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Chiral phase transition within effective models with constituent quarks
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We study the chiral phase transition at nonzero temperatureT and baryon chemical potentialmB within the
framework of the linear sigma model and the Nambu–Jona-Lasinio~NJL! model. For small bare quark masses
we find in both models a smooth crossover transition for nonzeroT andmB50 and a first order transition for
T50 and nonzeromB . We calculate explicitly the first order phase transition line and spinodal lines in the
(T,mB) plane. As expected they all end at a critical point. We find that, in the linear sigma model, the sigma
mass goes to zero at the critical point. This is in contrast to the NJL model, where the sigma mass, as defined
in the random phase approximation, does not vanish. We also compute the adiabatic lines in the (T,mB) plane.
Within the models studied here, the critical point does not serve as a ‘‘focusing’’ point in the adiabatic
expansion.
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I. INTRODUCTION

Chiral symmetry is spontaneously broken in the QC
vacuum. Lattice QCD simulations at nonzero temperaturT
and zero baryon chemical potentialmB indicate that chiral
symmetry is restored above a temperatureT;150 MeV @1#.
Even higher temperatures are believed to be created
nuclear collisions at ultrarelativistic energies. Consequen
a phase where chiral symmetry is transiently restored ma
formed in these collisions. The subsequent expansion c
the system and takes it to the final hadronic state, wh
chiral symmetry is again spontaneously broken.

It is important to determine the order of the chiral tran
tion, as this influences the dynamical evolution of the s
tem. For instance, a first order transition may lead to a
flagration wave and to a ‘‘stall’’ in the expansion of th
system@2#. It has been shown that a first order transition
rapidly expanding matter may manifest itself by strong no
statistical fluctuations due to droplet formation@3#. In the
case of strong supercooling it may lead to large fluctuati
due to spinodal decomposition@4,5#. In a second order phas
transition one may expect the appearance of critical fluc
tions due to a large correlation length@6#. Experimentally,
large-acceptance detectors are now able to measure av
as well as event-by-event observables, which in princi
allow one to distinguish between scenarios with a first ord
a second order, or merely a crossover type of phase tra
tion.

Theoretically, the QCD phase diagram in the (T,mB)
plane has recently received much attention~see@6,8–10#!.
QCD with Nf52 flavors of massless quarks has a glo
SU(2)L3SU(2)R symmetry. This symmetry is spontan
ously broken in the QCD vacuum, such that the order par
eterf i j ;^q̄L

i qR
j & acquires a nonvanishing expectation valu

whereqi is the quark field (i , j are the flavor indices!. At zero
baryon chemical potential, the effective theory for this ord
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parameter is the same as theO(4) model which has a secon
order phase transition. Therefore, by universality argume
@11#, the chiral transition inNf52 QCD is likely to be of
second order atmB50. Nonzero quark masses introduce
term in the QCD Lagrangian that explicitly breaks chir
symmetry. Then the second order transition becomes a cr
over.

At nonzero baryon chemical potential, it is more difficu
to infer the order of the chiral transition from universali
arguments@12#. One commonly resorts to phenomenologic
models to describe the chiral transition in this case. Depe
ing on the parameters of these models, they predict a
order, a second order, or a crossover transition. Howeve
there is a second order phase transition formB50 and non-
zero T and a first order transition for smallT and nonzero
mB , then there exists a tricritical point in the (T,mB) plane
where the line of first order phase transitions meets the
of second order phase transitions. For nonzero quark ma
this tricritical point becomes a critical point.

It has recently been proposed@6# that this point could lead
to interesting signatures in heavy-ion collisions at interme
ate energies, if the evolution went through or close to t
critical point. At this point, susceptibilities~e.g., the heat
capacity! diverge, and the order parameter field becom
massless and consequently exhibits strong fluctuatio
which could be detected in event-by-event observables.

