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Properties of the isoscalar giant dipole resonance
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The main propertiegstrength function, energy-dependent transition density, branching ratios for direct
nucleon decayof the isoscalar giant dipole resonance in several medium-heavy mass spherical nuclei are
described within a continuum random-phase approximation approach, taking into account the smearing effect.
All model parameters used in the calculations are taken from independent data. The calculation results are
compared with available experimental data.
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Recently, several experimenfdl,2] and theoretical3—6]  ISGDR properties, we extend the approach of R&fin the
works have been published describing results of studies dbllowing ways. (For brevity, we use below the notations of
properties of the isoscalar giant dipole resonah8&DR) in Ref. [3] and sometimes refer to equations from this refer-
several medium-heavy mass spherical nuclei. It was found ience)

Ref. [2], from an analysis of thed,a’) reaction at small (1) We slightly change the dimensionless parameféts
angles, that the isoscalar dipole strength distribution exhibitand f¢* of the radial-dependent intensif(r) of the isosca-
two main regions of strength concentration, corresponding t@ar part of the Landau-Migdal particle-hole interactifure-
the lower (pygmy) and upper(main) ISGDR components. termined by Eq(16) of Ref.[3]] to better describe the ex-

Microscopic approaches used in recent theoretical studies ferimental energies of the ISGMaken from Ref[8]). The
the ISGDR are based oft) continuum random-phase ap- pow valuefi"=0.0875(as well as the valué"=—0.0875

proximation(RPA) calculations with the use of the Landau- used in Ref[3]) is in a . :
. . : . . greement with the systematics of the
Migdal particle-hole interactiof83], (ii) Hartree-Fock+ RPA Landau-Migdal parameters of Ré€]. As in Ref.[3], the f*

calculations with the use of the Skyrme interactigas], value is adjusted to make the Ispurious-state energy close

and (iii) relativistic RPA calculation$5]. In each of these .
approaches, the strength distribution of the ISGDR show§0 zero for each nucleus co_n&der(adee Table)L The rela-
five strengthsxgs of the spurious stateS9, or the percent-

two main regions of strength concentration with correspond- S . :
ing centroid energies that are in qualitative agreement wit9€ of the respective isoscalar dipole energy-weighted sum

those of Ref[2]. References to previous experimental andule (EWSR exhausted by th8 S[Eq. (18) of Ref.[3]], are
theoretical studies of the ISGDR are given, respectively, IS0 given in Table .

Refs.[1,2] and[3-6]. Here, we mention Ref7], where the (2) To calculate the energy-averaged strength functions of
low-energy isoscalar 1 strength was identified from an the ISGMR (=0) and the ISGDRI(=1) S, (w), account-
analysis of the &,a’ y) reaction. ing for the smearing effect, we solve the CRPA equations of

In connection with the above-mentioned investigations itRef. [3] with the replacement of the excitation energyby
seems reasonable to realize the next step in theoretical stug-+(i/2)|(w): §L(w)=SL(w+(i/2)I(w)). The smearing
ies, which consists in a rather full description of ISGDR parametel (o) (the mean doorway-state spreading wjdgh
properties. Such a_de_scri_ptio_n inclqdes callcul.ationﬁ)dhe . taken from Ref.[10] with the energy-dependent function
{SS/;R t?&?nnggt?ngsgfggfrﬂ ”t]hz V;'r?]iaer?:gag?fgg?e:ﬁg n- having a saturationlike behavior. A reasonable description of

