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Approximate solutions for the Skyrmion
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We reconsider the Euler-Lagrange equation for the Skyrme model in the hedgehog ansatz and study the
analytical properties of the solitonic solution. In view of the lack of a closed form solution to the problem, we
work on approximate analytical solutions. We show that Papjeroximants are well suited to continue ana-
lytically the asymptotic representation obtained in terms of a power series expansion near the origin, obtaining
explicit approximate solutions for the Skyrme equations. We improve the approximations by applying the
two-point Padeapproximant procedure whereby the exact behavior at spatial infinity is incorporated. An even
better convergence to the exact solution is obtained by introducing a modified form for the approximants. The
new representations share the same analytical properties with the exact solution at both small and large values
of the radial variable.
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[. INTRODUCTION will restrict ourselves to the sect&U(2), X SU(2)g where
the Lagrangian density of the model reads
The Skyrme mode€]1] provides a picture of baryons in-
teracting via meson exchangs3]. The model is based on §2 1
the pre-QCD nonlinearr model, with the same group of L=—"Tr(d,Us*U)+ —Tr[U*d,U,U*9,U]?
chiral symmetryG = SU(N;) X SU(N;) [4]. Classical stabil- 4 g 329° . !
ity arguments require the presence of an additional term in (2.1
the nonlinearo-model Lagrangiaf5]; this term was intro-
duced initially by Skyrme. In this scenario, baryons emerge peing a unitary operator. The parameferis the usual
as solitonic solutions of the Euler-Lagrange equati®ls  hion decay constant whose experimental value is 93 MeV
which are highly nonlinear second order equations andynqg s the dimensionless Skyrme parameter. Equivalently,

cannot be solved in exact closed form. Solutions are obtaineg can be expressed in terms of a scalar and a pseudoscalar
by numerical integration. This is an awkward situation fora|q o and s respectively, in the following form:

the evaluation of physical quantities. In practice it is more
convenient to have explicit approximate representations for
the solitonic solutions.

In the present work we obtain reliable approximate repre-
sentations for the solution of the Skyrme model in thelt should be stressed thatand z are not independent fields,
SU(2), X SU(2)x sector by means of the Padpproximant ~ and are related through®+ == f2 . This restriction is the
(PA) [7] procedure whereby the series expansion solution ogource of nonlinearities in the theory.
the differential equations is continued analytically. The suc- Rewriting 7 and ¢ in terms of a new fieldF= fWF;o,
cessful implementation of PA summation relies on the simple
structure of the series solution near the origin which is al-
most an alternate geometric series. In order to reproduce the
essential features of the exact solution at large distances, we . ) .
use the two-point PA method and construct modified repre@nd going back tdJ, we obtain the representation
sentations that share the exact properties of the Skyrmion

U=(o+ira)lf,. (2.2

o=f_cosF, m=f_¢sinF, 2.3

configuration near both boundaries. Furthermore our ap- U=expirF). (2.9
proximate solutions are reliable in the whole interval of the
independent variable namelyr =0 to infinity. Previous analysif8] has shown that a reasonable agreement

This paper is organized as follows. In Sec. Il we introduceyith experimental values of physical quantities is obtained
the Skyrme model in th&U(2), X SU(2)g sector and re- \hen the hedgehog configuration Gfis adopted; this is a

strict the problem using the hedgehog ansatz. In Sec. lll W@articular static ansatz wheFetakes a spherically symmet-
present properties of the hedgehog solution showing powejc form, namely,

series representations for tlohiral angle In Sec. IV we
introduce and use our approach based on the PA method. ~ o~
Finally, in Sec. V we draw the conclusions of our work. Ug(r)=exdiz AF(r)], 2.5

Il. THE SKYRME MODEL wheren denotes a unit radial vector.

Fo”owing Skyrme’s proposa'y baryons are soliton in the In this representaﬂon, the energy reduces to a functional
o-nonlinear model with an additional stabilizing term. We of the chiral angleF(r), alone;
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- dF\?
E[F]zzwf dT{ff,?Z(—~> +2f2 siPF
0

dr
+i 'n2F<2<d—F)2+SiHZF) 2.6
g25| I = . (2.6

The variationSE/8F =0 generates a nonlinear differen-
tial equation forF(r), whose solution corresponds to the
static configuration of minimal energy. Written in terms of
the dimensionless variabte=gf.r, the differential equation
for F(r) reads

