## Magnetic excitations in the nucleon-pair shell model

Yan-An Luo,<sup>1,2</sup> Xiao-Bing Zhang,<sup>1</sup> Feng Pan,<sup>3,4</sup> Ping-Zhi Ning,<sup>1</sup> and J. P. Draayer<sup>4</sup>

<sup>1</sup>Institute of Physics, Nankai University, Tianjin 300071, People's Republic of China

<sup>2</sup>Institute of Theoretical Physics, Chinese Academia Sinica, Beijing 100080, People's Republic of China

<sup>3</sup>Department of Physics, Liaoning Normal University, Dalian 116029, People's Republic of China

<sup>4</sup>Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803-4001

(Received 12 March 2001; published 19 September 2001)

Magnetic transition strengths in  $^{134}$ Ba are discussed within the framework of the nucleon-pair shell model (NPSM) truncated to the *SD* subspace. The *S* and *D* pairs are determined, respectively, by a variational method and a proton-neutron TDA approximation. The *M*1 and *M*3 transition strengths are found to be consistent with results from the proton-neutron interacting boson model calculations. The results confirm that the collective magnetic properties of  $^{134}$ Ba are primarily due to the orbital motion of nucleons.

DOI: 10.1103/PhysRevC.64.047302

PACS number(s): 21.60.Cs

It is known that magnetic excitations, which occur between mixed-symmetry states (MSSs) and symmetric ones, signal the existence of MSSs. This has been discussed extensively within the framework of the proton-neutron interacting boson model (IBM-2) [1] and the fermion dynamical symmetry model (FDSM) [2], as well as other theories [3]. The best known MSS is the 1<sup>+</sup> state that was first discovered in electron scattering experiments in well-deformed nuclei [4]. Recently, mixed-symmetry 1<sup>+</sup> states have also been found in O(6)-like nucleus <sup>196</sup>Pt [5,6] and <sup>134</sup>Ba [7], a transitional nucleus between O(6) and U(5) [8]. In addition to the mixed-symmetry 1<sup>+</sup> states, some higher-lying 2<sup>+</sup> states have also been identified as MSSs [7,9,10].

Since data on magnetic dipole moments and transitions are now readily available, every model should be tested as to its ability to make reasonable M1 predictions. This is especially so for models that champion collective modes since a proper description of the magnetic dipole properties of nuclei that display collective features has long been a challenging problem.

In our previous paper [11], the nucleon-pair shell model (NPSM) was proposed for a description of nuclear collective motion. This model uses "realistic" collective nucleon pairs with various angular momenta as the basic building blocks for wave functions. From Refs. [12–15] we know that although no dynamical symmetry is imposed in the NPSM, the model can reproduce the main results of two theories: IBM, which imposes a boson assumption, and FDSM, which is fermion-based.

In this report we study M1 as well as M3 excitations within the framework of the NPSM truncated to the *SD* subspace. <sup>134</sup>Ba is taken as an example since its M1 transitions are known experimentally. In order to account for as many experimental results as possible with as few parameters as possible, and at the same time avoid excessive computational requirements, we choose a rather simple Hamiltonian consisting of a surface delta interaction (SDI) [16] between like nucleons and a quadrupole-quadrupole interaction between the protons ( $\pi$ ) and neutrons ( $\nu$ ),

$$H = H_0 - V(\pi) - V(\nu) - \kappa Q_{\pi}^2 Q_{\nu}^2, \qquad (1)$$

$$H_0 = \sum_{a\sigma} \hat{\varepsilon}_{a\sigma} \hat{n}_{a\sigma}, \qquad (2)$$

$$V(\sigma) = V_{SDI}(\sigma) = 4 \pi G_{\sigma} \sum_{i>j=1}^{n} \delta(\Omega_{ij}),$$
$$T \ \sigma = \pi, \nu$$
(3)

where  $\epsilon_a$  and  $\hat{n}_a$  are the nucleon single-particle energy and the number operator, respectively. The E2 transition operator is

$$T(E2) = e_{\pi}Q_{\pi}^{2} + e_{\nu}Q_{\nu}^{2}, \qquad (4)$$

where  $e_{\nu}$  and  $e_{\pi}$  are effective charges of proton and neutron hole, respectively. The *M*1 transition operator is

$$T(M1) = \sqrt{\frac{3}{4\pi}} \sum_{\rho=\pi,\nu} \left\{ g_{l,\rho}^{\text{eff}} \sum_{i \in \rho} l_i + g_{s,\rho}^{\text{eff}} \sum_{i \in \rho} s_i \right\}, \quad (5)$$