' ’ éhe total width was obtained in RéfL1] for several isovector

energy-dependent ISGDR transition density also in a wide . .
energy interval, andiii) the partial branching ratios for di- glanF resonances W'th the use of ti{e) from Ref_.[lO]. The
relative  energy-weighted strength  functionsy, ()

rect nucleon decay of the ISGDR. In each of the above-~""""
mentioned theoretical approaches, used in earlier works, this @S, (w)/(EWSR)_calculated for the ISGMR and ISGDR
program was only partially realized. In the present work weallow us to deduce for some excitation-energy intervajs
attempt to describe ISGDR characteristics listed above in ar- w, the following parameters: centroid of the energy,
extended version of the continuum RBBRPA) approach of  root mean squarRMS) width A, , and relative strengtk .
Ref.[3]. Calculation results obtained f8fzr, 1%Sn, 14%Sm,  These parameters are shown in Table | for the ISGMR and in
and 2%%Pb are compared with available experimental data. Table Il for the ISGDR. The same parameters found in the
Apart from the description of some ISGDR properties, theCRPA (1=0.05 MeV) are also given in these tables. Some
partially self-consistent continuum RPA approach wasof the calculation results are compared with available experi-
mainly used in Ref[3] to describe in a quantitative way the mental data in Table Ill. The calculated strength functions
direct neutron decay of the isoscalar giant monopole resoy, _;(w) are shown in Fig. 1.
nance (ISGMR). To realize a rather full description of (3) The giant-resonance transition density(r) can rea-
sonably be defined in the CRPA in the special case when
only one collective particle-hole-type statgoorway state
*Email address: urin@theor.mephi.ru corresponds to the considered GR and, therefore, exhausts
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TABLE I. The relative isoscalar dipole strength of the spurious statecalculated with the use of the
valuef®* which provides spurious-state energy close to zero for each nud®as0(0875). The centroid of
the energyw,., RMS width A, , and relative strengttx,_ calculated for the ISGMR L(=0) at some
excitation-energy intervale; — w,, and the same parameters calculated in the CRRAO(05 MeV), are

shown.
A —f&x Xss (%) w1~ wy (MeV) o, (MeV) AL (MeV) X, (%)
208pp 2.897 91.9 10-20 14.29 2.05 80.2
3-60 15.22 5.13 99.2
a 10-20 13.99 1.10 97.9
1445m 2.811 93.6 10-20 15.28 2.00 78.0
3-60 16.53 5.16 98.5
a 10-20 15.27 0.96 98.7
116gn 2.832 93.6 10-20 15.79 2.08 74.7
3-60 17.18 5.29 98.4
a 10-20 15.97 1.24 97.9
907Zr 2.753 945 10-25 17.10 2.71 85.4
3-60 18.05 5.30 98.2
a 10-25 16.89 1.35 99.8
4=0.05 MeV.

most of the respective EWSR. Such a situation takes place which is equivalent to that used in Ref6]. In Eq. (1),
ISGDR, several doorway states have comparable strengﬁg]] corresponding to the probe operatdh (r): Vi _o
(see, e.g., Refl3]) and therefore only the energy-averaged _ 2 Vi_1=r3—gr with »=23(r? [3,4,6. From Eq.(1)

and energy-dependent transition dengityr,) can be de-
fined. In accordance with the spectral expansion for the e
fective particle-hole propagataithe particle-hole Green'’s

function) one can get the expression

pulrw)=——

a=n,p

Im Y, V. (0+(i2)(w)

here and Eqs(1) and(2) of Ref.[3] follows the expression
fgL(w)z[fVL(r)pL(r,w)rzdr]Z, which is in agreement with
the definitions of Ref[6]. As applied t0?°%Pb, the transition

density R, _1(r,w)=r?p, _1(r,)/S'?,(w), normalized by

2F(r) S )

the conditionfV (r)R (r,w)dr=1, is shown in Fig. 2 for
some values of» in comparison with the collective ISGDR
(1) transition density12] normalized in the same way.

(4) To calculate the partial and total branching ratios for

TABLE Il. The same parameters as shown in Table Ilfer0, calculated for the ISGDRL(=1).

