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Nucleon-nucleon optical model for energies up to 3 GeV
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Several nucleon-nucleon potentials, Paris, Nijmegen, Argonne, and those derived by quantum inversion,
which describe theNN interaction forT ,,<300 MeV, are extended in their range of applicationNds
optical models. Extensions are made ispace using complex separable potentials definable with a wide range
of form factor options including those of boundary condition models. We use the latest phase shift analysis
SPOO(FA00, WI0O0 of Arndt et al. from 300 MeV up to 3 GeV to determine these extensions. The imaginary
parts of the optical model interactions account for loss of flux into direct or resonant production processes. The
optical potential approach is of particular value as it permits one to visualize fusion, and subsequent fission, of
nucleons whef ,,>2 GeV. We do so by calculating the scattering wave functions to specify the energy and
radial dependences of flux losses and of probability distributions. Furthermore, half off the energy shell
matrices are presented as they are readily deduced with this approach.rBaitites are required for studies
of few- and many-body nuclear reactions.
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[. INTRODUCTION interpretation of emergent structures. But like the hybrid
models, due to the underlying expansion schemes used with
A theoretical description of nucleon-nucleoNN) scat- EQF, manyad hocdegrees of freedom are involved.
tering is a fundamental ingredient for the understanding of The experimentaNN data and its parameterization in
nuclear structure and scattering of few- and many-bodyerms of amplitudes and phase shifts, are very smooth with
nuclear systemil—3]. This is a paradigm of nuclear physics. energy up to 3 Ge\V10-12; a feature that supports use of
Of the spectrum, low energfM N scattering traditionally is the classicapproach using a fredN interaction potential.
described in terms of few degrees of freedom of which spirBy doing so one uses a minimal number of degrees of free-
and isospin symmetries play the predominant role. At medom with again those degrees of freedom being associated
dium energies, production processes and inelasticities bevith the spin and isospin of the total system. Of course, this
come important and several elementary systems composed dfssic approach sacrifices all reliance on substructures.
nucleons and mesons contribute NN scattering. While  However, the underlying dynamic still reflects its geometric
these nucleons and mesons are emergent structures frdiacet by means of surfaces and boundary conditions. The
QCD, at present there is no quantitative descriptioiN&f  success of bag models is a direct evidence of the crucial role
scattering above the inelastic threshold either in terms o$uch boundary conditions play with the emergent structures
QCD or of the emergent nucleons and mesgHs from them being direct consequences of QCD confinement.
Theoretically undisputed is the need for relativiy] of  This is further support for our view that an explanation of
which there are two aspects. First is the increasing imporelasticNN scattering need not, if will not, depend explicitly
tance of relativistic kinematics as the kinetic energy becomesapon QCD details. Only geometric attributes such as radius,
comparable to the rest masses of the scattering particles. Sefiffuseness, and possibly channel dependent boundary con-
ond, particle production is inherently relativistic requiring, ditions of the QCD confinement domain are required to ex-
ultimately, a description in terms of highly nonlinear QCD. plain most data. This view is well supported by high energy
But that nonlinearity inhibits a facile QCD explanation of scattering for which the geometric limits of tlgematrix are
NN scattering. Notwithstanding, there exist hybrid modelsreached and form factors are defined independent of energy.
that offset that nonlinearity in seeking explanation of theln the transition region the geometric limits are not reached
excitation spectra and of the scattering of hadrd@g]. All and the factorization schemfk3,14 used at higher energies
use heavy valence quarks, with an effective mass typically oflo not apply.
300 MeV, and massive Goldstone bosons in lieu of massless Of course, in the last decade or so, there have been sev-
gluons. They also maintain color degrees of freedom. A%ral theoretical attempts built upon boson exchange models
well there are effective quantum field theoriSQPF that  to explain NN scattering data below 1 GeV. All such at-
link the quark-gluon structure of the standard model to lowtempts have given but qualitative results, often requiring
energy nuclear physic$8,9]. Currently these latter ap- many degrees of freedom even to achieve that qualitative
proaches are very popular as they may give a foundation anagreement and despite explicit inclusionfdofandN* reso-
nances. Optical model studies have also been made for me-
dium and modest high enerdyN scattering[15-17, and

*Email address: funk@physnet2.uni-hamburg.de they can be improved to give a high quality description of
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model is very desirable also as it facilitates extension into théow energy data has been analyzed by the VPI/GWU group
off-shell domain; properties that are needed in few- and12]for T, ,,<400 MeV, the Nijmegen grouj®27] with the
many-body calculations. In particular, microscopic opticalNN phase shift results PWA93 fdF_,,<350 MeV, and by
model potentials for elastic nucleon-nucleus scattering anfachleidt[20] giving the Bonn-CD-2000. Of these, the VPI/
bremsstrahlung reactions that give quantitative results, regwu group has given many solutions for this low energy
quire a careful and exact treatment of the off-sfeM t  regime over the years, all of which have been listed by Arndt
matriceq 18]. Furthermore, calculations of such entities haveet al.in a very recent publicatiofi.2]. For their use note that
shown that it is crucial to have on-shell values of th@a-  the solution name reflects the season and year of their cre-
trices in best possible agreement wittN data at all ener-  ation although the low energy solutions have names that end
gies. Concomitantly one needs high precisitiN data  with 40. Clearly that database has grown rapidly in the last
against which one can speciyN interactions. two decades. While thep data now extends up to 3 GeV, the

There are many studies of few- and many-body problemsp data are limited to 1.3 GeV. Surprisingly, the solutions
in the low energy regimd ,,<<300 MeV and the results from SM97 to WIOO remain very closely the same and are
have consequences for any model extension above pion proery stable with regard to new data. We have used the solu-
duction threshold3]. We note in this context that significant tions SP00, FAQ0, and WIO0 in our calculations and found
off-shell differences it matrices are known to exist between results that differ but marginally. Thus hereafter in the main
the theoretically well motivated boson exchange models ofve refer to the results of calculations based upon SP00. The
NN scattering in this regime. It remains difficult to attribute findings are equally valid for other more recently dated so-
with certainty any particular dynamical or kinematical fea- lutions. In our practical applications, however, when new
ture with those differences. Nonlocality, explicit energy de-potentials are sought their generation is based upon the most
pendence, and features associated with relativistic kinematigsurrent solutior]28].
are some possibilities. The VPI/GWU solutiong29] are parametrizations of the

In contrast, there is the quantum inverse scattering apelastic channeNN Smatrix. They consider
proach by which any on-shdllmatrix can be continued into
the off-shell domai19]. A specific method is the Gel'fand- Si=(1+iKg)(1-iKy) ™, (1)
Levitan-Marchenko inversion algorithm for Sturm-Liouville
equations. This approach to spectfymatrices off shell is
appropriate when the physic8 matrix is unitary and the —ig1_ —1_ i
equation of motion is of the Sturm-Liouville-type. Such is Ka=1(1=S)(1+S) " =ReKq+iimK,. 2
valid without modification forNN t matrices in the energy The real part of thi& matrix is related to a unitar§ matrix

regime to 300 MeV. Mathematically, the Gel'fand-Levitan- (s;) and therewith phase shif&™ and e are defined by
Marchenko algorithm is a method based upon a class of real

and regular potentials. In the spirit of inverse scattering, we_  (1+i ReKy)

generalize that method for nonunita§/matrices. By that %:m

means we generate &N optical model separately for each

partial wave. The algorithm we have developed allows stud- cos 2 exp(2i6™) i sin2e exp[i(6~+67)]
ies of complex separable potentials in combination with any = | i sin 2¢ exp[i(6~+567)] cos 2 exp(2i 8)
background potential. The background potential can be any

of the existingr-spaceNN potentials. We have not used 3)
k-space background potentials, such as Bonn-B,
Bonn-CD[20], and OSBER21], albeit that similar analysis
can be made with them.

