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Nuclear fission: The “onset of dissipation” from a microscopic point of view
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Semianalytical expressions are suggested for the temperature dependence of those combinations of transport
coefficients that govern the fission process. This is based on experience with numerical calculations within the
linear response approach and the locally harmonic approximation. A reduced version of the latter is seen to
comply with Kramers’s simplified picture of fission. It is argued that for variable inertia his formula has to be

generalized, as already required by the need that for

overdamped motion the inertia must not appear at all. This

situation may already occur abo¥e=2 MeV, where the rate is determined by the Smoluchowski equation.
Consequently, comparison with experimental results does not give information on the effective damping rate,
as often claimed, but on a special combination of local stiffnesses and the friction coefficient calculated at the

barrier.
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I. INTRODUCTION

PACS nunier24.10.Pa, 24.75:i, 25.70.Jj, 25.70.Gh

For a positive stiffness@>0) and underdamped motion, the
w would be the frequency of the vibration and thg, its

It is of considerable interest to understand the temperatureidth. It should be noted that in the literature a different
dependence of transport properties associated with slow cohotation is sometimes used wheyestands forz, and often
lective motion of large scale. Fission is a prime example, andhe I';,/# is referred to ag.
indeed, for this case there is growing experimental evidence To understand the dynamics in phase space one also needs

[1-5] that damping effectively increases with One often

the diffusion coefficients. At small temperatures they may

tries to characterize this feature by one parameter, the effedeviate from the classic Einstein relatitgee[6]), but these
tive damping ratey that is related to the equation of averagefiner details will be neglected here. For such a situation the

motion for a locally defined damped oscillator

Mdzq da C =0 1
FﬁLVaJF q(t)=0, (1)
through
Y
= 2
=5 G 2

Theq=Q— Qg measures the deviation of the collective vari-
able Q from some fixed valu&),. In the following we will
also need other combinations of inerlig stiffnessC, and
friction v, namely,

0% f

7'collzm = m’ Tkin=™

C|

sz. (3)

The 7., Sets the scale foflocal) relaxation of collective
motion in a given potential oflocal) stiffnessC. The 7,

fission decay rate is commonly calculated within Kramers'’s
“high viscosity” limit [7], for which the dependence on fric-
tion is given by

RE (771

RE(7,=0)

Vi+ = me=(V1+ i+ 7)1 (5

Here, the index b refers to the fact that the transport co-
efficients are to be calculated at the barrier. It has been re-
ported, see, e.g., Fig. 5 p2], experimental data to suggest,
when analyzed on the basis of E§), the 5 to be negligibly
small at very low temperatures but to rise more or less
sharply aroundT=1 MeV. This result is in qualitative
agreement with microscopic calculations of the transport co-
efficients within linear response thed,8,9|, although cau-
tion is still warranted here. Let us leave aside the fact that at
lower temperatures the one-dimensional potential may attain
more structure than that found in one minimum and one
barrier, which is the picture underlying formulg) and that

on the other hand, measures the relaxation of the kineti‘eOr the sake of simplicity shall be applied in the sequel. As

energy to the equilibrium value of the Maxwell distribution.
Typically, for slow collective motion we expect this time to

be smaller than the former. The limit of overdamped motion

applies forr,< 7o - Using they introduced in Eq(2), the
following useful relation for their ratio is easily verified

will be demonstrated below, even then it is not permissible to
entirely parametrize the truly complicated transport process
by the single quantity;. Rather, other combinations bf, y,

and C are needed for more realistic descriptions. Moreover,
one should be guided by the theoretical fact, that not all
transport coefficients are equally well accessible both theo-

zn_h_ﬁ”m”: f Teol (4) retically as well as numerically, as is true for the inertia, for
h Tkin instance.
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Unfortunately, when physicists address transport prob- 10 |—
lems, all too often one disregards the importance of the in- ‘\
ertia, and, in particular, its variation with the collective co- i \
ordinate. Indeed, in studies based on the Caldeira-Leggett \
Hamiltonian (see, e.9.[10]) or in applications of the Ran- :
dom Matrix Theory(see[11]), the inertia is the one of the
unperturbed collective part of the total Hamiltonian, treated
as a(unknowr) parameter. In the case of nuclear physics the
situation is more complicated. First, there, no unperturbed
inertia exists at all; it may only show up in the final effective
equation of motion as one manifestation of the existence of
collective dynamics. Second, the ineriittmay depend sen-
sitively on the collective degree of freedom. This feature is 0.0 . . .
already well known from the traditional case of undamped 00 1.0 2.0 80 40
motion at zero thermal excitatidri2]. There is noa priori n
reason why this should be different at finite temperature, g 1. Kramers's correction factor to the rate as a function of

with perhaps two exceptions or modifications. With increas-,: the solid and dotted curves correspond to the Kty (5)] and

ing T, the M gets close to the liquid drop valyé&3], which 0w [Eq. (8)] viscosity limit (the latter is calculated for a barrier
only varies smoothly withQ and which is quite small. Si- neight ofE,=5.8 MeV, for2*Th at 1 MeV) and the dashed ones
multaneously the friction strength increases, so that one may the overdamped limi9).

quickly reach the situation of overdamped motion, for which

no trace of the inertia can be seen anymore. Such featurdimal expression Eq16), like in large parts of the derivation,
have been seen within the linear response appr(=6]), primed and unprimed quantities are interchanged. It is for
but to the best of our knowledge no other transport modethis reason that we feel compelled to redo the short calcula-

RM) / R (n=0)

has so far addressed this question. tion. The form(6) has recently been derived also in Rdf5]
by applying a generalized version of the “perturbed static
Il. RATE FORMULAS path approximatioriPSPA.”

o . . Notice please that the dependence of the rate on the ef-
Like in the analysis underlying3,4] we want to make use fective damping strengthy, still is given by Eq.(5). Using
of a simple formula for the decay rate. In slight modificationthe relationw?=|C|/M [see Eq.(3)] the limiting value at

of Kramers's[7] classic one we write zero dampindRlY’ (77,=0) may be written in the two equiva-
lent forms
hv _ Wa M a 2
RE(m0)= 5\ iy &P~ Eo/ (N1t ng=my). (6) i . M.
b RKv(nb:O):Z M—bexﬂ_Eb/T)

The indices ‘a” and “ b” refer to the minimum and maxi-
mum of the potentiaV(Q), located atQ, andQ,, respec- _wp [ Cy
tively. The E, stands for the height of the barrie, ~on |C—b|exp(— Ep/T). @)

=V(Qyp) —V(Q,). The factor yM,/My, not contained in

Kramers’s original work, is meant to account for the modi- The influence of dissipation is visualized by plotting in Fig. 1
fication one gets for variable inertia. Notice, that this inertiathe ratio Rﬂv(nb)/R{}”(nb:O). In addition to the result of
both influences the current over the barrier as well as théormula (5) we also show two other cases. First, we show a
number of “particles” (phase space pointsitting in the  simplified version of thdow viscosity limit

well. Commonly both quantities are calculated with the same

M that then drops out; see, e.g., E¢$.30 and (4.31) of R (7p) Ep

[10]. General reasons for the presence of this additional fac- m: oy - ®)

tor will be given in Appendix A. At first, in Sec. A1 we K

follow the more common derivation involving the construc- |t js valid for very small viscosity onlysee Eq(11) below]

tion of the densities at the barrier and at the minimum, whichgng provided[10] the action for the motion on top of the

in Sec. A3 is reduced to the SmOIUChOWSky |||'fBEe be- barrier may be approximated bYEb)%Eb/mb AsS demon_

low). In Sec. A4 we follow the arguments of Strutindld4],  strated in[8], for the nuclear case such a situation is found

which lead to exactly the same formula. Unfortunately, inonly at very small temperatures, much below the critical

