of the high viscosity limit, for which the following
assumptions must hold true:

~1! On the way from the minimum to the barrier the tem
perature must not change.

~2! The barrier must be sufficiently pronounced, first of
in the sense that its height be large as compared to the
perature, viz.,Eb@T, for further details see Sec. A 1.

~3! The effective damping rate must not be too small

hb>
T

2Eb
, ~11!

otherwise formula~8! would have to be applied.
It may be quite a delicate matter to fix or calculate t

temperature that is at stake here. For instance, a temper
TCN associated with thetotal available energy for thecom-
pound nucleusmight be much larger, as for high initial the
mal excitations the system may cool down by emission
neutrons org ’s before it fissions. Finally, we should like t
remark once more that presently any possible quantum
tures are discarded, which might show up at low tempe
tures@8#.

III. MICROSCOPIC TRANSPORT COEFFICIENTS

Evidently, the temperature dependence of the rate wil
greatly influenced by that of the transport coefficients—
top of the influence through the Arrhenius fact
exp@2Eb(T)/T#. Let us first look into results obtained apply
ing linear response theory within the locally harmonic a
proximation@6#, before we turn to discuss other forms us
05431
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in the literature, such as in Ref.@4#. In this theoretical ap-
proach the transport coefficients of average motion are
tained by relating, in the low frequency regime the stren
distribution of a microscopically calculated response fun
tion xqq(v) to the one of the damped oscillator. The latter
defined as

@xosc~v!#21q~v![2~Mv21 igv2C!q~v!52qext~v!,
~12!

and thus may be obtained by adding to Eq.~1! the term
2qext(t) on the right and performing a Fourier transform
tion. For overdamped motion the response function turns

xovd~v!5
i

g

1

v1 iC/g
. ~13!

In accord with the remarks from above on the Smoluchow
limit no inertia appears anymore.

This approach permits one to calculate the transport c
ficients as functions of shape and temperature for any gi
nucleus. The formulation is done in such a way that on top
shell effects and pairing~see@9# with references to previous
works! collisional damping is accounted for as well~for a
review see@6#!. As one may imagine, such computations a
quite involved, last but not the least because much kno
edge is required about various aspects of the dynamic
complex nuclear systems. This is one of the reasons why
yet numerical computations have been done only for part
lar nuclei or for more schematic cases@16,20,9#. Neverthe-
less, this experience may allow us to deduce some g
features that may be considered generic to a wider clas
nuclear systems. This is what we are going to do below
seems appropriate, however, to first add some genera
marks concerning calculations based on the deformed s
model as an approximation to the general mean field.

The output of calculations of the type just mentioned co
tains much more detailed information than at present
may possibly relate to observable quantities. The coordin
dependence of the transport coefficients, for instance, is
prime example. Often in nuclear transport theories one s
ply has aimed at constant coefficients for inertia and frictio
If calculated within the linear response approach, on
other hand, sizable variations with shape are seen. One
recall that a similar feature is already seen in the poten
landscape, when calculated with the Strutinsky proced
for instance. Besides the maxima and minima that are typ
for gross shell effects, one sees detailed fine structure. S
features may depend on peculiarities of the underlying s
model, and may thus be unphysical in nature already by
reason. For the dynamic transport coefficients themsel
further implications arise from quasicrossings of levels.
large extent such effects can be expected to become m
weaker in a multidimensional treatment, which, at presen
not feasible.

One should not forget that problems of this type are in
mately related to the fact that transport coefficients of iner
stiffness, and friction are those ofaverage motion, calculated
on the level of the mean field. Finally, however, they are
needed for an equation of motion of Fokker-Planck type t
6-3
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H. HOFMANN, F. A. IVANYUK, C. RUMMEL, AND S. YAMAJI PHYSICAL REVIEW C 64 054316
accounts for dynamicalfluctuations. The latter will help to
smooth out the variations of the transport coefficients in m
natural way. Evidently, the problem at stake here reflects
general deficiency of the mean field theory. In a more app
priate treatment one would be able to treat self-consiste
both the mean field as well as its fluctuations. Since suc
theory is not available we suggest some other, more p
matic procedure. As described already, see, e.g.,@9#, one may
smooth static energies as well as the other transport co
cients with respect to their dependence on deformation.
averaging interval inQ is to be chosen large enough to wa
out the rapid fluctuations but small enough to preserve g
shell structures.

A. Shell effects on potential landscape

The static energy is calculated in the usual way as the
of a liquid drop part and the shell correction, both of whi
depend on temperature, for details see@19#. An example of
the deformation dependence of this potential energy is sh
in Fig. 2. The dotted curve represents the case of zero t
mal excitation. On top of the typical gross shell structu
fluctuations of smaller scale are recognized as well. Feat
of this type lead to the rapid variations of the transport
efficients we talked about above; for the local stiffness as
second derivative of the static energy this is immediat
evident. As mentioned, we consider such fluctuations as
physical, for which reason we like to remove them by av
aging over an appropriate intervalDQ but to keep the gross
shell structure. For the free energy, for instance, the smo
ing can be done in the following way:

^F~Q,T!&av5

(
i

F~Qi ,T! f avS Q2Qi

DQ D
(

i
f avS Q2Qi

DQ D . ~14!

FIG. 2. Deformation dependence of the collective potential
ergy. The dotted curve shows the deformation energy atT50. The
dashed, dot-dashed, solid, and solid with stars curves correspo
the averaged deformation energy at temperaturesT50, 1, 2, and
3 MeV. The deformation parameter here is the distanceR12 be-
tween the centers of mass of left and right parts of nucleus~divided
by the diameter 2R0 of the sphere with equal volume!. The averag-
ing is carried out on the intervalD(R12/R0)50.1.
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The smoothing functionf av(x) in Eq. ~14! is taken to be that
of the Strutinsky shell correction method and theQi are
some points in deformation space. The use of the Strutin
smoothing function guarantees stability of the averaging p
cedure: the smooth component of the deformation energ
restored after smoothing again. This implies that the liq
drop part of the energy is unchanged by this averaging.

In the figure we also show the averaged potential co
sponding to temperaturesT50, 1, 2, and 3 MeV. As ex-
pected, with increasing temperature the deformation ene
becomes much smoother and the height of the fission ba
gets reduced. This is due to the reduction of shell effects
well as the temperature dependence of the liquid drop p
At temperatures aboveT'3 MeV the shell effects have dis
appeared completely and the averaged deformation en
coincides with its liquid drop component. As seen from t
figure, at smaller temperatures the shell correction, albeit
eraged, does contribute to the deformation energy a
hence, to the stiffness. For example, atT51 MeV the stiff-
ness at the barrier~maximum of the deformation energy! is
still several times larger than that of the liquid drop part.