which inverts to give

The absorption parametepsS and u relate to the imaginary
part of thatK matrix by

We limit the background potential, which is synonymous tarfp”~ tanp “tanp " cosu
with the later introduced reference potential, to the well Im K4:{ _ N 2 (4)
known realr-space potentials from Pafig2], Nijmegen[23] tanp " tanp " cosu tartp

(Reid93, Nijmegen-I, NijmegenJll Argonne[24] (AV18), . N _ .

and from inversiori25,26]. To them we add channel depen- '(I:'E;rslﬁerlzlatlons simplify t&=tané+i tarfp for uncoupled
dent complex separable potentials with energy dependerit In ourétudy reaNN potentials derived from fixed angu-
strengt.hs. For given mput data results then, the fu”.pOt?m'alFar momentum’ inverse scattering theory have been used.
are unique. The experimental background and motivation fo'i'hey have been generated from inversion algorithms predi-

analysis using an optical model is given in Sec. Il. AdetailedCated upon the Gel'fand-Levitan-Marchenko integral equa-

gﬁzcxgggz d(i);etgitz:]rfgrstlza(lzliglc%zrsltigr 0'? rgl';/li?slir; 35/ Z‘n”ilntions that physically link to the radial Schiimger equation

Sec. IV while a summary is given in Sec. V. of a fixed angular momentum,

d> I1(1+1) 2u

Il. SURVEY OF DATA AND MOTIVATION gtttz Vi) h(r.k)=k>¢y(r.k), (5)
FOR THE OPTICAL POTENTIAL r r

NN scattering is a long standing problem that has beenvhereV,(r) is a local and energy independent operator in
reviewed often as the database develodd11,20,27 The  coordinate space. Substituting

054003-2



NUCLEON-NUCLEON OPTICAL MODEL FOR ENERGIE.. .. PHYSICAL REVIEW C 64 054003

I(1+1 2 100 100
q(r)= (—rg—) + FMVM) and A=k, (6) . 'S (np+pp) *P (p+pp)

identifies Eq.(5) as a Sturm-Liouville equation
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There are two equivalent inversion algorithms for the T . [GeV] T [GeV]

. . . . . e Lab Lab
Sturm-Liouville equation, which one identifies as the March- 5, 30
enko and the Gel'fand-Levitan inversion. Both yield princi- 1P1(np) cwor 3P1(np+pp)
pally the same solution and numerically they are comple- g o Fac] P 0
mentary. The salient features are outlined for the case o & = N2
uncoupled channels. For coupled channels the inversior £-%0 5730 FA00
equations are matrix equations with input and translation ker- §_, intily 2 0 O et
nels correspondingly generalized. & &

In the Marchenko inversion the experimental information  -%0 -90 N1
enters via theS matrix, S;(k) =exg2i§(k)], with which an 0 1 2 3 0 1 2 3
input kernel is defined in the form of a Fourier-Hankel trans- Tiap (GeV) Tiap [GeV]

p
form 50— 50—
D,(np+pp) D,(np)
= 25 = 25
1 (+= g g
Fn=—5=| i eRIS- 1 (dk, ® S we S
- = |
N ) ] ] o 8-25 w325 N3
whereh;"(x) are Riccati-Hankel functions. This input kernel £ T2 —
when used in the Marchenko equation, -50 -50 Fa00
Nij-1
" 0 1 2 3 0 1 2 3
A|(r,t)+F|(r,t)~l—f A((r,s)F(s,t)ds=0, 9) Tiap [GV] Tiap [GeV]
r 90
3 . . ok 'F,p) *F (np+pp) NI-2
specifies the translation kernd|(r,t). The potential of Eq. g P 60
(5) is a boundary condition for that translational kernel, = 30 oL = 30
d ® N2 % o
(] [
Vi (r)=—2—A(r,r). (10 8 60 8 T~
| ar T & _30 are®
. . . . Q0 Nij-1 80 Avig
The Gel'fand-Levitan inversion does not require t8e 0 1 2 3 0 1 2 3

matrix but rather the Jost function as spectral input. The Toap [GeV] Tiap [GeV]

latter is related to th& matrix b
Y FIG. 1. Single channel phase shifts for SMIT 4,

Fi(—k) <2.5 GeV, FAOOT ,,<3 GeV, and reference phase shifts using
Sk =—¢ B (1) inversion (In-HH), Nijmegen (Nij-1, Nij-2), and Argonne(AV18)
! potentials.
The _Gel’fand-Levitan input kernel then is defined as therpe boundary condition Eq€10) and (14) yield identical
Fourier-Bessel transform potentials.

Determination of the input kernels from data, phase shift
: functions8(T | ap(k)), or K matricesK (T 5(K)), requires an
h(tkdk, (12 . . !
accurate interpolation and extrapolation of that data. In all
practical applications rational functions are very appropriate.
where j(x) are Riccati-Bessel functions. The Gel'fand- In this work we made a representation of data Tog,(k)
Levitan integral equation <3 GeV where the orddr2N—1] and[2N] of polynomi-
r als in the rational function®R?N~1 N (k)= p2N-1l/p[2N]
_ was chosen to be as small as possible, typicaty\N2<6. An
KO+ Gi(r O+ foK'(r’S)G'(S't)ds_o 13 implication is that extrapolations af(k) from the highest
energy(last data pointk,,,, to infinity do not change sign
also defines a translational kernel with boundary condition and lim,_...8(k)~1/k. We control the rational function fit
with weight functions that guarantee that those fits will be
Vi(r) = 21K|(r . (14) particularly accurate for some desired interval and less strin-
dr gent elsewhere. For example, the chani&lg, *P,, 3P,

2 0
G(r,t)= ;fo Ji(rk)

T
Fy(k)|?
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S _s0 -~ 5-10 ::_": to the same data. All such fits, however, have been made
2 a -l independently of each other and are based upon differing
T 75 4 | £720 M-t theoretical specifications of the boson exchange model dy-
D;(ne) avis namics. In Figs. 3 and 4 we give a quantitative demonstra-
100 ] P 3 -3% ] P 3 tion of the ensuing differences. Therein the Nijmegen phase
T, [GOV] T o [G6V] shift analysis PWA9327] has been used as reference values

FIG. 2. Coupled channel

phase shifts for SMI7 ,,

for various other phase shift solutions and potential predic-
tions for thenp 1S,, and 2P, channels. Such differences are

<2.5 GeV, FAOOT ,,<3 GeV, and reference phase shifts using characteristic of variations between finite power series ex-
Nijmegen(Nij-1, Nij-2) and Argonneg(AV18) potentials.

3D,, and 'F; were weighted withw, ,,=1 for T .

<1.2 GeV and for larger energiesyy,=0.05. For the
D, and 3F; channels, the cut between ,,, andw;q, was

pansions of data in a finite interval. A mathematical property
of such finite power series expansions within an interval is
that, while the data in the interval will be well reproduced,

continuations beyond that interval can radically diverge.
Such a property is in evidence in Figs. 1 and 2, and that

300 MeV. Consequently the rational functions used in the
inversion algorithm ensure that the resulting potentials will
give the desired values of phase shifts from solutions of the
Schralinger equation. Such is evident from the comparisons
given in Figs. 1 and 2. Therein the fits to the phase shifts to
300 MeV resulting from all three models are considered as
high quality. Single and coupled channel phase shifts from
SM97 and FAOQO solutions fai<3 are shown together with
values found from calculations made using three potential
models. These model phase shifts were generated with
Nijmegen-l and Nijmegen-1[23], and Argonne AV1§24]
interactions, and with potentials determined using Gel'fand-
Levitan-Marchenko inversiofil7,25,2§.