Ref.[14] this feature is disguised by the very fact that in thetemperature for pair correlations to become important. Sec-
ond, we explicitly indicate the limit that the ratio E¢)

takes on for overdamped motion
ISince we are only looking at stationary situations we leave out

the time dependent factor that sometimes is taken into account to REU( )
simulate the “transient time” it takes before the stationary current e o o for n,>1. (9)
has built up. Rk’ (7p,=0) 47
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Whenever the “high viscosity limit” applies, the influence in the literature, such as in Rd#]. In this theoretical ap-
of dissipation manifests itself in a reduction of the decay ratgproach the transport coefficients of average motion are ob-
over the value given by Edq7). This deviation is claimed to tained by relating, in the low frequency regime the strength
allow for deducing a possible temperature dependence dfistribution of a microscopically calculated response func-
dissipation through the “measurable” rate. It must be notedtion x,4(®) to the one of the damped oscillator. The latter is
however, that for overdamped motion it is not the effectivedefined as
damping factory, that one deduces. Indeed, overdamped . ,
motion is governed by the Smoluchowski equation in which [Xosd ®)] (@)=~ (Mo +iyw—C)q(w) =~ Qe w),
no inertia appearsee Appendix A But the latter not only is (12)
present iny, but in Rﬂv(nb:O) as well. A better way of

= y ) ) and thus may be obtained by adding to Ef). the term
writing the rate formula in this case is

—exdt) On the right and performing a Fourier transforma-

tion. For overdamped motion the response function turns into
Rovs=RE (75=1) P P

[ 1
1 /CalCyl Xovd @)= — ———=— (13
= —\/———exp(—E./T ovd w+iCly’
27 V[Cy| 7 P~ Ep/T) y ?
1 c 1 In accord with the remarks from above on the Smoluchowski
=_" /—aTexp(— E,/T). (10)  limit no inertia appears anymore.
2m V|Cyl Teoll This approach permits one to calculate the transport coef-

ficients as functions of shape and temperature for any given

Here, the time scale?,, appears, which is relevant for over- nucleus. The formulation is done in such a way that on top of
damped motion across the barrier, see below. As can be irshell effects and pairin¢gsee[9] with references to previous
ferred from Fig. 1 this limit is actually given for values gf ~ works) collisional damping is accounted for as wélbr a
just above unity. Notice, please, that it is only with the addi-review sed6]). As one may imagine, such computations are
tional factor\M, /M, included in Eq.(6), on top of Kram-  quite involved, last but not the least because much knowl-
ers's classic version, that the inertia drops out in the overedge is required about various aspects of the dynamics of
damped limit. complex nuclear systems. This is one of the reasons why, as

A few comments are in order on the validity of the rate yet numerical computations have been done only for particu-
formulas of the high viscosity limit, for which the following lar nuclei or for more schematic casgi6,20,9. Neverthe-

assumptions must hold true: less, this experience may allow us to deduce some gross
(1) On the way from the minimum to the barrier the tem- features that may be considered generic to a wider class of
perature must not change. nuclear systems. This is what we are going to do below. It

(2) The barrier must be sufficiently pronounced, first of all seems appropriate, however, to first add some general re-
in the sense that its height be large as compared to the terfarks concerning calculations based on the deformed shell

perature, viz.E,>T, for further details see Sec. A1. model as an approximation to the general mean field.
(3) The effective damping rate must not be too small The output of calculations of the type just mentioned con-
tains much more detailed information than at present one
T may possibly relate to observable quantities. The coordinate
M= 2_Eb (1) dependence of the transport coefficients, for instance, is one
prime example. Often in nuclear transport theories one sim-
otherwise formula8) would have to be applied. ply has aimed at constant coefficients for inertia and friction.

It may be quite a delicate matter to fix or calculate thelf calculated within the linear response approach, on the
temperature that is at stake here. For instance, a temperatuther hand, sizable variations with shape are seen. One may
Tcn associated with théotal available energy for theom-  recall that a similar feature is already seen in the potential
pound nucleusnight be much larger, as for high initial ther- landscape, when calculated with the Strutinsky procedure,
mal excitations the system may cool down by emission ofor instance. Besides the maxima and minima that are typical
neutrons ory’s before it fissions. Finally, we should like to for gross shell effects, one sees detailed fine structure. Such
remark once more that presently any possible quantum fedeatures may depend on peculiarities of the underlying shell
tures are discarded, which might show up at low temperamodel, and may thus be unphysical in nature already by that

tures[8]. reason. For the dynamic transport coefficients themselves,
further implications arise from quasicrossings of levels. To
IIl. MICROSCOPIC TRANSPORT COEFFICIENTS large extent such effects can be expected to become much

weaker in a multidimensional treatment, which, at present, is
Evidently, the temperature dependence of the rate will benot feasible.
greatly influenced by that of the transport coefficients—on One should not forget that problems of this type are inti-
top of the influence through the Arrhenius factor mately related to the fact that transport coefficients of inertia,
exd —E,(T)/T]. Let us first look into results obtained apply- stiffness, and friction are those aferage motion, calculated
ing linear response theory within the locally harmonic ap-on the level of the mean fieldrinally, however, they are
proximation[6], before we turn to discuss other forms usedneeded for an equation of motion of Fokker-Planck type that
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15.0

The smoothing functioffi,,(x) in Eq.(14) is taken to be that

of the Strutinsky shell correction method and tQe are
some points in deformation space. The use of the Strutinsky
smoothing function guarantees stability of the averaging pro-
cedure: the smooth component of the deformation energy is
restored after smoothing again. This implies that the liquid
drop part of the energy is unchanged by this averaging.

In the figure we also show the averaged potential corre-
sponding to temperaturés=0, 1, 2, and 3 MeV. As ex-
pected, with increasing temperature the deformation energy
becomes much smoother and the height of the fission barrier
gets reduced. This is due to the reduction of shell effects, as
well as the temperature dependence of the liquid drop part.

FIG. 2. Deformation dependence of the collective potential en-At temperatures above~3 MeV the shell effects have dis-

ergy. The dotted curve shows the deformation enerdgy=a0. The ap_pef_ired Cpmplet_ely_and the averaged deformation energy
dashed, dot-dashed, solid, and solid with stars curves correspond gglnCIdeS with its liquid drop component. As sgen from.the
the averaged deformation energy at temperatiire®, 1, 2, and  19Ure, at smaller temperatures the shell correction, albeit av-
3 MeV. The deformation parameter here is the distaRggbe-  €raged, does contribute to the deformation energy and,
tween the centers of mass of left and right parts of nudidivsded ~ hence, to the stifiness. For example,Tat 1 MeV the stiff-
by the diameter R, of the sphere with equal volumeThe averag- Ness at the barrigimaximum of the deformation energis
ing is carried out on the interval (R;,/Ry) =0.1. still several times larger than that of the liquid drop part.

It should be mentioned that in RgfL8] a somewhat dif-
ferent (averaging procedure was used. There the deforma-

accounts for dynamicdluctuations The latter will help to imated by t bol d the stiff
smooth out the variations of the transport coefficients in mosfoN €nergy was approximated by two parabolas and the stiff-
gess(at the minimum and the barriewas defined by the

natural way. Evidently, the problem at stake here reflects th t £ th bola. In thi hell effect

general deficiency of the mean field theory. In a more appro(—:urvﬁ1 l(ere Ot ¢ esle para c;a.t n tls Yvay.t‘;‘] el e etcts ?hre

priate treatment one would be able to treat self-consistentl yashed out fo a farger extent, not only with respect to the
ne structure but even with respect to gross shell features.

both the mean field as well as its fluctuations. Since such : i o .
theory is not available we suggest some other, more pra _onsequently, the stiffness defined in this way is rather close

matic procedure. As described already, see, 2§.pne may 0 the liquid drop stiffness.

smooth static energies as well as the other transport coeffi-

cients with respect to their dependence on deformation. The  B. Temperature dependence of transport coefficients
averaging interval irQ is to be chosen large enough to wash

out the rapid fluctuations but small enough to preserve gross
shell structures. In the following we identify stiffness as the one corre-
sponding to the free energy. Then we may write