It should be mentioned that in Ref.@18# a somewhat dif-
ferent ~averaging! procedure was used. There the deform
tion energy was approximated by two parabolas and the s
ness~at the minimum and the barrier! was defined by the
curvature of these parabola. In this way shell effects
washed out to a larger extent, not only with respect to
fine structure but even with respect to gross shell featu
Consequently, the stiffness defined in this way is rather cl
to the liquid drop stiffness.

B. Temperature dependence of transport coefficients

1. Local stiffness

In the following we identify stiffness as the one corr
sponding to the free energy. Then we may write

C~T!5CLDM1dC~T!. ~15!

Here,dC(T) represents the contribution from the shell co
rection, which disappears with increasing temperatures.
parametrize the latter feature we take over a formula of@21#
to get

dC~T!5dC~T50!
t

sinht
~16!

with the shell correction parameter

t52p2
T

\V0
and \V05

41 MeV

A1/3
~17!

being the average shell spacing. Abovetshell.325, which
corresponds to a temperature of the order of

Tshell.~325!
\V0

2p2
.122 MeV, ~18!

-

to
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NUCLEAR FISSION: THE ‘‘ONSET OF . . . PHYSICAL REVIEW C 64 054316
the dC(T) practically vanishes such thatC(T) attains its
liquid drop value. Eventually, thisCLDM may still be treated
asT dependent@22#. Finally, we should recall our suggestio
from above to average the transport coefficients over sma
intervals inQ. In this sense thedC(T50) is meant to only
represent gross shell features.

2. Local inertia

As mentioned already in the Introduction, one should
pect the inertia to vary with temperature. It is more th
tempting to assume a form similar to the one for the stiffne
namely,

M ~T!5MLDM1dM ~T! ~19!

in which the last term drops to zero as given in Eq.~16!.
Indeed, within the linear response approach a behavio
that type has been observed in a numerical study@13#. There,
the value reached at larger temperatures was given by th
irrotational flow, which for the present notation means
identify MLDM5M irrot . To the best of our knowledge, ther
is no other theoretical model where such a transition is s
explicitly—although one must say that in phenomenologi
applications of transport models commonly theM irrot is
taken to represent the macroscopic value of inertia.
present the conjecture behind Eq.~19! still lacks a direct and
general proof. However, in Ref.@23# the nucleonic respons
function has been studied applying periodic orbit theo
~POT!. There it was seen that its ‘‘fluctuating part’’dx(v)
decreases withT like the shell correction to the static energ
For slow collective motion the inertia is determined by t
second derivative of this response function with respec
frequency calculated atv50 @see Appendix B and Eq.~B8!
in particular#. Therefore, within such a model the ‘‘shell co
rection’’ to the inertia was indeed proven to behave
claimed above, although several questions remain o
Amongst others, it is unclear as to what extent this pr
would get modified after considering ‘‘collisional damping
The latter cannot be treated within POT, but should pla
major role for the transition to hydrodynamic behavior. Po
sible reasons for rendering a microscopic approach quite
ficult have been reported in Refs.@18,19,6#. On the micro-
scopic level they are related to the strength distribution
the local collective motion. The liquid drop model, on th
other hand, represents motion of a system having a s
surface, in contrast to microscopic calculations involving
diffuse surface of the mean field and, hence, of the den
for details see@19#. Fortunately, however, at largerT when
the collisions become more and more important the mo
gets strongly damped such that the inertia drops out anyw
see Eq.~13!.

Owing to these difficulties in microscopic computatio
we propose to fix theM (T) through the vibrational fre-
quencyÃ and the local stiffness by the relation given in E
~3!, namely,M5uCu/Ã2. For our version of Kramers’s rat
formula this was easily achieved in using the second var
shown in Eq.~7!.
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3. Vibrational frequency

At the extremal points of the potential landscape this f
quencyÃ is a well defined quantity. To some extent it
even accessible to experimental verification, at least for z
thermal excitation. At the minimum it may be associat
with the energy of a collective mode~for very recent work
on this subject see@24#! and for the barrier it influences th
penetrability, as encountered, for instance, in neutron
duced fission@25#. Generally, the\Ã is believed to be of the
order of 1 MeV. Indeed, numerical calculations for224Th
@18,19# show this to be quite insensitive to temperature;
lesser extent this is true also for the variation with shape
mass number. Altogether, for a first orientation the followi
choice seems appropriate

\Ãa.\Ãb.1 MeV ~20!

with deviations being within a factor of 2 or less. This a
pears to be the case even when pairing is included at sm
T. In Fig. 3 we take up the case of224Th, again. The calcu-
lation is the same as reported in Ref.@9#; more details will be
given below in Sec. III B 6. From the right panel it is see
that this conjecture is pretty much fulfilled.

4. Ratio of friction to inertia

As said above, see Eq.~3!, the ratiog/M determines the
inverse relaxation time to the Maxwell distribution. For u
derdamped motion this quantity also defines the widthGkin
of the strength distribution. In Fig. 3 we show it on the le
hand panel as function ofT. The dashed curve represents t
following approximation, details of which are discussed
Appendix B, namely,

g

M
\5Gkin

'2Gsp~m,T!

5
2

G0

p2T2

11p2T2/c2
'

0.6T2

11T2/40
~T in MeV!.

~21!

FIG. 3. Inverse relaxation time 1/tkin5Gkin /\ ~left panel! and
\Ã ~right panel! as a function of temperature: the microscop
results~solid curves! compared to the approximations~20! and~21!
~dotted curves!.
6-5
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H. HOFMANN, F. A. IVANYUK, C. RUMMEL, AND S. YAMAJI PHYSICAL REVIEW C 64 054316
As expected it represents the microscopic result quite we
smaller values ofT that correspond to smaller values
damping. Recall, please, that the overdamped limit is gi
already for values of the damping factorhb slightly above 1,
see Fig. 1. As can be inferred from Fig. 3 and the estim
~20!, this happens at temperatures above 2 MeV; mind
h5(g/M )(2v)21.

5. Ratio of friction to stiffness

In Fig. 4 we plot, as function ofT, the timetcoll5g/uCu,
which measures the local relaxation in the coordinate.
may recall from Eq.~3! that for the overdamped case this
the only relevant time scale left. Its inverse determines
width of the strength distribution along the imaginary ax
@see Eq.~13!#. Likewise the decay rate~10! associated to the
Smoluchowski equation is proportional totcoll

21 . In Fig. 4,
again, the fully drawn line shows the microscopic result. T
dashed curves represent an approximation, into which
following two features are incorporated, the decrease of
stiffness@as given in Eqs.~15! and ~16!# and the fact that
with increasingT the friction coefficient reaches a platea
@17,18#. To combine both effects we chose a functional fo
similar to the one for theGkin of Eq. ~21! ~see Appendix B!
but with a different cut-off parametercmacro,

tcoll5
g

uCu
'

2

\Ã2G0

p2T2

11p2T2/cmacro
2

'
0.6T2

11p2T2/cmacro
2

\

MeV
~T,cmacro in MeV!, ~22!

with \Ã'1 MeV. One should expect thetcoll to reach a
macroscopic limit like

tcoll uThT
5

g~T!

uC~T!uU
ThT

'
gwall/2

uCLDM~T!u
, ~23!

at larger temperatures. With a parametrization as in Eq.~22!
the limit is obtained aboveThT.cmacro/p, for which reason
the cmacro would be given by

FIG. 4. Relaxation timetcoll for collective motion at the poten
tial minimum and at the barrier: the microscopic result~solid curve!
compared to the approximation@Eqs.~22!–~24!# ~dotted curve!.
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cmacro
2 5

\Ã2G0

2

gwall/2

uCLDM~T!u
'8.2

gwall

uCLDM~T!u
MeV3

\
.