In this paper we investigate the thermodynamics of t
popular models of chiral dynamics, the linear sigma mo
coupled to quarks@13#, and the Nambu–Jona-Lasinio~NJL!
model @14#. Both models are tuned to reproduce correc
properties of the physical vacuum. Our goal is to study
chiral transition and to verify the existence of the critic
point at nonzero chemical potential and temperature. We
study the behavior of isentropes in the vicinity of the pha
transition line in the (T,mB) plane. These results can then b
used in dynamical simulations to confront the predictions
Refs.@2–6# with experimental data.
©2001 The American Physical Society02-1
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The structure of the paper is as follows. In Sec. II w
study the thermodynamics of the linear sigma model coup
to quarks. This part of the paper is an extension of our p
vious study in Ref.@16#. In Sec. III we do the same for th
NJL model. Section IV presents numerical results. We c
clude in Sec. V with a summary of our results. Our units
\5c5kB51; the metric tensor isgmn5diag(1,2,2,2).

II. THERMODYNAMICS OF THE LINEAR SIGMA
MODEL

First we consider the linear sigma model which includ
quark degrees of freedom. The model reads

L5q̄@ igm]m2g~s1 ig5tW•pW !#q1
1

2
~]ms]ms1]mpW •]mpW !

2U~s,pW !, ~1!

where the potential is

U~s,pW !5
l2

4
~s21pW 22v2!22Hs. ~2!

Hereq is the light quark fieldq5(u,d). The scalar fields
and the pion fieldpW 5(p1 ,p2 ,p3) together form a chiral
field F5(s,pW ). This Lagrangian is invariant under chira
SU(2)L3SU(2)R transformations if the explicit symmetr
breaking termHs is zero. The parameters of the Lagrangi
are usually chosen such that the chiral symmetry is spo
neously broken in the vacuum and the expectation value
the meson fields arê s&5 f p and ^pW &50, where f p

593 MeV is the pion decay constant. The constantH is
fixed by the partially conserved axial vector current~PCAC!
relation which givesH5 f pmp

2 , wheremp5138 MeV is the
pion mass. Then one findsv25 f p

2 2mp
2 /l2. The coupling

constantl2 is determined by the sigma massms
252l2f p

2

1mp
2 , which we set to 600 MeV, yieldingl2'20. The cou-

pling constantg is usually fixed by the requirement that th
constituent quark mass in vacuum,M vac5g fp , is about 1/3
of the nucleon mass, which givesg.3.3.

Let us consider a spatially uniform system in thermod
namical equilibrium at temperatureT and quark chemica
potentialm[mB/3. In general, the grand partition functio
reads

Z5Tr exp@2~Ĥ2mN̂!/T#

5E Dq̄DqDsDpW expF E
x
~L1mq̄g0q!G , ~3!

where*x[ i *0
1/Tdt*Vd3x andV is the volume of the system

Below we adopt the mean-field approximation, replacings

andpW in the exponent by their expectation values. In oth
words, we neglect both quantum and thermal fluctuation
the meson fields and retain only quarks and antiquarks
quantum fields. In this respect our model differs from oth
realizations of the sigma model, where quark degrees of f
dom are neglected but mesonic excitations are included~see,
04520
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for instance, Ref.@7#!. We believe that our approach is mo
justified at highT and m when constituent quarks becom
light but mesonic excitations are heavy~see below!. Of
course, due to the confining forces, at lowT and m quarks
and antiquarks will recombine into mesons, baryons, and
tibaryons. We can only hope that this hadronization proc
will not drastically change the character of the chiral tran
tion that we study here. Then, up to an overall normalizat
factor,

Z5expS 2
VU

T D E Dq̄Dq expH E
x
q̄@ igm]m2g~s

1 ig5tW•pW !#q1mq̄g0qJ
5expS 2

VU

T Ddetp$@pmgm1mg02g~s1 ig5tW•pW !#/T%.

~4!

All thermodynamic quantities can now be obtained fro
the grand canonical potential

V~T,m!52
T ln Z

V
5U~s,pW !1Vqq̄ , ~5!

where the contribution of quarks and antiquarks follo
from Eq. ~4!:

Vqq̄~T,m!52nqE d3p

~2p!3 H E1T lnF11expS m2E

T D G
1T lnF11expS 2m2E

T D G J . ~6!

Here,nq52NcNf512 is the number of internal degrees
freedom of the quarks,Nc53, andE5Ap21M2 is the va-
lence quark and antiquark energy. The constituent quark~an-
tiquark! massM is defined to be

M25g2~s21pW 2!. ~7!