10.0
5.0

0.0

Deform. energy (MeV)

ag

1. Local stiffness

A. Shell effects on potential landscape C(T)=C_py+ 6C(T). (15)

The static energy is calculated in the usual way as the sum
of a liquid drop part and the shell correction, both of which Here, 5SC(T) represents the contribution from the shell cor-
depend on temperature, for details $&6]. An example of  rection, which disappears with increasing temperatures. To
the deformation dependence of this potential energy is showparametrize the latter feature we take over a formulg2af
in Fig. 2. The dotted curve represents the case of zero theto get
mal excitation. On top of the typical gross shell structure
fluctuations of smaller scale are recognized as well. Features T

of this type lead to the rapid variations of the transport co- oC(T)= 5C(T:0)sinh7 (16)
efficients we talked about above; for the local stiffness as the

second derivative of the static energy this is immediatelyyith the shell correction parameter

evident. As mentioned, we consider such fluctuations as un-

physical, for which reason we like to remove them by aver- T 41 MeV

aging over an appropriate intervAlQ but to keep the gross r=2m%—— and AQ=——— (17)
shell structure. For the free energy, for instance, the smooth- 1Qy A3

ing can be done in the following way:
being the average shell spacing. Aborge=3—5, which

S AQ T (Q_Qi) corresponds to a temperature of the order of
: 1 av AQ
(FQ.T))a= (14
Q-Q; 10,
Z fav(w> TsheIF(S_S)ﬁzl_z MeV, (18
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the SC(T) practically vanishes such th&(T) attains its 10
liquid drop value. Eventually, thi€, p, may still be treated s 8
asT dependenf22]. Finally, we should recall our suggestion E 8
from above to average the transport coefficients over smaller = 4
intervals inQ. In this sense théC(T=0) is meant to only § 2
represent gross shell features. 0
2. Local inertia — 12
5
As mentioned already in the Introduction, one should ex- % 6
pect the inertia to vary with temperature. It is more than S 4
tempting to assume a form similar to the one for the stiffness, § 2
namely, 0

T (MeV) T (MeV)

M(T)=Mpom+M(T) (19 FIG. 3. Inverse relaxation time 4/,=T,/% (left pane) and

hw (right pane] as a function of temperature: the microscopic
in which the last term drops to zero as given in E&). results(solid curve$ compared to the approximatiof0) and(21)

Indeed, within the linear response approach a behavior dfiotted curves

that type has been observed in a numerical sfa8y. There, 3. Vibrational frequency
the value reached at larger temperatures was given by that of
irrotational flow, which for the present notation means to

: ; - quencyw is a well defined quantity. To some extent it is
!dent|fy Mom = Miror - TO the best of our knowledge, t_here even accessible to experimental verification, at least for zero
is no other theoretical model where such a transition is see

- ; >€€fhermal excitation. At the minimum it may be associated
explicitly—although one must say that in phenomenologicalyjih the energy of a collective modéor very recent work
applications of transport models commonly th&o iS  on this subject sef24]) and for the barrier it influences the
taken to represent the macroscopic value of inertia. Apenetrability, as encountered, for instance, in neutron in-
present the conjecture behind Eg|9) still lacks a direct and  duced fissiori25]. Generally, thei w is believed to be of the
general proof. However, in Reff23] the nucleonic response order of 1 MeV. Indeed, numerical calculations f&#*Th
function has been studied applying periodic orbit theory[18,19 show this to be quite insensitive to temperature; to
(POT). There it was seen that its “fluctuating par8y(w) lesser extent this is true also for the variation with shape and
decreases witlt like the shell correction to the static energy. mass number. Altogether, for a first orientation the following
For slow collective motion the inertia is determined by thechoice seems appropriate
second derivative of this response function with respect to
frequency calculated at=0 [see Appendix B and EqB8) hwa=hwp=1 MeV (20
in particula. Therefore, within such a model the “shell cor- with deviations being within a factor of 2 or less. This ap-
rection” to the inertia was indeed proven to behave agpears to be the case even when pairing is included at smaller
claimed above, although several questions remain operfT. In Fig. 3 we take up the case 8f‘Th, again. The calcu-
Amongst others, it is unclear as to what extent this prooflation is the same as reported in R&f]; more details will be
would get modified after considering “collisional damping.” given below in Sec. Ill B 6. From the right panel it is seen
The latter cannot be treated within POT, but should play dhat this conjecture is pretty much fulfilled.
major role for the transition to hydrodynamic behavior. Pos-
sible reasons for rendering a microscopic approach quite dif-
ficult have been reported in Refl8,19,6. On the micro- As said above, see E@), the ratioy/M determines the
scopic level they are related to the strength distribution foinverse relaxation time to the Maxwell distribution. For un-
the local collective motion. The liquid drop model, on the derdamped motion this quantity also defines the widgh
other hand, represents motion of a system having a sha@f the strength distribution. In Fig. 3 we show it on the left
surface, in contrast to microscopic calculations involving thehand panel as function at. The dashed curve represents the
diffuse surface of the mean field and, hence, of the densityollowing approximation, details of which are discussed in
for details seg19]. Fortunately, however, at largdiwhen  Appendix B, namely,
the collisions become more and more important the motion
gets strongly damped such that the inertia drops out anyway, Mﬁzrkin
see Eq(13).

Owing to these difficulties in microscopic computations ~2Tfu,T)
we propose to fix theM(T) through the vibrational fre-
guencyw and the Iocazl stiffness by the relation given in Eq. 2 w22 0.6T2
(3), namely,M =|C|/w*. For our version of Kramers’s rate =7 ~
formula this was easily achieved in using the second variant Po1+72T2c?  1+T2/40
shown in Eq.(7). (21

At the extremal points of the potential landscape this fre-

4, Ratio of friction to inertia

(T in MeV).
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w

S 4 [ **Th, barr.

Q -

E 3 3F

=

S 2t

= 1}

0 0
0 1 2 3 4 0 1 2 3 4

T (MeV) T (MeV)

FIG. 4. Relaxation timer,y, for collective motion at the poten-

tial minimum and at the barrier: the microscopic ressélid curve
compared to the approximatidiqgs. (22)—(24)] (dotted curve

As expected it represents the microscopic result quite well at
smaller values ofT that correspond to smaller values of

PHYSICAL REVIEW C 64 054316

224Th, barr.

05 |

¥/M (MeV/h)

0.0

0.0 1.0 1.0

0:5
T (MeV)

05
T (MeV)

FIG. 5. Influence of pairing on the inverse relaxation timg
=T"\n/f. The microscopic results d] are compared with ap-
proximation(25).

2
2 _ ﬁ W F 0
macro 2

Ywail2

Y Ywal  MeV3
[CLom(T)|

. |CLDM(T)| h

c
(29)

damping. Recall, please, that the overdamped limit is given

already for values of the damping factgy slightly above 1,

Here, we accounted for results obtained by several previous

see Fig. 1. As can be inferred from Fig. 3 and the e'stimate.umerica| calculations, see, e [d8,19,6. They showed that
(20), this happens at temperatures above 2 MeV; mind thaghe value of friction at largd is somewhat below the wall

n=(yIM)(2w) ",

5. Ratio of friction to stiffness

In Fig. 4 we plot, as function of, the timer.,,=y/|C|,
which measures the local relaxation in the coordinate.

Smoluchowski equation is proportional tj. In Fig. 4,

Wi
may recall from Eq(3) that for the overdamped case this is
the only relevant time scale left. Its inverse determines th
width of the strength distribution along the imaginary axis
[see Eq(13)]. Likewise the decay rat€l0) associated to the

formula. The factor 1/2 is only to be considered a rough rule
of thumb. For the stiffness, on the other hand, the macro-
scopic limit evidently is given by the liquid drop model. As
the microscopic calculation was done withTadependent
elfCLDM(T)| we chose the same one in this fit. In both curves
he effects of pairing were included, which we are going to
éaddress now.

