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Nucleon-nucleon optical model for energies up to 3 GeV
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Several nucleon-nucleon potentials, Paris, Nijmegen, Argonne, and those derived by quantum inversion,
which describe theNN interaction forTLab<300 MeV, are extended in their range of application asNN
optical models. Extensions are made inr space using complex separable potentials definable with a wide range
of form factor options including those of boundary condition models. We use the latest phase shift analysis
SP00~FA00, WI00! of Arndt et al. from 300 MeV up to 3 GeV to determine these extensions. The imaginary
parts of the optical model interactions account for loss of flux into direct or resonant production processes. The
optical potential approach is of particular value as it permits one to visualize fusion, and subsequent fission, of
nucleons whenTLab.2 GeV. We do so by calculating the scattering wave functions to specify the energy and
radial dependences of flux losses and of probability distributions. Furthermore, half off the energy shellt
matrices are presented as they are readily deduced with this approach. Sucht matrices are required for studies
of few- and many-body nuclear reactions.
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I. INTRODUCTION

A theoretical description of nucleon-nucleon (NN) scat-
tering is a fundamental ingredient for the understanding
nuclear structure and scattering of few- and many-bo
nuclear systems@1–3#. This is a paradigm of nuclear physic
Of the spectrum, low energyNN scattering traditionally is
described in terms of few degrees of freedom of which s
and isospin symmetries play the predominant role. At m
dium energies, production processes and inelasticities
come important and several elementary systems compos
nucleons and mesons contribute toNN scattering. While
these nucleons and mesons are emergent structures
QCD, at present there is no quantitative description ofNN
scattering above the inelastic threshold either in terms
QCD or of the emergent nucleons and mesons@4#.

Theoretically undisputed is the need for relativity@5# of
which there are two aspects. First is the increasing imp
tance of relativistic kinematics as the kinetic energy becom
comparable to the rest masses of the scattering particles.
ond, particle production is inherently relativistic requirin
ultimately, a description in terms of highly nonlinear QC
But that nonlinearity inhibits a facile QCD explanation
NN scattering. Notwithstanding, there exist hybrid mod
that offset that nonlinearity in seeking explanation of t
excitation spectra and of the scattering of hadrons@6,7#. All
use heavy valence quarks, with an effective mass typicall
300 MeV, and massive Goldstone bosons in lieu of mass
gluons. They also maintain color degrees of freedom.
well there are effective quantum field theories~EQF! that
link the quark-gluon structure of the standard model to l
energy nuclear physics@8,9#. Currently these latter ap
proaches are very popular as they may give a foundation
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interpretation of emergent structures. But like the hyb
models, due to the underlying expansion schemes used
EQF, manyad hocdegrees of freedom are involved.

The experimentalNN data and its parameterization i
terms of amplitudes and phase shifts, are very smooth w
energy up to 3 GeV@10–12#; a feature that supports use o
the classicapproach using a freeNN interaction potential.
By doing so one uses a minimal number of degrees of fr
dom with again those degrees of freedom being associ
with the spin and isospin of the total system. Of course, t
classic approach sacrifices all reliance on substructur
However, the underlying dynamic still reflects its geomet
facet by means of surfaces and boundary conditions.
success of bag models is a direct evidence of the crucial
such boundary conditions play with the emergent structu
from them being direct consequences of QCD confinem
This is further support for our view that an explanation
elasticNN scattering need not, if will not, depend explicitl
upon QCD details. Only geometric attributes such as rad
diffuseness, and possibly channel dependent boundary
ditions of the QCD confinement domain are required to
plain most data. This view is well supported by high ener
scattering for which the geometric limits of theS matrix are
reached and form factors are defined independent of ene
In the transition region the geometric limits are not reach
and the factorization schemes@13,14# used at higher energie
do not apply.

Of course, in the last decade or so, there have been
eral theoretical attempts built upon boson exchange mo
to explain NN scattering data below 1 GeV. All such a
tempts have given but qualitative results, often requir
many degrees of freedom even to achieve that qualita
agreement and despite explicit inclusion ofD andN* reso-
nances. Optical model studies have also been made for
dium and modest high energyNN scattering@15–17#, and
they can be improved to give a high quality description
scattering at medium energy.

A high quality fit of on-shellt matrices by a potentia
©2001 The American Physical Society03-1
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model is very desirable also as it facilitates extension into
off-shell domain; properties that are needed in few- a
many-body calculations. In particular, microscopic optic
model potentials for elastic nucleon-nucleus scattering
bremsstrahlung reactions that give quantitative results,
quire a careful and exact treatment of the off-shellNN t
matrices@18#. Furthermore, calculations of such entities ha
shown that it is crucial to have on-shell values of thet ma-
trices in best possible agreement withNN data at all ener-
gies. Concomitantly one needs high precisionNN data
against which one can specifyNN interactions.

There are many studies of few- and many-body proble
in the low energy regimeTLab,300 MeV and the results
have consequences for any model extension above pion
duction threshold@3#. We note in this context that significan
off-shell differences int matrices are known to exist betwee
the theoretically well motivated boson exchange models
NN scattering in this regime. It remains difficult to attribu
with certainty any particular dynamical or kinematical fe
ture with those differences. Nonlocality, explicit energy d
pendence, and features associated with relativistic kinema
are some possibilities.

In contrast, there is the quantum inverse scattering
proach by which any on-shellt matrix can be continued into
the off-shell domain@19#. A specific method is the Gel’fand
Levitan-Marchenko inversion algorithm for Sturm-Liouvill
equations. This approach to specifyt matrices off shell is
appropriate when the physicalS matrix is unitary and the
equation of motion is of the Sturm-Liouville-type. Such
valid without modification forNN t matrices in the energy
regime to 300 MeV. Mathematically, the Gel’fand-Levita
Marchenko algorithm is a method based upon a class of
and regular potentials. In the spirit of inverse scattering,
generalize that method for nonunitaryS matrices. By that
means we generate anNN optical model separately for eac
partial wave. The algorithm we have developed allows st
ies of complex separable potentials in combination with a
background potential. The background potential can be
of the existing r-spaceNN potentials. We have not use
k-space background potentials, such as Bonn-B@2#,
Bonn-CD @20#, and OSBEP@21#, albeit that similar analysis
can be made with them.

We limit the background potential, which is synonymo
with the later introduced reference potential, to the w
known realr-space potentials from Paris@22#, Nijmegen@23#
~Reid93, Nijmegen-I, Nijmegen-II!, Argonne @24# ~AV18!,
and from inversion@25,26#. To them we add channel depe
dent complex separable potentials with energy depen
strengths. For given input data results then, the full potent
are unique. The experimental background and motivation
analysis using an optical model is given in Sec. II. A detai
description of the theoretical algorithm is given in Sec.
and Appendixes A and B. A discussion of results is given
Sec. IV while a summary is given in Sec. V.

II. SURVEY OF DATA AND MOTIVATION
FOR THE OPTICAL POTENTIAL

NN scattering is a long standing problem that has b
reviewed often as the database developed@10,11,20,27#. The
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low energy data has been analyzed by the VPI/GWU gro
@12# for TLab<400 MeV, the Nijmegen group@27# with the
NN phase shift results PWA93 forTLab<350 MeV, and by
Machleidt@20# giving the Bonn-CD-2000. Of these, the VP
GWU group has given many solutions for this low ener
regime over the years, all of which have been listed by Ar
et al. in a very recent publication@12#. For their use note tha
the solution name reflects the season and year of their
ation although the low energy solutions have names that
with 40. Clearly that database has grown rapidly in the l
two decades. While thepp data now extends up to 3 GeV, th
np data are limited to 1.3 GeV. Surprisingly, the solutio
from SM97 to WI00 remain very closely the same and a
very stable with regard to new data. We have used the s
tions SP00, FA00, and WI00 in our calculations and fou
results that differ but marginally. Thus hereafter in the ma
we refer to the results of calculations based upon SP00.
findings are equally valid for other more recently dated
lutions. In our practical applications, however, when ne
potentials are sought their generation is based upon the m
current solution@28#.