On the scale upto 3 GeV the one-boson excha@gE)
model results clearly diverge from data. As with the phase
shift analysis, OBE potential©OBEP have received several
critical reviews[3,20], including observations that there are
small variations between phase shift analyzes and potential
model results in the subthreshold domdin,,<300 MeV
[30]. A theoretically stable result would require many quan-
tities, that need be specifiedpriori, to be determined from

A Phase shift [deg]

1.5¢

-1

100 200 300

T p MeV]

other sources. At present that does not seem feasible and all FIG. 4. np 3P, phase shift differences with respect to Nijmegen
current potentials rely upon fits of many of their parametersPWA93.
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r>10 fm ° o Coulomb 600y

5
OPEP S 450¢

1<r<10fm °° OBEP %‘
% 300}

NN-out ‘_° ° — E
150}

FIG. 5. Interaction scheme for low energy scattering; T 4, ol
<300 MeV.
~15% 05 1 15 2 25 3
variance is the reason for the caveat often espoused that us ' Radius [fm] ’

of OBEP beyond the fitted energy range should be prohib-
ited. Be that as it may, one could expect from a consistent
theory that such extrapolations, albeit in error, would be the 750y
same. Clearly they are not. However of one thing we can be
sure, the lack of physics with these models lies within the 600
interaction distance less than 1 fm. The optical model ap-5
proach we present is an attempt within the frame of potentiali 4501
scattering theory to account for and identify such short rangeg

properties. £ 300}
It is apropos to make a brief remark on the long range 5

character of theNN potential that theoretically is identified 150

with one-pion exchange potenti@DPEB. In the phase shift

analysis PWA93 by the Nijmegen group and in that of Bonn- or

CD-2000 of Machleidt, such character is enforced in all par-
tial waves. Indeed that precise character reemerges when e —1500 0'5 1 1'5 2 2'5 3
ther of those phase shift functions are used as input to ¢ ' Radius [fm] |
Gel'fand-Levitan-Marchenko inversion. On the other hand,
the VPI/GWU group has added the one-pion exchange am- FIG. 6. Nucleon-nucleon inversion potentials using SPO0O
plitudes only to give the high partial waves in any of their phases.
solutions. Exactly the same quantum inversion of the SM94
solution does not give in low partial waves OPEP except orérgies, to emphasize the high energy data and fix more strin-
average that might be interpreted as signaling the importancgently the short range<(1 fm) character of the deduced
of nonlocality[26]. interaction. The short range properties of inversion potentials
Despite limitations as discussed above, the OBEP remaiso found are displayed in Fig. 7. Clearly, th&, and P,
the best motivated potential models for low energy scatterinversion potentials based upon SP00 real phase shifts that
ing. They do yield high quality fits to the phase shifts in thatextend up to 3 GeV are soft core interactions. We neglected
domain. Such is useful for us in our quest to interpret datdn this analysis thexp *P; channel due to the limited data
with increasing energy. In Fig. 5 we show an interactionset for T ,,<1.2 GeV. The higher partial waves are
scheme in terms of radial separation that is suitable for low
energy scattering. This scheme is supported by potentials de- 10’
termined by inversion that reproduce the low energy phase
shifts used as input to an accurd@{exp)— (rat)| <0.25°.
Such inversion potentials have been made also to follow
closely the SPOO0 real phase shifts up to 3 GeV and these are
shown in Fig. 6. They possess a long range Yukawa tail, a
medium range attractior 1-2 fm, and a strong short range
repulsion with an onset at 1 fm. These potentials are energy
independent so that the long and medium range potential
properties diminish in importance for kinetic energies above
500 MeV. For projectiles withl ,,>1.5 GeV essentially 1072 02 04 06 08 1
only the repulsive core of these potentials remains of signifi-
cance for scattering. Thus inversion potentials have also been
obtained with the SPOO real phase shifts up to 3 GeV using FIG. 7. np 'S, and 3P, inversion potentials using SPOO real
Wi ow=0.1forT 4,<1.2 GeV andwyis,=1 for higher en-  phase shift solution upto 3 GeV.

—_
(=]
[=]

p

-
o
L

%

Inversion potential [GeV]

Radius [fm]

054003-5



A. FUNK, H. V. VON GERAMB, AND K. A. AMOS PHYSICAL REVIEW C64 054003

. ‘ ™ ‘
+ 00 —
NNa,, NNK"K, NNK°K®, NNo NN-in @ —_ - @
1 NNm*mn*mn*nn® g 4 € y

NNy, NNf
NNpr, NNor

4 NNyam, NN o ntnnt ™ r>10 fm @ m Coulomb
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—~ 7 B B : 7 7 NNr*n~, NA (1232)
‘ ‘ NNz, NNt
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Channel Number 0.5<r<1fm excitations
FIG. 8. Thresholds for production processesNiN scattering. m
strongly screened by the centripetal barrier and so also ar
not considered here. The core strengths of th&g and

3P0,1 potentials reach a shoulder and maximum with a typi- ; '\
cal value~1 GeV at a radius of 0.3—0.4 fm. It is worth e ¢ ( meson
i+~ o O

o
2]

noting that the shoulder/maximum aspect of the core is aNN—0U production
result of flat minima between 1.5 and 2 GeV in th&, and
3P0'1 SPQO pha;e Sr."ft functions. For higher partial WaVes, £ 9. Interaction scheme for medium energy scattering, 0.3
phase shift minima lie beyond 3 GeV. As the expenmental<T ~2 GeV
phase shifts are limited to below 3 GeV we have confidence™ - '
in the specified inversion potentials only to about 0.25 fm.here as we discuss later, but for now it suffices that the po-
The shorter distance values reflect only our extrapolation ofential shoulder and maximum seen in Fig. 7 aré GeV.
these phase shifts being lim.. 5(k) ~1/k. Now we identify some specifics in the &5 <1 fm range.

Above 300 MeV reaction channels open and the elastigve conjecture that the two colliding hadrons remain in had-
channelS matrix no longer is unitary. In Fig. 8 we show the ronic states throughout the process. We allow one of the two
gradual increase of the open channelNiN scattering that nucleons to be excited, say intoAg1232), while the other
includes resonances as well as single and multiple produgemains in the ground state. The excitation may be ex-
tion thresholds. Only thé(1232) resonance has a low en- changed between the two hadrons as well, and both nucleons
ergy threshold and a relatively small width of 120 MeV. may be excited to an intermediate resonant state. The pro-
Therefore it is the only resonance we expect to be obviouslyuction of mesons then can only occur from one or both of
visible in the energy variation of the elastic scattering phasehe two separate QCD entities. The essential feature is that in
shifts. In particular one notices typical variations in tH2,, the energy range, the predominant scattering processes are
3F 3, and*PF, channels. Otherwise the phase shifts are verythose retaining identifiable hadronic entities. Within an opti-
smooth slowly changing functions of energy in all channelscal potential representation, attendant flux loss equates to a
Such is a condition for the suitability of a potential model of diffuse absorption extending radially to 3 fm and possibly
scattering governed bguasimacroscopigeometric entities. more. The bulk of such absorption, however, lies signifi-
In nucleon-nucleusNA) scattering, entities of that ilk are cantly within 1 fm.
epitomized by the parameters of Woods-Saxon potentials. It requires 2 GeV and more of projectile energy in the Lab
For the NN case, we have used previoudl$6] a local  system to have at least 1 GeV in the CM frame available for
Gaussian in this similar manner, noticing therefrom spin-the two nucleons to overcome the repulsive core potential
isospin coupling effects that remain in qualitative agreemenénd to fuse into a compound system. This is visualized with
with NN potentials valid below 300 MeV. It is also worth the scattering sequences shown in Fig. 10. An objective of
noting that the absorption in tho®&N optical potentials for  our optical model studies is to substantiate this conjecture of
this energy range were not at the geometric limit of a fullyfusion and fission of resultant compound dibaryonic systems
absorptive disk. Together with the strong spin-isospin coudominating the scattering for this energy regime.
pling, this property infers optical potentials that are strongly To describe this developing system for €3, .,
channel dependent in contrast to tNé case for which as- <3 GeV we will use Feshbach theory to specify the optical
sumed central and spin-orbit potentials are partial wave inpotential[31]. An important feature of that theory is the pro-
dependent. jection operator formalism with? and Q subspaces, which