6. The influence of pairing

This problem has recently been studied in H&f. The

again, the fully drawn line shows the microscopic result. Thefully drawn lines shown in the previous figures refer to such
dashed curves represent an approximation, into which tha calculation. Whereas in Rdf9] one concentrated on the
following two features are incorporated, the decrease of theegime in which pairing is expected to be effective, the

stiffness[as given in Eqs(15) and (16)] and the fact that

present results extend up =4 MeV. Calculations in that

with increasingT the friction coefficient reaches a plateau regime had been reported before in R&B]. The underlying
[17,18. To combine both effects we chose a functional formshell model is the same in both cases, but a different proce-

similar to the one for thd";, of Eq. (21) (see Appendix B
but with a different cut-off paramete; .o,

b% 2 T2

Teoll =T~ 7
CCl w2y 1+ 72T

0.6T2 5
1+ m2T2/c2 . MeV

macro

(T,Cmacro In MeV), (22

with Aw~1 MeV. One should expect the,, to reach a
macroscopic limit like

y(T) |

. Ywail2
Teoll |ThT_ | C(T) |

- |ICom(T)|”

(23

‘ThT

at larger temperatures. With a parametrization as in(£2).
the limit is obtained abové 1= Cyacid/ 7, fOr which reason
the chacroWould be given by

dure is applied for the single particle widih,. For the
unpaired case the forrtB11) was used, for which the fre-
quency dependence d¢f;{w,T) leads to convolution inte-
grals in the response functions. They are known to reduce the
collective widthg6]. In the paired case such a calculation is
no longer feasible, for which reason a constigy «,A,T)

had been assumed there, withbeing the pairing gap. To
have a more or less smooth transition to the unpaired case,
we now approximate th€(w,T) by the'g(u,A,T) that
above the critical temperature for pairing reduces to the
I's(x,T) given in Eq.(B13). For this reason our present
friction coefficient may be overestimated slightly. For
I'in/fi=y/M the new results are shown in Fig. 5, where we
concentrate on temperatures up to 1 MeV. To simulate the
apparent effect of pairing to reduce friction we suggest the
modified formulas

Y y(A=0) I'in(A=0)

M:fpairM(Azo)Efpair % (25

and
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Y
E = Tkin™ 1:paierin(A =0). (26)

Here, f,, parametrizes the decrease of friction due to pair
correlations: An ansatz such as

1

o= 77 exd —a(T—To)]

(27)

may do with the following parametera:=10 MeV ! and
T,=0.55 MeV at the barrier, anca=12 MeV !, T,
=0.48 MeV at the minimum. It was found that this choice ;
fits best the microscopic resulfsvith the functional form 0.000" 5 " 70 70
(25)]. It is seen that these values vary with shape, which may ’ ’ T (MeV) ' '

be an indication that they are perhaps different for different

nuclei. For a first orientation such details might be discarded. FIG. 6. Temperature dependence through a microscapic
Then an average of the two values could be used botha for = #(T) (solid line); the dashed curve represents the overdamped
andT,. Finally, we should like to remark that this influence case as given by Eq9), the dotted one corresponds to the low
of pairing is most dramatic for friction, and much less so forViscosity limit as given by Eq(8) for the same barrier height as in
M and C. Therefore, we suggest to neglect the influence orf19- 1.

the latter.

(2) Moreover, from the right panel of Fig. 5 together with
IV. TEMPERATURE-DEPENDENT DECAY RATES the value for the frequency given in Flg 3 one may deduce
for these temperatures thg, to be larger than the value of
If one wants to gain information on the transport coeffi- T/2E, given in Eq.(28). It then follows from Eq.(11) that
cients and theifT dependence, in particular, one needs tothe deviation from the statistical model is to be attributed to
separate the influence of the prefactors from the more or lesge high viscosity limit.
trivial exponential partthe “Arrhenius factor’). Commonly, (3) This feature evidently is related to the disappearance
this feature is then simply identified by Kramers’s conven-of pair correlations aT=0.5 MeV. The curve for the “low
tional factor that only depends ony,. A systematic study viscosity limit” demonstrates that below this temperature the
performed in Ref.[26] has revealed the appearance of aformer case should not be used at[atind condition(11)].
threshold temperature gesn, @bove which deviations from (4) As indicated earlier, aboveT=2 MeV the
the statistical model are seen over a wide range of ﬁSSiOﬂingverdamped limit app“es7 for which we Suggested to use
systems. Moreover, its ratio over the temperature-dependefirmula (10).
barrier heightEg,(T)=Ey(T) showed a remarkable insen-
sitivity on mass numbeA. For later purpose it is more con- B. Comparison with phenomenological models

venient to divide that ratio by 2 to get ] ] ]
In Fig. 7 we compare the result shown in the previous

T figure [for formula (5)] with the one of a macroscopic pic-
=0.13 (28
2Ep(T)

thresh

from Fig. 4 of[26]. We are now going to view this result in
the light of our microscopic transport coefficients. At first we
shall concentrate on the ratiRll’(77,)/RY (7,=0), to com-
ment later on thd dependence of the additional factors seen
in Eq. (7), and which involve ratios of the inertias or stiff-
nesses.

A. Rate from microscopic transport coefficients

In Fig.6 we plot the normalized rates for the three cases .
shown already in Fig.1, but now as function of temperature \\\
as determined by our microscopi€T). Various conclusions 00 Lo e e ]
may be drawn from this figure. o0 " T (liffeV) > *

(1) Above T=0.6—0.7 MeV an “onset of dissipation” is
seen, indeed, in the sense of a decrease of the rate for the FiG. 7. Temperature dependence of the decay rate in high vis-
“high viscosity” limit. The value of this “threshold tempera- cosity limit: solid curve: same as in Fig. 6; dashed curyggiven
ture” is in reasonable agreement with thBy,e=1.09 by Eq.(29); dashed-dotted curve: wall friction and liquid drop val-
—1.22 given in Table | of26] for 2?*Th. ues for stiffness and inertia.
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ture, together with that suggested in R¢&4]. By the mac- 1.0 T . T
roscopic model we mean to use the wall formula for friction, I 224
the liquid drop model for inertiérrotational flow) as well as [

Th

for the stiffness. In Ref.3] the following functional form for 3
7(T) had been suggested: I~
Z o5
»(T)=0.2+3T2. (29 mz B

It is seen that for such @ dependence the onset of dissipa-

tion occurs quite abruptly and at rather small temperatures. 0.0
One must have in mind, though, that the ratio plotted in Fig.

7 is sensitive to the temperature at the barrier, as it is this one

that determines they,. This fact might explain why the FIG. 8. Ratio(32) of Kramers's rate to that of the statistical
transition exhibited here through the dashed curve lies ahodel(solid line). The dotted curve demonstrates the influence of
smallerT than discussed in Refg3,4]. It can be said that for the stiffnesses, which now are calculated from the liquid drop
the other ansatz(T)=0.2+5T used as well the transition model, but with friction unchanged.

would occur at even smaller temperatures. The reason seems

obvious: In these two formthe dissipation rater is much The ratioRy /Rg;a; May be calculated for the three cases
too large at small F-at least too large as compared to ourwe looked at before, low and “high viscosity” limit as well

microscopic results. Indeed, as discussed above, at smafk the overdamped limit. For “high viscosity” one gets from
temperaturegpairing correlations require dissipation to van- Eq. (6) [mind Eq.(7)]
ish.

h
RKU _ ﬁmb a p >
C. Relation to the statistical model Rom T iCyl 1+ 75— 1p)- (31