The VPI/GWU solutions@29# are parametrizations of th
elastic channelNN Smatrix. They consider

S15~11 iK 4!~12 iK 4!21, ~1!

which inverts to give

K45 i ~12S1!~11S1!215ReK41 i Im K4 . ~2!

The real part of thisK matrix is related to a unitarySmatrix
(S6) and therewith phase shiftsd6 ande are defined by

S65
~11 i ReK4!

~12 i ReK4!

5H cos 2« exp~2id2! i sin 2« exp@ i ~d21d1!#

i sin 2« exp@ i ~d21d1!# cos 2« exp~2id1!
J .

~3!

The absorption parametersr6 andm relate to the imaginary
part of thatK matrix by

Im K45H tan2r2 tanr2tanr1cosm

tanr2tanr1cosm tan2r1 J . ~4!

These relations simplify toK5tand1 i tan2r for uncoupled
channels.

In our study, realNN potentials derived from fixed angu
lar momentum inverse scattering theory have been u
They have been generated from inversion algorithms pr
cated upon the Gel’fand-Levitan-Marchenko integral eq
tions that physically link to the radial Schro¨dinger equation
of a fixed angular momentum,

F2
d2

dr2 1
l ~ l 11!

r 2 1
2m

\2 Vl~r !Gc l~r ,k!5k2c l~r ,k!, ~5!

whereVl(r ) is a local and energy independent operator
coordinate space. Substituting
3-2
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NUCLEON-NUCLEON OPTICAL MODEL FOR ENERGIES . . . PHYSICAL REVIEW C 64 054003
q~r !5
l ~ l 11!

r 2 1
2m

\2 Vl~r ! and l5k2, ~6!

identifies Eq.~5! as a Sturm-Liouville equation

F2
d2

dx2 1q~x!Gy~x!5ly~x!. ~7!

There are two equivalent inversion algorithms for t
Sturm-Liouville equation, which one identifies as the Marc
enko and the Gel’fand-Levitan inversion. Both yield princ
pally the same solution and numerically they are comp
mentary. The salient features are outlined for the case
uncoupled channels. For coupled channels the inver
equations are matrix equations with input and translation k
nels correspondingly generalized.

In the Marchenko inversion the experimental informati
enters via theS matrix, Sl(k)5exp@2idl(k)#, with which an
input kernel is defined in the form of a Fourier-Hankel tran
form

Fl~r ,t !52
1

2pE2`

1`

hl
1~rk !@Sl~k!21#hl

1~ tk!dk, ~8!

wherehl
1(x) are Riccati-Hankel functions. This input kern

when used in the Marchenko equation,

Al~r ,t !1Fl~r ,t !1E
r

`

Al~r ,s!Fl~s,t !ds50, ~9!

specifies the translation kernelAl(r ,t). The potential of Eq.
~5! is a boundary condition for that translational kernel,

Vl~r !522
d

dr
Al~r ,r !. ~10!

The Gel’fand-Levitan inversion does not require theS
matrix but rather the Jost function as spectral input. T
latter is related to theS matrix by

Sl~k!5
Fl~2k!

Fl~k!
. ~11!

The Gel’fand-Levitan input kernel then is defined as t
Fourier-Bessel transform

Gl~r ,t !5
2

pE0

`

j l~rk !F 1

uFl~k!u2
21G j l~ tk!dk, ~12!

where j l(x) are Riccati-Bessel functions. The Gel’fan
Levitan integral equation

Kl~r ,t !1Gl~r ,t !1E
0

r

Kl~r ,s!Gl~s,t !ds50 ~13!

also defines a translational kernel with boundary conditio

Vl~r !52
d

dr
Kl~r ,r !. ~14!
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The boundary condition Eqs.~10! and ~14! yield identical
potentials.

Determination of the input kernels from data, phase s
functionsd„TLab(k)…, or K matricesK„TLab(k)…, requires an
accurate interpolation and extrapolation of that data. In
practical applications rational functions are very appropria
In this work we made a representation of data forTLab(k)
<3 GeV where the order@2N21# and@2N# of polynomi-
als in the rational functionsR[2N21,2N] (k)5P[2N21]/P[2N]

was chosen to be as small as possible, typically 2,N,6. An
implication is that extrapolations ofd(k) from the highest
energy~last! data pointkmax to infinity do not change sign
and limk→`d(k);1/k. We control the rational function fit
with weight functions that guarantee that those fits will
particularly accurate for some desired interval and less st
gent elsewhere. For example, the channels1S0 , 1P1 , 3P0,1,

FIG. 1. Single channel phase shifts for SM97TLab

,2.5 GeV, FA00TLab,3 GeV, and reference phase shifts usi
inversion ~In-HH!, Nijmegen ~Nij-1, Nij-2!, and Argonne~AV18!
potentials.
3-3
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A. FUNK, H. V. VON GERAMB, AND K. A. AMOS PHYSICAL REVIEW C64 054003
3D2, and 1F3 were weighted withwLow51 for TLab

,1.2 GeV and for larger energies,wHigh50.05. For the
1D2 and 3F3 channels, the cut betweenwLow andwHigh was
300 MeV. Consequently the rational functions used in
inversion algorithm ensure that the resulting potentials w
give the desired values of phase shifts from solutions of
Schrödinger equation. Such is evident from the compariso
given in Figs. 1 and 2. Therein the fits to the phase shifts
300 MeV resulting from all three models are considered
high quality. Single and coupled channel phase shifts fr
SM97 and FA00 solutions forJ<3 are shown together with
values found from calculations made using three poten
models. These model phase shifts were generated
Nijmegen-I and Nijmegen-II@23#, and Argonne AV18@24#
interactions, and with potentials determined using Gel’fa
Levitan-Marchenko inversion@17,25,26#.

On the scale upto 3 GeV the one-boson exchange~OBE!
model results clearly diverge from data. As with the pha
shift analysis, OBE potentials~OBEP! have received severa
critical reviews@3,20#, including observations that there a
small variations between phase shift analyzes and pote
model results in the subthreshold domainTLab,300 MeV
@30#. A theoretically stable result would require many qua
tities, that need be specifieda priori, to be determined from
other sources. At present that does not seem feasible an
current potentials rely upon fits of many of their paramet

FIG. 2. Coupled channel phase shifts for SM97TLab

,2.5 GeV, FA00TLab,3 GeV, and reference phase shifts usi
Nijmegen~Nij-1, Nij-2! and Argonne~AV18! potentials.
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to the same data. All such fits, however, have been m
independently of each other and are based upon diffe
theoretical specifications of the boson exchange model
namics. In Figs. 3 and 4 we give a quantitative demons
tion of the ensuing differences. Therein the Nijmegen ph
shift analysis PWA93@27# has been used as reference valu
for various other phase shift solutions and potential pred
tions for thenp 1S0, and 3P0 channels. Such differences a
characteristic of variations between finite power series
pansions of data in a finite interval. A mathematical prope
of such finite power series expansions within an interva
that, while the data in the interval will be well reproduce
continuations beyond that interval can radically diverg
Such a property is in evidence in Figs. 1 and 2, and t

FIG. 3. np 1S0 phase shift differences with respect to Nijmeg
PWA93.

FIG. 4. np 3P0 phase shift differences with respect to Nijmeg
PWA93.
3-4
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NUCLEON-NUCLEON OPTICAL MODEL FOR ENERGIES . . . PHYSICAL REVIEW C 64 054003
variance is the reason for the caveat often espoused tha
of OBEP beyond the fitted energy range should be proh
ited. Be that as it may, one could expect from a consis
theory that such extrapolations, albeit in error, would be
same. Clearly they are not. However of one thing we can
sure, the lack of physics with these models lies within
interaction distance less than 1 fm. The optical model
proach we present is an attempt within the frame of poten
scattering theory to account for and identify such short ra
properties.