~24!

Here, we accounted for results obtained by several prev
numerical calculations, see, e.g.,@18,19,6#. They showed that
the value of friction at largeT is somewhat below the wal
formula. The factor 1/2 is only to be considered a rough r
of thumb. For the stiffness, on the other hand, the mac
scopic limit evidently is given by the liquid drop model. A
the microscopic calculation was done with aT-dependent
uCLDM(T)u we chose the same one in this fit. In both curv
the effects of pairing were included, which we are going
address now.

6. The influence of pairing

This problem has recently been studied in Ref.@9#. The
fully drawn lines shown in the previous figures refer to su
a calculation. Whereas in Ref.@9# one concentrated on th
regime in which pairing is expected to be effective, t
present results extend up toT54 MeV. Calculations in that
regime had been reported before in Ref.@19#. The underlying
shell model is the same in both cases, but a different pro
dure is applied for the single particle widthGsp. For the
unpaired case the form~B11! was used, for which the fre
quency dependence ofGsp(v,T) leads to convolution inte-
grals in the response functions. They are known to reduce
collective widths@6#. In the paired case such a calculation
no longer feasible, for which reason a constantGsp(m,D,T)
had been assumed there, withD being the pairing gap. To
have a more or less smooth transition to the unpaired c
we now approximate theGsp(v,T) by the Gsp(m,D,T) that
above the critical temperature for pairing reduces to
Gsp(m,T) given in Eq. ~B13!. For this reason our presen
friction coefficient may be overestimated slightly. F
Gkin /\5g/M the new results are shown in Fig. 5, where w
concentrate on temperatures up to 1 MeV. To simulate
apparent effect of pairing to reduce friction we suggest
modified formulas

g

M
5 f pair

g~D50!

M ~D50!
[ f pair

Gkin~D50!

\
~25!

and

FIG. 5. Influence of pairing on the inverse relaxation timetkin
21

5Gkin /\. The microscopic results of@9# are compared with ap-
proximation~25!.
6-6
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g

uCu
5tkin5 f pairtkin~D50!. ~26!

Here, f pair parametrizes the decrease of friction due to p
correlations: An ansatz such as

f pair5
1

11 exp@2a~T2T0!#
~27!

may do with the following parameters:a510 MeV21 and
T050.55 MeV at the barrier, anda512 MeV21, T0
50.48 MeV at the minimum. It was found that this choi
fits best the microscopic results@with the functional form
~25!#. It is seen that these values vary with shape, which m
be an indication that they are perhaps different for differ
nuclei. For a first orientation such details might be discard
Then an average of the two values could be used both fa
andT0. Finally, we should like to remark that this influenc
of pairing is most dramatic for friction, and much less so
M andC. Therefore, we suggest to neglect the influence
the latter.

IV. TEMPERATURE-DEPENDENT DECAY RATES

If one wants to gain information on the transport coe
cients and theirT dependence, in particular, one needs
separate the influence of the prefactors from the more or
trivial exponential part~the ‘‘Arrhenius factor’’!. Commonly,
this feature is then simply identified by Kramers’s conve
tional factor that only depends onhb . A systematic study
performed in Ref.@26# has revealed the appearance of
threshold temperature Tthresh above which deviations from
the statistical model are seen over a wide range of fission
systems. Moreover, its ratio over the temperature-depen
barrier heightsEBar(T)[Eb(T) showed a remarkable insen
sitivity on mass numberA. For later purpose it is more con
venient to divide that ratio by 2 to get

T

2Eb~T!
U

thresh

.0.13 ~28!

from Fig. 4 of @26#. We are now going to view this result i
the light of our microscopic transport coefficients. At first w
shall concentrate on the ratioRK

hv(hb)/RK
hv(hb50), to com-

ment later on theT dependence of the additional factors se
in Eq. ~7!, and which involve ratios of the inertias or stif
nesses.

A. Rate from microscopic transport coefficients

In Fig.6 we plot the normalized rates for the three ca
shown already in Fig.1, but now as function of temperat
as determined by our microscopich(T). Various conclusions
may be drawn from this figure.

~1! AboveT.0.620.7 MeV an ‘‘onset of dissipation’’ is
seen, indeed, in the sense of a decrease of the rate fo
‘‘high viscosity’’ limit. The value of this ‘‘threshold tempera
ture’’ is in reasonable agreement with theTthresh.1.09
21.22 given in Table I of@26# for 224Th.
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~2! Moreover, from the right panel of Fig. 5 together wi
the value for the frequency given in Fig. 3 one may dedu
for these temperatures thehb to be larger than the value o
T/2Eb given in Eq.~28!. It then follows from Eq.~11! that
the deviation from the statistical model is to be attributed
the high viscosity limit.

~3! This feature evidently is related to the disappeara
of pair correlations atT.0.5 MeV. The curve for the ‘‘low
viscosity limit’’ demonstrates that below this temperature t
former case should not be used at all@mind condition~11!#.

~4! As indicated earlier, aboveT.2 MeV the
overdamped limit applies, for which we suggested to u
formula ~10!.

B. Comparison with phenomenological models

In Fig. 7 we compare the result shown in the previo
figure @for formula ~5!# with the one of a macroscopic pic

FIG. 6. Temperature dependence through a microscopich
5h(T) ~solid line!; the dashed curve represents the overdam
case as given by Eq.~9!, the dotted one corresponds to the lo
viscosity limit as given by Eq.~8! for the same barrier height as i
Fig. 1.

FIG. 7. Temperature dependence of the decay rate in high
cosity limit: solid curve: same as in Fig. 6; dashed curve:hb given
by Eq. ~29!; dashed-dotted curve: wall friction and liquid drop va
ues for stiffness and inertia.
6-7
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ture, together with that suggested in Refs.@3,4#. By the mac-
roscopic model we mean to use the wall formula for frictio
the liquid drop model for inertia~irrotational flow! as well as
for the stiffness. In Ref.@3# the following functional form for
hb(T) had been suggested:

h~T!50.213T2. ~29!