and the M3 transition operator is

$$T(M3) = \frac{\sqrt{21}}{2} \sum_{\rho=\pi,\nu} \left\{ g_{l,\rho}^{\text{eff}} \sum_{i \in \rho} r_i^2 [Y^{(2)}(\hat{\mathbf{r}}_i)l_i]^{(3)} + 2g_{s,\rho}^{\text{eff}} \sum_{i \in \rho} r_i^2 [Y^{(2)}(\hat{\mathbf{r}}_i)l_i]^{(3)} \right\}$$
(6)

where  $g_{l,\rho}^{\text{eff}}$  and  $g_{s,\rho}^{\text{eff}}$  are the orbital and spin effective gyromagnetic ratios.

The building blocks of the NPSM in the *SD* subspace are "realistic" collective pairs

TABLE I. The single-particle (hole) energies for proton (neutron) for  ${}^{133}_{51}Sb_{82}$  ( ${}^{131}_{50}Sn_{81}$ ).

| $\epsilon_{\pi}$ (MeV) | 87/2                  | d <sub>5/2</sub>    | <i>d</i> <sub>3/2</sub>   | $h_{11/2}$                       | <i>s</i> <sub>1/2</sub>          |
|------------------------|-----------------------|---------------------|---------------------------|----------------------------------|----------------------------------|
|                        | 0                     | 0.963               | 2.69                      | 2.76                             | 2.99                             |
| $\epsilon_{\nu}$ (MeV) | d <sub>3/2</sub><br>0 | $h_{11/2} \\ 0.242$ | s <sub>1/2</sub><br>0.332 | <i>d</i> <sub>5/2</sub><br>1.655 | <i>8</i> <sub>7/2</sub><br>2.343 |

| $\frac{\alpha_{1/2}}{7.529 \times 10^{-4}}$                                                                                                                     | $\alpha_{3/2}$<br>5.116×10 <sup>-3</sup>                                                                         | $lpha_{5/2}$<br>1.704×10 <sup>-4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\alpha_{7/2} - 1.193 \times 10^{-4}$                    | $\alpha_{11/2} - 1.256 \times 10^{-3}$   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------|
| $\overline{\beta_{1/2,3/2} = 3.378 \times \beta_{3/2,3/2} = -2.859}$<br>$\beta_{5/2,5/2} = -2.172$<br>$\beta_{7/2,7/2} = -1.120$<br>$\beta_{11/2,11/2} = 3.269$ | $ \begin{array}{c} 10^{-1} \\ \times 10^{-1} \\ \times 10^{-2} \\ \times 10^{-2} \\ \times 10^{-1} \end{array} $ | $\beta_{1/2,5/2} = 4.030 \times \beta_{3/2,5/2} = 4.989 \times \beta_{5/2,7/2} = 4.229 \times \beta_{5/2} = 4.22$ | 10 <sup>-2</sup><br>10 <sup>-2</sup><br>10 <sup>-3</sup> | $\beta_{3/2,7/2} = 7.772 \times 10^{-2}$ |

TABLE II. The amplitude of the S pair  $(\alpha_j)$  and D pairs  $(\beta_{jj'})$  for neutron-hole.

$$A_{\nu}^{r\dagger} = \sum_{cd} y(cdr) (C_{c}^{\dagger} \times C_{d}^{\dagger})_{\nu}^{r}, \ r = 0,2$$
(7)

where y(cdr) are structure coefficients for the pair  $A^{r\dagger}$ . Many-body effects are included in the *S* pair via a variational technique, and in the *D* pair through a proton-neutron Tamm-Dancoff approximation. The single-particle energies (SP),  $H_0 = H_0^{\text{expt}}(\pi) + H_0^{\text{expt}}(\nu)$ , where  $H_0^{\text{expt}}(\pi)$  and  $H_0^{\text{expt}}(\nu)$  were fixed by the single-particle levels of the neighboring odd-A  $^{133}_{51}\text{Sb}_{82}$  and  $^{131}_{50}\text{Sn}_{81}$  nuclei, respectively, reported in Ref. [17] and listed in Table I. The parameters used in the calculation were obtained by fitting to the  $^{134}$ Ba experimental excitation energies:  $G_{\pi} = 0.139$  MeV,  $G_{\nu} = 0.056$  MeV, and  $\kappa = 0.144$  MeV.