It is apropos to make a brief remark on the long ran
character of theNN potential that theoretically is identifie
with one-pion exchange potential~OPEP!. In the phase shift
analysis PWA93 by the Nijmegen group and in that of Bon
CD-2000 of Machleidt, such character is enforced in all p
tial waves. Indeed that precise character reemerges whe
ther of those phase shift functions are used as input t
Gel’fand-Levitan-Marchenko inversion. On the other han
the VPI/GWU group has added the one-pion exchange
plitudes only to give the high partial waves in any of the
solutions. Exactly the same quantum inversion of the SM
solution does not give in low partial waves OPEP except
average that might be interpreted as signaling the importa
of nonlocality @26#.

Despite limitations as discussed above, the OBEP rem
the best motivated potential models for low energy scat
ing. They do yield high quality fits to the phase shifts in th
domain. Such is useful for us in our quest to interpret d
with increasing energy. In Fig. 5 we show an interacti
scheme in terms of radial separation that is suitable for
energy scattering. This scheme is supported by potentials
termined by inversion that reproduce the low energy ph
shifts used as input to an accuracyud(exp)2d(rat)u,0.25°.
Such inversion potentials have been made also to fol
closely the SP00 real phase shifts up to 3 GeV and these
shown in Fig. 6. They possess a long range Yukawa ta
medium range attraction;1 –2 fm, and a strong short rang
repulsion with an onset at 1 fm. These potentials are ene
independent so that the long and medium range pote
properties diminish in importance for kinetic energies abo
500 MeV. For projectiles withTLab.1.5 GeV essentially
only the repulsive core of these potentials remains of sign
cance for scattering. Thus inversion potentials have also b
obtained with the SP00 real phase shifts up to 3 GeV us
wLow50.1 for TLab,1.2 GeV andwHigh51 for higher en-

FIG. 5. Interaction scheme for low energy scattering, 0,TLab

,300 MeV.
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ergies, to emphasize the high energy data and fix more s
gently the short range (,1 fm) character of the deduce
interaction. The short range properties of inversion potent
so found are displayed in Fig. 7. Clearly, the1S0 and 3P0,1
inversion potentials based upon SP00 real phase shifts
extend up to 3 GeV are soft core interactions. We neglec
in this analysis thenp 1P1 channel due to the limited dat
set for TLab,1.2 GeV. The higher partial waves ar

FIG. 6. Nucleon-nucleon inversion potentials using SP
phases.

FIG. 7. np 1S0 and 3P0,1 inversion potentials using SP00 re
phase shift solution upto 3 GeV.
3-5
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strongly screened by the centripetal barrier and so also
not considered here. The core strengths of these1S0 and
3P0,1 potentials reach a shoulder and maximum with a ty
cal value;1 GeV at a radius of 0.3–0.4 fm. It is wort
noting that the shoulder/maximum aspect of the core i
result of flat minima between 1.5 and 2 GeV in the1S0 and
3P0,1 SP00 phase shift functions. For higher partial wav
phase shift minima lie beyond 3 GeV. As the experimen
phase shifts are limited to below 3 GeV we have confide
in the specified inversion potentials only to about 0.25 f
The shorter distance values reflect only our extrapolation
these phase shifts being limk→`d(k);1/k.

Above 300 MeV reaction channels open and the ela
channelS matrix no longer is unitary. In Fig. 8 we show th
gradual increase of the open channels inNN scattering that
includes resonances as well as single and multiple prod
tion thresholds. Only theD(1232) resonance has a low e
ergy threshold and a relatively small width of 120 Me
Therefore it is the only resonance we expect to be obviou
visible in the energy variation of the elastic scattering ph
shifts. In particular one notices typical variations in the1D2 ,
3F3, and 3PF2 channels. Otherwise the phase shifts are v
smooth slowly changing functions of energy in all channe
Such is a condition for the suitability of a potential model
scattering governed byquasimacroscopicgeometric entities.
In nucleon-nucleus (NA) scattering, entities of that ilk are
epitomized by the parameters of Woods-Saxon potent
For the NN case, we have used previously@16# a local
Gaussian in this similar manner, noticing therefrom sp
isospin coupling effects that remain in qualitative agreem
with NN potentials valid below 300 MeV. It is also wort
noting that the absorption in thoseNN optical potentials for
this energy range were not at the geometric limit of a fu
absorptive disk. Together with the strong spin-isospin c
pling, this property infers optical potentials that are stron
channel dependent in contrast to theNA case for which as-
sumed central and spin-orbit potentials are partial wave
dependent.

In the spirit of visualization ofNN scattering shown in
Fig. 5, we now include the importance of the reactive a
resonant content pictorially in Fig. 9. This we consider r
evant for 0.3,TLab,2 GeV. The upper limit is significan

FIG. 8. Thresholds for production processes inNN scattering.
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here as we discuss later, but for now it suffices that the
tential shoulder and maximum seen in Fig. 7 are;1 GeV.
Now we identify some specifics in the 0.5,r ,1 fm range.
We conjecture that the two colliding hadrons remain in ha
ronic states throughout the process. We allow one of the
nucleons to be excited, say into aD(1232), while the other
remains in the ground state. The excitation may be
changed between the two hadrons as well, and both nucle
may be excited to an intermediate resonant state. The
duction of mesons then can only occur from one or both
the two separate QCD entities. The essential feature is th
the energy range, the predominant scattering processe
those retaining identifiable hadronic entities. Within an op
cal potential representation, attendant flux loss equates
diffuse absorption extending radially to 3 fm and possib
more. The bulk of such absorption, however, lies sign
cantly within 1 fm.

It requires 2 GeV and more of projectile energy in the L
system to have at least 1 GeV in the CM frame available
the two nucleons to overcome the repulsive core poten
and to fuse into a compound system. This is visualized w
the scattering sequences shown in Fig. 10. An objective
our optical model studies is to substantiate this conjecture
fusion and fission of resultant compound dibaryonic syste
dominating the scattering for this energy regime.

To describe this developing system for 0.3,TLab
,3 GeV we will use Feshbach theory to specify the opti
potential@31#. An important feature of that theory is the pro
jection operator formalism withP and Q subspaces, which
divide the complete Hilbert space (P1Q)51, into the elas-
tic scattering channel, theP space, and all inelastic and re
action channels that are contained inQ space. This theory
then assumes a hierarchy of complication inQ space of

FIG. 9. Interaction scheme for medium energy scattering,
,TLab,2 GeV.
3-6
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which doorway states are the simplest. Doorway states
characterized to be the only means to leave and to retur
the elastic channel. Each doorway state in this approach
fers a complex and separable component in the optical

FIG. 10. Interaction scheme for high energy scattering,TLab

.2 GeV.
th

rm

05400
re
to
n-
o-

tential with an energy dependent strength. If a very la
number of doorway states contribute, the effect can be r
resented by a local potential operator. This was the basi
our previous study@16#.

A. Formal potential model

It is generally accepted that a valid covariant descript
of NN scattering formally is given by the Bethe-Salpet
equation

M5V1VGM, ~15!

whereM are invariant amplitudes that are based uponV that
contains all connected two particle irreducible diagram
This equation serves generally as an ansatz for approx
tions. Of those, the three-dimensional reductions are of g
use that allow the definition of a potential@32,33#. In particu-
lar, the Blankenbecler-Sugar reduction@32# gives an equation
very often used for applications withNN scattering@20,34#.
This reduction is obtained from Eq.~15!, which in terms of
four-momenta is

M~q8,q;P!5V~q8,q;P!