It is seen that for such aT dependence the onset of dissip
tion occurs quite abruptly and at rather small temperatu
One must have in mind, though, that the ratio plotted in F
7 is sensitive to the temperature at the barrier, as it is this
that determines thehb . This fact might explain why the
transition exhibited here through the dashed curve lies
smallerT than discussed in Refs.@3,4#. It can be said that for
the other ansatzh(T)50.215T used as well the transition
would occur at even smaller temperatures. The reason se
obvious: In these two formsthe dissipation rateh is much
too large at small T—at least too large as compared to o
microscopic results. Indeed, as discussed above, at s
temperaturespairing correlations require dissipation to van
ish.

C. Relation to the statistical model

The rate of the high viscosity limit when extrapolate
down to zero friction,RK

hv(hb50), corresponds to a varian
of the transition state method, and thus to one@7# of the
Bohr-Wheeler formula@27# ~see also@14#!. We demonstrate
in Sec. A 2 that this still holds true for the modified versio
of variable inertia. One must have in mind, however, th
such an extrapolation may be meaningless as, by its v
construction, the transition state method bases on the
sumption of a complete equilibrium. The latter is given on
if sizable friction forces provide sufficiently fast relaxation
this global equilibrium. Our result for the temperature dep
dence of friction then imply that any version of the transiti
state result must be taken with reservation when applie
small thermal excitations. At this point it would be too mu
to compare complicated evaluations of the Bohr-Whee
formula with estimates of Kramers’s rate which have o
microscopic transport coefficients as input. This must be s
ject of further studies.

What is feasible, however, is to compare our results w
those of a statistical model, in which the Bohr-Wheeler f
mula @27# is approximated by

Rstat5
T

2p\
exp~2Eb /T!, ~30!

see, e.g.,@28,29#. This approximate form comes up when
the Bohr-Wheeler formula@27# the level density at the bar
rier is identified as that of the total system, whereas in
correct expression the collective degree of freedom has t
excluded~see, e.g.,@14#!. That such an approximation ma
lead to erroneous results when interpreting data has b
pointed out also in Ref.@30#. We may briefly follow up this
discussion by using our microscopic input.
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The ratioRK /Rstat may be calculated for the three cas
we looked at before, low and ‘‘high viscosity’’ limit as wel
as the overdamped limit. For ‘‘high viscosity’’ one gets fro
Eq. ~6! @mind Eq.~7!#

RK
hv

Rstat
5

\Ãb

T
A Ca

uCbu~
A11hb

22hb!. ~31!

For overdamped motion, expression~10! leads to

RK

Rstat
5A Ca

uCbu
uCbu
gb

\

T
. ~32!

The result ~30! can be expected to deviate sizably fro
Kramers’s one. This is demonstrated in Fig. 8 by the fu
drawn line that represents the ratio given in Eq.~31!. Here,
the ‘‘onset of dissipation’’ seemingly is even more pr
nounced, and the deviation starts at a much higher temp
ture. However,these effects are not related to dissipatio
only. Besides the more or less obvious fact of the prefacto
Eq. ~30! being not identical to the frequency\Ãa.\Ãb ,
there appears the square root of the ratios of the two s
nesses. The latter is largely influenced by shell effects, wh
are known to be sensitive to variations of temperature. T
implication of this feature on the ratioRK /Rstat is exhibited
in Fig. 8 by the dotted curve. Its deviation from the solid o
is solely due to the stiffnesses being evaluated from
(T-independent! liquid drop modelCLDM(T50).

Obviously, theRstat becomes small at small temperature
say below about 0.5 MeV. In this range nuclear friction
small, too, not only at the barrier but also inside the well~see
Figs. 3 and 4!. Discarding any quantum effects, which in th
regime may become important@8#, one might then use
Kramers’s low viscosity limit. As mentioned previously, an
transition state result, however, doesnot apply, for which
reason a comparison of both is meaningless. For the Bohr-
Wheeler formula to be valid the system inside the well has
be in complete equilibrium@10#. Such a situation is given
only for sufficiently large damping.

FIG. 8. Ratio ~32! of Kramers’s rate to that of the statistica
model ~solid line!. The dotted curve demonstrates the influence
the stiffnesses, which now are calculated from the liquid dr
model, but with friction unchanged.
6-8
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D. Isotopic effects

In Ref. @3# different nuclei have been studied experime
tally and analyzed with respect to a temperature depend
of the dissipation strengthhb ~called g there!. In particular
two isotopes of thorium have been examined, namely,224Th
and 216Th corresponding to neutron numbers ofN5134 and
126, respectively. The different behavior seen in experim
has been fully attributed to thishb and in this way very
different values ofhb have been found, together with a di
ferent increase withT. Evidently such features cannot b
explained within a macroscopic picture. One needs to
count properly for shell effects. From our experience w
microscopic computations it seems unlikely that they wo
have such a big influence on friction alone. On the ot
hand, recalling thatN5126 corresponds to a closed shell,
is evident that the stiffnesses forN5134 and 126 will be
quite different, in particular for the ground state minimu
This effect can be seen on the right panel of Fig. 9, wh
shows the square root of the relevant ratios to be quite
ferent for the two isotopes. Moreover, it is easy to convin
oneself that this effect is in the right direction. Indeed, as
be seen from Eq.~31!, smaller values of this ratioACa /uCbu
simulatelarger values ofhb . Notice, please, that an excita
tion of about 100 MeV, as given in Fig. 9 of Ref.@3#, cor-
responds to a temperature ofT'2 MeV. Finally, on the left
panel in Fig. 9 we show the full ratio as given by Eq.~32!.
Evidently, we are not able to fully explain the results sho
in Fig. 9 of Ref. @3#, but this would have been asking to
much, for various more or less obvious reasons.

V. SUMMARY AND DISCUSSION

One of our main goals was to suggest simple forms of
temperature dependence of those quantities that parame
transport in collective phase space. These suggestions
based on simplified pictures for the intrinsic response co
bined with experience in microscopic computations with
realistic approaches employing the deformed shell mo
Rather than using the transport coefficients themselves
argued in favor of combinations that allow for a more dire
physical interpretation.

These results were tested at the fission decay rate
make our reasoning as transparent as possible, a simple
dimensional model was used, for which Kramers’s pictu
can be applied. This model is somewhat schematic, in so

FIG. 9. Results for different Th isotopes: left panel: ratio
Kramers’s rate to that of the statistical model; right panel: influe
of shell structure through ratio of stiffnesses.
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as the potential is assumed to have one pronounced m
mum and one pronounced barrier only, which follow more
less closely the form of two oscillators, one upright and o
inverted. Different to the original work of Kramers’s and o
many subsequent applications, our transport coefficie
were allowed to vary along the fission path. In a first a
proximation this leads to a modification of Kramers’ origin
rate formula. For variable inertia, such a modification
ready appears necessary for the simple reason that for l
damping one should reach the rate formula correspondin
the Smoluchowski equation. Still, the deviation from the u
damped case is solely determined by the damping stre
hb calculated at the barrier. However, for a complete und
standing of temperature effects of the decay rate it does
suffice to concentrate only on this damping strength.