To investigate the influence of the SP energy splitting on pair structure, we list the distribution coefficients of the Spair and D pair for neutron-hole in Table II, from which one can see that both the S pair and D pair favor the lowest SP levels, i.e., the lower the energy level, the larger the distribution coefficient.

To show the validity of the NPSM truncated to the *SD* subspace, calculated results of the spectra as well as B(E2) ratios of <sup>134</sup>Ba with the effective charges fixed at 1.9*e* (1.8*e*) for proton (neutron-hole) are shown along with the corresponding experimental values in Fig. 1. The effective charges were determined by fitting to the  $B(E2;2_1^+ \rightarrow 0_1^+)$ 

for <sup>134</sup>Ba. It can be seen from Fig.1 that this procedure gave results that are good agreement with experiment.

To study the magnetic transitions, we set the g factors to the same values as used in Ref. [18], i.e.,  $g_l^{\text{eff}} = g_l^{\text{free}}$  and  $g_s^{\text{eff}} = 0.7 g_s^{\text{free}}$ . The results are shown in Table III. For <sup>134</sup>Ba, there are two almost degenerate  $2^+$  states  $(2^+_3 \text{ and } 2^+_4)$  that share the experimental M1 strength [7,10]. The sum of the two B(M1) values is 0.20(2)  $\mu_N^2$ . Table III shows that these results are in agreement with those of determined using IBM [10,19-22] and FDSM [2]. The strongest M1 transition between the  $2^+$  states is  $B(M1;2_3^+ \to 2_1^+) = 0.2749 \mu_N^2$ . To see the correlation between the M1 transition and the structure of the wave function, a few of the most important eigenstates are listed in Table IV, from which one can see that the M1transition between two states is strong only if one is mixed symmetry while the other is symmetric. From Table V one can also see that the strongest M1 transition in our NPSM calculation is  $B(M1;0_1^+ \rightarrow 1_1^+) = 0.54 \mu_N^2$ , which is in agreement with the O(6) limit of the IBM-2 in which the scissors mode is described by the lowest  $1^+$  state. From Ref. [7], we know that experimentally the total M1 strength is 0.56(4) $\mu_N^2$ . Our calculated result is very close to this experimental value

From Fig. 1 one can see that the  $2_3^+$  state is lower than the  $1_1^+$  state, which is in agreement with the experimental result that the lowest MSS for <sup>134</sup>Ba is the  $2^+$  state. From Ref. [7],



FIG. 1. The spectra and relative B(E2) values for <sup>134</sup>Ba.

TABLE III. The B(M1) values (in units of  $\mu_N^2$ ) for the 2<sup>+</sup> and 1<sup>+</sup> states.

| theo.                                                                                                                                                     |                                      | expt.                                                                                                                                                                                                                                                                                                                         |                                                                       |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--|--|--|--|
| $\overline{B(M1;2_2^+ \rightarrow 2_1^+)}$                                                                                                                | 0.0557                               | $B(M1;2_2^+ \rightarrow 2_1^+)$                                                                                                                                                                                                                                                                                               | 0.0003(1)                                                             |  |  |  |  |
| $B(M1;2_3^+ \rightarrow 2_1^+)$                                                                                                                           | 0.2749                               | $B(M1;2_3^+ \rightarrow 2_1^+)$                                                                                                                                                                                                                                                                                               | 0.062(8)                                                              |  |  |  |  |
| $B(M1;2_4^+ \rightarrow 2_1^+)$                                                                                                                           | 0.1018                               | $B(M1;2_4^+ \rightarrow 2_1^+)$                                                                                                                                                                                                                                                                                               | 0.137(12)                                                             |  |  |  |  |
| $B(M1;2_5^+ \rightarrow 2_1^+)$                                                                                                                           | 0.0436                               | $B(M1;2_5^+ \rightarrow 2_1^+)$                                                                                                                                                                                                                                                                                               | 0.001(1)                                                              |  |  |  |  |
| $B(M1;0_{1}^{+} \rightarrow 1_{1}^{+}) B(M1;0_{1}^{+} \rightarrow 1_{2}^{+}) B(M1;0_{1}^{+} \rightarrow 1_{3}^{+}) B(M1;0_{1}^{+} \rightarrow 1_{4}^{+})$ | 0.5359<br>0.0450<br>0.0980<br>0.0133 | $B(M1;0_{1}^{+} \rightarrow 1^{+})_{E_{1}^{+}=2571}$ $B(M1;0_{1}^{+} \rightarrow 1^{+})_{E_{1}^{+}=2939}$ $B(M1;0_{1}^{+} \rightarrow 1^{+})_{E_{1}^{+}=3027}$ $B(M1;0_{1}^{+} \rightarrow 1^{+})_{E_{1}^{+}=3246}$ $B(M1;0_{1}^{+} \rightarrow 1^{+})_{E_{1}^{+}=3327}$ $B(M1;0_{1}^{+} \rightarrow 1^{+})_{E_{1}^{+}=3450}$ | 0.081(12)<br>0.31(4)<br>0.039(8)<br>0.022(6)<br>0.075(15)<br>0.036(8) |  |  |  |  |
| $B(M1;1_{1}^{+} \rightarrow 2_{2}^{+})$ $B(M1;1_{1}^{+} \rightarrow 2_{1}^{+})$                                                                           | 0.2636<br>0.0491                     | $B(M1;1^+ \to 2_2^+)_{E_1+=2571} B(M1;1^+ \to 2_2^+)_{E_1+=2939} \Sigma_i B(M1;1_i^+ \to 2_1^+)$                                                                                                                                                                                                                              | 0.096(18)<br>0.156(53)<br>0.101(32)                                   |  |  |  |  |

