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Approximate solutions for the Skyrmion
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We reconsider the Euler-Lagrange equation for the Skyrme model in the hedgehog ansatz and study the
analytical properties of the solitonic solution. In view of the lack of a closed form solution to the problem, we
work on approximate analytical solutions. We show that Pade´ approximants are well suited to continue ana-
lytically the asymptotic representation obtained in terms of a power series expansion near the origin, obtaining
explicit approximate solutions for the Skyrme equations. We improve the approximations by applying the
two-point Pade´ approximant procedure whereby the exact behavior at spatial infinity is incorporated. An even
better convergence to the exact solution is obtained by introducing a modified form for the approximants. The
new representations share the same analytical properties with the exact solution at both small and large values
of the radial variabler.
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I. INTRODUCTION

The Skyrme model@1# provides a picture of baryons in
teracting via meson exchanges@2,3#. The model is based on
the pre-QCD nonlinears model, with the same group o
chiral symmetryG5SU(Nf)3SU(Nf) @4#. Classical stabil-
ity arguments require the presence of an additional term
the nonlinears-model Lagrangian@5#; this term was intro-
duced initially by Skyrme. In this scenario, baryons eme
as solitonic solutions of the Euler-Lagrange equations@6#,
which are highly nonlinear second order equations a
cannot be solved in exact closed form. Solutions are obta
by numerical integration. This is an awkward situation f
the evaluation of physical quantities. In practice it is mo
convenient to have explicit approximate representations
the solitonic solutions.

In the present work we obtain reliable approximate rep
sentations for the solution of the Skyrme model in t
SU(2)L3SU(2)R sector by means of the Pade´ approximant
~PA! @7# procedure whereby the series expansion solution
the differential equations is continued analytically. The s
cessful implementation of PA summation relies on the sim
structure of the series solution near the origin which is
most an alternate geometric series. In order to reproduce
essential features of the exact solution at large distances
use the two-point PA method and construct modified rep
sentations that share the exact properties of the Skyrm
configuration near both boundaries. Furthermore our
proximate solutions are reliable in the whole interval of t
independent variabler, namelyr 50 to infinity.

This paper is organized as follows. In Sec. II we introdu
the Skyrme model in theSU(2)L3SU(2)R sector and re-
strict the problem using the hedgehog ansatz. In Sec. III
present properties of the hedgehog solution showing po
series representations for thechiral angle. In Sec. IV we
introduce and use our approach based on the PA met
Finally, in Sec. V we draw the conclusions of our work.

II. THE SKYRME MODEL

Following Skyrme’s proposal, baryons are soliton in t
s-nonlinear model with an additional stabilizing term. W
0556-2813/2001/64~4!/045205~6!/$20.00 64 0452
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will restrict ourselves to the sectorSU(2)L3SU(2)R where
the Lagrangian density of the model reads

L5
f p

2

4
Tr~]mU]mU !1

1

32g2
Tr@U1]mU,U1]nU#2,

~2.1!

U being a unitary operator. The parameterf p is the usual
pion decay constant whose experimental value is 93 M
andg is the dimensionless Skyrme parameter. Equivalen
U can be expressed in terms of a scalar and a pseudos
field, s andp, respectively, in the following form:

U5~s1 i t•p!/ f p . ~2.2!

It should be stressed thats andp are not independent fields
and are related throughs21p25 f p

2 . This restriction is the
source of nonlinearities in the theory.

Rewriting p ands in terms of a new fieldF5 f pFŵ,

s5 f p cosF, p5 f pŵ sinF, ~2.3!

and going back toU, we obtain the representation

U5 exp~ i t•F !. ~2.4!

Previous analysis@8# has shown that a reasonable agreem
with experimental values of physical quantities is obtain
when the hedgehog configuration ofU is adopted; this is a
particular static ansatz whereF takes a spherically symmet
ric form, namely,

Us~ r̃ !5 exp@ i t•n̂F~ r̃ !#, ~2.5!

wheren̂ denotes a unit radial vector.
In this representation, the energy reduces to a functio

of the chiral angle,F( r̃ ), alone;
©2001 The American Physical Society05-1
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E@F#52pE
0

`

dr̃F f p
2 r̃ 2S dF

dr̃
D 2

12 f p
2 sin2 F

1
1

g2
sin2 FS 2S dF

dr̃
D 2

1
sin2 F

r̃ 2 D G . ~2.6!

The variationdE/dF50 generates a nonlinear differen
tial equation forF( r̃ ), whose solution corresponds to th
static configuration of minimal energy. Written in terms
the dimensionless variabler 5g fp r̃ , the differential equation
for F(r ) reads

@r 218 sin2 F~r !#
d2F~r !

dr2
5

4

r 2
sin2 F~r !sin@2F~r !#

1 sin@2F~r !#22r
dF~r !

dr

24 sin@2F~r !#FdF~r !

dr G2

.

