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Baryon fluctuations and the QCD phase transition
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The dynamic separation into phases of high and low baryon density in a heavy ion collision can enhance
fluctuations of the net rapidity density of baryons compared to model expectations. We demonstrate that
event-by-event proton and antiproton measurements can be used to observe this phenomenon. We then perform
real-time lattice simulations to show how these fluctuations arise and how they can survive through freeze-out.
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If the QCD phase transition is first order, matter at thee.g., the energy density change sharply. Jumps in the suscep-
appropriate temperatures and densities can form a mixetbility commonly accompany first order transitions. For a
phase consisting of plasma droplets in equilibrium with aliquid-gas transition,y=dp/du is proportional to the com-
surrounding hadronic fluid. If formed in ion collisions, this pressibility: steam is much more compressible than water.
mixed phase can produce large event-by-event fluctuations Large fluctuations in baryon number occur during phase
as the system hadroniz¢4]. In particular, extraordinary separation in a first order transition. Figuréblshows the
baryon number fluctuatiorj€] can accompany the first order phase diagram in th&— p plane[3], wherep is the baryon
transition expected at high baryon dengiy. density. A uniform system quenched into the outer parabolic

In this Rapid Communication we explore the dynamics ofregion will separate into droplets at the high baryon density
phase separation in nuclear collisions. The aims of this papegr, surrounded by matter at densjty. The net baryon num-
are twofold. First, we study the role of baryon number fluc-berNg in a subvolume of the system varies depending on the
tuations as a probe of the order of the QCD transition. Wenumber of droplets in the subvolume. The variance of the
focus on the high baryon density regime, where thd@ly baryon numbeNg=(N3)—(Ng)? can exceed the equilib-
and lattice simulation4] suggest that the QCD phase tran- rium expectation by an amount
sition is first order in a strict thermodynamic sense with
baryon density as an order parameter. Our work may also AVg~Tf(1—1)(ANg)?, (eN]
apply to RHIC collisions, if the low baryon density systems
produced at the highest energiapproximatea first order — wheref is the fraction of the high density phase in the sub-
transition[5,6]. Second, we generalize techniques from con-volumeV andANg=(py—pn)V. In contrast, an equilibrium
densed matter physi¢Z] to confront phase separation in the system follows Poisson statistics, so thég=V+V=(N

highly-nonequilibrium context of nucle_ar collisions. Our +ﬁ>,whereN,Vandﬁ,Vare the numbers and variances of
framework can be used to systematically address other

probes as experimental information and theoretical undef?@ryons and antibaryons amg=N—N. _ _ _

standing evolve. Experimenters can search for a “super-Poissonian” vari-
To begin, we describe the character of mixed-phas@nce such as Eql) by measuring

baryon fluctuations and show how they can be measured. B

Measurement is not completely straightforward as, e.g., neu- :fop_<Np+ Np)

; ) ) Q, —, (2

rons are not easily observed on an event-by-event basis. We (Np+Np)

then formulate a dissipative-hydrodynamic model of phase

separation and perform numerical simulations for that modelwhereN, andN, are the numbers of protons and antiprotons
QCD with two massless flavors can exhibit a first orderin a rapidity interval andv,_ is the variance of the net

transition whose coexistence curve culminates in a tricriticaproton numbemN,—N. This quantity vanishes in equilib-

point at temperaturf . and baryon chemical potential, rium and is related to the more familiar scaled variange

[3]. For T>T. and u<pu., a second order phase transition

breaks/restores chiral symmetry. If the quark masses are suf-

sality class as a liquid-gas transition. T
At RHIC, baryon density may also serve as an approxi-

mate order parameter for the nearly first order transition at :\

small net baryon density. Lattice simulatiof&5] and gen- Ph Pe Pq

eral argument$6,8,9 show that the baryon susceptibilify

at =0 can increase suddenly as temperature is increased FIG. 1. Free energga) and phase diagrafib) vs baryon density

nearT,~160 MeV, where the chiral order parameter and,for Eq. (4).