we know that the *M*1 transition between the 1<sup>+</sup> state and the quasi- $\gamma$  band head exceeds that between the 1<sup>+</sup> and 0<sup>+</sup><sub>1</sub> for <sup>134</sup>Ba. The measured ratio,  $R_{\text{expt}} = B(M1;1^+ \rightarrow 2^+_2)/B(M1;1^+ \rightarrow 0^+_1)$ , is 3.57(12) for the 1<sup>+</sup> state at 2571 keV and is 1.52(32) for the 1<sup>+</sup> state at 2939 keV. The 1<sup>+</sup> state at 2939 keV is the state with the largest experimental B(M1) value. A similar decay pattern was found for the  $\gamma$ -soft <sup>196</sup>Pt nucleus [5,6]. From the NPSM calculation we see that the  $B(M1;1^+_1 \rightarrow 2^+_2)$  is indeed much larger than the  $B(M1;1^+_1 \rightarrow 0^+_1)$ . The predicted ratio  $R_{\text{theo}}$  is 1.48.

In addition to the  $1^+ \rightarrow 2_2^+$  transition, the *M*1 transition from the  $1^+$  state to the  $2_1^+$  state, which is forbidden within the IBM framework, was observed in <sup>134</sup>Ba [7]. This transition was explained as a *F*-spin *E*2 transition in IBM-2 [5,6]. This interpretation is based on the *M*1 selection rules in the O(6) limit. However, there is no symmetry imposed in the NPSM and therefore the strict *M*1 selection rule is not valid in our model. It is thus of crucial importance to study

TABLE V. The contribution of spin and orbital part to M1 and M3 excitation.

|    |                           | Pro     | oton    | Neutron |         |  |  |
|----|---------------------------|---------|---------|---------|---------|--|--|
|    | $J_i^+ \rightarrow J_f^+$ | Spin    | Orbit   | Spin    | Orbit   |  |  |
| M1 | $0_1^+ \rightarrow 1_1^+$ | 0.0512  | -0.9220 | 0.0534  | 0.8175  |  |  |
|    | $2^+_2 \rightarrow 2^+_1$ | 0.0419  | -0.5468 | 0.0374  | 0.4676  |  |  |
|    | $2^+_3 \rightarrow 2^+_1$ | -0.0671 | 1.1621  | -0.0648 | -1.0302 |  |  |
|    | $2^+_4 \rightarrow 2^+_1$ | -0.0436 | 0.7042  | -0.0445 | -0.6162 |  |  |
| M3 | $3_1^+ \rightarrow 0_1^+$ | -0.0729 | -1.5642 | 0.1871  | 1.0092  |  |  |
|    | $3_2^+ \rightarrow 0_1^+$ | -0.1653 | -2.4411 | 0.1126  | 0.8314  |  |  |
|    | $3_3^+ \rightarrow 0_1^+$ | -0.0532 | -0.9654 | 0.0184  | -0.0683 |  |  |
|    | $3_4^+ \rightarrow 0_1^+$ | -0.0769 | -0.3033 | -0.0810 | -0.4779 |  |  |