~2.7!

As finite energy solutions are required,U(r ) must tend to an
arbitrary constant element ofSU(2) at spatial infinity.
ChoosingU(r )→1 asr→` implies the boundary condition

F~`!50. ~2.8!

This condition defines a mappingS3→S3 from the com-
pactified configuration space to the identity in the tar
space inSU(2) which is isomorphic toS3, falling into dis-
tinct equivalence classes labeled each by the winding n
ber Z,

P3@SU~2!#5P3~S3!5Z. ~2.9!

The integer numberZ, which counts the coverings of th
target space, is defined as the topological chargeq
5*dx3B0 related to the baryonic current

Bm5
1

24p2
emnrsTr@~U1]nU !~U1]rU !~U1]sU !#.

~2.10!

For the hedgehog ansatz, the baryon number charge de
is

B052
1

2p2

dF

dr

sin2 F

r 2
~2.11!

and corresponds to a baryon number

B5
1

2p
@2F~0!22F~`!2 sin 2F~0!1 sin 2F~`!#.

~2.12!

From the foregoing, it follows that the solution belonging
the sector with baryon numberB51 satisfies the condition
04520
t

-

ity

F~0!5p. ~2.13!

The numerical solution labeled withB51 is shown in Fig. 1.
Inserting this solution into Eq.~2.6! yields E523.2p f p /g.

III. PROPERTIES OF THE HEDGEHOG SOLUTION

Before applying the PA procedure to the Skyrme mod
we shall consider the solution of the Euler-Lagrange eq
tion at both ends of the definition domain. Near the origin
power series solution can be obtained@9#,

SH~r !5p1F1r̃ 1
1

3!
F3r̃ 31

1

5!
F5r̃ 51 . . . , ~3.1!

where F1 turns out to be undetermined. All even powe
have vanishing coefficients. Odd power coefficients are w
ten in terms ofF1 and the dimensionless parameterf, de-
fined asf5F1 /g fp ; for example,

F352
4

5
F1

3 112f2

118f2
, ~3.2!

F55
24

7
F1

5 11~32/5!f21~88/5!f41~488/5!f6

1124f21192f41512f6
,

~3.3!

while the results for higher terms may be found elsewh
@9#. In terms of the dimensionless variabler 5g fp r̃ , expan-
sion ~3.1! becomes

SH~r !5p1fr 1
1

3!
f3r 31

1

5!
f5r 51•••, ~3.4!

wheref3 and f5 are given by the same expressions asF3
andF5 but with f instead ofF1. From now on, we shall be
concerned only with the dimensionless variables.

For large values ofr, there is a solution of the formC/r 2,
as can be readily seen from trying this form in Eq.~2.7! and
keeping only linear terms inF(r ). In order to find contribu-

FIG. 1. Pade´ approximants to the hedgehog solution.
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APPROXIMATE SOLUTIONS FOR THE SKYRMION PHYSICAL REVIEW C64 045205
tions of higher order in 1/r , it is appropriate to perform the
change of variabler51/r in Eq. ~2.7!. In this new variable it
reads

@r218r4 sinF~r!#
d2F~r!

dr2
18r3 sin2 F~r!

F~r!

dr

14r4 sin2@2F~r!#FdF~r!

dr G2

24r2 sin2 F~r!sin@2F~r!#2 sin@2Fr#50. ~3.5!

Trying a power series expansion as before,

F~r!5K01K1r1
1

2!
K2r21

1

3!
K3r31•••, ~3.6!

we find that the series solution contains just even pow
The first few coefficients written in terms ofK2 are @9#

K450, ~3.7!

K652
30

7
K2

3 , ~3.8!

K8526720K2
3 . ~3.9!

Just as the initial slopef, the parameterK2 cannot be deter-
mined from the differential equation. Approximate values
f and K2 are given in Ref.@9#. These values were dete
mined through the use of integration routines based on sh
ing methods@4#. This is some sort of eigenvalue problem f
f andK2. The solution is obtained by numerical integratio
of the differential equation, starting from the origin whe
the value off must be such as to satisfy the correct boun
ary condition corresponding to the relevant solitonic so
tion. Oncef is found, the value ofK2 is obtained in a
similar way using Eq.~3.5!. The reported values are@10#

f521.0037, K2517.2772. ~3.10!

These values, as well as the validity of the numerical so
tion can be checked in a consistent manner. We will not
on through this but just refer the reader to Ref.@11#.