1E d4kV~q8,k;P!G~k;P!M~k,q;P!,

~16!

where the propagator
G~k;P!5
i

~2p!4F 1

2
P” 1k”1M

S 1

2
P1kD 2

2M21 i«
G

(1)

F 1

2
P” 2k”1M

S 1

2
P2kD 2

2M21 i«
G

(2)

. ~17!
an
The subscripts refer to nucleon~1! and ~2!, respectively. In
the CM systemP5(As,0), which is just the total energyE
5As. In particular, the Blankenbecler-Sugar reduction of
propagatorG uses the covariant form

GBS~k,s!52
d~k0!

~2p!3

M2

Ek

L (1)
1 ~k!L (2)

1 ~2k!

1

4
s2Ek

21 i«

, ~18!

with positive energy projectors

L ( i )
1 ~k!5S g0Ek2gW •k1M

2M
D

( i )

. ~19!

The amplitudes are now expressed with the reduced te
and they satisfy a three-dimensional equation
e

s

M~q8,q!5V~q8,q!1E d3k

~2p!3 V~q8,k!

3
M2

Ek

L (1)
1 ~k!L (2)

1 ~2k!

q22k21 i«
M~k,q!. ~20!

Taking matrix elements with only positive energy spinors,
equation with minimum relativity results for theNN t matrix,
namely,

T ~q8,q!5V~q8,q!

1E d3k

~2p!3 V~q8,k!
M2

Ek

1

q22k21 i«
T ~k,q!.

~21!

Using the substitutions
3-7



fo
ith
c
e

nn

he

th
it
in
e
n

on

th

ed

tor

-

een
sing
as-

the

co-

ti-
te
rve

-
ns

tail

en
ro-

an

x-

A. FUNK, H. V. VON GERAMB, AND K. A. AMOS PHYSICAL REVIEW C64 054003
T~q8,q!5S M

Eq8
D 1/2

T~q8,q!S M

Eq
D 1/2

~22!

and

V~q8,q!5S M

Eq8
D 1/2

V~q8,q!S M

Eq
D 1/2

, ~23!

a simplified form of thet matrix is obtained. It is the familiar
Lippmann-Schwinger equation

T~q8,q!5V~q8,q!1E d3k

~2p!3 V~q8,k!
M

q22k21 i«
T~k,q!.

~24!

Of use is an equivalent Lippmann-Schwinger equation
the wave function. Formally, this equivalence is proven w
the Mo” ller distortion operator that relates the free wave fun
tion with the scattered wave and uses the relation betw
scattering amplitude and potential,T(6)F5VV (6)F. Fi-
nally, we use the equivalence between the Lippma
Schwinger integral equation and the Schro¨dinger equation so
that

S 2D1
M

\2 V~r !2k2Dc~r ,k!50. ~25!

When we identify the potential scaleM with the two particle
reduced mass

M52m52
m1m2

m11m2
, ~26!

we guarantee consistency with the low energy limit of t
Schrödinger equation and use, therein, ofNN OBE reference
potentials. However, a careful and consistent treatment of
AM /E factors in Eqs.~22! and~23! is necessary whenever
is important to take relativity into account. We have not
cluded theAM /E factors, neither in the potentials nor in th
t-matrix results herein, but make use of them in applicatio
and studies of relativistic corrections@5# whose results are
shown elsewhere. Minimal relativity enters in the calculati
of k2 by

s5~m11m2!212m2TLab5~Ak21m1
21Ak21m2

2!2,
~27!

where

k25
m2

2~TLab
2 12m1TLab!

~m11m2!212m2TLab

. ~28!

For equal masses this reduces tok25s/42m2.

III. AN ALGORITHM FOR THE OPTICAL
AND BOUNDARY CONDITION MODELS

We distinguish between three Hamiltonians. They are
referenceHamiltonian H0, a projected Hamiltonian HPP ,
05400
r

-
en

-

e

-

s

e

and afull optical modelHamiltonianH. The first of these,
the referenceHamiltonianH05T1V0, invokes a given po-
tential V0 for which one can find Schro¨dinger equation ref-
erence solutions. The physical outgoing solutionsc0

5c0
1(r,k ,E) of H0 we suppose gives a unitarySmatrix. We

assume further that this Hamiltonian is completely specifi
such that evaluation of any quantity, wave function,Smatrix,
K matrix, etc. is facilitated. The Feshbach projection opera
formalism @31# is used to give theprojectedHamiltonian,
PH0P5HPP , derived fromH0. We presuppose complete
ness,P1Q51, and, when a finite rankN of the Q space is
assumed,

Qª(
i 51

N

uF i&^F i u5(
i 51

N

u i &^ i u, ~29!

with theQ-space basis functionsuF i& interpreted as doorway
states. With these doorway states we make the link betw
the QCD and the hadronic sectors; the latter encompas
nucleons, mesons and other free particles. Thus we will
sume that meson creation/annihilation occurs only in
highly nonlinear QCD sector so thatQ-space wave functions
are projections of such processes onto hadronic particle
ordinates. The third of our Hamiltonians, thefull optical
modelHamiltonian, comprises the reference HamiltonianH0
and thecorrective optical model potentialV. That potential is
complex and nonlocal, viz., separable of finite rank,H5T
1V01V(r ,r 8; ls j ,E). The separable potentials are mo
vated by~a few! doorway states, representing intermedia
NN excitations, but generally they are designed to se
quite a wide range of purposes@35#.

The Schro¨dinger equation specified withH has regular
physical solutions C15C1(r,k ,E) whose asymptotic
boundary conditions we deem to match with theexperimen-
tal elastic channelS matrix. Specifically, for these experi
mental S matrices we have used the continuous solutio
SP00 from VPI/GWU@28#. The reference potentialV0 and
separable potential form factors are to be specified in de
with any application.

A. Towards a full optical potential model

To obtain the optical potential on the basis of a giv
reference potential, we express first the solutions of the p
jected Hamiltonian in terms of the reference Hamiltoni
and thea priori definedQ-space projector. The Schro¨dinger
equation (E2H0)uc0&50 and its solutions are used to e
press the solutions of (E2HPP)ucP&50. The latter is
equivalent to the Schro¨dinger equation

~E2HPP2HQP2HPQ2HQQ!ucP&52HQPucP& ~30!

and the Lippmann-Schwinger equation

ucP&5uc0&2
1

~E12H0!
HQPucP&

5uc0&2(
j

G1u j &^ j uHQPucP&. ~31!
3-8
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These equations are still very general and do not dep
upon a specific representation. However, in the following
assume a partial wave expansion in terms of spherical
monics, spin and isospin state vectors and radial functio
The following equations are identified as radial equatio
with the set of quantum numbers suppressed.

Projector orthogonalityPQ5QP50 implies that

05^ i ucP&5^ i uc0&2^ i uG1HQPucP&, ~32!

and thus

^ i uHQPucP&5(
j

N

$^FuG1uF&% i j
21^ j uc0&. ~33!

The solutions of Eq.~31! can be written in terms ofuc0& as

ucP&5uc0&2(
i j

N

G1u i &$^FuG1uF&% i j
21^ j uc0&

5uc0&2(
i j

N

G1L i j uc0&, ~34!

wherein one can identify a separable potential

u i &$^FuG1uF&% i j
21^ j u5u i &l i j ^ j u5L i j ~r ,r 8!. ~35!

Note then that definition ofQ space gives a specification o
the separable strengthsl i j ( ls j ,E) that is unique. The result
ant Eq.~34! has the form of a first order Born approximatio
but in fact it is an exact result.

To proceed, we initially abandon the exactitude of E
~34! and require the strength matrix,

l i j 5$^FuG1uF&% i j
21 , ~36!

to be constrained asymptotically by the experimentalS ma-
trix of the full Hamiltonian Schro¨dinger equation, i.e., as
ymptotically we imposeucP&5uCH&. This implies that com-
plex optical model strengthsl i j emerge as a result o
matching to Riccati-Hankel functions and non unitaryS ma-
trices with

uCH&5ucP&; lim
r→`

1

2i
@2h2~rk !1h1~rk !S~k!#. ~37!