whether a breaking of the O(6) dynamical symmetry may lead to a *M*1 transition between the 1<sup>+</sup> and the 2<sup>+</sup><sub>1</sub> states that is strong enough to account for the experimentally observed strengths. Using the parameters obtained by Puddu, Scholten, and Otsuka [23] in an IBM-2 calculation, the calculated  $B(M1;1^+_1\rightarrow 2^+_1)$  and is about 0.0035  $\mu_N^2$ , while the experimentally observed strength is about  $0.1\mu_N^2$ . This calculated value is too small to explain the observed  $1^+\rightarrow 2^+_1$  decay strength as a pure *M*1 transition [7]. Our NPSM calculation, as shown in Table III, yields  $B(M1;1^+_1\rightarrow 2^+_1)$  is  $0.0491\mu_N^2$ . Though still small, it is comparable with the experimental value.

The *M*3 transitions between  $3^+$  and  $0_1^+$  states were also studied. The results are consistent with the prediction of the IBM-2 calculation of Ref. [18], namely, the *M*3 transition strength is split between the first two  $3^+$  states with the  $B(M3;3_1^+ \rightarrow 0_1^+)$  equal to  $6.1795\mu_N^2$  fm<sup>4</sup> and the  $B(M3;3_2^+ \rightarrow 0_1^+)$  equal to 11.5374.

The theoretical results on the spin contribution to the magnetic transition yield conflicting results. In Ref. [24] it is claimed that within an IBM-2 framework spin contributions to matrix elements of collective states approximately cancel, so the collective magnetic properties are due to the orbital motion of nucleons only. However, the spin contribution was

| State       | S       | $D_{\nu}$ | $D_{\pi}$ | $D_{\pi}D_{\nu}$ | $D_{\nu}^2$ | $D_{\pi}^2$ | $D^2_{\pi}D_{\nu}$ | $D^2_{\nu}D_{\pi}$ | $D^2_{\nu}D^2_{\pi}$ | $D_{\pi}^{3}$ | $D^3_{\nu}D_{\pi}$ | $D^3_{\pi}D_{\nu}$ |
|-------------|---------|-----------|-----------|------------------|-------------|-------------|--------------------|--------------------|----------------------|---------------|--------------------|--------------------|
| $0_{1}^{+}$ | -1.0744 |           |           | -0.6321          | -0.5360     |             |                    |                    | -0.2139              |               |                    |                    |
| $0^{+}_{2}$ |         |           |           |                  | -0.6112     | 0.2286      | -0.2195            | -0.4766            | 0.2176               |               |                    |                    |
| $2_{1}^{+}$ |         | -0.9171   | -0.5813   |                  |             |             | -0.2497            | -0.2977            |                      |               |                    |                    |
|             |         |           |           |                  |             |             | (-0.2617)          | (-0.2634)          |                      |               |                    |                    |
| $2^{+}_{2}$ |         |           |           | -0.5368          | -0.6982     | -0.2881     |                    |                    |                      |               |                    |                    |
| $2^{+}_{3}$ |         | -0.4372   | 0.4262    |                  | -0.6043     | 0.2202      | 0.2902             | -0.2537            |                      |               |                    |                    |
| $2_{4}^{+}$ |         |           |           |                  |             |             | 0.3746             | 0.3579             | 0.2286               |               |                    | 0.2003             |
|             |         |           |           |                  |             |             | (0.2033)           | (0.4715)           | (0.2522)             |               |                    |                    |
|             |         |           |           |                  |             |             |                    |                    | (0.2241)             |               |                    |                    |
| $4_{1}^{+}$ |         |           |           | -0.6431          | -0.6303     | -0.4099     |                    |                    |                      |               |                    |                    |
| $6_{1}^{+}$ |         |           |           |                  |             |             | 0.5864             | 0.5100             | 0.2014               | 0.3654        |                    | 0.2429             |

TABLE IV. Main components of part of eigenstates for <sup>134</sup>Ba. The coefficients inside the parentheses are for those multipair basis states that occur more than once, which are distinguished by the intermediate angular momentum.

obviously included in the microscopic calculation of the IBM-2 (for example, see Ref. [25]). Moreover, IBM-2 results reported in Ref. [18] suggest that while the above conclusion, i.e., the collective magnetic properties are due to the orbital motion of nucleons only, is approximately true for M1 transitions, the spin contributions can have a strong influence over M3 strengths. To help clarify this matter, our results for the spin and the orbital parts for both M1 and M3 excitations are listed in Table V. One can see that although the spin contributions are not completely negligible, they are much smaller than the orbital part for both M1 and M3 excitations.

