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Memory effects on descent from the nuclear fission barrier
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Non-Markovian transport equations for nuclear large amplitude motion are derived from the collisional
kinetic equation. The memory effects are caused by Fermi surface distortions and depend on the relaxation
time. It is shown that nuclear collective motion and nuclear fission are influenced strongly by memory effects
at the relaxation timet>5310223 s. In particular, the descent of the nucleus from the fission barrier is
accompanied by characteristic shape oscillations. The eigenfrequency and the damping of the shape oscilla-
tions depend on the contribution of the memory integral in the equations of motion. The shape oscillations
disappear at the short relaxation time regime att→0, which corresponds to the usual Markovian motion in the
presence of friction forces. We show that the elastic forces produced by the memory integral lead to a
significant delay for the descent of the nucleus from the barrier. Numerical calculations for the nucleus236U
show that due to the memory effect the saddle-to-scission time grows by a factor of about 3 with respect to the
corresponding saddle-to-scission time obtained in liquid drop model calculations with friction forces.
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b
e

s

io
o

or
e

al
d

ot
on
e

i
m

he

d
a

m

or-

ct,
lear
rgy

an

on-
to

tion
o

iq-

ro
he
to

a-
re

rate

ar
ap-

ry
I. INTRODUCTION

The dynamics of a nucleus undergoing fission can
studied in terms of only a few collective variables lik
nuclear shape parameters@1#. Such a kind of approach i
usually associated with the liquid drop model~LDM ! and its
extensions and is acceptable for a slow collective mot
where the fast intrinsic degrees of freedom exert forces
the collective variables leading to a Markovian transp
equation. An essential assumption is that the LDM provid
a good approximation for a smooth partẼpot of the collective
potential energyEpot and can be then used for quantum c
culations ofEpot within Strutinsky’s shell correction metho
@2#, obtainingEpot5Ẽpot1dU, wheredU is the shell correc-
tion. On the other hand, it is well known that the LDM is n
able to describe some strongly collective nuclear excitati
such as isoscalar giant multipole resonances. It is becaus
LDM ignores the important features of the nucleus as
Fermi liquid. The collective motion of the nuclear Ferm
liquid is accompanied by dynamical distortion of the Fer
surface@3# and the smooth energyẼpot is subsidized by an
additional contributionẼpot,F, which is caused by thedy-
namic Fermi-surface distortion effect and is absent in t
standard LDM@4,5#. We point out that the energyẼpot,F is a
smooth quantity~in the sense of the shell correction metho!
and it cannot be recovered by taking into consideration qu
tum shell corrections to the adiabatic~static! potential energy
deformation. This situation becomes more clear in the li
of the infinite Fermi system withA→`, whereA is the num-
ber of particles. The shell correctiondU disappears atA
→`. In this case, the adiabatic collective energyEpot

5Ẽpot, caused by a change of the particle densityr with
respect to its equilibrium valuereq, determines the first-
sound velocityc15AK/9m, whereK is the incompressibility
coefficient given by

K5
]2~Epot/A!

]r2
r2U

eq

'
]2~Ẽpot/A!

]r2
r2U

eq

.
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However, it is well known@6,7# that, in a cold Fermi liquid,
the first-sound velocityc1 is relevant only in the limit of
strong interaction, i.e., atuF0u@1, whereF0 is the Landau
parameter in the quasiparticle scattering amplitude. For n
mal nuclear matter we have rather the value ofF0;0, which
can be derived from the Skyrme forces@8#. The correspond-
ing sound velocity~zero-sound velocity! c0 exceeds the ve-
locity c1 by a factor of aboutA3 atF0;0 @7#. This difficulty
is overcome if the additional contributionẼpot,F to the poten-
tial energyẼpot is taken into account@9#. Thus, the smooth
energyẼpot,F, caused by the Fermi-surface distortion effe
is a necessary ingredient of the dynamics of the nuc
Fermi liquid. It is absent in the adiabatic deformation ene
Ẽpot derived by the traditional LDM.

The equations of motion for the nuclear Fermi liquid c
be derived from the collisional kinetic equation@3#. In gen-
eral, the corresponding equations of motion are n
Markovian @10,11#. The memory effects appear here due
the Fermi-surface distortion and depend on the relaxa
time @12,13#. The Markovian dynamic is achieved in tw
limiting cases only:~i! Short relaxation time limit which cor-
responds to first-sound propagation in an infinite Fermi l
uid. In fact, this limit is realized by the nuclear LDM.~ii !
Infinite relaxation time limit which corresponds to the ze
sound propagation with a strong renormalization of t
sound velocity and the deformation energy with respect
the ones in the LDM. The non-Markovian-Langevin equ
tions of motion for macroscopic collective variables we
derived earlier in@14# from the collisional kinetic equation
and used for small amplitude dynamics@5,15# and for some
aspects of the induced nuclear fission and the fission
problem@16#.