The strengthsl i j then can be simply determined from a lin
ear system of equations based on Eqs.~34!–~37!,

1

2i
h1~Rk!@S~k!2S0~k!#5(

i j
G1u i &l i j ^ j uc0

1&, ~38!

using a matching radiusR beyond which the reference po
tentials and radial form factors of the separable potent
vanish. To reinforce a Lippmann-Schwinger equation, w
the experimentalS matrix as boundary condition or equiva
lently with strengthsl i j from Eq. ~38!, a transformation of
the separable potential Eq.~35! is made. This is achieved
with
05400
nd
e
r-
s.
s

.

ls

V~r ,r 8!5L
1

~12G1L!
, ~39!

which contains the separable potentials as defined with
~35! but whose strengths now are solutions of Eq.~38!. As
the transformation Eq.~39! contains integration of orthonor
mal functions, only strengths are altered. Using this opti
model in the full Hamiltonian, physical solutions are o
tained with reference solutionsuc0& and Greens functionG1

of the reference HamiltonianH0 by means of the Lippmann
Schwinger equation

uCH&5uc0&1G1VuCH&. ~40!

B. Technical details

The partial wave radial wave functions of the referen
potential satisfy equations

ua9 ~r ,k!5F l ~ l 11!

r 2 1
2m

\2

Va~r !

112Vb~r !
2S Vb8~r !

112Vb~r !
D 2

2
k2

112Vb~r !
Gua~r ,k!, ~41!

wherein we identify the complete set of quantum numbers
the subscripta. These equations we have solved numerica
for uncoupled and coupled channels using a Nume
method. The potentialsVa ,Vb ,Vb8 are dependent on th
quantum numbers (l ,s, j ) and are taken from the Paris
Nijmegen, Argonne, and inversionr-space potentials as on
wishes. The Paris and Nijmegen-I are momentum depen
potentials withVbÞ0, while the Nijmegen-II, Reid93, AV18
and inversion potentials all haveVb50. The physical solu-
tions are matched asymptotically, limr→` to Riccati-Hankel
functions

ua
1~r ,k!;

1

2i
@2ha

2~rk !1ha
1~rk !Sa

0~k!# ~42!

and normalized by

ca
1~r ,k!5

ua
1~r ,k!

A112Vb~r !
. ~43!

The irregular outgoing wave Jost solutions

J a
1~r ,k!;ha

1~rk ! ~44!

are calculated in the same way as the physical ones and
define the reference potential Green functions by

Ga
1~r ,r 8,k!

5H 2~2m/\2!
1

k
ca

1~r ,k!J a
1T~r 8,k!, r ,r 8

2~2m/\2!
1

k
J a

1~r ,k!ca
1T~r 8,k!, r .r 8,

~45!
3-9
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where the transpose matrix is signaled by the superscripT.
At the asymptotic matching radiusR, beyond which all po-
tentials vanish, Eqs.~34!–~37! yield

Ca
1~R,k!5ca

1~R,k!1E
0

`

Ga
1~R,r 1 ,k!Fa~r 1!dr1la~k!

3E
0

`

Fa~r 2!ca
1~r 2 ,k!dr2 , ~46!

and taking the difference between the reference and fuS
matrix, this reduces to

Ca
1~R,k!2ca

1~R,k!5
1

2i
ha

1~Rk!@Sa~k!2Sa
0~k!#

5E
0

`

Ga
1~R,r 1 ,k!Fa~r 1!dr1la~k!

3E
0

`

Fa~r 2!ca
1~r 2 ,k!dr2 . ~47!
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05400
A linear expression for the potential strengthla(k) results.
The strengths are transformed by Eq.~39! to give final sepa-
rable potential strengths

sa~k!5F12la~k!E
0

`E
0

`

Fa~r 1!

3Ga
1~r 1 ,r 2 ,k!Fa~r 2!dr1dr2G21

la~k!. ~48!

These strengthssa(k) define the corrective optical model o
Eq. ~40!, given for the more general coupled channel a
rank <3 separable potentials, to be

V~r ,r 8!5uFa&sa^Fau5
2m

\2 FaWaFa
T ~49!

where
Fa5H F j 21/2
1 ~r ! F j 21/2

2 ~r ! F j 21/2
3 ~r ! 0 0 0

0 0 0 F j 11/2
1 ~r ! F j 11/2

2 ~r ! F j 11/2
3 ~r !

J , ~50!
ear
zoi-

q.

A

ing
the
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eral
and the symmetric strength matrices are

Wa~k!5Re Wi , j1 i Im Wi , j5~\2/2m!sa~k!

for i , j 51 . . . 6. ~51!

For single channel and rank 1 potentials, this representa
is obviously reduced.

There are several options one may consider for the s
rable potential form factorsFa(r ). First, any finite rank po-
tential may be chosen with the strengthsla(k) determined
from data at several energies around a mean energy. In p
tice, using a rank greater than 1 option has been succe
for single channels but inherent lack of energy depende
for coupled channels strongly favors restricting potentials
be of rank 1. Next is the choice of radial form factors. A
rank 1 potential form factors we have used~a! normalized
harmonic oscillator radial wave functionsFa5F l(r ,\v);
~b! normalized Gaussian functionsFa5N0 exp2(r2r0)

2/a0
2

with r 0 anda0 being parameters,~c! a normalized edge func
tion Fa(r 0)51/2h,Fa(r 06h)51/4h andFa(r ,a)50 oth-
erwise; and~d! a boundary condition model realized b
Fa(r 0)51/h and Fa(r )50 otherwise. The last option i
suitable for a sudden transition from the hadronic dom
into the QCD domain and back. Of course these are
examples and others may be inspired by more explicit c
siderations of QCD.

Solutions of the full problem Lippmann-Schwinger equ
tion, Eq. ~40!, have been generated with reference poten
solutions and Green functions as per Eq.~45! and with sepa-
on

a-

ac-
ful
ce
o

n
ut
-

-
l

rable potentials whose strengthssa(k) are given by Eq.~48!.
These solutions are readily found from systems of lin
equations, for single and coupled channels, using a trape
dal integration rule for Eq.~40! recast as

Ca
1~r !5ca

1~r !1E
0

`

Ga
1~r ,r 1!Fa~r 1!dr1Wa~k!

3E
0

`

Fa~r 2!Ca
1~r 2!dr2 . ~52!

However, there is a faster method by which solutions of E
~46! as well as half off-shell wave function solutions andt
matrices can be found. This we consider in Appendixes
and B.

IV. PROPERTIES AND DISCUSSION OF THE OPTICAL
MODEL

A range of optical potentials have been generated us
the algorithm developed above. As reference potentials,
Paris, Nijmegen, Argonne, and inversion potentials ha
been used. For the separable potential form factors, norm
ized harmonic oscillator functions~HO!, F l(r ,\v), with
200,\v,900 MeV have been used. The same\v is used
for all partial waves however. For single channels all qua
tum sets withJ<7 were included while those forJ<6 were
used with the coupled channels. A superposition of sev
HO functions with radial quantum numbersn51,2,3 was
3-10
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FIG. 11. SP00 phase shifts fo
np single channels.
u
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te
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-
ical
allowed and with data in intervalsTLab625, TLab650, and
TLab6100 MeV, optimal solutions of Eq.~47! found using
a least square linear equation routine from a scientific s
routine library ~NAG library!. This procedure was used t
determine a single\v for energies within 0.5,TLab
,2 GeV with an overall lowx2. That optimal value is
\v5450 MeV. For higher energies 2,TLab,3 GeV and
low partial waves, this optimal oscillator has bound sta
embedded in the continuum, but as such they are of no c
cern in this analysis and so we used\v5450 MeV for all
energies 0.3,TLab,3 GeV. With rank 1 separable poten
tials, the HO functions~radial quantum numbern51) are
05400
b-

s
n-

F l~r ,\v!;r l 11 exp@2~r /r 0!2# with r 05A 2\2

m\v
,

~53!

and with\v5450 MeV, r 050.61 fm. Then with the fixed
separable form, it is trivial to solve Eq.~47! with S-matrix
data taken at each energy. In Figs. 11 and 12 we show
full potential model phase shifts that result on solving sc
tering from the deduced optical potentials. They areidentical
with the SP00 solution.