In the spirit of visualization ofNN scattering shown in divide the complete Hilbert spac® ¢ Q)=1, into the elas-
Fig. 5, we now include the importance of the reactive andic scattering channel, the space, and all inelastic and re-
resonant content pictorially in Fig. 9. This we consider rel-action channels that are containedQnspace. This theory
evant for 0.3XT ,,<2 GeV. The upper limit is significant then assumes a hierarchy of complication Qnspace of
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NN-in tential with an energy dependent strength. If a very large
- <—° number of doorway states contribute, the effect can be rep-
resented by a local potential operator. This was the basis of

our previous study16].
55 1) fm ° ° Coulomb
A. Formal potential model

i {8 OPEP It is generally accepted that a valid covariant description
B ts OBEP of NN scattering formally is given by the Bethe-Salpeter

equation

05<r<1fm @ OBEP M=V+VGM, (15)
core

where M are invariant amplitudes that are based upahat
QCD contains all connected two particle irreducible diagrams.
r <05 fm @ fusion This equation serves generally as an ansatz for approxima-
- tions. Of those, the three-dimensional reductions are of great
use that allow the definition of a potent[&2,33. In particu-
.)- . lar, the Blankenbecler-Sugar reducti@®] gives an equation
K. .)' multiple very often used for applications withN scattering20,34].
NN-out <« » —> meson This reduction is obtained from E@L5), which in terms of
f t production ¢, momenta is

FIG. 10. Interaction scheme for high energy scatterifg,, M(q',q;P)=V(q',q;P)
>2 GeV.
4 . . .
which doorway states are the simplest. Doorway states are +f dRV(@" PGk P)M(k.a:P),
characterized to be the only means to leave and to return to (16)
the elastic channel. Each doorway state in this approach in-
fers a complex and separable component in the optical powvhere the propagator

1 1
I §P+ k+ M EP— k+ M
SP+k —M2+ieg 5Pk —M?+ie
(1) (2)

|
The subscripts refer to nucledi) and (2), respectively. In d3k
the CM systenP = (4/s,0), which is just the total energf M(d',q)=V(q',q)+ J WV(Q',k)
=y/s. In particular, the Blankenbecler-Sugar reduction of the
propagatolg uses the covariant form M2 A (KA 5y (—k)

X — M(k,q). (20

Ex  g?—K%+ie
8(ke) M2 A{(KIAGy(—K)

Fas(k.s)= = 27 E, 1 - ' (18 Taking matrix elements with only positive energy spinors, an
25”7 Extie equation with minimum relativity results for ti¢N t matrix,
namely,
with positive energy projectors T(q',q)=V(q’,q)
OF, — 5 d3k M2
+ _ Y E—7-ktM +f—V "K)y=— ——F—T(k
(21

The amplitudes are now expressed with the reduced terms
and they satisfy a three-dimensional equation Using the substitutions
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12 and afull optical modelHamiltonian. The first of these,

12
T(q’,q)(E—> (220  thereferenceHamiltonianHy=T+ V,, invokes a given po-
q tential V, for which one can find Schdinger equation ref-
erence solutions. The physical outgoing solutiogig
= (rk,E) of Hy we suppose gives a unita§matrix. We
12 M | 272 assume further that this Hamiltonian is completely specified
vaaly]”

M
T(q’,q):(E_
q’

and

V(q',q) (23)  such that evaluation of any quantity, wave functiS8matrix,

K matrix, etc. is facilitated. The Feshbach projection operator
formalism [31] is used to give theprojected Hamiltonian,
PHyoP=Hpp, derived fromH,. We presuppose complete-
ness,P+Q=1, and, when a finite rank of the Q space is
assumed,

V(q'a)= v
4 Eq
a simplified form of tha matrix is obtained. It is the familiar
Lippmann-Schwinger equation

S, d3k » M y
T(q",9)=V(q ,Q)+IWV(Q ; )qz—k—2+isT( ). N v
(24) Q=2 [@)(®i]=2, li)il, (29

Of use is an equivalent Lippmann-Schwinger equation for
the wave function. Formally, this equivalence is proven withwith the Q-space basis function;) interpreted as doorway
the Mdler distortion operator that relates the free wave func-states. With these doorway states we make the link between
tion with the scattered wave and uses the relation betweete QCD and the hadronic sectors; the latter encompassing
scattering amplitude and potential{(*)®=VQHd. Fi- nucleons, mesons and qther fre_e.pa.rticles. Thus we \{vill as-
nally, we use the equivalence between the Lippmannsume that meson creation/annihilation occurs only in the

Schwinger integral equation and the Satinger equation so highly nonlinear QCD sector so th@space wave functions
that are projections of such processes onto hadronic particle co-

ordinates. The third of our Hamiltonians, thell optical
modelHamiltonian, comprises the reference Hamiltonkdg
and thecorrective optical model potentiad. That potential is
complex and nonlocal, viz., separable of finite rafiks:T
When we identify the potential scal with the two particle  +Vy+)V(r,r’;Isj,E). The separable potentials are moti-

M 2
— A+ V(N =K g(r, k) =0, (25)

reduced mass vated by(a few) doorway states, representing intermediate
NN excitations, but generally they are designed to serve
M=2u=2 m;m; (26) quite a wide range of purpos¢35].
m;+m,’ The Schrdinger equation specified with{ has regular

_ _ o physical solutions ¥ *=W¥*(r,k,E) whose asymptotic
we gugrantee con5|stency with the. low energy limit of theboundary conditions we deem to match with theperimen-
Schralinger equation and use, therein,N0N OBE reference | glastic channels matrix. Specifically, for these experi-
potentials. However, a careful and consistent treatment of thg,ental S matrices we have used the continuous solutions
VM/E factors in Eqs(22) and(23) is necessary whenever it spoo from VPI/GWU[28]. The reference potential, and
is important to take relativity into account. We have not in-separable potential form factors are to be specified in detail
cluded theyM/E factors, neither in the potentials nor in the with any application.
t-matrix results herein, but make use of them in applications
and studies of relativistic correctio§] whose results are

. L . . A. Towards a full optical potential model
shown elsewhere. Minimal relativity enters in the calculation

of k? by To obtain the optical potential on the basis of a given
reference potential, we express first the solutions of the pro-
s=(My+m,)%+2m, T 4p=(VK?+mi+ Vk?+m3)?, jected Hamiltonian in terms of the reference Hamiltonian

(27) and thea priori definedQ-space projector. The Schimger
equation E—Hg)|#,)=0 and its solutions are used to ex-

where press the solutions of H—Hpp)|p)=0. The latter is
2, equivalent to the Schdinger equation
e Ma(Tapt2MyTiap) 28
_(m1+m2)2+2m2TLab. (E—Hpp—Hqop—Hpo—Hqo)|¥p)=—Hqpl#p) (30

For equal masses this reduceskfe= s/4—m?. and the Lippmann-Schwinger equation

1
lil. AN ALGORITHM FOR THE OPTICAL lp) = o) — mHQq ¥p)
AND BOUNDARY CONDITION MODELS 0

We distinguish between three Hamiltonians. They are the =1 —S GHiVilH 31
referenceHamiltonian Hy, a projected Hamiltonian Hpp, [0} 2 Y QP|¢P>' )
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These equations are still very general and do not depend

upon a specific representation. However, in the following we
assume a partial wave expansion in terms of spherical har-

Vir,r')y=A (39

(1-GTA)’

monics, spin and isospin state vectors and radial function§yhich contains the separable potentials as defined with Eq.
The following equations are identified as radial equatlons(35) but whose strengths now are solutions of E2). As

with the set of quantum numbers suppressed.
Projector orthogonality? Q=QP=0 implies that