We point out that non-Markovian effects on the nucle
dynamics were also considered earlier within other
proaches using the dissipative diabatic dynamics~DDD!
model ~see, e.g., Ref.@17#! and the linear response theo
~see Refs.@18,19#!. Note that the application of the DDD
©2001 The American Physical Society02-1
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model to a large amplitude motion like nuclear fission
heavy ion collisions implies the introduction of the movin
basis~see, e.g., Refs.@20,21#!, i.e., time-~deformation-! de-
pendent energy levels. This fact creates the well-kno
problems connected with the correct derivation of the tra
port coefficients near the quasicrossings of the deformat
dependent energy levels because of the Landau-Zener tr
tions. In this respect, the fluid dynamical approach, used
the present paper, has some conceptual advantages allo
us to avoid the introduction of the moving basis. Note a
that in the case of small amplitude eigenvibrations our fi
results~see Sec. III! coincide with analogous ones obtaine
by using the DDD model. The non-Markovian effects with
the linear response approach@18# appear as a frequency de
pendence of the transport coefficients in the local equat
of motion; see Refs.@19,22#. The Markov limit is associated
there with the adiabatic~zero-frequency! limit. This is in
contrast with our consideration where the Markov limit
obtained as the frequent collision regime atvt→0 (v is the
characteristic frequency of the collective motion andt is the
relaxation time!, as it has to be from the physical point o
view: no memory effects take place in the system if the
laxation timet is short enough even at a finite characteris
frequencyv. Moreover, in our approach we obtain the Ma
kovian motion, i.e.,v-independent transport coefficients
the case of rare collisions~zero-sound! regime atvt→` for
arbitrary frequenciesv; see below, Sec. III. We also poin
out that in practical applications of the linear response
proach to a large amplitude motion in Refs.@22,23# the non-
Markovian effects in the transport coefficients were omit
~see Sec. 4.1 of Ref.@22# and the assumptions on the choi
of friction coefficient and potential energy in Ref.@23#!.

The main purpose of the present paper is to apply
non-Markovian dynamics to the descent of the nucleus fr
the fission barrier. Starting from the collisional Landa
Vlasov kinetic equation, we suggest a new proof of the n
Markovian equations of motion for the nuclear shape va
ables which establishes a direct connection between
memory effects and with the dynamic distortion of the Fer
surface. In contrast to Ref.@16#, we do not take into consid
eration random forces and only concentrate on the forma
of both conservative and friction forces behind the sad
point to clarify the effects of the memory integral. In th
aspect, our approach represents an extension of the t
tional LDM theory of nuclear fission@1,24–26# to the case of
the Fermi-liquid and takes into account the important f
tures of the dynamic Fermi surface distortion which are
nored in the LDM.

The plan of the paper is as follows. In Sec. II we obta
the Euler-like equation of motion for the displacement fie
This equation contains the memory-dependent pressure
sor. Assuming that the nucleus is an incompressible and
rotational fluid and using the boundary conditions for t
velocity field, we reduce the local Euler-like equation to t
non-Markovian equations of motion for the shape variab
The transport coefficients and the memory kernel are der
through the solution to the Neumann problem for the pot
tial of the velocity field. In Sec. III we study the dependen
of the memory effects on the relaxation time for both t
05430
r

n
-

n-
si-

in
ing
o
l

ns

-

-

d

e

-
-

i-
he
i

n
e

di-

-
-

.
n-

ir-

s.
d
-

small amplitude motion near the saddle point and for
descent of the nucleus from the barrier to the scission po
A summary and conclusions are given in Sec. IV.

II. NON-MARKOVIAN DYNAMICS OF THE NUCLEAR
FERMI LIQUID DROP MODEL

To derive the equation of motion for the shape variabl
we will start from the collisional kinetic equation for th
phase-space distribution functionf [ f (r ,p;t) in the follow-
ing general form:

]

]t
f 1

p

m
•“ r f 2“ rU•“pf 5I @ f #, ~1!

whereU[U(r ,p;t) is the self-consistent mean field andI @ f #
is the collision integral. The momentum distribution is di
torted during the time evolution of the system and the dis
bution function takes the form

f ~r ,p;t !5 f sph~r ,p;t !1(
l>1

d f l~r ,p;t !, ~2!

where f sph(r ,p;t) describes the spherical distribution in m
mentum space andl is the multipolarity of the Fermi-surface
distortion. We point out that the time-dependent Thom
Fermi ~TDTF! approximation and the corresponding nucle
LDM are obtained from Eq.~1! if one takes the distribution
function f (r ,p;t) in the restricted form f TF(r ,p;t)
5 f sph(r ,p;t)1d f l 51(r ,p;t) instead of Eq.~2!; see Ref.@27#.
Below we will extend the TDTF approximation taking int
account the dynamic Fermi surface distortion up to multip
larity l 52 @4,5,28–30#. We will also assume that the collec
tive motion is accompanied by a small deviation of the m
mentum distribution from the spherical symmetry; i.e., ev
in the case of large amplitude motion the main contribut
to the distribution functionf (r ,p;t) is given by the Thomas-
Fermi termf TF(r ,p;t) and the additional termd f l 52(r ,p;t)
provides only small corrections. The lowest ordersl 50 and
1 ~which are not necessarily small! of the Fermi-surface dis-
tortion do not contribute to the collision integral because
the conservation laws@3# and the linearized collision integra
with respect to a small perturbationd f l 52(r ,p;t) is given by

I @ f #52
d f l 52

t
, ~3!

wheret is the relaxation time.
Evaluating the first three moments of Eq.~1! in p space,

we can derive a closed set of equations for the follow
moments of the distribution function, namely, local partic
densityr, velocity fieldun , and pressure tensorPnm , in the
form ~for details, see Refs.@27,29#!

]

]t
r52¹n~run!, ~4!
2-2
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mr
]

]t
un1mr~um¹m!un1¹nP1r¹n

depot

dr
52¹mPnm8 ,

~5!