The rate of the high viscosity limit when extrapolated
down to zer(_)_friction,RQ”(nfO), corresponds to a variant g, overdamped motion, expressiti0) leads to
of the transition state method, and thus to ¢ié of the
Bohr-Wheeler formuld27] (see alsd14]). We demonstrate
in Sec. A2 that this still holds true for the modified version Rqe  [CalCylh
of variable inertia. One must have in mind, however, that Raat VIC 7 T°
such an extrapolation may be meaningless as, by its very
construction, the transition state method bases on the a
sumption of a complete equilibrium. The latter is given only
if sizable friction forces provide sufficiently fast relaxation to
this global equilibrium. Our result for the temperature depen ) S X ;
dence of friction then imply that any version of the transitionthe onset of d|SS|pal_t|0_n seemingly is even more pro-
state result must be taken with reservation when applied aﬂounced, and the deviation starts at a much h|gh_er tempera-
small thermal excitations. At this point it would be too much ture. Hovyever,these effects are not related to d'ss'pa“‘“.‘
to compare complicated evaluations of the Bohr-Wheele nly. BeS|dgs the more or less obvious fact of the prefactor in
formula with estimates of Kramers's rate which have our=% (30) being not identical to the frequendyma:hmb, .
microscopic transport coefficients as input. This must be subt—here appears the_square root of the ratios of the two St.'ﬁ'
ject of further studies. nesses. The latter is Ia.rgely mflue.nc.ed by shell effects, which
What is feasible, however, is to compare our results withf'€ !‘”O_W” to b? sensitive to variations of temperature. The
those of a statistical model, in which the Bohr-Wheeler for-MPlication of this feature on the ratiBl /Rsa: is exhibited
mula[27] is approximated by

(32

sr_he result(30) can be expected to deviate sizably from
Kramers’s one. This is demonstrated in Fig. 8 by the fully
drawn line that represents the ratio given in E3fl). Here,

in Fig. 8 by the dotted curve. Its deviation from the solid one
is solely due to the stiffnesses being evaluated from the
T (T-independentliquid drop modelC, pu(T=0).

Rstar=5 7 exp(—Ep/T), (30) Obviously, theRq,,; becomes small at small temperatures,
say below about 0.5 MeV. In this range nuclear friction is
small, too, not only at the barrier but also inside the Wsdle

see, e.¢.[28,29. This approximate form comes up when in Figs. 3 and 4 Discarding any quantum effects, which in this
the Bohr-Wheeler formul27] the level density at the bar- regime may become importari8], one might then use
rier is identified as that of the total system, whereas in th&Kramers’s low viscosity limit. As mentioned previously, any
correct expression the collective degree of freedom has to beansition state result, however, doreest apply, for which
excluded(see, e.g.[14]). That such an approximation may reason a comparison of both is meaningleBsr the Bohr-
lead to erroneous results when interpreting data has beaitheeler formula to be valid the system inside the well has to
pointed out also in Ref.30]. We may briefly follow up this be in complete equilibriun{10]. Such a situation is given
discussion by using our microscopic input. only for sufficiently large damping.
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1.0 - y 5 y - as the potential is assumed to have one pronounced mini-
mum and one pronounced barrier only, which follow more or
less closely the form of two oscillators, one upright and one

g;“os [ ] gﬁb inverted. Different to the original work of Kramers’s and of
= | 138\ \126 2 many subsequent applications, our transport coefficients
= <) were allowed to vary along the fission path. In a first ap-

] proximation this leads to a modification of Kramers’ original

00 ; s : . O L : rate formula. For variable inertia,.such a modification al-
T (MeV) T (MeV) ready_ appears necessary for the simple reason that for large
damping one should reach the rate formula corresponding to

FIG. 9. Results for different Th isotopes: left panel: ratio of the Smoluchowski equation. Still, the deviation from the un-
Kramers's rate to that of the statistical model; right panel: influencedamped case is solely determined by the damping strength

of shell structure through ratio of stiffnesses. 7, calculated at the barrier. However, for a complete under-
_ standing of temperature effects of the decay rate it does not
D. Isotopic effects suffice to concentrate only on this damping strength.

In Ref.[3] different nuclei have been studied experimen-  Of course, such a simple model for the static energy may
tally and analyzed with respect to a temperature dependené®t apply at all afsmallej temperatures when shell effects
of the dissipation strengtty, (called y there. In particular lead to important deviations. It is unclear how one could
two isotopes of thorium have been examined, nanféffh generalize the formulas of Kramers and Bohr-Wheeler to re-
and 2Th corresponding to neutron numbershof 134 and ~ alistic cases with two or perhaps three barriers having
126, respectively. The different behavior seen in experimenflinima in between. To calculate the decay rate for such po-
has been fully attributed to thig, and in this way very t_ent|_als it is perhaps simpler to use the more gen_eral descrip-
different values ofp, have been found, together with a dif- tion in terms of Fokker—PIanck or Langevin equations. It may
ferent increase withT. Evidently such features cannot be then also be possible to account better for the variations of
explained within a macroscopic picture. One needs to acthe other transport coefﬁue_:n;s with coordinate and tempera-
count properly for shell effects. From our experience withture, namely, inertia and friction. To the best of our knowl-
microscopic computations it seems unlikely that they would®dge, in such calculations only the transport coefficients of
have such a big influence on friction alone. On the othefMacroscopic models have been used so far. However, the
hand, recalling thaN =126 corresponds to a closed shell, it content of Flg.. 7 |nd|cat§s that greater deviations can be
is evident that the stiffnesses fof=134 and 126 will be ©XPected for microscopic inputs. .
quite different, in particular for the ground state minimum. Nevertheless, within our model we are able to clarify a
This effect can be seen on the right panel of Fig. 9, whicHféw important points that must not be discarded even at tem-
shows the square root of the relevant ratios to be quite gifberatures at which shell effects do not really dominate the
ferent for the two isotopes. Moreover, it is easy to convincePfOCEss. . ,
oneself that this effect is in the right direction. Indeed, as can (1) The transition to overdamped motion already occurs at
be seen from Eq:31), smaller values of this ratiqC,/[Cy| temperatures arourii=2 MeV. Then t_he dec_ay rate should
simulatelarger values ofyp,. Notice, please, that an excita- be calculat_ed from th? Smoluchowsk| equation. .
tion of about 100 MeV, as given in Fig. 9 of Ré8], cor- (2) In this case no inertia appears any more. Thus neither
responds to a temperatureB&2 MeV. Finally, on the left € frequencyw nor the effective widtH'yi, =7 /M (some-
panel in Fig. 9 we show the full ratio as given by Eg2). ~ UMes referred to as j) play any role. , n
Evidently, we are not able to fully explain the results shown (3_) The solely important quantities are the _ratlo of friction
in Fig. 9 of Ref.[3], but this would have been asking too t© Stiffness,y/C, and(for the decay ratethe ratioC,/Cy, of
much, for various more or less obvious reasons. the stiffnesses. Physically, the former determines the relax-
ation time for sliding motion in the potential, see E2_2). In
passing, we may note that it is essentially this time that de-
termines the saddle to scission time, an effect not considered

One of our main goals was to suggest simple forms of thdiere. Notice that these stiffnesses are subject to large shell
temperature dependence of those quantities that parametrigéfects that may easily be accounted for by the shell correc-
transport in collective phase space. These suggestions alien method. As a first demonstration of this effect we have
based on simplified pictures for the intrinsic response comealculated the impact of these stiffnesses on the decay rate of
bined with experience in microscopic computations withinthe thorium isotopesl=134 andN=126.
realistic approaches employing the deformed shell model. (4) In principle, the vibrational frequencw should be
Rather than using the transport coefficients themselves webtained from microscopic computatiofir T<2 MeV).
argued in favor of combinations that allow for a more directBut a simple and quite fair estimate may be givenfizy,
physical interpretation. =hw,=1 MeV, Eq. (20), which is almost exact for the

These results were tested at the fission decay rate. Tease of?24Th. Evidently, thew may be greatly influenced by
make our reasoning as transparent as possible, a simple orshell effects, but from our experience we claim that the de-
dimensional model was used, for which Kramers'’s pictureviations are within a factor of about 2.
can be applied. This model is somewhat schematic, in so far (5) Finally, we should like to briefly comment on the pa-