Of course, such a simple model for the static energy m
not apply at all at~smaller! temperatures when shell effec
lead to important deviations. It is unclear how one cou
generalize the formulas of Kramers and Bohr-Wheeler to
alistic cases with two or perhaps three barriers hav
minima in between. To calculate the decay rate for such
tentials it is perhaps simpler to use the more general desc
tion in terms of Fokker-Planck or Langevin equations. It m
then also be possible to account better for the variations
the other transport coefficients with coordinate and tempe
ture, namely, inertia and friction. To the best of our know
edge, in such calculations only the transport coefficients
macroscopic models have been used so far. However,
content of Fig. 7 indicates that greater deviations can
expected for microscopic inputs.

Nevertheless, within our model we are able to clarify
few important points that must not be discarded even at t
peratures at which shell effects do not really dominate
process.

~1! The transition to overdamped motion already occurs
temperatures aroundT.2 MeV. Then the decay rate shoul
be calculated from the Smoluchowski equation.

~2! In this case no inertia appears any more. Thus neit
the frequencyÃ nor the effective widthGkin5\g/M ~some-
times referred to as\b) play any role.

~3! The solely important quantities are the ratio of frictio
to stiffness,g/C, and~for the decay rate! the ratioCa /Cb of
the stiffnesses. Physically, the former determines the re
ation time for sliding motion in the potential, see Eq.~22!. In
passing, we may note that it is essentially this time that
termines the saddle to scission time, an effect not conside
here. Notice that these stiffnesses are subject to large s
effects that may easily be accounted for by the shell corr
tion method. As a first demonstration of this effect we ha
calculated the impact of these stiffnesses on the decay ra
the thorium isotopesN5134 andN5126.

~4! In principle, the vibrational frequencyÃ should be
obtained from microscopic computations~for T,2 MeV!.
But a simple and quite fair estimate may be given by\Ãa
.\Ãb.1 MeV, Eq. ~20!, which is almost exact for the
case of224Th. Evidently, theÃ may be greatly influenced by
shell effects, but from our experience we claim that the
viations are within a factor of about 2.

~5! Finally, we should like to briefly comment on the pa

e

6-9



n
n
d
a
ll
se
fr
oo

p
a

re
im
a
n

rs

ve
f t
te

h
. I
-
tt
it

ld
a
s

e
o

f-
m

ul
m

r
p
a
s
tio
al

e
o

b
to
n

e

-
of a
effi-
ric-
as
ion

ss

at

een
at
hold
ary

a-

ces

the
a-
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per presented in Ref.@31#. There scaling rules have bee
derived for the case of the Smoluchowski equation, a
based on phenomenological input. In the schematic mo
underlying the discussion a few assumptions had been m
which are not in accord with microscopic results. First of a
the ratio of barrier height to temperature definitely decrea
with T. Secondly, as the authors monitor themselves, a
quency at the barrier of the order of 20 MeV is much t
high. Together with the value used forb, namely, b
[Gkin /\.1022 sec21 one gets anhb.0.2. This implies the
motion around the barrier to beunder damped rather than
overdamped. Moreover, for several cases studied in this
per, thehb is seen to be of the order of or even smaller th
T/2Eb . Thus, according to Eq.~11! not even Kramers’s high
viscosity limit seems appropriate.

Let us turn now to very low temperatures, say to the
gime where pairing correlations become important. They
ply an additional reduction of dissipation, such that one m
truly speak of the onset of dissipation when pair correlatio
disappear. It must be said though that this transition occu
temperatures definitely smaller than those suggested
@1–5#. As mentioned earlier, one has to make sure, howe
that one speaks of the same temperature. The one o
compound nucleus might be larger than the one the sys
still has when it passes the barrier.

It needs to be stressed that a small damping strengt
small temperatures may have quite drastic implications
case the ‘‘high viscosity limit’’ still applies quantum correc
tions to the decay rate would lead to an increase of the la
@8#. If, however, the dissipation strength falls below the lim
given by Eq.~11! the nature of the diffusion process wou
change completely. Then dissipation is too weak to warr
relaxation to a quasiequilibrium. This not only violate
Kramers’s rate formula~for the high viscosity limit!, or our
extension of it, but also the Bohr-Wheeler formula becom
inapplicable. Moreover, so far no method exists as to h
one might incorporate collective quantum effects.

Finally we should like to indicate that our transport coe
ficients are not free of uncertainties in some of the para
eters specifying our microscopic input. The most diffic
one is found in the single particle width. It has been para
etrized in Ref.@32# by referring to the optical model fo
nucleons in finite nuclei through a kind of local density a
proximation. There theG0 and its dependence on the nucle
density had been traced back to microscopic computation
the self-energies in a generalized Brueckner-type descrip
This implies an uncertainty of perhaps a factor of 2 in
formulas where the friction coefficient appears, as in Eq.~21!
or Eq. ~22! as well as in theh of Eq. ~4!. Since any micro-
scopic answer on such questions is extremely difficult, th
is hope of narrowing down this uncertainty by more elab
rate comparisons with experimental results.
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APPENDIX A: IMPLICATIONS FROM
A VARIABLE INERTIA

In Kramers’s seminal paper@7# the equation for the den
sity in phase space was written and applied to the decay
metastable system for the case of constant transport co
cients. In nuclear physics both the inertia as well as the f
tion coefficient vary with the collective coordinate. This h
been accounted for already in early applications to heavy
collisions, where globally Gaussian solutions~centered at the
classical trajectories! were used to calculate reaction cro
sections see, e.g.,@33#. Written in compact form for one vari-
able the transport equation should read

]

]t
f ~Q,P,t !5H 2

P

M ~Q!

]

]Q
1

]

]Q S P2

2M ~Q!
1V~Q! D ]

]P

1
]

]P S P

M ~Q!
g~Q!1D~Q!

]

]PD J f ~Q,P,t !.

~A1!

Neglecting any quantum effects, which might show up
small temperatures only@6,8#, the diffusion coefficient is
given by the classic Einstein relationD(Q)5g(Q)T. A pos-
sibleT dependence of the transport coefficients has not b
indicated explicitly. This is immaterial as long as we tre
temperature as a fixed parameter, which is assumed to
true in the entire paper. As is easily verified, one station
solution of Eq.~A1! is the distribution of global equilibrium

f eq~Q,P!5
1

Z
exp@2bH~Q,P!# ~A2!

with the energy given by the classical Hamilton function

H~Q,P!5
P2

2M ~Q!
1V~Q!. ~A3!