]

]t
Pnm8 1P ]

]t
Lnm52

1

t
Pnm8 , ~6!

whereP[P(r ,t) is the isotropic part of the pressure tens

P~r ,t !5
1

3mE dp

~2p\!3
p2f sph~r ,p;t !, ~7!

Pnm8 5Pnm8 (r ,t) is the deviation of the pressure tensor fro
its isotropic partP(r ,t) due to the Fermi surface distortion

Pnm8 ~r ,t !5
1

mE dp

~2p\!3
~pn2mun!

3~pm2mum!d f l 52~r ,p;t !, ~8!

and epot is the potential energy density related to the se
consistent mean fieldU asU5depot/dr. The tensorLnm in
Eq. ~6! is given by

Lnm5¹nxm1¹mxn2
2

3
dnm¹lxl , ~9!

where xn[xn(r ,t) is the displacement field related to th
velocity field asun[ un(r ,t)5]xn(r ,t)/]t. From Eq.~6! we
find the pressure tensorPnm8 (r ,t) in the following form:

Pnm8 ~r ,t !5Pnm8 ~r ,t0!expS t02t

t D
2E

t0

t

dt8expS t82t

t DP~r ,t8!
]

]t8
Lnm~r ,t8!.

~10!

The tensorPnm8 (r ,t0) is determined by the initial conditions
In the case of the quadrupole distortion of the Fermi surfa
the tensorPnm8 (r ,t0) is derived by the initial displacemen
field xn .

Assuming that the nucleus is an incompressible and i
tational fluid with a sharp surface inr space, we will reduce
the local equation of motion~5! to equations for the variable
q5$q1 ,q2 , . . . ,qN% that specify the shape of the nucleu
The continuity equation~4! has to be complemented by th
boundary condition on the moving nuclear surfaceS. Below
we will assume that the axially symmetric shape of t
nucleus is defined by rotation of the profile functionr
5Y„z,$qi(t)%… around thez axis in the cylindrical coordi-
natesr,z,w @31,32#. The velocity of the nuclear surface
then given by@32#

uS5(
i 51

N

ūi q̇i , ~11!

where
05430
,

-

e,

-

.

ūi5~]Y/]qi !/L, L5A11~]Y/]z!2. ~12!

The potential of the velocity field takes the form

f5(
i 51

N

f̄ i q̇i , ~13!

where the potential fieldf̄ i[f̄ i(r ,q) is determined by the
equations of the following Neumann problem@32#:

¹2f̄ i50, ~n¹f̄ i !S5
1

L

]Y

]qi
, ~14!

where n is the unit vector which is normal to the nucle
surface.

Using Eqs.~5! and ~10! with un5¹nf, multiplying Eq.
~5! by ¹mf̄ i , and integrating overr , one obtains

(
j 51

N FBi j ~q!q̈ j1 (
k51

N
]Bi j

]qk
q̇j q̇k

1E
t0

t

dt8expS t82t

t Dk i j ~ t,t8!q̇ j~ t8!G52
]Epot~q!

]qi
.

~15!

HereBi j (q) is the inertia tensor,

Bi j ~q!5mr0 R dsūif̄ j , ~16!

where r0 is the nuclear bulk density. Expression~16! was
obtained assuming an incompressible and irrotational nuc
fluid. In applications of the fluid dynamic approach~liquid
drop model! to nuclear fission, the inertia tensorBi j is usu-
ally evaluated by using the Werner-Wheeler method@31,33#.
This method implies an incompressible and nearly irro
tional hydrodynamical flow pattern. As was shown earlier
Ref. @32#, the difference between values of the inertia ten
Bi j obtained within the Werner-Wheeler method and the
rotational fluid model, Eqs.~14! and ~16!, does not exceed
10%. We will use this fact below in the application of th
equations of motion~15! to the descent of the nucleus from
the fission barrier.

The adiabatic collective potential energyEpot(q) does not
contain a contribution from the Fermi-surface distortion
fect and is given by

Epot~q!5E dr @ekin~r ,q!1epot~r ,q!#, ~17!

whereekin(r ,q) is the kinetic energy of the internal motio
of nucleons. The memory kernelk i , j (t,t8) in Eq. ~15! is
given by

k i j ~ t,t8!52E drP„r ,q~ t8!…@¹n¹mf̄ i„r ,q~ t !…#

3@¹n¹mf̄ j„r ,q~ t8!…#. ~18!
2-3
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In Eq. ~15!, we have omitted the contribution from th
initial distortion of the Fermi surface caused by the press
tensorPnm8 (r ,t0). The contribution fromPnm8 (r ,t0) reflects
the fact that the initial displacement fieldxm(r ,t0) is
switched on suddenly att5t0. The adiabatic force
2]Epot(q)/]q in Eq. ~15! obtains then the additional contr
bution att5t0 due to the initial distortion of the Fermi sur
face. However, the corresponding force is absent if the in
displacement fieldxm(r ,t0) is obtained as a result of th
previous evolution of the system att,t0. Below we will
consider the descent of the nucleus from the fission bar
i.e., assume the presence of the evolution of the systemt
,t0, and omit the contribution from the pressure tens
Pnm8 (r ,t0).

The displacement fieldxn(r ,q) and the potential field
f̄ i[f̄ i(r ,q) are determined by a solution to the Neuma
problem ~14!. The displacement fieldxn(r ,q) can be also
obtained using the Werner-Wheeler method@31#. In the cy-
lindrical coordinatesr,z,w, the components of the velocit
field, uz andur , in the z andr directions are then approxi
mated as@31#

uz5(
i

Ai~z,q!q̇i , ur5
r

Y~z,q! (
i

Bi~z,q!q̇i .