0=(i|yp)=(ilho) —(iI|G " Hqp| ¥p), (32

and thus

N
<i|HQpl¢p>=§{<<b|G+|cI>>}i}1<j|wo>. (33

The solutions of Eq(31) can be written in terms dfi,) as
N
) =1w0) = 2 G [DUPIC @)} (] o)

N
=|</fo>_izj G Ajjl o), (34)

wherein one can identify a separable potential

(39

the transformation Eq.39) contains integration of orthonor-
mal functions, only strengths are altered. Using this optical
model in the full Hamiltonian, physical solutions are ob-
tained with reference solutiong,) and Greens functio *

of the reference HamiltoniaH, by means of the Lippmann-
Schwinger equation

|3 =0y + G Y Wy). (40)

B. Technical details
The partial wave radial wave functions of the reference
potential satisfy equations
[(1+1) N 2u Vy(r)
re h? 1+2Vy(r)
2

C1+2Vy(r)

Vi(r)

2
ua(r k)= 1+2Vb(r))

u,(r,k), (41

wherein we identify the complete set of quantum numbers by

D{(@IGT|@)k; M=l (i = Ay (rr). ; , _
the subscriptr. These equations we have solved numerically

Note then that definition o space gives a specification of for uncoupled and coupled channels using a Numerov
the separable strengths;(Isj,E) that is unique. The result- method. The potential®/,,V,,V, are dependent on the
ant Eq.(34) has the form of a first order Born approximation quantum numbersl{s,j) and are taken from the Paris,
but in fact it is an exact result. Nijmegen, Argonne, and inversianspace potentials as one

To proceed, we initially abandon the exactitude of Eq.wishes. The Paris and Nijmegen-I are momentum dependent
(34) and require the strength matrix, potentials withvV,# 0, while the Nijmegen-Il, Reid93, AV18,
and inversion potentials all hawg,=0. The physical solu-
tions are matched asymptotically, lim.,, to Riccati-Hankel
functions

Nij={(®|GT|@)}; (36)

to be constrained asymptotically by the experime&aha-

trix of the full Hamiltonian Schrdinger equation, i.e., as- . 1 - .
ymptotically we imposéyp)=|¥,,). This implies that com- Uq (1K)~ 5[ —h, (rk)+ h (rk)SY(K)] (42)
plex optical model strengthd;; emerge as a result of
m_atchm_g to Riccati-Hankel functions and non unit&wma- 514 normalized by
trices with
1 (g = e @3
_ i + (r k)= —.
| W) =1p) rITLZi[ h™(rk)+h™(rk)S(k)]. (37) J1+2V,(r)
The strengths,;; then can be simply determined from a lin- The irregular outgoing wave Jost solutions
ear system of equations based on Eg4)—(37), T k) ~hZ (k) (44)

%h*(Rk)[S(k)—So(k)]zz G liyn(il ¥y ), (38  are calculated in the same way as the physical ones and they
" define the reference potential Green functions by

using a matching radiuR beyond which the reference po- (rr' k)

tentials and radial form factors of the separable potentials “" '

vanish. To reinforce a Lippmann-Schwinger equation, with

the experimentat matrix as boundary condition or equiva-

lently with strengths\;; from Eq. (38), a transformation of =

the separable potential EQR5) is made. This is achieved

with

1
—(Zu/ﬁZ)EthZ(r,k)JlT(r’,k), r<r’

1 (45)
—(ZM/ﬁZ)EJZ(r,k)gbZT(r’,k), r>r’,
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where the transpose matrix is signaled by the supers€ript A linear expression for the potential strength(k) results.
At the asymptotic matching radiug, beyond which all po- The strengths are transformed by E8P) to give final sepa-
tentials vanish, Eq934)—(37) yield rable potential strengths

PIRIO=UL R+ [ TGLRIL WP (r)dnn (K Ua(k):[l—xa<k>fxf”d>a<rl>
0JO

| @ . (1r2.K)dry, 46 -
fo o2 ¥, (13, K)dr, (46) ><G;(rl,rz,k)tba(rz)drldrz} No(K). (48

and taking the difference between the reference andSull

matrix, this reduces to ) . .
These strengths (k) define the corrective optical model of

. . 1 . 0 Eqg. (40), given for the more general coupled channel and
W o (RK) =, (RK) =50, (RS, (K) = Sy(K) ] rank <3 separable potentials, to be
e 2
fo Ga(erlvk)cDa(rl)drl)\a(k) V(r,r,):|®a>0'a<(ba|:ﬁ_ﬁzL@aWaq)l (49)
X oc<I> r)h(ry,kdr,. (4
fo rUL(ra iy (@7
|
1 2 3
o - Diqpr) Di_gr) Pj_y0(r) 0 0 0 (50
‘ 0 0 0 @fypn) Ofgpr) Fgpr))’
|
and the symmetric strength matrices are rable potentials whose strengttig(k) are given by Eq(48).
_ 5 These solutions are readily found from systems of linear
Wea(K)=Re W, j+i ImW, ;= (A*/2u) o (k) equations, for single and coupled channels, using a trapezoi-
for ij=1 6 (51) dal integration rule for Eq(40) recast as

For single channel and rank 1 potentials, this representation Fopy— gt g
is obviously reduced. Va(=¢a(r)+ fo Ga (N1 Polr)drVe(k)

There are several options one may consider for the sepa-
rable potential form factor® ,(r). First, any finite rank po- ” +
tential may be chosen with the strengthg(k) determined XJ Polr2)Wa(r2)drz. 62
from data at several energies around a mean energy. In prac-
tice, using a rank greater than 1 option has been successfdowever, there is a faster method by which solutions of Eq.
for single channels but inherent lack of energy dependencgi6) as well as half off-shell wave function solutions and
for coupled channels strongly favors restricting potentials tanatrices can be found. This we consider in Appendixes A
be of rank 1. Next is the choice of radial form factors. Asand B.
rank 1 potential form factors we have us@l normalized
harmonic oscillator radial wave functiornB,=®(r,fiw);
(b) normalized Gaussian functionB,, =Ny exp—(r—re)%/a
with ro anda, being parameterse¢) a normalized edge func-
tion @ ,(rg)=1/2h,® ,(roxth)=1/4h and P ,(r,a)=0 oth- A range of optical potentials have been generated using
erwise; and(d) a boundary condition model realized by the algorithm developed above. As reference potentials, the
®,(rg)=21/h and ®,(r)=0 otherwise. The last option is Paris, Nijmegen, Argonne, and inversion potentials have
suitable for a sudden transition from the hadronic domairbeen used. For the separable potential form factors, normal-
into the QCD domain and back. Of course these are bugzed harmonic oscillator function§HO), ®(r,Aw), with
examples and others may be inspired by more explicit con200<%»<<900 MeV have been used. The safne is used
siderations of QCD. for all partial waves however. For single channels all quan-

Solutions of the full problem Lippmann-Schwinger equa-tum sets withJ<7 were included while those far<6 were
tion, Eq. (40), have been generated with reference potentialised with the coupled channels. A superposition of several
solutions and Green functions as per Etp) and with sepa- HO functions with radial quantum numbers=1,2,3 was

IV. PROPERTIES AND DISCUSSION OF THE OPTICAL
MODEL
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allowed and with data in interval§,_,,* 25, T, ,,+50, and _ 2772
T .p+100 MeV, optimal solutions of Eq47) found using D (r,hw)~r'"Lexd — (r/ry)?] with ro= o
a least square linear equation routine from a scientific sub- K (53)

routine library (NAG library). This procedure was used to

determine a singlefiw for energies within 0.8T ,,  and withhAw=450 MeV,r,=0.61 fm. Then with the fixed
<2 GeV with an overall lowy?. That optimal value is separable form, it is trivial to solve E¢47) with Smatrix
hw=450 MeV. For higher energies<2T ,,<3 GeV and data taken at each energy. In Figs. 11 and 12 we show the
low partial waves, this optimal oscillator has bound statedull potential model phase shifts that result on solving scat-
embedded in the continuum, but as such they are of no conering from the deduced optical potentials. Theyidemntical

cern in this analysis and so we uskd=450 MeV for all  with the SP0O solution.