ficiently large, the second order transition is replaced by a i E @
smooth transformatiorisince chiral symmetry is explicitly f(;( ) : !
broken. The first order line remains, however, with the tri- d h
critical point replaced by a critical point in the same univer- ! i (®)
|
|
|
|
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=(N,+Np)(1+€,). Most importantly (), is ideal for our ap-  The « term describes the droplet surface tension. Forfgur

plication because of the property we computesr= (8xkm3/9\?) Y2 k12 [14].
_ To describe the dynamics of the system, we must account
_VB—<N+N> for the fact that baryon number is conserved. Furthermore, it
szﬂBZW' 3) is crucial to include dissipation to describe this strongly fluc-

tuating system. The simplest equations that meet these crite-

where N and N are the numbers of baryons and '@ are

antibaryons—including unseen neutrons and antineutrons _ 2 o2,
(the proof follows. The conditions for which Eq(3) holds IpIA=MVp,  p=To=xV7p; ®

are met by a range of thermal and Glauber models that Shodel B in Ref[7]. We illustrate that Eq(5) describes dif-

f}gg‘;ttﬁgstﬁgizggmgx' (I)Sr()iiptlﬂ(aflucigiziet:]()crés:fag 3|itseor(r§a)?1.te Ofusion in a stable liquid by considering fluctuations about the
P P equilibrium density p=pn+ Spexp(—ik-x), where Sp,

chiral condensate, but those effects will be evident from p|on<ph. A system at this density is near the minimumfgf o
measurements.

r__fM _ 2 A
We demonstrate Eq3) by writing the joint probability —Natfo™folpn) opi=2m"dpy. Therefore, Eq(5) is standard

_ = — . diffusion equation at linear order idp,. We identify the
for Np andNp as2y wp(Np|N)P(NGIN)P(N,N). The distri- 15y on diffusion coefficient at, asD=2m2M. In general,

butionP(N,N), which determine$);, is modified by phase diffusion drives the system towards homogeneity at all den-
separation; we make no assumptions about its form. We asity for which f/(p)>0.

sume that the conditional probabilip(N,|N) for measuring Phase separation is most dramatic if the rapid expansion
N,, given N baryons is binomial, withy the chance that any of the heavy ion system drives the system into the unstable
individual baryon is a protorisee[10] for notation. We  region, i.e., the inner parabolic region in Figlbl, corre-
further takep(N|N) for antiprotons to be binomial with the - sponding tof(p) <0 in Fig. 1a). Droplets form from run-
same d. These assumptions hold for most thermal andaway density fluctuations in a process known as spinodal
multiple-scattering models.Ihe average of the joint distribu-decomposition. We estimate the time scajefor this pro-

tion is (Np+ Np) ==y np(N,N)(v+ »), where the binomial cess by considering the time evolution of small fluctuations

averageslz:ENpp(NplN)Np and;:EN;D(NBIﬁ) N, yield nearp.. We takep=p.+ dpexp(—ik-x) to find

(Np+Ng)=g(N+N). The quantity(N+N) depends only d K Spx
on P(N,N). Similarly, we find((N,—N-)2)=g%(N—N)?) —5Pk=m2'\/'(k2— —zk“) Spk=—— (®)
N SUTHATTY, p— Np dr m Ty
+g(1-q){N+N). We combine these moments to obtain
Eq. (3). to linear order inép. Long wavelength disturbances corre-