The reason is due to the following features:~i! The conser-
vative part of the equation has the form of Liouville’s equ
tion, namely,

]

]t
f ~Q,P,t !5$H~Q,P!, f ~Q,P,t !%. ~A4!

~ii ! The terms that represent dissipative and fluctuating for
are assumed independent of the momentumP, such thatP
only appears quadratically in the kinetic energy.~iii ! The
choice of the diffusion coefficient byD(Q)5g(Q)T makes
the second line of Eq.~A1! vanish once applied to Eq.~A2!.

The structure of these equations not only allows for
proper equilibrium, but it also warrants the continuity equ
tion to be valid in the form

]

]t
n~Q,t !1

]

]Q
j ~Q,t !50, ~A5!
6-10
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with the current and spatial densities being defined as

j ~Q,t !5E dP
P

M ~Q!
f ~Q,P,t ! ~A6!

and

n~Q,t !5E dP f~Q,P,t !, ~A7!

respectively. This is easily verified with the help of Eq.~A1!
exploiting partial integrations with respect to momentumP
~for which no ‘‘surface terms’’ survive!.

Both in Liouville’s equation as well as in the transpo
equation~A1! a term appears that needs to be treated w
special care. It is the one that results from the spatial der
tive of the kinetic energy, and reads

S ]

]Q

P2

2M ~Q! D ]

]P
f ~Q,P,t !. ~A8!

Indeed, this term is absent in the common derivation of
rate formula~see, e.g.,@10#!, where always a constant inert
is assumed to be given. It may be noted that this term m
imply difficulties with ‘‘saddle point approximation,’’ as
needed in Kramers’s stationary solution. Moreover, and m
important for the present purpose, this term is also negle
in extracting the transport coefficients within the linear
sponse approach. There, a locally harmonic approximatio
exploited, which for the sake of simplicity is formulated on
with respect to the coordinate. What that means may be
sualized in the following way. Look at the Liouville part o
the transport equation, in particular, at the term that invol
the derivative of the Hamilton function with respect toQ.
First of all there is the ordinary force from the potentia
which in the expansion around aQ0 to harmonic order may
be written as

2
]

]Q
V~Q![K~Q!'K~Q0!2C~Q0!~Q2Q0!, ~A9!

with the second derivative of the potential defining the lo
stiffnessC(Q0). In addition there is the term

S ]

]Q

P2

2M ~Q! D5P2
]

]Q S 1

2M ~Q! D ~A10!

which is of second order~namely, in P). In a consistent
treatment one would have to introduce aP0 and expand all
terms locally in collective phase space around the (Q0 ,P0)
to second order both inQ2Q0 andP2P0 ~see@33#!. So far
this has not been done when extrapolating transport co
cients from the microscopic linear response approach. T
does not imply that our inertia may not change with t
coordinate at all. It only means that the terms including
derivative have been discarded. With respect to the b
transport equation~A1! this approximation may be phrase
as
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US ]

]Q

P2

2M ~Q! D ]

]P
f ~Q,P,t !U

!U ]

]P S 2K~Q!1
P

M ~Q!
g~Q! D f ~Q,P,t !U.

~A11!

1. Kramers’s decay rate formula extended to variable inertia

For reasons given above, we still want to make use of
condition ~A11!. Nevertheless, it is necessary to rederive
expression for the rate, which still is defined as

R5
j b

Na
. ~A12!

To calculate the quantities involved we need a global so
tion f glob(Q,P) of equation~A1!, which corresponds to a
small but finite,~quasi!stationary current across the barrie
This current may be calculated from Eq.~A6!, with
f (Q,P,t) replaced byf glob(Qb ,P). The probabilityNa of
finding the system inside the well atQa may be calculated as
follows:

Na5E
Qa2D

Qa1D

dQE dP fglob~Q,P!5E
Qa2D

Qa1D

dQnglob~Q!.

~A13!

The integration range 2D has to be smaller thanQb2Qa but
large enough such that it contains the vast majority of
ensemble points sitting in the well. An approximation f
f glob(Q,P) may be constructed by matching together at so
intermediate pointQ̄ local solutions valid at the minimum
Qa and at the barrierQb . The global solutionf glob(Q,P)
will have an overall normalization factor that drops out wh
calculating the rate from Eq.~A12!. The normalization of the
local solutionsf (Q'Qa ,P) and f (Q'Qb ,P), on the other
hand, might be different. It has to be chosen in appropr
fashion such that both solutions match properly atQ̄.

For a sufficiently high barrier the particles inside the p
tential well may be assumed to stay close to a local equi
rium associated to the temperatureT. In case that the corre
sponding fluctuationŝ DQ2&a

eq concentrate on a region
around the minimum, the potential may be replaced b
harmonic oscillator and the associated local phase-space
sity may be approximated by

f a~Q,P![ f ~Q'Qa ,P!

5Na expF2bS P2

2Ma
1V~Qa!1

Ca

2
~Q2Qa!2D G .

~A14!

This is a reasonable estimate up to aQ̄ with

~Q̄2Qa!2*^DQ2&a
eq[

T

Ca
. ~A15!
6-11
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Likewise, approximating the barrier by an inverted oscillat
the phase-space density may be represented by Kram
stationary solution@7,10# ~neglecting any quantum effects
see, e.g.,@6#!

f b~Q,P![ f ~Q'Qb ,P!

5Nb expF2bS P2

2Mb
1V~Qb!2

uCbu
2

~Q2Qb!2D G
3E

2`

P2A(Q2Qb)

du
1

A2ps
expS 2

u2

2s D , ~A16!

where

A5
uCbu

Ãb~A11hb
22hb!

and

s5TMbS 1

~A11hb
22hb!2

21D . ~A17!

This latter solution must be joined to the one given by E
~A14! in some intermediate region, say atQ̄. It would be too
much to require this to be possible forany P, in particular, as
we are not able to treat the inertia in continuous fashion,
reasons given above. However, as the rate is determine
the ratio of two quantities which are averaged over mom
tum it turns out sufficient to match only the reducedQ-space
densities. As suggested by Eq.~A7!, the latter are obtained
by integrating out the momentumP in Eqs.~A14! and~A16!
to get

na~Q!5NaA2pMaT expF2bS V~Qa!1
Ca

2
~Q2Qa!2D G

~A18!

and

nb~Q!5NbApMbT

2
expF2bS V~Qb!2

uCbu
2

~Q2Qb!2D G
3F11erfSAuCbu

2T
~Q2Qb! D G . ~A19!

To obtain the last expression identities for error functio
have been applied. Still it is not of a form for which a co
dition, such asna(Q̄)5nb(Q̄) would make much sense. Fo
this we need the additional assumption

uCbu~Q̄2Qb!2@T, ~A20!

which renders the error function in Eq.~A19! close to unity.
Then the two densities match smoothly at aQ̄ satisfying

V~Qa!1
Ca

2
~Q̄2Qa!25V~Qb!2

uCbu
2

~Q̄2Qb!2,

~A21!
05431
,
s’s

.

r
by
-

s

if only the normalization constants are chosen according

Na5NbAMb

Ma
. ~A22!