~19!

The two unknown coefficientsAi(z,q) and Bi(z,q) are re-
lated to each other by means of a continuity equation as

Bi~z,q!52
1

2
Y~z,q!

]Ai~z,q!

]z
. ~20!

Requiring then that the normal velocity of the fluid on t
surface should coincide with the normal velocity of the s
face one can express the coefficientAi(z,q) in terms of the
profile functionY(z,q) as

Ai~z,q!5Y22~z,q!
]

]qi
E

z

zmax
dz8Y2~z8,q!. ~21!

We point out that in the case of irrotational flow the Wern
Wheeler method leads to a velocity field potential of qua
rupole type@32#

f~r ,q!5
1

4q
~2z22x22y2!. ~22!

A spheroidal figure presents the simplest example whic
consistent with the velocity field potential~22!. In this case
q5q(t) is the elongation of the figure in units of the radi
R05r 0A1/3 of the nucleus and the equation of motion~15!
takes the following form:
05430
e

l

r,
t
r

-

-
-

is

B~q!q̈1
]B~q!

]q
q̇252

]Epot~q!

]q

2E
t0

t

dt8expS t82t

t Dk~ t,t8!q̇~ t8!.

~23!

Here, the mass parameterB(q) and the memory kerne
k(t,t8) are given by

B~q!5
1

5
AmR0

2S 11
1

2q3D , k~ t,t8!5
k0

q~ t !q~ t8!
,

~24!

where k05„4/(5m)…pr0pF
2R0

3 and pF is the Fermi mo-
mentum.

III. NUMERICAL CALCULATIONS AND DISCUSSION

Let us start from the one-dimension case and apply
~23! to the large amplitude motion from the barrier pointB to
the ‘‘scission’’ pointC in Fig. 1. To simplify the problem and
to show the role of memory effects in the most transpar
way we will first apply the schematic model, in which on
approximates the potential energyEpot(q) by an upright os-
cillator (1/2)CLDM(q2q0)2 with q051 and an inverted os
cillator Ef2(1/2)C̃LDM(q2qf)

2 which are joined smoothly
as shown in Fig. 1~see also Refs.@34,35#!. Let us consider,
first of all, a small amplitude changeDq of the shape vari-
able q near both the ground state atq;q051 with Dq5q
2q0 and at the saddle point atq;qf with Dq5q2qf . Lin-
earizing Eq.~23!, we will rewrite it as

FIG. 1. Dependence of the potential energyEpot on the shape
parameterq.
2-4
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B̃
]2

]t2
Dq52kDq2k̃E

t0

t

dt8expS t82t

t D ]

]t8
Dq~ t8!,

~25!

whereB̃5B0[B(q51), k5CLDM , k̃5k0 if q;q0 and B̃

5Bf[B(q5qf), k52C̃LDM , k̃5k f5k0 /qf
2 if q;qf .

Differentiating Eq.~25! over time, we will look for a solution
to Eq. ~25! in the form

Dq5(
i 51

3

Ciexp~l i t !. ~26!

Here the coefficientsCi are derived by the initial conditions
The eigenvaluesl i are obtained as a solution to the follow
ing secular equation:

S l21
k

B̃
D S l1

1

t D1
k̃

B̃
l50. ~27!

In the case of the zero-relaxation-time limitt→0, one ob-

tains from Eq.~27! a nondamped motion withl56Ak/B̃;
i.e., the time evolution is derived by the LDM stiffness c
efficientsCLDM or C̃LDM . In the opposite case of rare coll
sionst→`, the solution to Eq.~27! leads to a nondampe

motion with l56A(k1k̃)/B̃. In contrast to the previous
case, the additional contributionk̃ appears at the stiffnes
coefficientk1k̃ because of the Fermi-surface distortion e
fect. In the case of the nuclear Fermi liquid one hask̃@uku
@4,5#. This fact is important for the description of the nucle
isoscalar giant resonances@4,5#. Considering a motion nea
the ground state atq;q051 with k5CLDM , one obtains
from Eq. ~27! the quadrupole eigenvibrations with eigene
ergy

\v215\ACLDM1k0

B0
'\A4eF

mR0
2
'64.5A21/3 MeV,

~28!

where eF5(9p)2/3\2/8mr0
2534.73 MeV is the Fermi en-

ergy and we adoptr 051.18 fm. The result~28! coincides
with an analogous one obtained earlier by Nix and Sierk@4#
and agrees with the experimental value of the energy of
isoscalar quadrupole resonance\v21

expt'63A21/3 MeV.
As can be seen from Eq.~27!, the motion is damped fo

the nonzero and finite relaxation timet. In the case of smal
amplitude motion near the ground state,q;q0, the solution
to Eq.~25! at t2t0@t takes the form of eigenvibrations wit
Dq(t);exp(ivt), where the eigenfrequencyv is derived by
@5#

v2B05CLDM1C8~v!2 ivg~v!, ~29!

where B05B(q51), the additional stiffness coefficien
C8(v) appears due to the Fermi-surface distortion effect
05430
r

-

e

C8~v!5k0ImS vt

12 ivt D , ~30!

and the friction coefficientg(v) is given by

g~v!5k0ReS t

12 ivt D5~4/m!pR0
3h0ReS 1

12 ivt D .

~31!