Let us make a slight modification in our analysis by r
writing the power expansion~3.4! in the following form

SH~r !5p1fr 1a1r 3S 11
a2

a1
r 21

a2

a1

a3

a2
r 41••• D ,

~3.11!

where the coefficientsa1 , a2 , a3, . . . aredefined through

a15
f3

3!
, a25

f5

5!
, a35

f7

7!
, ~3.12!

and so on. As shown in Table I, the numerical values of
ratios 2an11 /an vary very slowly with n. Thus, one can
introduce the nearly constantR.2an11 /an ~for any value
of n). Consequently, the portion within the brackets in E
04520
s.

r

t-

-
-

-
o

-

e

.

~3.11! can be replaced, to a good degree of approximat
by the alternate geometric series

12Rr21~Rr2!22~Rr2!31~Rr2!42•••, ~3.13!

which has a radius of convergencer 0 defined by the relation
r 0

25u1/Ru.
Within the radius of convergence,r<r 0, expansion~3.11!

may be replaced by

SH.p1fr 1a1r 3@12Rr21~Rr2!22~Rr2!3

1~Rr2!42•••#. ~3.14!

An alternate series such as 12x1x22x31••• can be con-
tinued beyond its radius of convergence by the function
1x)21, so thatSH can also be analytically continued for a
positive values in the realr axis using the representation

F~r !5p1fr 1
a1r 3

11Rr2
. ~3.15!

Taking R52a2 /a1, Eq. ~3.15! is exactly the@3,2# order
Padéapproximant representation of the series~3.11!. The
obvious task is to test whether a higher order of approxim
tion can provide a better representation of the soliton. Th
is a great amount of examples@12# where the Pade´ approxi-
mant procedure provides a reliable analytic continuation
power series expansions and where PA representations
verge rapidly to the relevant function of the problem. In t
next section we will build different representations of the P
to the hedgehog solution showing that the features of r
ability and fast convergence also hold in this problem.

TABLE I. Ratios of the coefficients of the series expansi
~3.11!.

a2 /a1 a3 /a2 a4 /a3 a5 /a4 a6 /a5 a7 /a6 a8 /a7

20.102 20.136 20.133 20.139 20.147 20.149 20.152

FIG. 2. Two-point PA to the hedgehog solution.
5-3
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IV. PADÉ APPROXIMANTS TO THE HEDGEHOG
SOLUTION

Our approach is based on Pade´ approximants, which are
rational functions used to provide an analytic continuation
a power series representation of a given function, and
typically known to accelerate the convergence of the ser
The Pade´ approximantP[ M ,N] (x) of order @M ,N# to the se-
ries S(x)5(nanxn is defined as the ratio of two polynom
als,

P[ M ,N]~x!5

(
k50

M

Akx
k

(
k50

N

Bkx
k

, ~4.1!

where we setB051 without loss of generality. The remain
ing M1N11 coefficients are chosen so that the firstM
1N11 coefficients in the Taylor expansion ofP[ M ,N] coin-
cide with the seriesS(x) through orderM1N. Conversely, if
only the first M1N11 coefficients of the seriesS(x) are
known, such a Pade´ approximant can be used to predict t
next coefficient in the series@13#.

The PA of order@M ,N# to the hedgehog solution is foun
by comparing its Taylor expansion at the origin with ser
~3.1!. From all the possible combinations (M ,N) allowed by
the input series expansion~3.1!, we are interested in thos
that may provide a suitable representation to the hedge
04520
f
re
s.

s

og

solution. In order to enforce the conditions that fix the solit
solution to be of winding number one, we will require th
the behavior at infinity of the PA representations is given
the leading term of expansion~3.6!. To this end we impose
the constraintN2M52. We have computed the values
coefficientsak andbk corresponding to the sequence of PA
@0,2#, @1,3#, and @2,4# using the valuef1521.003 found
by numerical methods. The results are displayed in Fig
The explicit dependence of the PA’s in terms of the coe
cients of series~3.4! is

FIG. 3. Two-point PA exact up to orderO(1/r 3) in the limit r
→`.
interme-

ade
cient of
of

ones.
F [0,2]5
p

12
fr

p
1S fr

p D 2 ,

F [1,3]5

p1S f1
ff3p2

6f31f3p2D r

11
ff3p

6f31f3p2
r 2

f2f3

6f31f3p2
r 22

f3
2p

6~6f31f3p2!
r 3

, ~4.2!

for @0,2# and @1,3#, respectively.
The PA representations built from the exact series solution near the origin do not guarantee the exact behavior at

diate and large values ofr. However, one may use the asymptotic solution given by the series~3.6! in order to find better
representations of the hedgehog@14#. Yet, the right behavior at infinity may be incorporated using the two-point P´
approximant procedure. This is a natural extension of the usual PA method which consists in fixing almost one coeffi
the approximant using the asymptotic series solution at infinity@7#. We have computed the sequence of the two-point PA
orders@1,3#, @2,4#, and@3,5# ~see Fig. 2!. Certainly, the two-point PA representations are more reliable than the ordinary
The explicit form of PA@1,3# is

F [1,3]5

p1
K2~6f31f3p2!