The divergent first term in Eq.~6! comes from the negative
energy states of the Dirac sea. As follows from the stand
renormalization procedure it can be partly absorbed in
coupling constantl2 and the constantv2. However, a loga-
rithmic correction from the renormalization scale remain
This term is neglected in the following calculations. Simil
logarithmic terms are explicitly included in calculation
within the NJL model~see below!. Therefore one can use th
comparison of these two models to draw conclusions ab
the importance of these corrections.

After integrating Eq.~6! by parts the contribution of va
lence quarks and antiquarks can be rewritten as

Vqq̄~T,m!52
nq

6p2E0

`

dp
p4

E
@nq~T,m!1nq̄~T,m!#, ~8!

where nq and nq̄ are the quark and antiquark occupatio
numbers,
2-2
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nq~T,m!5
1

11exp@~E2m!/T#
, nq̄~T,m!5nq~T,2m!.

~9!

The baryon chemical potential is determined by the
baryon density

nB52
1

3

]V

]m
5

nq

6p2E p2dp@nq~T,m!2nq̄~T,m!#.

~10!

The net quark density is obviouslyn53nB . The values for
the s andpW fields and thereby the quark masses in Eq.~7!

are obtained by minimizingV with respect tos andpW ,

]V

]s
5l2~s21pW 22v2!s2H1grs50, ~11!

]V

]pW
5l2~s21pW 22v2!pW 1grW ps50. ~12!

The scalar and pseudoscalar densities of valence quarks
antiquarks can be expressed as@15#
t

ar

rib

n
th

l

04520
t
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rs5^q̄q&5gsnqE d3p

~2p!3

1

E
@nq~T,m!1nq̄~T,m!#,

~13!

rW ps5^q̄ig5tWq&5gpW nqE d3p

~2p!3

1

E
@nq~T,m!1nq̄~T,m!#.

~14!

These densities generate the source terms in the equatio
motions for the meson fields~11! and~12!. The minima ofV
defined by Eqs.~11! and ~12! correspond to the stable o
metastable states of matter in thermodynamical equilibri
where the pressure isP52Vmin . The s and pion masses
are determined by the curvature ofV at the global minimum:

Ms
25

]2V

]s2
, Mp i

2 5
]2V

]p i
2

. ~15!

Explicitly they are given by the expressions
Ms
25mp

2 1l2S 3
M2

g2
2 f p

2 D 1g2
nq

2p2E dpp2F p2

E3 S 1

11exp@~E1m!/T#
1

1

11exp@~E2m!/T# D
2

M2

TE2 S 1

2~11cosh@~E1m!/T# !
1

1

2~11cosh@~E2m!/T# ! D G , ~16!

Mp
2 5mp

2 1l2S M2

g2
2 f p

2 D 1g2
nq

2p2E dpp2
1

E F 1

11exp@~E1m!/T#
1

1

11exp@~E2m!/T#G . ~17!
.
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Here we have set the expectation value of the pion field
zero,pW 50, and thusM25g2s2. This version of the sigma
model was used earlier in Ref.@16# for thermodynamical
calculations at nonzeroT and m50, and at nonzerom and
T50. Some useful formulas for the case of a small qu
mass are given in the Appendix.

III. THERMODYNAMICS OF THE NJL MODEL

The NJL model has been widely used earlier for desc
ing hadron properties and the chiral phase transition@17,18#.
The simplest version of the model including only scalar a
pseudoscalar four-fermion interaction terms is given by
Lagrangian1

1As demonstrated in Ref.@19#, the inclusion of the vector–axia
o

k

-

d
e

L5q̄~ igm]m2m0!q1
G

2
@~ q̄q!21~ q̄ig5tWq!2#, ~18!