Here, h05(1/5)r0pF
2t, is the classical viscosity coefficien

@3#.
We would like to stress that the simple separation of

memory integral into the conservative part;C8(v) and the
dissipative one;g(v) in Eq. ~29! is possible for the smal
amplitude eigenvibrations only. In the general case of la
amplitude motion the exact expression for the memory in
gral in Eq. ~15! has to be used. Note that Eqs.~29!–~31!
~except the expression for the coefficientk0) coincide with
the analogous result of the DDD model; see Ref.@17# and
Sec. 5.1.4 of Ref.@19#. Note also that the frequency depe
dence of the friction coefficientg(v), Eq.~31!, is not related
to the Drude regularization~see Ref.@36#!, but was derived
from solution of the third moment’s equation~6! obtained
from the kinetic equation~1!. This v dependence is cause
by the Fermi-surface distortion effect and has a comm
feature with the second viscosity in the fluid mechanics;
Ref. @38#, Chap. 8. In contrast to the Drude model, expre
sion ~31! does not contain the phenomenological cutoff fr
quency vD . Instead of anvD dependence in the Drud
model, the friction coefficient~31! depends on the relaxatio
time t, which can be evaluated microscopically from th
collision integral@3#.

Let us consider now the small amplitude motion~starting
path for the development of the instability! near the saddle
point, q;qf , at finite relaxation time. We have evaluate
numerically the value ofDq from Eq. ~23! using the secular
equation~27! and the initial conditionsDq(t0)50, Dq̇(t0)
5v0, andDq̈(t0)50. In Fig. 2 we show the result for two
values of the relaxation timet53310223 s and t54
310222 s. We have used the parametersqf51.6, A5236,

and \v f5\AuC̃LDMu/Bf51.16 MeV. The initial velocity
v0 was derived using the initial kinetic energyEkin,0

5(1/2)Bfv0
251 MeV. In the case of a very short relaxatio

time t53310223 s, the memory effects in Eq.~25! play a
minor role only and the amplitude of motion is approx
mately an exponentially growing function, similar to the ca
of Newtonian motion from the barrier in the presence
friction forces; see curve 1 in Fig. 2. The friction coefficie
g can be derived here from Eq.~25! at vF, ft!1 and it is
given byg5g f5k ft5vF, f

2 Bft;t, wherevF, f5Ak f /Bf is
the characteristic frequency for the eigenvibrations caused
the Fermi surface distortion effect. The behavior ofDq(t) is
changed dramatically with an increase of the relaxation tim
At large enough relaxation time, the descent from the bar
is accompanied by the damped oscillations~curve 2 in Fig.
2!. These oscillations are due to the memory integral in
~25!. The characteristic frequencyvR and the corresponding
damping parameterv I can be derived from the imaginar
2-5



-
t,

s
id.

e

nt

-

n

ion
e-
of

s a

t
on
case

V. M. KOLOMIETZ, S. V. RADIONOV, AND S. SHLOMO PHYSICAL REVIEW C64 054302
and real parts of the complex-conjugated roots of Eq.~27! as
l52v I6 ivR . The solution~26! takes then the form

Dq5Cze
zt1Ave2Gt/2\sin~Et/\!1Bve2Gt/2\cos~Et/\!,

~32!

whereG52v I\ andE5vR\. In Fig. 3 we show the depen
dence of the instability growth rate parameterz, the energy
of eigenvibrationsE, and the damping parameterG on the
relaxation timet.

FIG. 2. Time variation of the shape parameterq near the saddle
point B ~see Fig. 1! for various values of the relaxation timet.
Curves 1 and 2 correspond to the values oft53310223 s andt
54310222 s, respectively.

FIG. 3. Dependence upon relaxation timet of the characteristic
energyE and widthG of oscillations~solid lines! and the instability
growth rate parameterz ~dashed line! for curve 2 in Fig. 2.
05430
In the rare collision regimevF, ft@1, the friction coeffi-
cient g is obtained from Eq.~25! asg5g f5Bf /t;1/t. We
point out that thet dependence of the friction coefficien
g f;1/t, in the rare collision regime is opposite to thet
dependence ofg f;t in the frequent collision regime. This i
a consequence of the memory effects in the Fermi liqu
Below we will use the following extrapolation form for th
friction coefficient near the fission barrier:

g f5vF, fBf

vF, ft

11~vF, ft!2
. ~33!

We point out that the extrapolation of the friction coefficie
given by Eq.~33! with vF, f instead ofv f was taken to pro-
vide the correct limitg f5vF, f

2 Bft in the frequent collision
regime att→0. Below, in the application to a realistic two
dimensional fission process, we do not use the form~33! for
the friction coefficient but we will apply the general equatio
of motion ~15! with the memory integral.

The presence of memory effects in the equation of mot
~25! changes significantly the trajectory of the nuclear d
scent from the fission barrier. The result of the solution
Eq. ~25! for the trajectoryq̇(q) for the large amplitude mo-
tion from the saddle pointqf is shown in Fig. 4~solid line!.
The dashed line in Fig. 4 shows the trajectory obtained a
solution to Newton’s equation~no memory effect!

B~q!q̈1
]B~q!

]q
q̇252

]Epot~q!

]q
2g f q̇, ~34!