The strengthssa(k) of Eq. ~48! were determined inde
pendently for each given reference potential and the opt
3-11
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FIG. 12. SP00 phase shifts fo
np coupled channels.
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or
potential values of Eq.~51! are shown in Figs. 13 and 14
The letters in the small subfigures identify the channel. T
curves give the results obtained when the Paris~Pa!,
Nijmegen-I ~N1!, Nijmegen-II ~N2!, Argonne AV18 ~Av!,
and single channel inversion potentials~In! were used as
reference potentials. These optical model strengths dis
two most important features. The first is that they are
insignificant. The reference potentials by themselves fai
account for the phase shiftsd andd6,«. The second feature
of importance is the loss of unitarity of theS matrices ac-
counted for byr and r6,m. The two features are weakl
coupled by the optical and reference potentials, respectiv
Below threshold, however, a purely real optical potential a
very small strengths reflect the agreement of the refere
potential phase shifts with SP00. The imaginary potent
show a smooth energy dependence starting at thres
TLab5280 MeV and, by having negative values, accou
for flux loss. Notice also that the results using inversi
reference potentials ~In! in the channels
1S0 , 3P0 , 3P1 , 1P1 , 3D2, and 1F3 have small values for
the optical potential real strengths. Thus those real poten
need hardly any modifications at short distances and
supports the conjecture of the soft core potential discusse
Sec. II regarding Fig. 7. All reference potentials are m
uncertain in the1D2 , 3F3, and 3PF2 channels. This is well
known as the region 300 MeV to 1 GeV is dominated by
D(1232) resonance while manyN* and higher spin reso
nances shape the region 1 to 2 GeV. Indeed the obv
energy dependences seen in the1D2 and 3F3 channels are
signatures of the strong coupling to theD(1232) resonance
betweenTLab5500 and 750 MeV. The coupled channel r
05400
e

ay
t
o

ly.
d
ce
ls
ld
t

ls
is
in
t

e

us

sults shown in Fig. 14 follow closely the conclusions draw
for the single channel results. Thus only the1D2 and 3F3
channels show energy dependences in the real phase shd
and absorptionsr that require particular attention and a
explicit treatment of resonance coupling. The3PF2 coupled
channels show some similarD(1232) resonance couplin
around 600 MeV. All the other channels support an ene
independent local reference potential that can be gener
by Gel’fand-Levitan-Marchenko inversion using the re
phase shift data. Also, as the optical potential strengths v
smoothly with energy for these channels, use of a comp
but local very smoothly energy dependent complex poten
with Gaussian or Yukawa form factors is suggested@16#. It
may be that within QCD hybrid models such alocal back-
ground optical potentialcan be formulated microscopicall
and be linked with the high energy diffraction and Reg
models of elastic scattering@7,13,14,38#.

In addition to those optical model potentials found
using \v5450 MeV, calculations where also made usi
\v5750 and 900 MeV. This increase in\v reduces the
range ofr 0 from 0.61 to 0.47 and to 0.43 fm, respectivel
The purpose of varying\v was to explore the effective ra
dial domain in which the reference potentials all differ mo
markedly. However, a shorter range of the form factorFa
leads in spherical coordinates automaticaly to increased
ues of the optical potential strengths and thus the shortc
ings of the reference potentials appear effectively magnifi
We studied this effective magnification in favor of a lea
change of separable potential strengths for energies 0.
GeV and considering different radial ranges of influence. F
example, for 0,r ,0.8 fm \v5450 MeV and for 0,r
3-12
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FIG. 13. np single channel
separable potential strengths, u
ing inversion ~In!, Paris ~Pa!,
Nijmegen~N1, N2!, and Argonne
AV18 ~Av! as reference potential
with \v5450 MeV.
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,0.5 fm \v5750 MeV are the best values. Of note
these calculations is that only on using the inversion pot
tials as reference do the real optical model strengths rem
small. Given that the inversion potentials were designed
themselves to give the SP00 real phase shifts belowTLab
53 GeV as derived from the real parts of theK matrix Eq.
~3!, that aspect lends further support for a decoupling of
real and imaginary parts of the optical model potentials
calculations. Interference effects are small with the impli
tion that the real and imaginary parts might be independe
assessed. Such is not so evident when the OBEP are us
the reference potentials and the particular poor extrapolat
05400
-
in
y

e
n
-
ly

as
ns

one finds on using the Paris and Nijmegen-I that have
plicit momentum dependences are most noticeable.

The 1D2 and 3F3 channel results are exceptional. Eve
with the inversion potentials as reference, the supplemen
optical potentials have comparable real and imaginary pa
Such reflect the means by which the optical model accou
for specific strong resonance effects.

The changes wrought in complex potential correcti
strengths when any OBEP is used as reference and whe
\v for the defining optical potential correction form facto
is enlarged to 750 and 900 MeV, respectively, further stres
that each is a poor choice as a reference potential as
3-13
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FIG. 14. np coupled channel
separable potential strengths, u
ing Paris~Pa!, Nijmegen~N1, N2!
and Argonne AV18~Av! as refer-
ence potentials with \v
5450 MeV.
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forces theirpropriety to even shorter ranges. In sum OBE
potentials have scant credibility in the range 0.5,r ,1 fm.

Our studies support the conceptualization of the format
and fusion of two nucleons, and more generally of two
ementary particles likepN, pp, etc., into a combined objec
@17#. These processes are correlated with selective enha
ments ofprobability densityand with loss of fluxfrom the
elastic scattering channel. The probability density of the
problem is

ra~r ,k!5
1

r 2 Tr Ca
†~r ,k!Ca~r ,k! ~54!

and the flux loss function, which results from the continu
equation ] tra(r )1(“• j )a50 and the time dependen
Schrödinger equation, is

~“• j !a5
i

\

1

r 2 Tr E
0

`

$Ca
†~r ,k!Va~r ,r 1!Ca~r 1 ,k!

2Ca
†~r 1 ,k!V a

†~r 1 ,r !Ca~r ,k!%dr1 . ~55!

For several low partial waves, in Fig. 15 we show pro
abilities as defined by Eq.~54! and flux loss~current! via Eq.
~55!. In this figure the SP00 phase shift functionsd(TLab)
andr(TLab) are given as well for each channel and they
compared with the scatter of single energy solutions of SP
The inversion potential phase shifts are given as well.
show these single energy solutions to acknowledge t
scatter about the smooth SP00 solutions. Those sharp v
05400
n
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ce-
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e
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e
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tions have been considered@11# as evidence of narrow
dibaryon resonances. Should they be so, we contend tha
potential model and associated viewpoint of fusion is s
appropriate on geometric grounds. Such dibaryonic re
nance effects require a detailed QCD description of th
structure and decay.

The contour plots give the probability distributions an
the zonal flux losses for 0,r ,2 fm and TLab,3 GeV.
From these contour plots we envisage a smooth developm
with energy for scattering in all channels with possible e
ception of the1P1 , 1D2, and 3F3 channels. Of those, the
1P1 channel is bound by data only to 1.2 GeV, above t
value the SP00 phase shift function is conjecture. Never
less we have used the solution to demonstrate what imp
tion such a drastic variation ofd(TLab) for 1,TLab

,2 GeV causes in the probability distribution leaving t
flux loss essentially invariant.