The antiproton contribution to Eq$2) and (3) is large  sponding to @<k<.(m?x grow with time, while the
only at RHIC, whereN;/N,~0.6 at Js=130A GeV [11]. surface-tension term stabilizes the shorter wavelength
At the top SPS energy, we estimgteontributions to Eq(2) ~ modes. The time scale for growth, is shortest atkg
to be at the few percent level in AuAu at s = V(M/2k).
=17.5A GeV, sinceN,/N,~6% [12]. The highest baryon The fastest—growing mode at wave numlkgrdominates
density—and the greatest potential for observing a first ordethe early evolution of the system in the unstable regime. The

transition—is perhaps at lower energies. time scale for the growth of this mode is
We remark that Jeon and Koch and Asakastal. have )
proposed that hadronization may change the character of TR=8¢°/D, @)

charge and baryon number fluctuations even in the absenceh —2m is th lation lenath. Th | f
of a phase transitiopl3]. This effect is essentially Poisso- where £= x m 1S the correlation length. The values o
nian, however, so it is not clear that it would cau3g to and 7 determine the time and spatial scales for the onset of

differ from zero, the equilibrium value, or that it could be s_pinodal decomposition. We plausibly estimate ‘h‘? correla-
tested without measuring neutrons. The effect on charge fludion length to beg~1 fm, roughly the value of the inverse
tuations is much more dramatit3]. sigma mass. For a value Bf~8 fm consistent with calcu-

We now turn to describe the process of phase separatioftions in Ref.[17], we find 7e~1 fm as in Ref.[2] We

To describe the state of the mixed phase, we follow the starf€Ma'K that the large magnitude bfsuggested by Ref17]

dard condensed matter practitg and write a Ginzburg- 'S consistent with our assumption in E&) that baryon dif-
Landau free energ§= «(V p)2/2+ f,, where fusion is the dominant transport mode for baryons at high

density. Our model superficially suggests a slower onset of

fo=—m2(p—pe) 22+ N(p—pc)il4 (4) the instability for a substantially smaller value Bf How-
ever, if D were truly small then it would be necessary to

describes the excursions of the baryon denpitfrom its  include transport mechanisms involving convection and vis-

equilibrium value in the uniform matter. Fon>cT.—T we  cosity. In fact, viscosity must dominate near=0, where

find the correct liquid-gas critical exponents. The valpgs diffusion precesses are strictly irrelevdas).

and pq in Fig. 1 correspond to the equilibrium densities at  To describe nuclear collisions, we extend E§). to in-

T<T¢: ph=pc—Ap andpg=p.+Ap, whereAp= Jm?/\. clude drift due to Bjorken longitudinal flow:
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apldT+pl T=MV2u, (8

wherer is the proper time ang is given by Egs(4) and(5).

The new drift term forces the average density to decrease a
{p)= 71, driving the system through the phase coexistence
region. Fluctuations grow when densities appropgh(see
Fig. 1). To derive the drift term, observe that E§) follows
from baryon current conservation, which more generally im-
pliesd,j*=0. The currentig”=pu”+j§ [19], whereu” is

a fluid velocity that includes a contribution from the meson
flow, and j4 is the diffusion current,«Vu when u
=(1,0,0,0). The left and right sides of E@®), respectively,
follow from d,(pu*) andd,,j§ for Bjorken flow.

For timest> g, the system undergoes a nonlinear evo-
lution in which droplets merge, reducing their surface en-
ergy. To study this regime, we write the evolution equation
(8) in the dimensionless form
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FIG. 2. Order parameter in the transverse plane in the absence

of expansion. Droplets tend to merge.

2 E+—¢=—%@2<¢f— WPV, (9)

aT T

Figures 2 and 3 show®21 dimensional numerical simu-

lations of Eq.(9) in the transverse plane. Only longitudinal
where we use the dimensionless coordinates87/7z and  expansion is considered so the coordinates are Cartesian with

x=x/¢£. The dimensionless order parametes (p—p.)/Ap
equals=1 whenp=py, 4= p.*Ap. The only remaining pa-

periodic boundary conditions. For comparison, Fig. 2 shows
results in which expansion is neglected by omitting the term