FIG. 4. Trajectory~dependence of the collective velocitydq/dt
on the collective coordinateq) for the descent from the saddle poin
B ~see Fig. 1!. The solid line represents the result of the calculati
in the presence of memory effects and the dashed line is for the
of Markovian ~no memory! motion with friction forces. We have
used the relaxation timet54310222 s and the initial kinetic en-
ergy Ekin51 MeV.
2-6
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where the friction coefficientg f was taken from Eq.~33!. In
both cases we have used the initial conditions withq(t0)
5qf , q̇(t0)5A2Ekin,0 /Bf , and Ekin,051 MeV and the re-
laxation time t54310222 s. As seen from Fig. 4, the
memory effect leads to a drift ofq in time which is accom-
panied by time oscillations ofq along the trajectory of de
scent to the ‘‘scission’’ pointqsc. In Fig. 4, the time oscilla-
tions of q appear as a spiral-like behavior of the trajecto
q̇(q). In both cases, the drift from the barrier is caused by
conservative force2]Epot(q)/]q. The oscillations appea
due to the presence of the time-reversible elastic force in
memory integral in Eq.~25!; see also Fig. 2. We point ou
that the memory integral contains the time-irreversible p
also. As a result of this fact, the velocity of the system d
creases and the trajectory is shifted to the slope of the fis
barrier. This effect is significantly stronger in the presence
the memory effects and leads to an essential delay of
descent process with respect to the analogous result obta
from the Newtonian motion of Eq.~34!. The influence of the
memory effect on the descent timetsc from the barrier to the
‘‘scission’’ point qsc is shown in Fig. 5. As seen from Fig. 5
in the absence of memory effects~dashed lines!, the descent
time tsc is about 1 –3310221 s and, as it should be, th
value of tsc goes to the limit of nonfriction motion for both
the frequent collision regimet→0 and the rare collision
regime,t→`. This property of the descent with no-memo
effects is the result of the Fermi-liquid approximation~33!
for the friction coefficientg f in Eq. ~34!. In contrast to this
case, the descent timetsc evaluated in the presence o
memory effects~solid lines! grows monotonously with the
relaxation timet. The additional delay of the motion in th

FIG. 5. Dependence upon relaxation timet of the time tsc re-
quired to travel a nucleus from the saddle pointB to the ‘‘scission’’
point C ~see Fig. 1!. The solid line represents the result of th
calculation in the presence of memory effects and the dashed li
for the case of Markovian~no memory! motion with friction forces.
The initial kinetic energy isEkin51 MeV.
05430
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rare collision region~large t) is here caused by the contr
bution of the elastic force due to the memory integral. T
elastic force leads to the dynamical renormalization of
adiabatic force2]Epot(q)/]q in Eq. ~23! and acts agains
the force2]Epot(q)/]q.

Let us apply our approach to the case of symme
nuclear fission described by Eq.~15!, assuming the Lorentz
parametrization for the profile functionY(z) in Eq. ~12! in
the following form @1#:

Y2~z!5~z22z0
2!~z21z2

2!/Q, ~35!

where the multiplierQ guarantees volume conservation,

Q52Fz0
3S 1

5
z0

21z2
2D G Y R0

3 . ~36!

Here all quantities of the length dimension are expresse
R0 units. The parameterz0 in Eq. ~35! determines the gen
eral elongation of the figure andz2 is related to the radius o
the neck. Forz25` the shapes~35! coincide with the sphe-
roidal ones. At finitez2 (z2.0 for bound figures! the neck
appears and the valuez250 corresponds to the scissio
point after which the figure is divided into two parts forz2
,0. To solve Eq.~15! we will rewrite it as a set of two
equations: namely,

(
j 51

2 FBi j ~q!q̈ j1 (
k51

2
]Bi j

]qk
q̇j q̇kG52

]Epot~q!

]qi
1Ri~ t,q!

~37!

and

]Ri~ t,q!

]t
52

Ri~ t,q!

t
1(

j 51

2

k i j ~q,q!q̇ j at Ri~ t50,q!50,

~38!

whereq5$q1 ,q2%5$z0 ,z2% and the terms;q̇i q̇ j were omit-
ted in Eq. ~38!, as the next order corrections. The kern
k i j (q,q) is given by

k i j ~q,q!5
2

5
mr0vF

2E dr @¹n¹mf̄ i~r ,q!#@¹n¹mf̄ j~r ,q!#.

~39!

We have performed numerical calculations for symme
fission of the nucleus236U. We solved Eqs.~37! and ~38!
numerically using the deformation energyEpot(q) from Refs.
@1,37#. The scission line was derived from the condition
the instability of the nuclear shape with respect to the va
tions of the neck radius:

]2Epot~q!

]rneck
2

50, ~40!

where rneck5z2 /Az0(z0
2/51z2

2) is the neck radius. The
equations of motion~37! and ~38! were solved with the ini-
tial conditions corresponding to the saddle point deformat
and the initial kinetic energyEkin,051 MeV ~initial neck

is
2-7
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velocity ż250). To solve the Neumann problem~14! for the
velocity field potential we have used the method based
the theory of the potential; see Ref.@32#.

In Fig. 6 we show the dependence of the fission traject
i.e., the dependence of the neck parameterz2 on the elonga-
tion z0, for the fissioning nucleus236U for two different val-
ues of the relaxation timet: t54310222 s ~dashed line!
andt50 ~dotted line!. The scission line~dot-dashed line in
Fig. 6! was obtained as a solution to Eq.~40!. We define the
scission point as the intersection point of the fission traj
tory with the scission line. As can be seen from Fig. 6
memory effect hinders slightly the neck formation and lea
to a more elongated scission configuration. To illustrate
memory effect on the observable values we have evalu
the translation kinetic energy of the fission fragments at
finity, Ekin , and the prescission Coulomb interaction ene
ECoul. The value ofEkin is the sum of the Coulomb interac
tion energy at the scission point,ECoul, and the prescission
kinetic energyEkin,ps: namely,

Ekin5ECoul1Ekin,ps. ~41!