V. SUMMARY AND DISCUSSION
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per presented in Ref31]. There scaling rules have been like to thank the Physik Department of the TUM for the
derived for the case of the Smoluchowski equation, andospitality extended to them during their stay.

based on phenomenological input. In the schematic model

underlying the discussion a few assumptions had been made APPENDIX A: IMPLICATIONS FROM

which are not in accord with microscopic results. First of all, A VARIABLE INERTIA

the ratio of barrier height to temperature definitely decreases

with T. Secondly, as the authors monitor themselves, a fre- N Kramers’s seminal papg7] the equation for the den-

quency at the barrier of the order of 20 MeV is much tooSity in phase space was written and applied to the decay of a
high. Together with the value used fg8, namely, 3  Metastable system for the case of constant transport coeffi-

=TI, /h=10%2 sec ! one gets am,~0.2. This implies the ~ Ciénts. In nuclear physics both the inertia as well as the fric-
motion around the barrier to bender damped rather than tion coefficient vary with the collective coordinate. This has
overdamped. Moreover, for several cases studied in this p4een accounted for already in early applications to heavy ion
per, then, is seen to be of the order of or even smaller thancollls[ons, W_here globally Gaussian solutldnentereq at the
T/2E, . Thus, according to Eq11) not even Kramers’s high clas_5|cal trajectoneswer_e us_ed to calculate reaction cross
viscosity limit seems appropriate. sections see, e.¢33]. er.tten in compact form for one vari-
Let us turn now to very low temperatures, say to the re-2ble the transport equation should read

gime where pairing correlations become important. They im- P 3 p2 P
ply an additional reduction of dissipation, such that one may _¢q, p't):[ - +—(—+V(Q)) —
truly speak of the onset of dissipation when pair correlations ot M(Q) 9Q dQ\2M(Q) P
disappear. It must be said though that this transition occurs at
temperatures definitely smaller than those suggested in
[1-5]. As mentioned earlier, one has to make sure, however,

d ( P a)
to5 W)’(QH‘D(Q)ﬁ f(Q,P,1).

that one speaks of the same temperature. The one of the (A1)
compound nucleus might be larger than the one the system
still has when it passes the barrier. Neglecting any quantum effects, which might show up at

It needs to be stressed that a small damping strength amall temperatures only6,8], the diffusion coefficient is
small temperatures may have quite drastic implications. Imgiven by the classic Einstein relati@(Q) = y(Q)T. A pos-
case the “high viscosity limit” still applies quantum correc- sible T dependence of the transport coefficients has not been
tions to the decay rate would lead to an increase of the latténdicated explicitly. This is immaterial as long as we treat
[8]. If, however, the dissipation strength falls below the limit temperature as a fixed parameter, which is assumed to hold
given by Eq.(11) the nature of the diffusion process would true in the entire paper. As is easily verified, one stationary
change completely. Then dissipation is too weak to warransolution of Eq.(Al) is the distribution of global equilibrium
relaxation to a quasiequilibrium. This not only violates

Kramers’s rate formuldfor the high viscosity limi}, or our 1

extension of it, but also the Bohr-Wheeler formula becomes fed Q.P)= Zexp:—,BH(Q,P)] (A2)
inapplicable. Moreover, so far no method exists as to how

one might incorporate collective quantum effects. with the energy given by the classical Hamilton function

Finally we should like to indicate that our transport coef-
ficients are not free of uncertainties in some of the param-
eters specifying our microscopic input. The most difficult H(Q,P)= 2M(Q) +V(Q).
one is found in the single particle width. It has been param-
etrized in Ref.[32] by referring to the optical model for The reason is due to the following featuréis: The conser-
nucleons in finite nuclei through a kind of local density ap-vative part of the equation has the form of Liouville's equa-
proximation. There th&'y and its dependence on the nucleartion, namely,
density had been traced back to microscopic computations of
the self-energies in a generalized Brueckner-type description. d
This implies an uncertainty of perhaps a factor of 2 in all ﬁf(Q'P’t):{H(Q'P)'f(Q'P’t)}' (Ad)
formulas where the friction coefficient appears, as in(2d)
or Eq.(22) as well as in thep of Eq. (4). Since any micro- (ii) The terms that represent dissipative and fluctuating forces
scopic answer on such questions is extremely difficult, therare assumed independent of the momen®nsuch thatP
is hope of narrowing down this uncertainty by more elabo-only appears quadratically in the kinetic energii) The
rate comparisons with experimental results. choice of the diffusion coefficient bR (Q) = y(Q)T makes
the second line of EqA1) vanish once applied to EGA2).

The structure of these equations not only allows for the
proper equilibrium, but it also warrants the continuity equa-

The authors gratefully acknowledge financial support bytion to be valid in the form
the Deutsche Forschungsgemeinschaft and are grateful to J.
Ankerhold, B. Back, A. Kelic, and M. Thoennessen for en-
lightening discussions. Two of ug~A.l. and S.Y) would
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Tol(@D=0, (AS5)

d
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with the current and spatial densities being defined as J p2 J
o [P
Q0= [ 4P s QPO (A6) ; 5
< (9—P( —K(Q)+WY(Q))f(Q,P,t)-
and (A1D)
n(Q't):f dPf(Q,P.1), (A7) 1. Kramers’s decay rate formula extended to variable inertia

) o ) . . For reasons given above, we still want to make use of the
respectively. This is easily verified with the help of B41)  condition (A11). Nevertheless, it is necessary to rederive an

exploiting partial integrations with respect to momente@m expression for the rate, which still is defined as
(for which no “surface terms” survive

Both in Liouville’s equation as well as in the transport b
equation(Al) a term appears that needs to be treated with R= Ny (A12)
special care. It is the one that results from the spatial deriva-
tive of the kinetic energy, and reads To calculate the quantities involved we need a global solu-
) tion fqp(Q,P) of equation(Al), which corresponds to a
i P if(Q P.t) (A8) small but finite,(quasjstationary current across the barrier.
dQ 2M(Q)/ dP o This current may be calculated from EdA6), with

f(Q,P,t) replaced byfg(Qp,P). The probabilityN, of
Indeed, this term is absent in the common derivation of the€inding the system inside the well &, may be calculated as
rate formula(see, e.g.[10]), where always a constant inertia follows:
is assumed to be given. It may be noted that this term may

imply difficulties with “saddle point approximation,” as QatA Qata
needed in Kramers’s stationary solution. Moreover, and more "Na™ Q.- A dQ | dPfgon(Q.P)= Q- A dQngon(Q).-
important for the present purpose, this term is also neglected 2 @ (A13)

in extracting the transport coefficients within the linear re-

sponse approach. There, a locally harmonic approximation i$he integration range® has to be smaller tha@,— Q, but
exploited, which for the sake of simplicity is formulated only |arge enough such that it contains the vast majority of the
with respect to the coordinate. What that means may be Viensemble points sitting in the well. An approximation for
sualized in the following way. Look at the Liouville part of f5ox(Q, P) may be constructed by matching together at some
the transport equation, in particular, at the_term that inVOIVe?ntermediate poinQ local solutions valid at the minimum
the derivative of the Hamilton function with respect @ Q. and at the barrieq,. The global solutionf Q. P)

Flrr]gthof 6;|t|] there is .the ordln:ry ftor%e from_ the dpotentlal, will have an overall normalization factor that drops out when
\éve I\(/:vritltr:an gsexpansmn around@ to harmonic order may calculating the rate from EqA12). The normalization of the
local solutionsf(Q~Q,,P) andf(Q~Q,,P), on the other
hand, might be different. It has to be chosen in appropriate
V(Q)=K(Q)~K(Qy)—C(Qu(Q—Qq), (A9)  fashion such that both solutions match properlyat
9Q For a sufficiently high barrier the particles inside the po-
tential well may be assumed to stay close to a local equilib-
rium associated to the temperatureln case that the corre-
sponding fluctuations{AQ?)$ concentrate on a region
around the minimum, the potential may be replaced by a
) (A10 harmonic oscillator and the associated local phase-space den-
sity may be approximated by

d

with the second derivative of the potential defining the local
stiffnessC(Qg). In addition there is the term

ezl

dQ 2M(Q)/ " 4Q\2M(Q)
which is of second ordefnamely, inP). In a consistent f,(Q,P)=f(Q~Q,,P)
treatment one would have to introduceéPg and expand all

terms locally in collective phase space around t9g,Po) p2 C.