rameter ise= p./Ap, which controls the strength of the first (€+)/7 in Eq. (9). Expansion shown in Fig. 3 prevents
order transition. Here, we take=1 corresponding to a droplets from merging as in Fig. 2. The expanding system
strongly first order transition. Observe that ) depends reacheg.at7,=5 fm. Because this is a dissipative system,
on the temperature and density scale only throaghhis is ~ we must apply thermal noise at each lattice sitexio seed

an artifact of our very simplistic quadratfg; we will intro- ~ phase separatiofnoise at earlier times is dampenedhe
duce a more realistic free energy density in a later work tgnemory of the initial conditions is essentially lost far
study the role of temperature in the evolution. — 7o~ TR-

We solve Eq(9) numerically on a 2-1 dimensional lat-

We now study the rapidity dependence of baryon number

tice following Grantet al. [15]. We use a forward Euler fluctuations. Figure 3 shows the computed variance for two

method to evolve the system in time for a time stép

different initial times and for two rapidity intervals. The vari-

—0.05. We study the evolution in the transverse plane and iA"C€ iS computed from a sample of 5000 simulated events,

the rapidity »-x; plane, wherex; is a Cartesian transverse
coordinate. The Laplacian in the-x; case is

each unique due to the thermal noise. We see that the super-
Poissonian fluctuations grow appreciably by27,. This
variance drops as the rapidity interval is increased. We find

1 g2 .y that variance is governed by the ratig/ 7z, which com-
V2=;_—2 %ﬁ Vi (100 pares the expansion and droplet-growth time scales.

To treat the higher spatial derivatives we extend the next-
nearest-neighbor algorithm developed by Oono and [Réti
and used if15] to account for the asymmetrig-x+ lattice.

We write

A 1 1 5
Vi st s Y a2 @D

NN

vy

where the first sum runs over the four nearest neighbors
(NN) and the second over the four adjacent next-next-neares
neighbors(NNNN). Oono and Puri use the diagonal next-
nearest-neighbors instead in Efjl)—a formulation that re-
quires a symmetric lattice. We takex=1. We find that our
results are practically indistinguishable from NNN results
[15] for this spacing on a symmetric lattice. To study longi-
tudinal expansion, it suffices to replace one coordinkte

FIG. 3. Order parameter in the transverse plane including ex-

for 7A 7. pansion. Expansion prevents droplets from merging.
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where we use the wounded nucleon model to compute

0.5 T .
P -- Ay=1,1,=4fm
04 | ; ‘\\ —- Ay=2,‘co=4fm
J . — Ay=1l,1,=2fm
| S\, —-Ay=2,1,=2fm
Q 03 .

N(b)=~59 forb=10 fm and 372 fob=0. RQMD Au+Au
simulations for impact parameters fall below this bo{i2d].

0.2
0.1
0

FIG. 4. Enhanced variance vs time for two rapidity windows,

Eq. (D).

These schematic calculations serve to illustrate the impa
of droplet formation on baryon fluctuations. To obtain mor
guantitative predictions, one must use a more realistic for
of the free energyfy. Our quadraticfy(p) strictly applies
only nearT. and yields compressibilities that are equapat
andp. . This result is unchanged if linear and cubic terms ar
added. In contrast, lattice QCD calculations suggest that th
compressibility may jump across the transitidj. The bag
model equation of state describes a first order transition an
predicts ajumm(ap/a,u)~2T§ for two light flavors, but is

not analytic in the two-phase region. We will discuss a more, 2.375. We extend the calculations to much longer times to

sophisticated parametrization &f(p) in future work.