Now we are in a position to calculate the rate from E
~A12!. Plugging Eq.~A22! into Eq. ~A14! the number of
‘‘particles’’ at the minimum~A13! becomes

Na'NbA2pMbTA2pT

Ca
exp@2bV~Qa!#

5Nb2pTAMb

Ca
exp@2bV~Qa!#. ~A23!

To get this simple expression it was assumed that theD,
which in Eq.~A13! defines the range of integration, is of th
order of or larger than the fluctuation^DQ2&a

eq given in Eq.
~A15!, such that the Gaussian integral can be calculated
D→`. The current at the barrier may be evaluated from E
~A16! and~A6! with Q5Qb . After a lengthy but straightfor-
ward calculation involving identities for error integrals, on
more, one arrives at

j b5NbTAMb

uCbu
Ãb~A11hb

22hb!exp@2bV~Qb!#.

~A24!

From Eqs.~A24! and ~A23! the decay rate~A12! turns into

RK
hv5

Ãb

2p
A Ca

uCbu~
A11hb

22hb!exp~2bEb!

5
Ãa

2p
AMa

Mb
~A11hb

22hb!exp~2bEb!, ~A25!

confirming the expression~6! used in the text. We may not
again that the result~A25! was derived earlier in@15# within
an extension of the perturbed static path approximat
~PSPA!.

Finally, we like to come back once more to the conditio
~A15! and ~A20! imposed before. They go along with th
relation ~A21! for Q̄ and the barrier heightEb5V(Qb)
2V(Qa). The latter must then satisfyEb5Ca/2(Q̄2Qa)2

1uCbu/2(Q̄2Qb)2@T. It may be useful to visualize thes
relations with the help of the following schematic potentia

V~Q!5H V~Qa!1
Ca

2
~Q2Qa!2 for Q,Q̄,

Eb1V~Qa!2
uCbu

2
~Q2Qb!2 for Q.Q̄.

~A26!

Choosing theQ̄ according to Q̄5(CaQa1uCbuQb)/(Ca
1uCbu) the two parabolas match smoothly with a continuo
first derivative. Possible errors related to Eqs.~A15! and
~A20! may easily be estimated from elementary properties
the error function.
6-12
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2. The relation to the transition state result

In transition state theory one assumes a system tha
totally equilibrized inside the barrier and for which, at th
barrier, current only flows outward discarding any backflo
Within its most general version, the fission rate has b
estimated by Bohr and Wheeler through their famous f
mula@27#. There the equilibrium is the one of a microcanon
cal ensemble as represented by the density of states~of the
total system at the minimum and of the intrinsic system
the barrier!. To the extent that the microcanonical ensem
may be represented by a canonical one, with one and
same temperature at the minimum and at the barrier,
calculation of the rate can be done as follows, looking o
at the collective degree of freedom. The outward current~at
the barrier! is given by

j b
trans5E

0

`

dP
P

Mb
f eq~Qb ,P!

}E
2`

`

dP
P

Mb
expS 2b

P2

2Mb
DQ~P!. ~A27!

Comparing with Kramers’s stationary solution shown in E
~A16! one realizes@34# the only difference the replaceme
of the theta functionQ(P) of Eq. ~A27! by the integral~for
Q5Qb) which appears in the second line of Eq.~A16!. Due
to the following representation of theQ function

Q~P!5 lim
s→0

E
2`

P

du
1

A2ps
expS 2

u2

2s D , ~A28!

it is seen that~for finite temperature!

Rtrans5RK
hv~h50!. ~A29!

This follows immediately with the help of the expressio
given for s in Eq. ~A17!.

3. The Smoluchowski limit

Performing in Eq.~A25! the limit hb@1, with the effec-
tive damping rate defined by~2!, one gets

RK
hv→Ãb

2p
A Ca

uCbu
1

2hb
exp~2bEb!

5
1

2p

1

gb
ACauCbuexp~2bEb!5Rovd. ~A30!

This expression coincides with the formula~10! associated
above with the Smoluchowski limit. As a matter of fact, th
result can be obtained directly from the Smoluchowski eq
tion

]

]t
n~Q,t !5

]

]Q S 1

g~Q!

]V~Q!

]Q
1

T

g~Q!

]

]QDn~Q,t !

5
]

]Q
j ~Q,t !. ~A31!
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The calculation of the decay rate is quite easy in this ca
Indeed, Eq.~A31! gives an explicit form of thej (Q,t) as a
function of the densityn(Q,t). Although in our case the
friction coefficient varies withQ the common derivation of
the rate formula~see, e.g.,@35#! may be taken over withou
much difficulties.

Notice that the transition from an equation like Eq
~A1!–~A31! only requires theh(Q) to be large enough a
any Q. Such a transition may be performed also in the c
of a variable inertia, at least if condition~A11! is fulfilled. In
any case, in the overdamped limit the inertia has to drop
We may note in passing that this transition is in accord w
the locally harmonic approximation in the form discussed
Sec. 2.2.5 of@6#. Following the arguments of Sec. 10.1 an
10.4 of@35#, Eq. ~A31! can strictly be derived from Eq.~A1!
neglecting the term~A8!.

4. Strutinsky’s derivation of the rate formula

The essential idea exploited in Ref.@14# is written there
below Eq.~6!. Different than the approach described in Se
A 1 , the number of particlesNa at the minimum is estimated
by multiplying the densitynb(Q) of Kramers’s stationary
solution calculated atQa by an ‘‘effective length,’’ which in
turn is determined by the mean fluctuation of the oscillato
this Qa timesA2p, viz. by

A2p~DQ!eq5A2pT

Ca
. ~A32!

~The additional factorA2p is required to ensure the appro
priate measure needed for the normalization of a Gauss!
In this way one gets from Eqs.~A24! and ~A19!

RK
hv5

Ãb

2p
A Ca

uCbu~
A11hb

22hb!exp~2bEb!. ~A33!

Here, it was assumed~i! that theQb2Qa is sufficiently large
such that in~A19! the error function could be replaced b
unity, and~ii ! that the barrier height can be estimated asEb
'(uCbu/2)(Qa2Qb)2. The result~A33! has the same form
as given in Eq.~A25!. As explained earlier, it is equivalent t
Eq. ~6! or the second line of Eq.~A25! that involve the
inertias. This latter expression is identical to the one given
Eq. ~16! of @14# if one only interchanges there primed an
unprimed quantities.

APPENDIX B: A SCHEMATIC MICROSCOPIC MODEL

1. The Lorentz model for intrinsic motion

Let us assume that the nucleonic excitations can be
rametrized by the response function~in this section we set
\51)

x~v!52F2F 1

v2V1 iG/2
2

1

v1V1 iG/2G . ~B1!