Lower ISGDR Upper ISGDR
A w1~ Wy o A XL w1~ Wy on A XL
(MeV) (MeV) (MeV) (%) (MeV) (MeV) (MeV) (%)
208pp 8-15 11.10 1.91 13.3 15-24 20.71 2.41 413
5-15 9.87 2.52 16.7 15-30 22.57 3.36 68.6
15-60 24.03 5.83 81.1
a 5-15 9.67 2.30 18.2 15-30 22.75 2.49 79.7
1445m 5-15 10.74 2.19 12.3 15-35 24.38 4.13 76.4
15-60 25.43 6.00 84.8
a 5-15 10.64 1.84 13.9 15-35 24.40 3.02 84.9
1165 11-18 14.02 2.01 10.8 18-32 25.21 3.33 65.5
5-15 10.36 2.42 13.2 15-35 24.90 4.38 74.7
15-60 26.10 6.28 84.3
a 5-15 10.31 2.25 15.0 15-35 25.09 3.42 83.3
907y 11-18 13.89 2.08 9.9 18-32 25.64 3.52 64.5
5-16 11.42 2.23 11.3 16-40 26.30 4.93 79.7
16-60 27.13 6.37 85.7
a 5-16 11.19 1.70 12.3 16-40 26.10 3.93 87.3
4=0.05 MeV.
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TABLE IIl. Comparison of parameters calculated for the ISGMR and ISGDR with the corresponding
experimental datéwith the error$ taken from Refs[8] and[2], respectively. All the parameters are given in

MeV.
208y 1163 907y
ISGMR o 14.17+-0.28 14.3 16.0Z20.12 15.8 17.820.20 17.1
AL 1.93+0.15 2.05 2.160.08 2.1 3.140.09 2.7
Lower ISGDR [0} 12.2+-0.6 11.1 14.70.5 14.0 16.220.8 13.9
AL 1.9+0.5 1.9 1.6-0.5 2.0 1.9-0.7 2.1
Upper ISGDR on 19.9+0.8 20.7 23.6:0.6 25.2 25.%20.7 25.6
AL 2.5+0.6 2.4 3.705 3.3 3.50.6 3.5

direct nucleon decay of the main ISGDR component, wewith population of the one-hole staie ! in the product
follow Refs.[11] and[13], where the proton branching ratios nucleus;c= u,a,()\),e is the set of decay-channel quantum
have been estimated for the high-energy charge-exchangeimbers, which includes the energy w+ ¢, and quantum
spin-monopole and monopole giant resonances, respectivelsumbers §)=j,| of the escaped nucleon. The definition of
the CRPA reaction amplitudmt(w) is given by Eq.(5) of

> fw2|l\7L(w)|2dw Ref. [3]. Note that in the CRPAI(=0) the total branching
ORI ¢ _s ratiob=b,+b, is equal to unity by definition. Some partial
wa— wy , be= m bpa- (2 branching ratios,, , calculated for the main ISGDR com-
S (w)dw ponent(15—-30 MeVj in 2%%Pb are given in Table IV.
@1
Here, ML(w)=M.(w+(i/2)I(»)) is the energy-averaged R, (r,m) (fm

reaction amplitude corresponding to direct nucleon decay
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0.00 +
5 10 15 20 25 30 35 40 45 50 55 60 FIG. 2. The normalized ISGDR transition dens#®( _(r,)
o (MeV) calculated at several energies=23.06 MeV (the full line), 11.26

MeV (dashegl 7.76 MeV (dotted, and 6.81 MeV(dash-dottef
FIG. 1. The calculated relative strength functipgn.,(w). The  The thin line corresponds to the collective ISGDR transition density
full, dashed, dotted, and dash-dotted lines are ¥&r, '®Sn,  calculated in the scaling modgl2] and normalized in the same
144Sm, and?°%Pb, respectively. way.
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TABLE V. Calculated partial branching ratios for direct the main properties of the isovector giant dipole resonance,
nucleon decay of the ISGDR iff®Pb. The results for decays with using the relative effective nucleon mass of unity. For this
population of one-hole states from the last filled shells are showmeason, in the present work unit relative effective mass is
for excitation-energy interval 15-30 MeV. Spectroscopic factors ofalso used and, therefore, the isoscalar part of the momentum-
these state§,=1 are taken for all decay channels. dependent forces is not considerdiy) The radial depen-
dence of the transition density of the main ISGDR compo-
Neutron,n™* (1/2)” (5/2)" (3/2)" (13/12)" (7/2)" (9/2)"  nent calculated foP%Pb is rather close to that found in the