to second order both i@ —Q, andP— P, (see[33]). So far =N, ex;{ —ﬁ(W+V(Qa) + 7(Q—Qa)2) }
this has not been done when extrapolating transport coeffi- a

cients from the microscopic linear response approach. This (A14)

does not imply that our inertia may not change with the_ . . . —
coordinate at all. It only means that the terms including itsThIS s a reasonable estimate up tQavith

derivative have been discarded. With respect to the basic -
transport equatiorfAl) this approximation may be phrased 0-0.)2= 2veq
i (Q-Qu*=(AQ%)g*= . (A15)
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Likewise, approximating the barrier by an inverted oscillator,if only the normalization constants are chosen according to
the phase-space density may be represented by Kramers’s

stationary solutior{7,10] (neglecting any quantum effects, _ My
see, e.g.[6)]) N, —Nb\/—a. (A22)
fp(Q,P)=f(Q~Qy,P) Now we are in a position to calculate the rate from Eq.
p2 ICy| (A12). Plugging Eq.(A22) into Eq. (A14) the number of
=N, ex;{ _,g( M, +V(Qp) — _(Q Q) ” “particles” at the minimum(A13) becomes
5 27T
P-AQ-Qp) 1 u Ny~ Ny V27M T \/—=—exd — BV(Q.)]
X du——exg — |, (A16) Ca
o 7o 20
My
where =Np27T\[ = exd — BV(Qa)]- (A23)
a
_ |Cy| To get this simple expression it was assumed thatAhe
wp(V1+ 2= 1) which in Eqg.(A13) defines the range of integration, is of the
order of or larger than the fluctuatidh Q?)S° given in Eq.
and (A15), such that the Gaussian integral can be calculated for

A—oo. The current at the barrier may be evaluated from Eqs.
1 (A16) and(A6) with Q=Q,, . After a lengthy but straightfor-
b (\/1+—77§_ )2 —1]. ward calculation involving identities for error integrals, once
more, one arrives at

This latter solution must be joined to the one given by Eq.

(A17)

i i : i o . [ My
(A14) in some |ntermed|ate region, sayQ@it _It woulld be too =N, T C_mb( 1+ 77%— ) exd — BV(Qp)].
much to require this to be possible fany P, in particular, as |Cl
we are not able to treat the inertia in continuous fashion, for (A24)

reasons given above. However, as the rate is determined tp/rom Eqs.(A24) and (A23) the decay ratéA12) turns into
the ratio of two quantities which are averaged over momen- '

tum it turns out sufficient to match only the redud@epace = c

densities. As suggested by E#\7), the latter are obtained Rﬂv:_bw /_a( 1+ ng_ 76)€XP( — BEp)
by integrating out the momentumin Eqgs.(A14) and(A16) 27 V|Cy

to get

a Ma
. = 5o\ (VL 7= mo)exe — BEy), (A25)
Na(Q)=NaV27M,T exp{—ﬁ(V(QaH f(Q—QaV”

(A18) confirming the expressio(6) used in the text. We may note
again that the resuliA25) was derived earlier if15] within

and an extension of the perturbed static path approximation
(PSPA.
[aMpT |Cpl Finally, we like to come back once more to the conditions
np(Q)=Np 2 F{ B(V(Qb)_ _(Q Qo) ” (A15) and (A20) imposed before. They go along with the
relation (A21) for Q and the barrier heighE,=V(Qy)
<1+ erf M(Q—Qb)”- (A19)  —V(Qa). The latter must then satisfig, = C./2(Q— Q,)?
2T +|Cp|/2(Q—Qp)?>T. It may be useful to visualize these

To obtain the last expression identities for error functionsreu"ltIonS with the help of the following schematic potential:

have been applied. Still it is not of a form for which a con-

dition, such as1,(Q)=ny(Q) would make much sense. For V(Qa) + fl(Q—Qa)2 for Q<Q,
this we need the additional assumption V(Q)= |
|Cb|(6_Qb)2>T’ (AZO) Eb+V(Qa)__(Q Qb)2 forQ>Q
(A26)

which renders the error function in EGA19) close to unity. B B
Then the two densities match smoothly aDasatisfying Choosing theQ according to Q=(C,Q,+|Cy|Qp)/(Ca
~ +|Cy|) the two parabolas match smoothly with a continuous
2 _ 1%l 2 first derivative. Possible errors related to E¢a15) and
V(Qa)+ (Q Qa)"=V(Qyp) (Q Qo)* (A20) may easily be estimated from elementary properties of
(A21) the error function.
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2. The relation to the transition state result The calculation of the decay rate is quite easy in this case.

In transition state theory one assumes a system that i9deed, Eq(A31) gives an explicit form of thg(Q,t) as a
totally equilibrized inside the barrier and for which, at the function of the densityn(Q,t). Although in our case the
barrier, current only flows outward discarding any backflow.ffiction coefficient varies withQ the common derivation of
Within its most general version, the fission rate has beef’® rate formulgsee, e.g.[35]) may be taken over without
estimated by Bohr and Wheeler through their famous formuch difficulties. o o
mula[27]. There the equilibrium is the one of a microcanoni- _ Notice that the transition from an equation like Egs.
cal ensemble as represented by the density of stafethe ~ (A1)—(A31) only requires the(Q) to be large enough at
total system at the minimum and of the intrinsic system a@ny Q Such a transition may be performed also in the case
the barriey. To the extent that the microcanonical ensembleCf @ variable inertia, at least if pondltlc(v_@\ll)_ls fulfilled. In
may be represented by a canonical one, with one and tH@"y ¢ase, in the overdamped limit the inertia has to drop out.
same temperature at the minimum and at the barrier, th¥/€ Mmay note in passing that this transition is in accord with
calculation of the rate can be done as follows, looking onlythe locally harmonic approximation in the form discussed in

at the collective degree of freedom. The outward curtant S€¢- 2.2.5 of6]. Following the arguments of Sec. 10.1 and
the barriey is given by 10.4 of[35], Eq. (A31) can strictly be derived from Eq¢A1)

neglecting the ternfA8).

itrans__ _
I = fo dp My feq(Qb P) 4. Strutinsky’s derivation of the rate formula
. p p2 The essential idea exploited in R¢L4] is written there
ocf dP—exp( -B O(P). (A27) below Eq.(6). Different t_han the approgqh des_cribe(_j in Sec.
= My 2My, A1, the number of particleN, at the minimum is estimated

) . , . ] ) by multiplying the densityn,(Q) of Kramers’s stationary
Comparing with Kramers’s stationary solution shown in Eq.go|ution calculated aD, by an “effective length,” which in

(A16) one realizeg34] the only difference the replacement rm is determined by the mean fluctuation of the oscillator at
of the theta functior® (P) of Eq. (A27) by the integrakfor s Q, times 2, viz. by

Q=Qy,) which appears in the second line of E§16). Due

to the following representation of th@ function 24T
V2m(AQ)e= \ (A32)
p 1 2 a
®(P)_llin0fxdu‘/zwg ex 20’ (A28) (The additional factor/27 is required to ensure the appro-
priate measure needed for the normalization of a Gau$sian.
it is seen thatfor finite temperaturg In this way one gets from Eq$A24) and (A19)
=R (5=0). w C
Rirans=Ric (7=0) (A29) R = 3o\ (VI 7 molexel — BEy). (AS3)
This follows immediately with the help of the expression b
given for o in Eq. (A17). Here, it was assume() that theQ,— Q, is sufficiently large
such that in(A19) the error function could be replaced by
3. The Smoluchowski limit unity, and(ii) that the barrier height can be estimatedggs