6~K2f222p3!

12
p~K2f3112fp!

6~2p32K2f2!
2

f~K2f3112fp!

6~K2f222p3!
1

6f31f3p2

3~K2f222p3!

. ~4.3!
5-4
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The next step is to include the subleading behavior of
exact solution at infinity within the PA representations. W
have done this up to orderO(1/r 3) as shown in Fig. 3. As we
go on with the procedure, the degree of approximation
improved both near the origin and for large values ofr. How-
ever, for intermediate values ofr, the PA representations ar
slowly convergent. Nevertheless we will show that there i
suitable functional form that provides very good represen
tions to the hedgehog solution.

To this end, let us prescribe a modified PA of order@0,4#
through
he

ns
e

ct
im

th
i-

e
ox
o

.

04520
e

is

a
-

F̃ [0,4]~r !5
a

~11b1r 1b2r 21b3r 31b4r 4!1/2
, ~4.4!

such that the coefficientsa0 , b1 , b2, andb3 are determined
by expandingF̃ [0,4](r ) in a power series near the origin an
matching the terms, order by order, with those of the ex
solution ~3.4! up to O(r 3), and the remaining coefficientb4
is fixed by using the leading term at infinity given by E
~3.6!. We found explicitly,
F̃ [0,4]~r !5
p

S 12
2f

p
r 1

3f2

p2
r 21

212f32f3p2

3p3
r 31

4p2

K2
2

r 4D 1/2. ~4.5!
ified

in-
tion

d-
e

re-
ain
rge

-
yon

act
The form ~4.4! can be generalized to higher orders@0,k# as

F̃ [0,k]~r !5
a

~11b1r 1b2r 21•••1bkr
k!2/k

, ~4.6!

where the unknown coefficients may be found following t
prescription described for the particular casek54. We have
built the representations corresponding tok56, k58, and
k510 ~see Fig. 4!. By construction, such representatio
have the exact Taylor expansion near the origin up to ord
O(r 5), O(r 6) andO(r 7), respectively, as well as the exa
leading behavior at infinity. The new PA representations
prove in a remarkable way the representations obtained
far.

Following the program, an even better agreement for
large r behavior may be obtained by including in the mod
fied representations~4.6! the subleading behavior of th
hedgehog solution. In Fig. 5 we have depicted the appr
mants so constructed. The figure shows an exceptional g

FIG. 4. Sequence of modified PA to the hedgehog solution
rs

-
so

e

i-
od

agreement between the numerical solution and the mod
PA given by Eq.~4.6!. In order to show the utility of the PA
procedure as a method of analytic continuation, we have
cluded in the same figure the power series representa
near the origin up to and including orderO(r 9).

The utility of the PA method in this problem is outstan
ing, particularly for its simple and reliable application to th
highly nonlinear Euler-Lagrange equation of Skyrme. Mo
over, the PA representations reproduce exactly the m
properties of the hedgehog solution at both small and la
values ofr.

In order to further check the reliability of the PA repre
sentations, we have calculated the corresponding bar
number given by

B52
1

2p2E0

`dF

dr

sin2 F

r 2
4pr 2dr, ~4.7!

FIG. 5. Modified PA representations which reproduce the ex
leading and subleading behavior atr→`.
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and the minimal energy~2.6! whose numerical value isE
572.88f p /g. We obtainB51 for the two-point PA’s which
is exactly the topological number of the Skyrmion. As for t
energy, the results for the last sequence of approximan
units of f p /g are E[0,4]573.60, E[0,6]573.02, E[0,8]
572.96, andE[0,10]572.94, which converge to the numer
cal value reported in previous works@4#.

V. FINAL REMARKS

We have shown that the suggested PA representation
the Skyrme solutions can incorporate in a simple way
properties of the exact solution near both physical bou
aries of the problem. This solves the difficulty in Ref.@11#,
where the authors assert the impossibility to obtain a PA
the series solution about the origin which, in addition, rep
duces the exact behavior of the chiral angle at infinity. Mo
over, our representations avoid the use of two separate
,

04520
in

for
e
-

o
-
-
a-

lytical representations for the Skyrmion, one for each of
two regions, which was the common approach to this pr
lem @15#, clearly unsuitable for phenomenological calcul
tions.

Certainly, the results presented here highlight the utility
rational functions, the PA in particular, for analytic contin
ation of the asymptotic series. In this problem, the know
edge of the asymptotic behavior at two points favors a be
convergence to the relevant function. The approximate a
lytical solutions can be used with reliability in the evaluatio
of physical quantities. The calculations are easier and m
manageable than numerical computations.
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