2
[r2+8 sir? F(r)]d P _ isin2 F(r)sin2F(r)]
drz  r?
. dF(r) FIG. 1. Padeapproximants to the hedgehog solution.
+ sin2F(r)]—2r ar
F(0)=m. (2.13
: dF(r)]?
—4 s|r[2F(r)][T} . The numerical solution labeled wis= 1 is shown in Fig. 1.
Inserting this solution into E¢2.6) yields E=23.27f . /g.
(2.7)
As finite energy solutions are requiréd(r) must tend to an lll. PROPERTIES OF THE HEDGEHOG SOLUTION
arbitrary constant element oBU(2) at spatial infinity. Before applying the PA procedure to the Skyrme model,

ChoosingU(r)—1 asr—o implies the boundary condition we shall consider the solution of the Euler-Lagrange equa-
tion at both ends of the definition domain. Near the origin, a

F()=0. (2.8 power series solution can be obtair{&d,

This condition defines a mappir®— S from the com- 1 1
pactified configuration space to the identity in the target Su(r)=m+ F1r+§F3r3+ aF5r5+ N
space inSU(2) which is isomorphic t&®, falling into dis- ‘ ’
tinct equivalence classes labeled each by the winding nu

ber 7 Mvhere F, turns out to be undetermined. All even powers

have vanishing coefficients. Odd power coefficients are writ-
M[SU(2)]=T14(S%)=2Z. (2.9 ten in terms ofF; and the dimensionless parametgr de-
fined as¢p=F,/gf..; for example,
The integer numbeZ, which counts the coverings of the

target space, is defined as the topological charge 4 1+ 2¢?
= [dx®By, related to the baryonic current Fa=— EFl 1+8¢2’ (3.2
Bﬂzﬁe#,,p(,Tr[(U*a”U)(U*&”U)(U*&"U)]. F5:glF?1+(32/5)<z52+(88/5)<75“+(488/5><756
(2.10 7 1+ 24>+ 192¢p*+ 512¢°
' (3.3
For the hedgehog ansatz, the baryon number charge density )
is while the results for higher terms may be found elsewhere
[9]. In terms of the dimensionless variablegf_r, expan-
1 dF sifF sion (3.1) becomes
P O e L
Su(r)=m+¢r+ §¢3r3+ a¢5r5+ e, (39

and corresponds to a baryon number

1 _ _ where ¢5 and ¢5 are given by the same expressionsFas
B=5_[2F(0)—2F ()~ sin2F(0)+ sin 2F(«)]. andFg but with ¢ instead ofF ;. From now on, we shall be
(2.12 concerned only with the dimensionless variables.
For large values of, there is a solution of the fori@/r?,
From the foregoing, it follows that the solution belonging to as can be readily seen from trying this form in £2.7) and
the sector with baryon numb&=1 satisfies the condition keeping only linear terms i&(r). In order to find contribu-
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tions of higher order in 1/ it is appropriate to perform the TABLE |. Ratios of the coefficients of the series expansion
change of variable=1/r in Eq.(2.7). In this new variable it  (3.1D.

reads
a,la; asla, aylaz agla, aglas a;lag aglay
d’F F
[p2+8p4SinF(p)] ; (2p) +8p38il’12 F(p) (;Z) —-0.102 —-0.136 —0.133 —0.139 —-0.147 —0.149 —0.152
p
dF(p)]? (3.11) can be replaced, to a good degree of approximation
4 . : ,
+4p sz[ZF(p)][ dp by the alternate geometric series
—4p?sir? F(p)sin 2F (p)]— siN2Fp]=0. (3.5 1-Rr2+(RrA)2— (Rr2)3+ (R4~ ..., (313
Trying a power series expansion as before, which has a radius of convergencgdefined by the relation
1 1 r3=|1R|.
F(p)=Ko+Kyip+ §K2P2+ §K3P3+ e, (3.6 Within the radius of convergencesr,, expansior(3.11)

may be replaced by
we find that the series solution contains just even powers.

The first few coefficients written in terms &f, are[9] Sy=m+¢r+a;r’[1-Rr*+(Rr?)*—(Rr?)?
K4:0, (37) +(Rr2)4—" ] (314)
30 An alternate series such as-kx+x?—x3+ ... can be con-
Ke=— 7K§, (3.8)  tinued beyond its radius of convergence by the function (1
+x) 1, so thatS, can also be analytically continued for all
K.= —6720K3 3.9 positive values in the real axis using the representation
8_ 2 . .