Here, the average matrix elementF2 of the one body opera
tor F̂, which acts as the generator of collective motion, m
6-13
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sures the overall strength of the distribution. The sta
reached by that coupling are centered atV with an effective
bandwidthG ~measured here in units of MeV/\). For real
frequencies the reactive and dissipative response functi
x8 andx9, are readily calculated noticing that they repres
real and imaginary parts ofx(v)5x8(v)1 ix9(v). The
static response is given by

x~0!5
2VF2

V21~G/2!2
5x8~v50!. ~B2!

It is useful to rewrite this~intrinsic! response functionx(v)
in terms of the form of the oscillator response given in E
~12!,

x~v!5
22VF2

v21 iGv2@V21~G/2!2#
5

21/M int

v21 iG intv2Ã int
2

.

~B3!

In this way transport coefficients for intrinsic motion appe

M int5
1

2VF2
, G int5G, Ã int

2 5V21~G/2!2. ~B4!

Next we turn to the collective response. For theF mode it
is given by@6#

xcoll~v!5
x~v!

11kx~v!
5

1

1

x~v!
1k

5
21/MF

v21 iGFv2ÃF
2

,

~B5!

with the inverse coupling constant

2
1

k
5C~0!1x~v50! ~B6!

andC(0) being the stiffness of the free energy. The transp
coefficients for the collectiveF mode are

MF5M int , GF5G int , CF[MFÃF
25M intÃ int

2 1k.
~B7!

To get the transport coeffecients for theQ-mode one needs to
multiply these quantities by 1/k2. For slow modes it so turns
out that to a good approximation theC(0) in Eq. ~B6! may
be neglected as compared to thex(0). This leads to

M5
1

k2
MF'

@x~0!#2

2VF2

5
2VF2

@V21~G/2!2#2
5

x~0!

V21~G/2!2
5

1

2

]2x8

]v2 U
v50

.

~B8!

In the last expression we have made use of Eq.~B2!. Last but
not least this has been done because the static resp
05431
s

s,
t

.

r

rt

nse

seems to be quite insensitive to the increase of the temp
ture @36#, at least for not too largeT. The transformation
from the F to the Q mode leaves ratios between transp
coefficients unchanged. The collective width and the ra
between friction and inertia, thus becomesGkin5G. For fric-
tion this implies

g5GkinM5
G

V21~G/2!2
x~0!5

]x9

]v U
v50

~B9!

and for the stiffness one gets the expected resultC'C(0),
which follows because theCF of Eq. ~B7! can be written as

CF5MFÃF
25

1

x~0!
1k5

C~0!

x~0!@C~0!1x~0!#
'

C~0!

@x~0!#2
.

~B10!

The second equation follows from Eqs.~B4! and ~B2!.
Finally, we should like to note that for the schema

model with only one mode the inertia always is the o
which defines the value of the energy weighted sum. Li
wise, as one may see from Eq.~B9! for friction and~to lesser
extent! from Eq. ~B8! for the inertia, these transport coeffi
cients are well represented by their ‘‘zero frequency limits

2. Benefits and shortcomings of this model

a. Weak damping

For this model weak damping is defined asV@G/2. In
this case static response and inertia turn into the express
known from the so called ‘‘degenerate model’’@21# x(0)
52F2/V and M52F2/V3. Notice where in the inertia ha
the typical structure of the cranking inertia. For friction on
getsg52GF2/V3.

The degenerate model becomes most transparent if
applied to the case wherein nucleons move in oscillator
tentials, in particular, if any spin dependent forces are
glected. Then the intrinsic excitation is given by\V
5DN\V0[DN(41 MeV/A1/3), whereDN is the difference
in the major quantum numbers of those states that
coupled through the multipole operatorF. Whereas for the
quadrupole there is only one possibility, namelyDN52, this
is no longer true for other multipoles, for which more tha
just one mode are possible. The same holds true as soon
spin orbit force is introduced. Then even for the quadrup
transitions withDN50 are possible. It is them that lead t
the low frequency modes we are typically interested in,
they resemble closest the fission mode. If one still likes
stick to the~degenerate or! Lorentz model—which only al-
lows for one mode—the effective frequencyV will only be a
fraction of the shell spacing parameterV0.

b. Strong damping

It is tempting to apply this schematic model also to t
extreme case of very strong damping whenG becomes com-
parable to or larger than the frequencyV of the typical in-
trinsic excitation. Plain confidence in the formula~B9! would
lead tog.(4/G)x(0). This seems particularly intriguing i
6-14
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on the one hand the static response does indeed not ch
much withT, and if, on the other hand, theG is associated to
the widths of the single particle states, as will be discus
below. According to Eq.~B13! there might then be som
range in which the friction force would show the typical 1/T2

dependence one expects for liquids in the ‘‘collision dom
nated regime,’’ see also Sec. 5.3 of Ref.@17#. However, we
claim that for finite nuclei the situation is more complicate
Evidently, the effects of strong collisions are due to the
creasing importance of residual interactions. But the la
imply other consequences as well, last but not least a mix
with more complicated states such that with increasing th
mal excitations many-particle–many-hole states beco
more and more important. As has been demonstrated in
vious papers, see, e.g.,@13,6# amongst others, this effect im
plies that high frequency modes shift to lower frequenc
such that the typical mode at stake in the transport mo
gets more and more strength—implying that finally its iner
is given by the sum rule limit. Moreover, it has been de
onstrated that this feature goes along with the disappear
of shell effects atT5Tshell. This problem is addressed in th
text.

c. Temperature dependence through collisional damping

Looking back at the intrinsic response function introduc
in Eq. ~B1!, one realizes that the only quantity that can
expected to change sensitively with excitation is the widthG.
To get some first orientation we may relate it to the sin
.

uc

P

M
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particle width. For a Fermi system the latter can be expec
to be of the form2 @6#

Gsp~v,T!5
1

G0

~v2m!21p2T2

11@~v2m!21p2T2#/c2
, ~B11!

with the parameters

1

G0
50.03 MeV21 and c520 MeV. ~B12!

For slow collective motion we may omit the frequency d
pendence and evaluate this width at the Fermi surface
put v2m50 in Eq. ~B11!. Along this approximation we
may put

Gkin'2Gsp~m,T!'
0.6T2

11T2/40
~T in MeV!. ~B13!

Evidently the correction term in the denominator only b
comes important at temperatures of the order ofT
.6 MeV. This is already beyond that value were the oth
effects come into play we discussed in Sec. B 2 b. For
reason the actualG(T) is changed in the main text.

Finally we may note that our schematic model is not c
pable of accounting for pairing. The latter will modify th
transport properties at temperatures belowT.Tpair. This is
discussed in the text.

2Different than the notation used in@6#, here energies are mea
sured with respect to the Fermi surfacem.
.
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