wherem0 is the small current quark mass. At vanishingm0
this NJL Lagrangian is invariant under chiralSU(2)L
3SU(2)R transformations. Since the coupling constantG
has dimension (energy)22, the theory is nonrenormalizable
Therefore, a three-momentum cutoffL is introduced to regu-
larize divergent integrals. It defines an upper energy limit
this effective theory. Withm0 fixed at 5.5 MeV, free param
eters of the model are chosen to reproduce correctly

vector terms may significantly change the parameters of the ch
phase transition, in particular, the position of the critical point. B
this does not change the qualitative conclusions of the pre
paper.
2-3
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FIG. 1. The phase diagrams for the sigma model~left! and the NJL model~right! in the (m,T) plane. The middle curve is the critical lin
and the outer lines are the lower and upper spinodal lines.C is the critical point.
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vacuum values of the pion decay constant~93 MeV! and the
pion mass~138 MeV!. This gives the following parameter
@20#: G55.496 GeV22 andL5631 MeV. The constituen
quark mass in vacuum is then 337 MeV. With these para
eters the chiral transition occurs at the temperatureT
'190 MeV @18# ~for m50), which is significantly higher
than in the sigma model.

The partition function for the NJL model reads

Z5Tr exp@2~Ĥ2mN̂!#5E Dq̄Dq expF E
x
~L1mq̄g0q!G .

~19!

In the mean-field approximation the Lagrangian~18! is rep-
resented in a linearized form@17,18,21#:

L5q̄~ igm]m2m0!q1G^q̄q&~ q̄q!2
G

2
^q̄q&2, ~20!

such that the partition function becomes

Z5expF2
V

T

G^q̄q&2

2
Gdetp@~pmgm1mg02M !/T#,

~21!

where the constituent quark mass is determined from the
equation
04520
-

ap

M5m02G^q̄q&. ~22!

The right-hand side of this equation involves the scalar d
sity ~chiral condensate!

rs5^q̄q&5MnqE
p,L

d3p

~2p!3

1

E
@nq~T,m!1nq̄~T,m!21#,

~23!

wherenq andnq̄ are the valence quark and antiquark occ
pation numbers defined in Eq.~9!. Here the last term in
brackets gives the contribution from the Dirac sea~which
corresponds to the vacuum part of the sigma model! and
cannot be neglected. The rest comes from valence quarks
antiquarks, similar to the sigma model@compare with Eq.
~13!#.

From Eq.~20!, the grand canonical potential for the NJ
model can be written as

V5
~M2m0!2

2G
2nqE

p,L

d3p

~2p!3 H E

1T lnF11expS 2
E1m

T D G1T lnF11expS 2
E2m

T D G J .

~24!
FIG. 2. The thermodynamical potentialsV for the sigma model~left! and the NJL model~right!. For both modelsm50. The levels
correspond to~starting from the top! T5@0,100,135,155,175,190# MeV for the sigma model andT5@0,100,140,170,200,230# MeV for the
NJL model.
2-4
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FIG. 3. The thermodynamical potentialsV for the sigma model~left! and the NJL model~right!. For both modelsT50. The levels
correspond to ~starting from the top! m5@0,225,279,306,322,345,375# MeV in the sigma model and m
5@0,288,343,348,35,378,396# MeV for the NJL model.
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The minimization ofV with respect toM gives the gap equa
tion ~22!. The expression~24! is formally identical with Eq.
~6! derived for the sigma model, but now the first term
curly brackets, coming from the Dirac sea, is treated exp
itly after introducing the cutoff momentumL. One can cal-
culate this vacuum contribution explicitly,

Vvac52nqE
p,L

d3p

~2p!3
Ap21M2

52
nqL4

8p2 FA11z2S 11
z2

2 D2
z4

2
ln

A11z211

z G ,
~25!

where z5M /L. Expanding this expression in powers ofz
one can obtain contributions toV of orderM2, M4, . . . . As
mentioned above, in the sigma model the vacuum terms
partly absorbed in the coefficients of the effective poten
U(s,pW ). However, the logarithmic termM4 ln(L/M) cannot
be removed in this way. Therefore, the NJL model has ad
tional nonlinear terms in the vacuum energy which are
sponsible for the differences in the thermodynamic prop
ties of the two models.

The sigma and pion masses are not as straightforwar
obtain as in the linear sigma model because in the NJL mo
they are not represented as dynamical fields. In this mo
04520
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re
l

i-
-
r-

to
el
el

mesons are described as collectiveqq̄ excitations. Their
masses can be obtained from the poles of the quark-antiq
scattering amplitude which can be computed, for instance
the random phase approximation~RPA! @18,20#. In this way,
one can derive the following equations for the sigma a
pion masses:

05
m0

M
1~Ms

224M2!GI~M ,Ms!, ~26!