3

Just as the initial slope, the parameteK, cannot be deter- B ar
mined from the differential equation. Approximate values for Fr)=m+¢r+ 1+Rr2 (3.19
¢ and K, are given in Ref[9]. These values were deter-

mined through the use of integration routines based on shooﬁ= - _ ;

. o ) aking R=—a,/a;, Eq. (3.19 is exactly the[3,2] order
ing methodg4]. This is some sort of eigenvalue problem for Padegpproximzantl rep?esentation of thg ser%&l%). The

¢ andK,. The solution is obtained by numerical integration obvious task is to test whether a higher order of approxima-

Orf theldlﬁe]tentlal eguatmnr,] starting f_rom rtlhe orgin E/)vhers tion can provide a better representation of the soliton. There
the value of¢) must be such as to satisfy the correct boundg 5 great amount of examplés2] where the Padepproxi-
ary condition corresponding to the relevant solitonic solu-

. . . X ; mant procedure provides a reliable analytic continuation of
tion. Once ¢ is found, the value oK, is obtained in a P : y

o ; power series expansions and where PA representations con-
similar way using Eq(3.5. The reported values af&0] verge rapidly to the relevant function of the problem. In the

_ . next section we will build different representations of the PA
¢=-1.0037, Kp=17.2772. (310 to the hedgehog solution showing that the features of reli-
These values, as well as the validity of the numerical solu@bility and fast convergence also hold in this problem.
tion can be checked in a consistent manner. We will not go
on through this but just refer the reader to Réfl]. e
Let us make a slight modification in our analysis by re-
writing the power expansiof8.4) in the following form

F11,31
FI2;4)  wescsecsie
FI3,51

Num. Sol o

( ) 1 a a o
(3.1])

where the coefficienta;, a,, as, ... aredefined through

b3 b5 b7 T
alzﬁv azzav aSZﬂv (312

and so on. As shown in Table I, the numerical values of the
ratios —a,, 1/a, vary very slowly withn. Thus, one can % 5 10 15 20
introduce the nearly constaR=—a,,,,/a, (for any value

of n). Consequently, the portion within the brackets in Eq. FIG. 2. Two-point PA to the hedgehog solution.
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IV. PADE APPROXIMANTS TO THE HEDGEHOG <
SOLUTION

FI3F  csssoswssa

Our approach is based on Paajgproximants, which are
rational functions used to provide an analytic continuation of
a power series representation of a given function, and are
typically known to accelerate the convergence of the series. | !
The PadeapproximantPyy n;(X) of order[M,N] to the se-
ries S(x) == ,a,X" is defined as the ratio of two polynomi-
als,

F14,6]

Num. Sol o

Piv g ()= 4.0)

BkX 0 5 10 15 20
k=0 r

. s -
where we seB,=1 without loss of generality. The remain- OE'G' 3. Two-point PA exact up to ordéd(1/r°) in the limit r

ing M+N+1 coefficients are chosen so that the fikdt
+N+1 coefficients in the Taylor expansion Bfy n; coin-  solution. In order to enforce the conditions that fix the soliton
cide with the serie§(x) through ordeM + N. Conversely, if  solution to be of winding number one, we will require that
only the firstM +N+1 coefficients of the serieS(x) are  the behavior at infinity of the PA representations is given by
known, such a Padapproximant can be used to predict the the leading term of expansiai3.6). To this end we impose
next coefficient in the serig4d 3]. the constrainN—M=2. We have computed the values of

The PA of ordef M,N] to the hedgehog solution is found coefficientsa, andb, corresponding to the sequence of PA's
by comparing its Taylor expansion at the origin with series[0,2], [1,3], and[2,4] using the value,=—1.003 found
(3.1. From all the possible combination®(N) allowed by by numerical methods. The results are displayed in Fig. 1.
the input series expansidi3.1), we are interested in those The explicit dependence of the PAs in terms of the coeffi-
that may provide a suitable representation to the hedgehogjents of serie3.4) is

—

. o
F[O’Z]_l_ﬂ+ ﬂ)Z!
o o
2
i 6:;?3; 2)
ar
Fria= 5 : > , (4.2)
dpsm b 3 2 Py 3

66%+ dam®  64°+ dom®  B(64°+ byr?)

for [0,2] and[1,3], respectively.