~(|Cp|/12)(Qa— Qp)?. The result(A33) has the same form
as given in Eq(A25). As explained earlier, it is equivalent to
Eq. (6) or the second line of Eq(A25) that involve the

Performing in Eq(A25) the limit ,>1, with the effec-
tive damping rate defined b§2), one gets

w, [C, 1 inertias. This latter expression is identical to the one given in
RE” pym |Cb|2—nbexp(—,8Eb) Eq. (16) of [14] if one only interchanges there primed and

unprimed quantities

1
= 27 7, VCal Colexm =SB =Rows.  (A30)  APPENDIX B: A SCHEMATIC MICROSCOPIC MODEL

. . . . . 1. The Lorentz model for intrinsic motion
This expression coincides with the formula0) associated

above with the Smoluchowski limit. As a matter of fact, this ~ Let us assume that the nucleonic excitations can be pa-
result can be obtained directly from the Smoluchowski equatametrized by the response functiGn this section we set

tion h=1
d d 1 oV(Q) T 9 __g2
—n(Q,t)= — + —|n(O,t X(w)=—F— —s— - . (B
_J . ¢ A31) Here, the average matrix elemé®t of the one body opera-
e} Q). ( tor F, which acts as the generator of collective motion, mea-
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sures the overall strength of the distribution. The stateseems to be quite insensitive to the increase of the tempera-
reached by that coupling are centeredlawvith an effective  ture [36], at least for not too largd. The transformation
bandwidth" (measured here in units of MeWK). For real from the F to the Q mode leaves ratios between transport
frequencies the reactive and dissipative response functionspefficients unchanged. The collective width and the ratio
x' andy”, are readily calculated noticing that they representetween friction and inertia, thus beconigg,=I". For fric-

real and imaginary parts of(w)=x'(w)+ix"(w). The tion this implies

static response is given by

—y aXU
F? y=TiM=—F——=x(0)=—-
“oreae X7 Y are e,

(B9)
x(0)
and for the stiffness one gets the expected reSaC(0),

It is useful to rewrite thigintrinsic) response functio(w) which follows because th€; of Eq. (B7) can be written as
in terms of the form of the oscillator response given in Eq.

(02 P S C(0) . C(0)
o o FEETET X0 T X(O[C(0)+ (0] [y(0)]2
o - (B10)

?*+iTo—[Q%+(T12)?] &*+ilww—w2, ,

(B3) The_second equation fqllows from Eq84) and(B2). .

Finally, we should like to note that for the schematic
In this way transport coefficients for intrinsic motion appearmodel with only one mode the inertia always is the one
which defines the value of the energy weighted sum. Like-

1 5 wise, as one may see from E®&9) for friction and(to lesser

Min=——, [in=T, wi=0%+(T/2)%. (B4  exteni from Eq.(B8) for the inertia, these transport coeffi-

2Q0F cients are well represented by their “zero frequency limits.”

Next we turn to the collective response. For thenode it

is given by[6] 2. Benefits and shortcomings of this model

a. Weak damping

x() 1 —1Me , N,
Xcoll @)= 1Tk = =—— > For this model weak damping is defined @s>1°/2. In
TKx(w) 4k @ til'rw—wE this case static response and inertia turn into the expressions
x(w) known from the so called “degenerate modéP1] x(0)

(B5  —2F%(0 andM=2F% Q3. Notice where in the inertia has
the typical structure of the cranking inertia. For friction one
getsy=2I'F?/Q3.

The degenerate model becomes most transparent if it is
~ 1~ GO+ x(0=0) (B6)  applied to the case wherein nucleons move in oscillator po-
tentials, in particular, if any spin dependent forces are ne-

andC(0) being the stifiness of the free energy. The transpor@lected. Then the intrinsic excitation is given b

with the inverse coupling constant

coefficients for the collectiv& mode are =AN#Qo=AN(41 MeV/A™), whereAN is the difference
in the major quantum numbers of those states that are
Me=Miy, Te=Tiy, Cr=Mpwi=Mpwi+k. coupled through the multipole operatbr Whereas for the

(B7) guadrupole there is only one possibility, namaAl)}= 2, this
) is no longer true for other multipoles, for which more than
To get the transport coeffecients for tRemode one needs to jyst one mode are possible. The same holds true as soon as a
multiply these quantities by k7. For slow modes it so turns ‘spin orbit force is introduced. Then even for the quadrupole
out that to a good approximation ti@&0) in Eq.(B6) may  transitions withAN=0 are possible. It is them that lead to

be neglected as compared to th€D). This leads to the low frequency modes we are typically interested in, as
they resemble closest the fission mode. If one still likes to

1 [x(0)]? stick to the(degenerate or_orentz model—which only al-

M= EMF% 2OF2 lows for one mode—the effective frequen@ywill only be a

fraction of the shell spacing paramet@g.
20F? x(0) 1 0%y’

= = =— b. Strong damping
[Q2+(T/2)%17 Q%+(T/2)? 2 jw? .

=0 It is tempting to apply this schematic model also to the
(B8) extreme case of very strong damping whHébecomes com-
parable to or larger than the frequenQyof the typical in-
In the last expression we have made use of(Bg). Last but  trinsic excitation. Plain confidence in the form29) would
not least this has been done because the static responsad toy=(4/T") x(0). This seems particularly intriguing if

054316-14



NUCLEAR FISSION: THE “ONSET @ . .. PHYSICAL REVIEW C 64 054316

on the one hand the static response does indeed not changarticle width. For a Fermi system the latter can be expected
much with T, and if, on the other hand, tH&is associated to to be of the form [6]

the widths of the single particle states, as will be discussed

below. According to Eq(B13) there might then be some Tef,T)=
range in which the friction force would show the typical'd/
dependence one expects for liquids in the “collision domi-
nated regime,” see also Sec. 5.3 of Rgff7]. However, we
claim that for finite nuclei the situation is more complicated. 1 1

Evidently, the effects of strong collisions are due to the in- p_0:0-03 MeV™" and c=20 MeVv.  (B12
creasing importance of residual interactions. But the latter

imply other consequences as well, last but not least a mixinffor slow collective motion we may omit the frequency de-
with more complicated states such that with increasing thefPendence and evaluate this width at the Fermi surface and
mal excitations many-particle—many-hole states becom@Ut @—x=0 in Eq. (B11). Along this approximation we

1 (a)—,u)z-i- w212
Iy 1+[(w—,u)2+ 772T2]/CZ’

(B11)

with the parameters

more and more important. As has been demonstrated in pr<5ljay put
vious papers, see, e.§1,3,6] amongst others, this effect im- 0.6T2
plies that high frequency modes shift to lower frequencies Fkin~21“sp(,u,T)%m (T in MeV). (B13)

such that the typical mode at stake in the transport model

gets more and more strength—implying that finally its inertiagvidently the correction term in the denominator only be-
is given by the sum rule limit. Moreover, it has been dem-comes important at temperatures of the order Df
onstrated that this feature goes along with the disappearanee6 MeV. This is already beyond that value were the other
of shell effects al =T, This problem is addressed in the effects come into play we discussed in Sec. B 2 b. For this
text. reason the actudl(T) is changed in the main text.
Finally we may note that our schematic model is not ca-
pable of accounting for pairing. The latter will modify the
c. Temperature dependence through collisional damping transport properties at temperatures belbwT ;. This is
discussed in the text.
Looking back at the intrinsic response function introduced
in Eq. (B1), one realizes that the only quantity that can be
expected to change sensitively with excitation is the width  2Different than the notation used {i6], here energies are mea-
To get some first orientation we may relate it to the singlesured with respect to the Fermi surfage
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