The 1S0 and 3P0 results are given at the top in Fig. 15
They have very similar characteristics. The SP00 continu
energy solutions have phase shifts whose real parts ha
minimum at about 1.6 GeV. The probability and flux lo
plots show characteristic strongly distorted structures w
the short distance 0.25,r ,0.6 fm attributes indicative of
a large width (G,1 GeV) resonance with strong absor
tion. The 3P1 results given in the middle of Fig. 15 ar
interpreted similarly. The1P1 results shown in this figure
have more variation as the resonance impact in the S
solution is reflected in the flux loss plot in particular. Th
1D2 and 3F3 channel results are given at the bottom in F
15. Concomitant with the structured SP00 phase shift fu
3-14
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FIG. 15. Block matrices con-
taining phase shiftd(TLab) and
inelasticity r(TLab) of VPI/GWU
SP00~thick lines and crosses! and
inversion-HH potential~thin lines!
phase functions. Probability an
flux loss ~current! are shown as
function of energy and radius. Th
contour plots use seven linearl
scaled steps between the min
mum ~dark! and maximum
~bright! of all function values
within a subfigure. Probabilities
show a positive definite standin
wave pattern with more or les
distortions as a function of radiu
and energy. The flux loss is geo
metrically confined by the energy
dependent imaginary part of th
optical potentials.
a
fe
-
ion

g
it
u
i

at in
or

rm
rate
ng
r-
tions the probability plots indicate a change from the ch
acteristic smoothness of the other channels with notable
tures for 400,TLab,900 MeV. A very long ranged prob
ability peak with strong distortions and significant absorpt
extending beyond 1 fm is evident.

The details shown are not independent of the chosen
ometry of the optical potential but the patterns are qu
stable with variations of the HO energy. These results s
port our pictorial conjectures of reaction schemes given
05400
r-
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e-
e
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n

Figs. 5, 9, and 10. The energy dependence indicates th
the energy regime 300 MeV to 1 GeV the concept that one
the other of the colliding hadrons at most is excited to fo
the D resonance while the two hadrons remain as dispa
entities. At higher energies, and for smaller radii, the stro
absorption is consistent with a fusion of the colliding pa
ticles.

The Kowalski-Noyesf ratios of the half off-shellt matri-
ces
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f a~k,q!5
Ta

(6,0)
„TLab~k!,k,q…

Ta
(6,0)

„TLab~k!,k,k…
~56!

are useful quantities as they stress the potential difference
momentum space. For a purely real potential the Kowals
Noyesf ratio is real but this is no longer the case for comp

FIG. 16. Kowalski-Noyesf ratios, real part in left column and
imaginary part in right column, for the1D2 and 3F3 np channels,
calculated with inversion-HH and Nijmegen-II reference potenti
and optical potentials using HO,\v5450 MeV, separable form
factor. The contour plots use seven linearly scaled steps betwee
minimum ~dark! and maximum~bright! of all function values of a
subfigure, and a common gray representing zero in all figures.
real and imaginary parts show a complementary pattern and e
gent resonance attributes.
05400
in
i-

potentials. Nevertheless, thef ratios are always independen
of the boundary conditions used in Eq.~A2! to determine
Ta

(6,0)(k2,k,q). We show in Fig. 16 a contour plot of the1D2

and 3F3 channels forTLab from 300 MeV to 1 GeV and
off-shell momenta q5ko f f from 0 to 7 fm21. The
Nijmegen-II and inversion reference potentials are used w
these calculations.

The 1D2 and 3F3 channels were selected specifically
they are noticeably influenced by theD(1232) resonance
They also have the most drastic variations of optical pot
tials with the choice of reference potential. The results s
port our expectations, associated with strong energy dep
dences and/or large differences of experimental a
reference potential phase shifts, which led to a scatte
scheme shown in Fig. 9. It is not difficult to foresee gre
problems in microscopic analysis that attempt to describe
interferences between back-ground and resonance scatte
and which aim for a unique high quality result.

For energies above 1 GeV no obvious resonance ef
can be identified with elastic scattering phase shifts. Ho
ever, this smoothness does not imply that the off-shellt ma-
trices are independent of the choice of optical potential
rameterization. In Fig. 17 we show in the complex pla
several Kowalski-Noyesf ratios for the3P0 channel. In three
cases we used HO form factors with\v5450, 750, and 900
MeV, and in one case we used anormalized edge function
(r 050.45 fm, h50.015 fm) of Sec. III B as boundary con
dition. Quite similar results were found for the other cha
nels and the off-shell differences between these results
significant. But the influences of such large and obvious o
shell differences disappear when those off-shellt matrices
are used in few- and many-body calculations@18#. It is gen-
erally argued that only near on-shell values enter in few- a
many-body calculations and symmetric sampling around
on-shell point implies that any effects of such differences
annulled. Thus we do not expect medium energy few- a
many-body calculations to be more revealing than were
results of calculations at low energy. We consider it not o
portune to seek or nominate a preference for any of the
shell t matrices or a particular form factor.

s

the

he
er-

FIG. 17. Kowalski-Noyesf ratios for the3P0 channel calculated
with Nijmegen-II as reference potential and optical potentials us
HO \v5450, 750, 900 MeV, and a normalized edge functi
~BCM! separable form factor. The dots on the curves fall onto
tegerko f f values andkon is that forTLab52 GeV.
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V. SUMMARY AND CONCLUSIONS

Diverse nucleon-nucleonr-space potentials, that yiel
quality fits toNN scattering phase shifts for energies belo
300 MeV, have been extended to beNN optical potentials
from which the SP00 phase shift functions up to 3 GeV
matched. Complex short range separable potentials,
dressed as the optical model potential and distinguished f
the real reference potentials, bridge the gap between the
perimental and reference potential phase shifts. By exten
boson exchange motivatedNN potential models to be optica
models we invoke a new reaction scheme. At medium
ergy, 300 MeV to 1 GeV, this approach identifies intrins
excitation of isolated nucleons without their fusion. At high
energies, and in particular for energiesTLab.2 GeV, the
two nucleons can fuse into a compound system, from wh
meson production and other reactions eventuate, as can
densation back into the elastic channel. This view is ba
upon the character of the1S0 and 3P0,1 partial wave phase
shifts. Notably it is the minimum in the real phase shifts
these channels that transform into soft core potentials.
reaction volume of the fused system fits well within a sph
with radius 1 fm and the medium and long range bos
exchange contributions are small corrections at best. W
data at even higher energies may indicate a similar reac
scheme with the higher partial waves, it must be borne
mind that the centripetal barrier screens that scattering
reducing markedly the probability of fusion.

In the 300 MeV to 1 GeV regime, theD resonance domi-
nates 1D2 , 3F3 and 3PF2 partial waves and all referenc
potentials require large and strong energy dependent co
butions from the optical potential. Our results complem
the view that this resonance must be treated explicitly. In
case, theD generates a doorway state to pion production a
should be treated as such within theNN potential model
generalization. The separable optical potential was chose
accommodate doorway state formation and decay withi
small energy region.