The PA representations built from the exact series solution near the origin do not guarantee the exact behavior at interme-
diate and large values of However, one may use the asymptotic solution given by the s€iésin order to find better
representations of the hedgehpty]. Yet, the right behavior at infinity may be incorporated using the two-point Pade
approximant procedure. This is a natural extension of the usual PA method which consists in fixing almost one coefficient of
the approximant using the asymptotic series solution at inf[mityWe have computed the sequence of the two-point PA of
orderg[ 1,3], [2,4], and[ 3,5] (see Fig. 2 Certainly, the two-point PA representations are more reliable than the ordinary ones.
The explicit form of PA[1,3] is

Ko(6¢°+ pam?)
6(K,p?>—27°
Fri3= S ™ 3 2 4.3
| m(Kebot120m)  b(Kobat126m)  64%+ bam

6(2m3—K,p?) 6(K,p?—27%)  3(K,p?—27°)
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The next step is to include the subleading behavior of the ~ a
exact solution at infinity within the PA representations. We Froa(r)= , (4.9
. L [0.4] 2 3 4\1/2
have done this up to ord€@(1/r%) as shown in Fig. 3. As we (1+byr+bor=+bar®+b,r)

go on with the procedure, the degree of approximation is

improved both near the origin and for large values.dflow-

ever, for intermediate values of the PA representations are Such that the coefficient, by, b,, andb; are determined
slowly convergent. Nevertheless we will show that there is ay expanding=(q 4(r) in a power series near the origin and
suitable functional form that provides very good representamatching the terms, order by order, with those of the exact

tions to the hedgehog solution. solution (3.4) up to O(r®), and the remaining coefficiet,
To this end, let us prescribe a modified PA of orfle] is fixed by using the leading term at infinity given by Eq.
through (3.6). We found explicitly,
Floa(r) a (4.5
[0.4] r= 2 3 2 2 172- .
2 3 —12¢°— 4
1——¢r+ir2+—¢ i r?’Jrlzr4
- w? 3 K35

The form(4.4) can be generalized to higher ord¢fsk] as  agreement between the numerical solution and the modified
PA given by Eq.(4.6). In order to show the utility of the PA

a procedure as a method of analytic continuation, we have in-

(4.6)  cluded in the same figure the power series representation
near the origin up to and including ordexr®).

- . The utility of the PA method in this problem is outstand-
where_th_e unknown coefficients may be found following theing, particularly for its simple and reliable application to the
prescription described for the particular case4. We have ooy nonlinear Euler-Lagrange equation of Skyrme. More-
built the representations correspondingkte 6, k=8, and  ouer” the PA representations reproduce exactly the main
k=10 (see Fig. 4 By construction, such representations nronerties of the hedgehog solution at both small and large
have the exact Taylor expansion near the origin up to orderg,es ofr.
O(r®), O(r®) andO(r”), respectively, as well as the exact |, order to further check the reliability of the PA repre-

Ieading behavior at infinity. The new PA repr_esentatio_ns im'sentations, we have calculated the corresponding baryon
prove in a remarkable way the representations obtained sQ,mber given by

far.
Following the program, an even better agreement for the
larger behavior may be obtained by including in the modi- 1 (»dF sirPF
fied representation$4.6) the subleading behavior of the B=——2 ar .2 Ar2dr, 4.7
hedgehog solution. In Fig. 5 we have depicted the approxi- 27<Jo dr ¢
mants so constructed. The figure shows an exceptional good

Frox(r)= :
104 (1+bgr +bor2+ - - +byrk)2k

F(r)

—
(s
~—
L
Flo,41 .
F10,10] —_—
Seres ccwssimesac

Num. Sol. o

0

FIG. 5. Modified PA representations which reproduce the exact
FIG. 4. Sequence of modified PA to the hedgehog solution. leading and subleading behaviorrat> .
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and the minimal energy2.6) whose numerical value iE  lytical representations for the Skyrmion, one for each of the
=72.84 /9. We obtainB=1 for the two-point PA's which two regions, which was the common approach to this prob-
is exactly the topological number of the Skyrmion. As for thelem [15], clearly unsuitable for phenomenological calcula-
energy, the results for the last sequence of approximants itions.

units of f. /g are Ej4=73.60, Ejg=73.02, E[gg Certainly, the results presented here highlight the utility of
=72.96, andEg 10j=72.94, which converge to the numeri- rational functions, the PA in particular, for analytic continu-
cal value reported in previous work4]. ation of the asymptotic series. In this problem, the knowl-
edge of the asymptotic behavior at two points favors a better
V. FINAL REMARKS convergence to the relevant function. The approximate ana-

lytical solutions can be used with reliability in the evaluation
We have shown that the suggested PA representations f@f physical quantities. The calculations are easier and more
the Skyrme solutions can incorporate in a simple way thenanageable than numerical computations.
properties of the exact solution near both physical bound-

aries of the problem. This solves the difficulty in REE1],
where the authors assert the impossibility to obtain a PA to
the series solution about the origin which, in addition, repro-  This research was supported in part by CONICET, Argen-
duces the exact behavior of the chiral angle at infinity. More-ina. J.A.P. acknowledges MUTIS and CLAF for financial
over, our representations avoid the use of two separate anadpport.
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