energies 0.8 T ,,<3 GeV. With rank 1 separable poten-  The strengthsr,(k) of Eq. (48) were determined inde-
tials, the HO functiongradial quantum number=1) are pendently for each given reference potential and the optical
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potential values of Eq(51) are shown in Figs. 13 and 14. sults shown in Fig. 14 follow closely the conclusions drawn
The letters in the small subfigures identify the channel. Thdor the single channel results. Thus only thB, and 3F,
curves give the results obtained when the Pdf®), channels show energy dependences in the real phase &hifts
Nijmegen-I (N1), Nijmegen-Il (N2), Argonne AV18 (Av), and absorptiong that require particular attention and an
and single channel inversion potentidls) were used as explicit treatment of resonance coupling. THRF, coupled
reference potentials. These optical model strengths displaghannels show some similax(1232) resonance coupling
two most important features. The first is that they are notaround 600 MeV. All the other channels support an energy
insignificant. The reference potentials by themselves fail tandependent local reference potential that can be generated
account for the phase shiftsand 5=,&. The second feature by Gel'fand-Levitan-Marchenko inversion using the real
of importance is the loss of unitarity of th® matrices ac- phase shift data. Also, as the optical potential strengths vary
counted for byp and p™,u. The two features are weakly smoothly with energy for these channels, use of a complex
coupled by the optical and reference potentials, respectivelyut local very smoothly energy dependent complex potential
Below threshold, however, a purely real optical potential andvith Gaussian or Yukawa form factors is suggedte@]. It

very small strengths reflect the agreement of the referenomay be that within QCD hybrid models suchiaal back-
potential phase shifts with SP00. The imaginary potentialgjround optical potentiacan be formulated microscopically
show a smooth energy dependence starting at threshokhd be linked with the high energy diffraction and Regge
TLab=280 MeV and, by having negative values, accountmodels of elastic scatterin@,13,14,38.

for flux loss. Notice also that the results using inversion In addition to those optical model potentials found by
reference potentials  (In) in the channels usingZw=450 MeV, calculations where also made using
1Sy, %Py, %Py, Py, °D,, and'F; have small values for #w=750 and 900 MeV. This increase #w reduces the
the optical potential real strengths. Thus those real potential&ange ofr, from 0.61 to 0.47 and to 0.43 fm, respectively.
need hardly any modifications at short distances and thi¥he purpose of varying » was to explore the effective ra-
supports the conjecture of the soft core potential discussed igial domain in which the reference potentials all differ most
Sec. Il regarding Fig. 7. All reference potentials are mostmarkedly. However, a shorter range of the form factoy
uncertain in the'D,, ®F3, and *PF, channels. This is well leads in spherical coordinates automaticaly to increased val-
known as the region 300 MeV to 1 GeV is dominated by theues of the optical potential strengths and thus the shortcom-
A(1232) resonance while marly* and higher spin reso- ings of the reference potentials appear effectively magnified.
nances shape the region 1 to 2 GeV. Indeed the obvioug/e studied this effective magnification in favor of a least
energy dependences seen in ti2, and 3F; channels are change of separable potential strengths for energies 0.3—3
signatures of the strong coupling to th€1232) resonance GeV and considering different radial ranges of influence. For
betweenT_,,=500 and 750 MeV. The coupled channel re- example, for 6<r<0.8 fm Aw=450 MeV and for G<r
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<0.5 fm Aw=750 MeV are the best values. Of note in one finds on using the Paris and Nijmegen-I that have ex-
these calculations is that only on using the inversion potenplicit momentum dependences are most noticeable.

tials as reference do the real optical model strengths remain The 'D, and 3F; channel results are exceptional. Even
small. Given that the inversion potentials were designed byvith the inversion potentials as reference, the supplementary
themselves to give the SPOO real phase shifts belpyy  optical potentials have comparable real and imaginary parts.
=3 GeV as derived from the real parts of tiematrix Eq.  Such reflect the means by which the optical model accounts
(3), that aspect lends further support for a decoupling of thdor specific strong resonance effects.

real and imaginary parts of the optical model potentials in The changes wrought in complex potential correction
calculations. Interference effects are small with the implicasstrengths when any OBEP is used as reference and when the
tion that the real and imaginary parts might be independentlyi » for the defining optical potential correction form factors
assessed. Such is not so evident when the OBEP are usedis€nlarged to 750 and 900 MeV, respectively, further stresses
the reference potentials and the particular poor extrapolatiorthat each is a poor choice as a reference potential as one
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forces theirpropriety to even shorter ranges. In sum OBEPtions have been considerdd1] as evidence of narrow
potentials have scant credibility in the range<0r5<1 fm.  dibaryon resonances. Should they be so, we contend that our
Our studies support the conceptualization of the formatiorpotential model and associated viewpoint of fusion is still
and fusion of two nucleons, and more generally of two el-appropriate on geometric grounds. Such dibaryonic reso-
ementary particles likerN, 7, etc., into a combined object nance effects require a detailed QCD description of their
[17]. These processes are correlated with selective enhancgyycture and decay.
ments ofprobability densityand with loss of fluxfrom the The contour plots give the probability distributions and
elastic scattering channel. The probability density of the fulkhe zonal flux losses for @r<2 fm and T <3 GeV.
problem is From these contour plots we envisage a smooth development
1 with energy for scattering in all channels with possible ex-
pa(1,K)= 5 Trwl(r KW, (r.k) (54)  ception of the’P;, 'D,, and 3F; channels. Of those, the
r 1p, channel is bound by data only to 1.2 GeV, above this
value the SP0O0 phase shift function is conjecture. Neverthe-
and the flux loss function, which results from the continuity less we have used the solution to demonstrate what implica-
equation dip,(r)+(V-j),=0 and the time dependent tion such a drastic variation of(T ) for 1<T .,
Schralinger equation, is <2 GeV causes in the probability distribution leaving the
flux loss essentially invariant.
_ i1 ° The 1S, and °P, results are given at the top in Fig. 15.
(V-Da=7 2T J;) (W )V (rr )W (ry k) They have very similar characteristics. The SP00 continuous
energy solutions have phase shifts whose real parts have a
—‘I’l(rl,k)VZ(rl,r)‘I’a(r,k)}drl. (55) minimum at about 1.6 GeV. The probability and flux loss
plots show characteristic strongly distorted structures with
For several low partial waves, in Fig. 15 we show prob-the short distance 0.25 <0.6 fm attributes indicative of
abilities as defined by Eq54) and flux loss(currenj via Eq.  a large width <1 GeV) resonance with strong absorp-
(55). In this figure the SP0O0 phase shift functiodgT | ,p,) tion. The 3P; results given in the middle of Fig. 15 are
andp(T_,p) are given as well for each channel and they areinterpreted similarly. The!P; results shown in this figure
compared with the scatter of single energy solutions of SPOhave more variation as the resonance impact in the SP0O
The inversion potential phase shifts are given as well. Wesolution is reflected in the flux loss plot in particular. The
show these single energy solutions to acknowledge theitD, and 3F; channel results are given at the bottom in Fig.
scatter about the smooth SP00 solutions. Those sharp varids. Concomitant with the structured SP0O0 phase shift func-

054003-14



NUCLEON-NUCLEON OPTICAL MODEL FOR ENERGIE.. .. PHYSICAL REVIEW C 64 054003

100 ] -
S - 9 -
50 40| 0 " 40 0 .