The OBE reference potentials presently available eit
give results too far from reality to qualify as backgrou
phase shifts or use theD resonance in a way that prohibi
separation from the background. However, by dint of th
construction, inversion algorithms will help resolve these
sues. The approach is such that one may start with any
sired phase shift function as input. Of these any real part m
be taken as the reference potential phase shifts, whose u
input to Gel’fand-Levitan-Marchenko inversion give the re
erence potentials themselves. Therewith, the inversion a
rithm we have developed herein can then be used to de
mine the remaining parts of the fullNN optical potential.
This algorithm facilitates specification not only of comple
separable potentials, appropriate for specific doorway s
effects, but also of local complex potentials that encomp
smooth energy dependent processes that contribute to
dium to high energyNN data. The geometric attributes of th
optical model, in particular the inherent soft core nature
potentials, thus have been determined solely from data.
tailed interpretation of these emergent results, of cou
must eventuate from QCD inspired models.
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APPENDIX A: EVALUATION OF THE HALF OFF-SHELL
t MATRIX

The calculation of NA optical potentials for TLab
,3 GeV requires half off-shellNN t matrices@18# for on-
shellk valuesk,6 fm21, and a correspondingly large rang
of off-shell values. In principle, in applications the off-shellk
values~later identified withq) are needed in integrals from
0→` but a reasonable upper limit isq52k. A fast and
stable method of evaluation of such half off-shellt matrices,
when r-space potentials are chosen, is an extension of
Schrödinger equation as an inhomogeneous differential eq
tion. The method follows that of van Leeuwen and Rein
@36#.

The most general potentials in our study contain mom
tum dependent, local, and separable complex potentials
both single and coupled channels. In particular for the res
shown, a rank 1 separable potential with a radial harmo
oscillator form factorF l(r ,\v) has been used. The Schro¨-
dinger equation then can be cast as

FM~r !
d2

dr2
2M~r !

l ~ l 11!

r 2 2Va~r !1Vb9~r !12Vb8~r !
d

dr

1k2Gc l~r ,k,q!5F l~r !l l~k2!E
0

`

F l~x!c l~x,k,q!dx

1~k22q2! j l~rq !, ~A1!

with M(r )5112Vb(r ). The regular solutions of which no
only must vanish at the origin but also asymptotically mu
match to

lim
r→`

c l
(6,0)~r ,k,q!Nl5 j l~rq !1hl

(6,0)~rk !
q

k
Tl

(6,0)~k2,k,q!

~A2!

to determine the half off-shellt matrix Tl
(6,0)(k2,k,q) and

the normalizationNl . Spherical Riccati functions are sym
bolized by j l(x), hl

6(x), andhl
0(x)5nl(x). In the following

we suppress the channel subscriptl as the expressions hol
for single and coupled channels. The on-shellt matrix gives
the S matrix by the relation

S~k!5112iT (1)~k2,k,k!. ~A3!

To solve for coupled channels3SD1 , 3PF2, etc., two linear
independent regular solutions are calculated and Eqs.~48!,
~A1!, and ~A2! are to be understood as 232 matrix equa-
tions.

The regular solutions are readily found numerically
follows. First, a regular solution of the reference potent
Schrödinger equation
3-17
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f 09~r ,k!2V~r ! f 0~r ,k!1k2f 0~r ,k!50 ~A4!

is calculated. ThereinV(r ) implies all the local potentia
terms including the centripetal barrier. Then a regular so
tion of the full potential Schro¨dinger equation with the ref
erence potentialV(r ) and separable potential,

f 19~r ,k!2V~r ! f 1~r ,k!1k2f 1~r ,k!5F~r !s~k!^Fu f 1&,
~A5!

is obtained from a particular solution of

g19~r ,k!2V~r !g1~r ,k!1k2g1~r ,k!5F~r !s~k!F,
~A6!

where we use F5^Fu f 0&, and f 1(r ,k)5 f 0(r ,k)A
1g1(r ,k). The factor~matrix! A is determined from

^Fu f 1&5^Fu f 0&A1^Fug1& ~A7!

and

A512F 21^Fug1&. ~A8!

Finally the regular solutionf 1(r ,k) can be multiplied with
any complex number~matrix! to be a general regular solu
tion of Eq. ~A5!.

The half off-shell t matrix is related to the regular ha
off-shell wave functionc(r ,k,q), which satisfies the inho
mogeneous Schro¨dinger equation

F d2

dr2 2V~r !1k2Gc~r ,k,q!

5F~r !s~k!^Fuc&1~k22q2! j ~rq !. ~A9!

Asymptotically this wave function is

c (6,0)~r ,k,q!; j ~rq !1h(6,0)~rk !
q

k
T(6,0)~k2,k,q!.

~A10!

A general regular solution of Eq.~A5! and a particular regu
lar inhomogeneous solution of Eq.~A3! then is needed to
satisfy the boundary conditions given in Eq.~A10!. A par-
ticular solution of Eq.~A9! is obtained in two steps. Firs
with

F5^Fug2&5^Fu f 1&5^Fu f 0&, ~A11!

a particular solution is given by

f 2~r ,k,q!5 f 1~r ,k!B1g2~r ,k,q!, ~A12!

whereB is determined from

B512F 21^Fug2&. ~A13!

The off-shell wave function matches asymptotically as
05400
-

c (6,0)~r ,k,q!5 f 1~r ,k!N1 f 2~r ,k,q!

; j ~rq !1h(6,0)~rk !
q

k
T~k2,k,q!.

~A14!

The normalizationN andt matrix T(6,0)(k2,k,q) are readily
evaluated from the quasi-Wronskians

N5W21@h(6,0), f 1#~W@ j ,h(6,0)#2W@h(6,0), f 2# !,

q

k
T(6,0)~k2,k,q!5W21@ j ,h(6,0)#~W@ j , f 1#N1W@ j , f 2# !,

~A15!

where we define

W@a,b#5
~an2an21!

h
bn2an

~bn2bn21!

h
~A16!

at two asymptotic radial pointsr n21 and r n5r n211h. The
quantitiesa andb can be either scalars or matrices.

It is very convenient to use the Numerov algorithm
solve Eqs.~A4!, ~A6!, and ~A9!. But to do so for Eq.~A1!
requires equations without first derivative terms. The abo
can be made so by use of a factorization

c~r ,k,q!5 f ~r ,k,q!D~r ! with D~r !5
1

A112Vb~r !
.

~A17!

The resulting equation forf (r ,k,q) is

f 9~r ,k,q!5F l ~ l 11!

r 2 2D~r !k2D~r !1D~r !Va~r !D~r !

1@D~r !Vb8~r !D~r !#2G f ~r ,k,q!

1F~r !D~r !s~k!^DFu f &

1~k22q2! j l~rq !D~r !. ~A18!

APPENDIX B: NUMEROV ALGORITHM

The solution of radial Schro¨dinger equations is certainly
not new and generally deserves no mention. Here, we d
upon the details since we found the specified element
have anormal form of related problems in other fields o
physics and engineering that were tested with parallel co
puting facilities. The Numerov algorithm has been wide
used for single and coupled channels Schro¨dinger equations
since it gives sufficient numerical accuracy with minim
operations@37#. The standard form of linear homogeneous
inhomogeneous Schro¨dinger equations that we have to solv
is

f i9~r !5(
j

Vi j ~r ! f j~r !1Wi~r !, ~B1!
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where Wi(r )50 for homogeneous equations. The term
Vi j (r ) and Wi(r ) are easily identified in Eq.~A18!. For
single channels the algorithm is

f n1152 f n2 f n211
h2

12
~un11110un1un21! ~B2!

or

S 12
h2

12
Vn11D f n115S 21

10h2

12
VnD f n

2S 12
h2

12
Vn21D f n21

1
h2

12
~Wn11110Wn1Wn21!.

~B3!

These expressions generalize for coupled channels u
standard vector and matrix algebra. A significant reduction
operations is found by using the substitution

jn5S 12
h2

12
VnD f n ~B4!
ns

y,

n

n,
d

er

ys

d.

05400
s

ng
f

in Eq. ~B3!. It gives

jn1152jn2jn211Un , ~B5!

and the inhomogeneous equation

jn1152jn2jn211Un1
h2

12
~Wn11110Wn1Wn21!,

~B6!

with

Un5
h2Vn

12
h2

12
Vn

jn . ~B7!

Back transformations fromj i→ f i use either of the two pos
sibilities

f i5j i1
1

12
Ui or f i5

j i 11110j i1j i 21

12
. ~B8!
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