Turning now to the interpretation of experiments, we em-
phasize that the identification of phase-transition induce

fluctuations requires a systematic comparisorf)gfin pp,

p-nucleus pA), and nucleus-nucleus A@Q) collisions.
Benchmark RQMD andiiJING simulations for central Au
+ Au collisions yield(),~0 in the absence of a phase tran-
sition [20], in marked contrast with Fig. 4. However, we
have been unable to find experimental results on net-proto
fluctuations inpp or pA collisions in the literature, so it is
not clear whether these benchmark estimates are reIiabIe.\}J
is therefore important thad A experimenters study fluctua-
tions of identified baryons ipp andpA collisions. Measure-
ments of fluctuations of unidentified charged particles in had

ronic collisions[21] and strange baryon productionéie™

collisions [22] hint at substantial proton-antiproton correla-
tions inpp collisions. If it turns out that light and heavy ion
fluctuations are similar, it may be necessary to correlat
baryon measurements with other signals to extract pha

transition information, as in Ref23].

Nevertheless, we stress that it is unlikely that super

Poissonian  fluctuations in

collisions—if present—result in significant fluctuations in

nucleon-nucleon NN)

We expect(), to dramatically increase in heavy ion sys-
tems compared to light ones. In centrat S we expect the
NN contribution to{), to be below 1%, as implied by our
wounded nucleon model estimate. Since there is no evidence
of a phase transition in such light systems at AGS or SPS, the
appearance of fluctuations at the level of Fig. 4 in+A&u

would be impressive. But is there any source of coherence or
collectivity other than a phase transition? Gluon junction ef-

fects[24] can lead to correlated baryon productiongp,

?ﬁions can effect), [20].

rRA’ andAA collisions. This effect is only partially included
in RQMD [25]. We are currently studying how gluon junc-

In summary, we have studied the phenomenological im-
pact of baryon density, a proposed order parameter of the

eoutative first order QCD phase transition at high baryon den-
ity [3]. We have shown that phase separation in the nonequi-
ibrium heavy ion system can lead to large baryon fluctua-
Hons. These fluctuations are super-Poissonian and,
consequently, can be extracted by measuring protons alone.
For Eq.(4) with (p)=7~1, the system is unstable only for

demonstrate that the fluctuations in rapidity survive well past
éhe freeze-out time, of order 10—30 fm, in accord wiP.
For sufficiently largery, final state fluctuations can be

substantial. However, we have seen that a more rapid expan-
sion corresponding to smalley, leads to an “inflation” that

prevents the fluctuations from having a large impact on the
final state. If experiments find that the non-Poissonian com-
onent of fluctuations is small, we must use information
om flow signals to ascertain the degree of this inflation.
We emphasize that these calculations include diffusion,
hich dampens the fluctuations once the system becomes

stable. While diffusion is the primary mechanism for damp-

ening fluctuations at high density, viscosity becomes more
important at small net baryon density. Several key questions
remain: At what energy do heavy ion collisions reach a
baryon density where the phase transition is strongly first

order? Is there a residual modification of fluctuations due to

he near transition at zero baryon density? To what extent
Sfoes cooling, convection, viscosity, and collision-geometry
alter(), compared to our estimates? Finally, we note that our
‘mixed-phase effect may be compensated to some extent by

the effect due to the difference between fluctuations in a

plasma compared to a hadron ¢ds]. Nevertheless, the

AA interactions unless there is a major source of coherencgqnqih of the signal in our exploratory calculations invites
or collectivity. If we treat theAA collision as a superposition  ¢,ther work.

of NN subcollisions, therf),(AA)=Q,(NN)/N(b), where

N(b) is the number of participant nucleons. To obtain a We thank R. Bellwied, P. Braun Munzinger, K. Elder, M.
rough upperbound ot ,(NN), we take the total charge fluc- Grant, J. Kapusta, G. Kunde, P. Keyes, B.IMy I. Mishus-
tin, C. Pruneau, S. Vance, S. Voloshin, and N. Xu. This work
was supported in part by U.S. DOE Grant No. DE-FG02-

tuations measured to be0.6 in 200 GeVpp collisions from
Whitmore's review [21]. For Au+Au collisions at b
<10 fm, we estimaté) ,(Au+Au)=Q(NN)/N(0)<0.01,

92ER40713.
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