20 20

Phase shift [deg]
(=]
Inelasticity [deg]
Phase shift [deg]
N
Inelasticity [deg]

-100 0 =75 0
T, [GEV]

E1. E15 E1. E15
(2] ] ] (2]
2 2 4 2 2
3 3 3 3
o o o o
0.5 0.5 - 05 0.5
05115 2 25 05115 2 25 051 15 2 25 05115 2 25 _
T, [GeV] T, [GeV] T, [GeV] T . [GeV] _ FIG. 15. Block' matrices con-
5 taining phase shifté(T ,,) and
—_ 1 1 3, i ici
? P, B 40 P, B 40 P, . |nelast|c!typ_(TLab) of VPI/GWU
o, o, o, e SPO00(thick lines and crosseésnd
%-25 % [ .g T, inversion-HH potentialthin lines
g ool 7 20 ¥ 0 phase functions. Probability and
g E 2 flux loss (curren} are shown as
-75 Qo 5 % 3 =3 function of energy and radius. The
T, [GeV] T, [GeV] contour plots use seven Iinequy
scaled steps between the mini-
2 2 .
mum (dark and maximum
E1. Eq, Eq, (bright) of all function values
9 9 a within a subfigure. Probabilities
i i el 1 show a positive definite standing
'105 '105 '105 wave pattern with more or less

distortions as a function of radius

051 15 2 25 051 15 2 25 05 1 15 2 25 051 15 2 25 and energy. The flux loss is geo-
T o [GeV] T o [GeV] T ap [GeV] T, [GeV] metrically CC_)nfln(_ed by the energy
a 2 dependent imaginary part of the

3 optical potentials.

N
o
n
~
o
w

n
(=]

Inelasticity [deg]

Phase shift [deg]
b
7
Inelasticity [deg]
n
(=]
o
Phase shift [deg]

E15 E1. E1. E1.

(2] \ (4] 4] 9N
2 1“ 2 2 2
3 3 3 3
s o o nsl

05 05 05 05

05 1 15 2 25 051 15 2 25 05 115 2 25 05115 2 25
T, [GOV] T, [GeV] T, [GV] T, [GV]

tions the probability plots indicate a change from the charfigs. 5, 9, and 10. The energy dependence indicates that in

acteristic smoothness of the other channels with notable fedahe energy regime 300 MeV to 1 GeV the concept that one or

tures for 406<T, ,,<900 MeV. A very long ranged prob- the other of the colliding hadrons at most is excited to form

ability peak with strong distortions and significant absorptionthe A resonance while the two hadrons remain as disparate

extending beyond 1 fm is evident. entities. At higher energies, and for smaller radii, the strong
The details shown are not independent of the chosen gebsorption is consistent with a fusion of the colliding par-

ometry of the optical potential but the patterns are quiteticles.

stable with variations of the HO energy. These results sup- The Kowalski-Noyed ratios of the half off-shelt matri-

port our pictorial conjectures of reaction schemes given irces
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Re (t,4t,) In-HH'D, Im (t t,,) In-HH'D, 0.1
BCM
o = ~ 0
LE LE <: 900
5 5 = 0.1 750
X x E
-0.2
450
04 06 08 1 04 06 08 1 03
Tlab [GeV] TIab [GeV] 0 1 2
Re@ ) Ni2'D, m ) Ni-2'D, Re (t,/t,)
7 FIG. 17. Kowalski-Noyes ratios for the*P, channel calculated
- - with Nijmegen-Il as reference potential and optical potentials using
E E HO A w=450, 750, 900 MeV, and a normalized edge function
:% Eg—, q (BCM) separable form factor. The dots on the curves fall onto in-
; tegerky¢s values andk,, is that forT ,,=2 GeV.
0.4 06 08 1 04 06 08 1 potentials. Nevertheless, tligatios are always independent
T [GeV] T [GeV] of the boundary conditions used in EGA2) to determine
. lab T(=9(k2,k,q). We show in Fig. 16 a contour plot of tH®,
Re (t,t,) In-HHF, m (t,/t, ) In-HHF, and 3F5 channels forT ,, from 300 MeV to 1 GeV and
7 off-shell momenta q=Kk,¢ from 0 to 7 fml The
- . - Nijmegen-1l and inversion reference potentials are used with
£ £ these calculations.
5 3 5 The D, and 3F; channels were selected specifically as
they are noticeably influenced by the(1232) resonance.
1 They also have the most drastic variations of optical poten-
04 06 08 1 04 06 08 1 tials with the choi'ce of referepce po.tential. The results sup-
T [GeV] T [GeV] port our expectations, ass_omated with strong energy depen-
dences and/or large differences of experimental and
Re (t t,,) Ni-2°F, Im(t ) Ni-2°F, reference potential phase shifts, which led to a scattering
7 7 scheme shown in Fig. 9. It is not difficult to foresee great
— U — problems in microscopic analysis that attempt to describe the
£ ? £ 2 interferences between back-ground and resonance scattering,
<5 3 <53 and which aim for a unique high quality result.
For energies above 1 GeV no obvious resonance effect
1 1 can be identified with elastic scattering phase shifts. How-
04 OF @8 9 TR TEE ever, this s_moothness does not |mply that the off-sheih-
T [Gev] T [GeV] trices are |r_1depende_nt of the choice Qf optical potential pa-
lab lab rameterization. In Fig. 17 we show in the complex plane

several Kowalski-Noyesratios for the®P, channel. In three
imaginary part in right column, for théD2 and 3F3 np channels, cases we gsed HO form factors Wﬁh)=.450, 750, and 9.00
calculated with inversion-HH and Nijmegen-II reference potentiaIsMeV’ and in one case we usednarmalized edge function
and optical potentials using H@,w=450 MeV, separable form (Fo=0.45 fm,h=0.015 fm) of Sec. Il B as boundary con-
factor. The contour plots use seven linearly scaled steps between tqition. Quite similar results were found for the other chan-
minimum (dark and maximum(bright) of all function values of a  Nels and the off-shell differences between these results are
subfigure, and a common gray representing zero in all figures. Théignificant. But the influences of such large and obvious off-
real and imaginary parts show a complementary pattern and emeghell differences disappear when those off-shethatrices
gent resonance attributes. are used in few- and many-body calculati¢as]. It is gen-
erally argued that only near on-shell values enter in few- and
TEO(T (k).k.q) many-body calculations and symmetric sampling around the
@ tapt ™ (56) on-shell point implies that any effects of such differences are
Tff*o)(TLab(k),k,k) annulled. Thus we do not expect medium energy few- and
many-body calculations to be more revealing than were the
are useful quantities as they stress the potential differences nesults of calculations at low energy. We consider it not op-
momentum space. For a purely real potential the Kowalskiportune to seek or nominate a preference for any of the off-
Noyesf ratio is real but this is no longer the case for complexshellt matrices or a particular form factor.

FIG. 16. Kowalski-Noyed ratios, real part in left column and

fo(k,q)=
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matched. Complex short range separable potentials, ad-
dressed as the optical model potential and distinguished fromAPPENDIX A: EVALUATION OF THE HALF OFF-SHELL
the real reference potentials, bridge the gap between the ex- t MATRIX
perimental and refere_nce potential phase shifts. By ext(_ending The calculation of NA optical potentials for T,
boson exche_mge motivat&dN pot_ent|al models to be optlcal <3 GeV requires half off-shelNN t matrices[18] for on-
models we invoke a new reaction scheme. At medium engpe|k valuesk<6 fm~?, and a correspondingly large range
ergy, 300 MeV to 1 GeV, this approach identifies intrinsic of off-shell values. In principle, in applications the off-shiell
excitation of isolated nucleons without their fusion. At higherva|ues(|ater identified W|thq) are needed in integra|s from
energies, and in particular for energi€g,,>2 GeV, the 0o but a reasonable upper limit ig=2k. A fast and
two nucleons can fuse into a compound system, from whicltable method of evaluation of such half off-shathatrices,
meson production and other reactions eventuate, as can cofwhen r-space potentials are chosen, is an extension of the
densation back into the elastic channel. This view is base@chralinger equation as an inhomogeneous differential equa-
upon the character of th&S, and 3Po,1 partial wave phase tion. The method follows that of van Leeuwen and Reiner
shifts. Notably it is the minimum in the real phase shifts of[36].
these channels that transform into soft core potentials. The The most general potentials in our study contain momen-
reaction volume of the fused system fits well within a sphereum dependent, local, and separable complex potentials for
with radius 1 fm and the medium and long range bosorboth single and coupled channels. In particular for the results
exchange contributions are small corrections at best. Whilghown, a rank 1 separable potential with a radial harmonic
data at even higher energies may indicate a similar reactiogscillator form factord,(r,# ) has been used. The Schro
scheme with the higher partial waves, it must be borne irdinger equation then can be cast as
mind that the centripetal barrier screens that scattering so
reducing markedly the probability of fusion. d? I(1+1) d