b, (%) 14 48 34 8.0 85 39  scaling mode[12] (Fig. 2. However, this is not true for the
Proton,u™*  (1/2)" (3/2)" (11/2)" (5/2)" (7/2)* lower componentFig. 2). Thus, the use of the microscopic
b, (%) 3.0 3.9 2.4 6.1 14 energy-dependent transition density of Et). for analyzing

experimental cross sections seems preferable. Such an at-
%empt was recently realized in Rd6]. (v) The calculated
ranching ratios for direct nucleon decay of the upper
ISGDR component are rather large due to a strong coupling
of this component to the continuum. The large difference
between the present calculation results for the branching ra-
tios and the previous results is partially explained by a large
contribution(due to the smearing effeadf the “tail” of the
lower ISGDR component to the energy-averaged reaction
amplitudes, and also by the poor approximation used in Ref.
éB] for the parametrization of the CRPA reaction amplitudes
In terms of isolated Breit-Wigner resonances.
In conclusion, we have described the main properties of
allows us to describe reasonabl . éhe ISGDR in several medium-heavy mass spherical nuclei
y the experimental RMS i
widths for the ISGMR and both ISGDR componefitable using a transparent and_ rather easy 1o |mp|9mgnt ap.proach
that is based on the continuum RPA method with inclusion of

:elle)z.r ?S dlizcsuhszve\zlg ng]?vbe!e zlilr,eth;;?llzl:illitegefeiggnf a(;ﬁmt'ﬁréfe smearing effect. Except for the relative strengths, a sat-
o . . isfactory description of available experimental data on pa-
excitation-energy interval considered. Such a dependence 'ameterys of the FI)SGDR components \F/)vas obtained. Follovfing

a result of both the Landau damping and the smearing effeckef. [6], we suggest using the microscopic energy-dependent

iii) The calculated strengths of both ISGDR component - : . i
ETeible Il are markedly Ieg,s than the correspondingp Valuezransnmn density of the ISGDR for analysis of experimental

: : cross sections. Such a use of the transition density allows one
deduced from experimental d4@. Possible reasons for the to clarify the problem of the underestimation of the calcu-
difference are the use of the specific collective ISGDR tran—Iated ISGDR r%lative strenath in comparison to that deduced
sition density for analysis of the data in REZ], and(or) the . 9 P

. ; oo from experimental data.
neglect in our calculation of the contribution of momentum-
dependent forces to the Landau-Migdal particle-hole interac- The authors are grateful to S. Shlomo for interesting dis-
tion. Isovector momentum-dependent forces were taken intoussions and valuable remarks and also to the authors of
account in Ref[10] to describe in the same CRPA approachRefs.[2,8] for providing the experimental data.

We now make several comments on the results of thi
work. (i) With the choice of the Landau-Migdal parameters
f'"=0.0875 andf®* from Table |, it is possible within the
present CRPA approach to describe satisfactorily the exper
mental centroids of the energy for the ISGMR and both
ISGDR componentgTables I-Il). As compared with the
results of Ref[3] the centroid values are increased by 1-2
MeV. After taking the results of Ref7] into accoun{?2] (not
shown in Table 1) the theoretical description of the experi-
mental centroid energies of the lower ISGDR component i
improved. (i) The use of the saturationlike dependence for
I (w) with parameters taken from independent déit@,11]
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