In summary, magnetic strength distributions for  $^{134}$ Ba have been investigated within the framework of the NPSM truncated to the *SD* subspace. The *SD* pairs were deter-

mined, respectively, by variational and proton-neutron TDA methods. The results show that the M1 strength distribution can be reproduced rather well. And in agreement with IBM-2 calculations, the M3 transitions were found to be split between the first two  $3^+$  states. Concerning the relative contribution of the spin and the orbital parts to the M1 and M3 strengths, our results confirm earlier work suggesting that the collective magnetic properties are due primarily to the orbital motion of nucleons.

This work was supported in part by the U.S. National Science Foundation through a regular grant, No. 9970769, and a Cooperative Agreement, No. EPS-9720652, that includes matching support from the Louisiana Board of Regents Support Fund.

- A. Iachello, Nucl. Phys. A358, 89c (1981); A. E. L. Dieperink, Prog. Part. Nucl. Phys. 9, 121 (1983).
- [2] Xing Wang Pan and Da Hsuan Feng, Phys. Rev. C 50, 818 (1994).
- [3] T. Suzuki and D. J. Rowe, Nucl. Phys. A289, 461 (1977); N. Lo Iudice and F. Palumbo, Phys. Rev. Lett. 41, 1532 (1978); Nucl. Phys. A326, 193 (1979); R. R. Hilton, Z. Phys. A A316, 1211984); E. Lipparini and S. Stringari, Phys. Lett. B 130B, 139 (1983).
- [4] D. Bohle et al., Phys. Lett. 137B, 27 (1984).
- [5] P. von Brentano et al., Phys. Rev. Lett. 76, 2029 (1996).
- [6] N. Pietralla, thesis, Universität zu Köln, 1996.
- [7] H. Maser, N. Pierealla, P. von Brentano, R.-D. Herzberg, U. Kneissl, J. Margraf, H. H. Pitz, and A. Zilges, Phys. Rev. C 54, R2129 (1996).
- [8] R. F. Casten and N. V. Zamfir, Phys. Rev. Lett. 85, 3584 (2000).
- [9] N. Pietralla et al., Phys. Rev. C 58, 796 (1998).
- [10] B. Fazekas, T. Belgya, G. Molnár, A. Veres, R. A. Gatenby S. W. Yates, and T. Otsuka, Nucl. Phys. A548, 249 (1992).
- [11] Jin-Quan Chen, Nucl. Phys. A626, 686 (1997).
- [12] Jin-Quan Chen and Yan-An Luo, Nucl. Phys. A639, 615 (1998).

- [13] Yan-an Luo and Jin-quan Chen, Phys. Rev. C 58, 589 (1998).
- [14] Yan-an Luo, Jin-quan Chen, and J. P. Draayer, Nucl. Phys. A669, 101 (2000).
- [15] Y. M. Zhao, N. Yoshinaga, S. Yamaji, and A. Arima, Phys. Rev. C 62, 024322 (2000); Y. M. Zhao *et al.*, *ibid.* 62, 014315 (2000).
- [16] R. Arvieu and S. A. Moszkowski, Phys. Rev. 145, 830 (1966).
- [17] B. Fogelberg and J. Blomquist, Nucl. Phys. A429, 205 (1984);
   W. J. Baldridge, Phys. Rev. C 18, 530 (1978).
- [18] A. Van Egmond and K. Allaart, Nucl. Phys. A436, 458 (1985).
- [19] H. Harter, P. O. Lipas, R. Nojarov, Th. Taigel, and Amand Faessler, Phys. Lett. B 205, 174 (1988).
- [20] T. Mizusaki and T. Otsuka, Suppl. Prog. Theor. Phys. 125, 97 (1996).
- [21] G. Molnar, R. A. Gatenby, and S. W. Yates, Phys. Rev. C 37, 898 (1988).
- [22] H. Harter, P. von Brentano, and A. Gelberg, Phys. Rev. C 34, 1472 (1986).
- [23] G. Puddu, O. Scholten, and T. Otsuka, Nucl. Phys. A348, 1 (1980).
- [24] M. Sambataro, O. Scholten, A. E. L. Dieperink, and G. Piccito, Nucl. Phys. A423, 333 (1984).
- [25] T. Otsuka, Hyperfine Interact. 75, 23 (1992).