After scission the fission fragments were described in te
of two equal-mass spheroids~see Ref.@24#!. We assumed
that the distance between the centers of mass,d, of two sphe-
roids is equal to the distance between the two halves of
fissioning nucleus at the scission point:

d5
5

4
z0

z0
213z2

2

z0
215z2

2U
scis

. ~42!

FIG. 6. Trajectories of descent from the saddle point of
nucleus236U in the ~z0 ,z2! plane. The dashed line represents t
result of the calculation in the presence of memory effects and
dotted line is for the case of Markovian~no memory! motion with
friction forces. We have used the relaxation timet54310222 s
and the initial kinetic energyEkin51 MeV. The dot-dashed line is
the scission line derived from the condition~43!.
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n

y,

-
e
s
e
ed
-
y

s

e

The corresponding velocityḋ was obtained by differentiation
of Eq. ~42! with respect to time. The elongationc of both
separated spheroids is defined by the condition

2c1d52z0,scis, ~43!

wherez0,scis is the elongation of the nucleus at the scissi
point. The collective parametersc andd and the velocityḋ
were then used to evaluate the Coulomb energyECoul ~see
Ref. @1#! and the prescission kinetic energyEkin,ps in Eq.
~41!.

The influence of memory effects on the fission-fragme
kinetic energyEkin and the prescission Coulomb interactio
energyECoul is shown in Fig. 7. As seen from Fig. 7 th
memory effects are neglected at the short relaxation t
regime where the memory integral is transformed into
usual friction force. In the case of Markovian motion wi
friction ~dashed line!, the yield of the potential energyDEpot
at the scission point is transformed into both the presciss
kinetic energyEkin,ps and the time-irreversible dissipation en
ergy Edis, providingDEpot5Ekin,ps1Edis. In contrast to this
case, non-Markovian motion with memory effects~solid
line! produces an additional time-reversible prescission
ergy EF,ps, caused by the distortion of the Fermi surface.
this case, the energy balance readsDEpot5Ekin,ps1Edis
1EF,ps. We point out that the two-spheroid parametrizati
of the fissioning nucleus at the scission point given by E
~42! and ~43!, used in this work, leads to the prescissi
Coulomb energyECoul which is about 5 MeV lower~for
236U) than the Coulomb interaction energy of the sciss
point shape@25#. Taking into account this fact and using th

e

e

FIG. 7. Fission-fragment kinetic energyEkin and Coulomb re-
pulsive energy at the scission point,ECoul, versus the relaxation
time t for the nucleus236U. The solid lines represent the result o
the calculation in the presence of memory effects and the das
lines are for the case of Markovian~no memory! motion with fric-
tion forces. The initial kinetic energy isEkin,051 MeV.
2-8
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experimental value of the fission-fragment kinetic ene
Ekin

expt5168 MeV @25#, one can see from Fig. 7 that Markov
ian motion with friction ~dashed line! leads to an overesti
mate of the fission-fragment kinetic energyEkin . In the case
of non-Markovian motion with memory effects~solid line!,
good agreement with the experimental data is obtained
relaxation time of aboutt58310223 s . A small deviation
of the prescission Coulomb energyECoul obtained at the non
Markovian motion~solid line in Fig. 7! from the one at the
Markovian motion~dashed line in Fig. 7! is caused by the
corresponding deviation of both fission trajectories in Fig.

In Fig. 8 we illustrate the memory effect on the saddle-
scission timetsc. In the case of non-Markovian motion~solid
line!, the delay in the descent of the nucleus from the bar
grows with the relaxation timet ~at t>4310223 s). This is
mainly due to the hindering action of the elastic force cau
by the memory integral. The saddle-to-scission time
creases by a factor of about 2 due to the memory effect a
‘‘experimental’’ value of the relaxation timet58310223 s
which was derived from the fit of the fission-fragment kine
energyEkin to the experimental value ofEkin

expt ~see above!.
Our result for the saddle-to-scission time and for the pres
sion kinetic energy are sensitive to the choice of the mag
tude of the relaxation timet; see Figs. 3, 5, 7, and 8. Th
value of t;10222 s used above is in good agreement w
the estimates oft from the collision integral. The numerica
evaluations oft with different assumptions about the coll
sion probability give@39,40# t5(1 –3)T22310221 s, where
T is the temperature in MeV. Note that in our considerati

FIG. 8. Dependence upon relaxation timet of the saddle-to-
fission timetsc for the descent from the barrier in the case of tw
dimensional (z0 ,z2) parametrization for the nucleus236U. The solid
line represents the result of the calculation in the presence
memory effects and the dashed line is for the case of Markovian~no
memory! motion with friction forces. The initial kinetic energy i
Ekin51 MeV.
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we assumeT*2 –3 MeV to dismiss the influence of quant
shell effects on the transport coefficients.