In the 300 MeV to 1 GeV regime, th& resonance domi- M(r)ﬁ—M(r)—rz——Va(r)+V{;(r)+2V[)(r)a

1 3 3 ; r
nates*D,, °F; and *PF, partial waves and all reference
potentials require large and strong energy dependent contri- o
butions from the optical potential. Our results complement  +k? zp,(r,k,q)=<b|(r))\|(k2)J D (x) i (x,k,q)dx
the view that this resonance must be treated explicitly. In our 0
case, the\ generates a doorway state to pion production and 2 o
should be treated as such within th&N potential model (K =g9(ra), (AL)
generalization. The separable optical potential was chosen {gjth AM(r)=1+2V,(r). The regular solutions of which not

accommodate doorway state formation and decay within @nly must vanish at the origin but also asymptotically must
small energy region. match to

The OBE reference potentials presently available either
give results too far from reality to qualify as background (=0 i L0 ad_(= 0,2
phase shifts or use th& resonance in a way that prohibits I'”l‘m (r K. QNi=ji(ra) +hf )(rk)ETI( (k2 k.q)
separation from the background. However, by dint of their " (A2)
construction, inversion algorithms will help resolve these is-

sues. The approach is such that one may start with any dgg determine the half off-sheli matrix T{=?(k? k,q) and

sired phase shift function as input. Of these any real part maye normalization\;. Spherical Riccati functions are sym-
be taken as the reference potential phase shifts, whose usegsjizeq byj (X), hy" (%) andhf’(x)zm(x). In the following

input to Gel'fand-Levitan-Marchenko inversion give the ref- suppress the channel subsctipts the expressions hold
erence potentials themselves. Therewith, the inversion algqy), single and coupled channels. The on-shelfatrix gives
rithm we have developed herein can then be used to detefr. g matrix by the relation

mine the remaining parts of the fuNIN optical potential.

This algorithm facilitates specification not only of complex S(k)=1+2iT(K? k,k). (A3)
separable potentials, appropriate for specific doorway state

effects, but also of local complex potentials that encompas3o solve for coupled channeRSD,, 3PF,, etc., two linear
smooth energy dependent processes that contribute to midependent regular solutions are calculated and E§3,
dium to high energ\WN N data. The geometric attributes of the (Al), and (A2) are to be understood as<2 matrix equa-
optical model, in particular the inherent soft core nature oftions.

potentials, thus have been determined solely from data. De- The regular solutions are readily found numerically as
tailed interpretation of these emergent results, of coursdpllows. First, a regular solution of the reference potential
must eventuate from QCD inspired models. Schralinger equation
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fo(r,k)—V(r)fo(r,k)+k?fo(r,k)=0 (A4)

is calculated. ThereitV(r) implies all the local potential

terms including the centripetal barrier. Then a regular solu-

tion of the full potential Schidinger equation with the ref-
erence potentia¥/(r) and separable potential,

10, K) = V(r)f1(r,k) +Kk2f1(r k) =D (r) o (k)(P|f,),
(A5)

is obtained from a particular solution of

g1(r, k)= V(r)gy(r,k) +k?gy(r, k) =@ (r) o (k) F,
(AB)

where we use F=(®|fy), and fi(r,k)="fq(r,k).A
+9g4(r,K). The factor(matrix) A is determined from
(Df1)=(P[fo)A+(P[g1) (A7)

and
A=1-F X®|gy). (A8)

Finally the regular solutiorf,(r,k) can be multiplied with

any complex numbefmatrix) to be a general regular solu-

tion of Eq. (A5).

The half off-shellt matrix is related to the regular half

off-shell wave functiony(r,k,q), which satisfies the inho-
mogeneous Schdinger equation

d2
W—V(r)Jrk2 #(r,k,Q)
=®(r)a(k(P|y)+(K*=aj(ra). (A9)
Asymptotically this wave function is
P01 K@)~ () +hC Ok T 02 K q).
(A10)

A general regular solution of E§A5) and a particular regu-
lar inhomogeneous solution of EGA3) then is needed to
satisfy the boundary conditions given in E@\10). A par-

ticular solution of Eq.(A9) is obtained in two steps. First,

with
F=(®@[g2) =(®|f1)=(P|[fo), (A11)
a particular solution is given by
fa(r,k,q)=f4(r,k)B+gx(r.k,q), (A12)
where B is determined from
B=1-F Y®|g,). (A13)

The off-shell wave function matches asymptotically as

PHYSICAL REVIEW C64 054003
JEO(r k,q)="F,(r, K)N+fo(r,k,q)
~j(ra)+ k) 1T k).

(A14)

The normalization\ andt matrix T<9(k? k,q) are readily
evaluated from the quasi-Wronskians

N=Wh=9,f J(W[j,hO]=Wh=9,£,]),

DT O k)= WL, N W, F N WEF2]),
(A15)
where we define
an—an_ bn—bn-
Wi Bt L b

at two asymptotic radial points,_; andr,=r,_;+h. The
quantitiesa andb can be either scalars or matrices.

It is very convenient to use the Numerov algorithm to
solve Egs.(A4), (A6), and (A9). But to do so for Eq(Al)
requires equations without first derivative terms. The above
can be made so by use of a factorization

P(r.k,q)=1(r,k,)D(r) with D(r)=

1
JI+2ve(r)

(A17)

The resulting equation fofr(r,k,q) is

[(1+1)
f"(r,k,q)= —rz——D(r)kZD(r)+D(r)Va(r)D(r)

+[D(N)VL(r)D(r)12|f(r k,q)

+®(r)D(r)o(k){DD|f)

+(k*=g?)j(rq)D(r). (A18)

APPENDIX B: NUMEROV ALGORITHM

The solution of radial Schadinger equations is certainly
not new and generally deserves no mention. Here, we dwell
upon the details since we found the specified elements to
have anormal formof related problems in other fields of
physics and engineering that were tested with parallel com-
puting facilities. The Numerov algorithm has been widely
used for single and coupled channels Sdimger equations
since it gives sufficient numerical accuracy with minimal
operationg37]. The standard form of linear homogeneous or
inhomogeneous Schilinger equations that we have to solve
is

f;’<r>=; Vi (0 F(r) +Wi(r), (B1)
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where Wi(r)=0 for homogeneous equations. The termsin Eq. (B3). It gives
Vij(r) and Wi(r) are easily identified in Eq(A18). For

single channels the algorithm is Envr=2E— En 1+ U, (B5)
h2
frer=2fn =1+ 75(Unsa+ 100+t Us-1)  (B2)  and the inhomogeneous equation
or h2
h2 10n2 §n+1:2§n_§nfl+un+l_2(wn+l+10\Nn+Wn—1)’
(1_1_2Vn+l)fn+1: 2+?Vn)fn (B6)
h? with
B ( 1- 1_2Vn1) fo1
h? h?V,
+ 75(Ws 1+ 1OW,+ W, _y). Un=—"127 én- (B7)
1- =V,
(B3) 12

These expressions generalize for coupled channels usingy transformations frors;— f; use either of the two pos-
standard vector and matrix algebra. A significant reduction o;;jities

operations is found by using the substitution

:§i+1+10§i+§i—1

h? 1
én:(l—l—zvn)fn (B4) fi:§i+ 1_2Z/{| or fi 12 . (88)
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