In the present paper we neglected the fluctuations wh
usually accompany the dissipative collective motion beca
of the fluctuation-dissipation theorem. In Ref.@23# the mean
saddle-to-scission timetsc was evaluated taking into accoun
the fluctuations within Kramers’ transport equation~but no
memory! and assuming a schematic one-dimensional mo
for the potential and constant mass and friction coefficien
was shown in@23# that fluctuations tend to increase th
saddle-to-scission timetsc by about 10%–50%. This effec
grows with the friction coefficient. This is in contrast wit
our results, where the saddle-to-scission time is formed
both the friction and the dynamical elastic force. The de
of the descent from the barrier caused by the elastic fo
grows with the relaxation timet. However, the dependenc
of the friction on the relaxation time is completely differe
for the rare and the frequent collision regimes; see the c
ment in the paragraph after Eq.~32!. Similar to fluctuation
forces in@23#, the memory integral in the equation of motio
~15! acts to diminish the prescission kinetic energy. The i
portant additional effects from the memory integral app
due to the dynamical renormalization of the fission barr
The memory integral creates a specific conservative fo
~additional to the usual adiabatic force created by the fiss
barrier! which is caused by the distortion of the Fermi su
face in momentum space. The fluctuations play a crucial r
for the derivation of the variances of the kinetic energy of t
fission fragments for the mass and charge distributions
fragments, etc. In order to take into account the fluctuati
in our consideration a random force can be added to
collisional kinetic equation~1!. An investigation of the effect
of fluctuations is now in progress.

IV. SUMMARY AND CONCLUSIONS

By use of p-moment techniques, we have reduced t
collisional kinetic equation to the equations of motion for t
local values of particle density, velocity field, and pressu
tensor. The obtained equations are closed due to the res
tion on the multipolarityl of the Fermi-surface distortion up
to l 52. To apply our approach to nuclear large amplitu
motion, we have assumed that the nuclear liquid is inco
pressible and irrotational. We have derived the velocity fi
potentialf(r ,q), which depends then on the nuclear sha
parametersq(t) due to the boundary condition on the mo
ing nuclear surface. Finally, we have reduced the problem
a macroscopic equation of motion for the shape parame
q(t). Thus we consider a change~not necessary small! of the
nuclear shape which is accompanied by a small quadru
distortion of the Fermi surface. The obtained equations
motion for the collective variablesq(t) contains the memory
integral which is caused by the Fermi-surface distortion a
depends on the relaxation timet.

The memory effects on the nuclear collective motion d
appear in two limits: of zero relaxation timet→0 and att
→`. In general case, the memory integral contains the c
tribution from both the time-reversible elastic force and t
dissipative friction force. The eigenmotion near the grou

of
2-9
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state ~point A in Fig. 1! is influenced by memory effect
through the frequency dependence of the stiffnessC8(v) and
the frictiong(v) coefficients in the dispersion equation~29!.
We point out that the friction coefficientg(v) in our ap-
proach@see Eq.~31!# changes itst dependence fromg;t in
the frequent collision regime,vRt!1, to g;1/t in the rare
collision regime,vRt@1. As a result of this fact, we hav
obtained a correct description of the zero-to-first-sound tr
sition in the nuclear Fermi liquid@5#. In the limit of t→`,
the additional contribution~elastic force! in Eq. ~25! appears
due to the memory integral. The contribution from the elas
force is significantly stronger than the one caused by
adiabatic force2kDq. The presence of the elastic force pr
vides a correctA dependence of the energy of the isosca
giant multipole resonances.

We have shown that the development of instability n
the fission barrier~point B in Fig. 1! is strongly influenced by
the memory effects if the relaxation timet is large enough.
In this case, a drift of the nucleus from the barrier to t
scission point is accompanied by characteristic shape o
lations~see Figs. 2 and 3! which depend on the parameterk̃
of the memory kernel and on the relaxation timet. The
shape oscillations appear due to the elastic force induce
the memory integral. The elastic force acts against the a
batic force 2]Epot(q)/]q and hinders the motion to th
scission pointC. In contrast to the case of Markovian mo
tion, the delay in the fission is caused here by the conse
tive elastic force and not only by the friction force. As
result of this fact, the nucleus loses a part of the prescis
kinetic energy, converting it into the potential energy of t
Fermi surface distortion instead of the time-irreversible he
ing of the nucleus. As mentioned above, in the nuclear Fe
liquid the friction coefficientg is a nonmonotonic function
of the relaxation timet @see Eqs.~31! and ~33!# providing
f

M
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C
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the asymptotic behaviorg;t and g;1/t in both limiting
cases of frequent and rare collisions, respectively. This
ture of g leads to the nonmonotonic behavior of the sadd
to-scission timetsc as a function oft in the case of Markov-
ian ~no memory! motion with friction; see dashed lines i
Figs. 5 and 8. In contrast to the Markovian motion, t
memory effects provide a monotonous dependence of
saddle-to-scission time on the relaxation timet ~see solid
lines in Figs. 5 and 8!. This is caused by the elastic force
produced by the memory integral, which lead to the ad
tional hindrance for the descent from the barrier at larget.

The memory effects lead to the decrease of the fiss
fragment kinetic energyEkin with respect to the one obtaine
from Markovian motion with friction; see Fig. 7. This i
because a significant part of the potential energy at the sc
ion point is collected as the energy of the Fermi-surface
formation. Note that the decrease of the fission-fragment
netic energy due to memory effects is enhanced in the
collision regime~at larger relaxation time! while the effect
due to friction decreases. An additional source for the
crease of the fission-fragment kinetic energy is caused by
shift of the scission configuration to that with a larger elo
gation parameterz0, in the case of non-Markovian motion
see Fig. 6. As a result of this fact, the repulsive Coulom
energy of the fission fragments at the scission point
creases with respect to the case of Markovian motion.
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