05
m0

M
1Mp

2 GI~M ,Mp!. ~27!

The function I (x,y) is the quark-antiquark propagator d
fined as

I ~x,y!5
nq

2p2
PE

p,L
dpp2

1

E
@12nq2nq̄#

1

E22 1/4y2
,

~28!

whereE5Ax21p2, and the occupation numbersnq andnq̄
are as defined in Eq.~9!. In this integralP means principal
value.
FIG. 4. The thermodynamical potentialsV for the sigma model~left! and the NJL model~right!. For the sigma model casem is fixed to
207 MeV and the levels correspond to~starting from the top! T5@0,50,75,100,125,150# MeV. For the NJL model casem is fixed to 332
MeV and the levels correspond to~starting from the top! T5@0,28,46,70,105,133# MeV.
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FIG. 5. The constituent quark~antiquark! mass in the sigma model~left! and the NJL model~right! as a function ofm andT.
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IV. NUMERICAL RESULTS

In the case of the linear sigma model everything is de
mined when the gap equation~11! is solved in the (T,m)
plane, whereas in the NJL model the meson masses ha
be solved for as well. Below we present results of our n
merical calculations~see also the Appendix!.

A. Phase diagrams

As our calculations show, both models exhibit a first ord
chiral phase transition atT,Tc and nonzero chemical poten
tial. In Fig. 1 we present the resulting phase diagrams in
(T,m) plane calculated for the two models. The middle li
corresponds to the states where two phases coexist in the
order phase transition. Along this line the thermodynam
potentialV has two minima of equal depth separated by
potential barrier whose height grows toward lower tempe
tures. At the critical pointC the barrier disappears and th
transition is of second order. The other lines in Fig. 1
spinodal lines which constrain the regions of spinodal ins
bility where (]nB /]m)T,0. Information about the time
scales of this instability is important for dynamical simul
tions @4,5,16,23,24#.

It is instructive to plot the thermodynamic potential as
function of the order parameter for various values ofT at
04520
r-

to
-

r

e

rst
c
a
-

e
-

m50, and for various values ofm at T50. The first case is
shown in Fig. 2, where the left panel is for the sigma mo
and the right panel for the NJL model. One clearly sees
smooth crossover of the symmetry breaking pattern in b
cases. Note that the effective bag constant~the energy differ-
ence between the global minimum and the local maximum
the potential in vacuum! is about 100 MeV/fm3 in the NJL
model, whereas in the sigma model it is significantly smal
.60 MeV/fm3. To a large extent this difference is respo
sible for the difference in the temperatures corresponding
the crossover transition: about 140 MeV in the sigma mo
and about 180–190 MeV in the NJL model.

In Fig. 3 the same plot is shown forT50 and a nonzero
m. Here, one clearly observes the pattern characteristic
first order phase transition: two minima corresponding
phases of restored and broken symmetry separated by a
tential barrier. The barrier height is larger in the sigma mo
than in the NJL model, thus indicating a weaker first ord
phase transition in the NJL model. It now follows that som
where in between these two extremes, for somemc andTc ,
there exists a critical point for a second order phase tra
tion. Indeed, this point is found and shown in Fig. 1. T
corresponding values are (Tc ,mc).(99,207) MeV in the
sigma model, and (Tc ,mc).(46,332) MeV in the NJL
model. The behavior of the thermodynamic potential atm
FIG. 6. The sigma mass~solid line! and pion mass~dashed line! in the sigma model~left! and NJL model~right! as functions of
temperature form50 ~right pair! and form5mc ~left pair!.
2-6



l

CHIRAL PHASE TRANSITION WITHIN EFFECTIVE . . . PHYSICAL REVIEW C 64 045202
FIG. 7. The sigma mass~solid line! and pion mass~dashed line! in the sigma model~left! and NJL model~right! as functions of chemica
potential forT50 ~right pair! and forT5Tc ~left pair!.
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5mc and variousT is shown in Fig. 4. One can see that t
potential has only one minimum which is flattest at the cr
cal point.

B. Effective masses

Now let us consider the model predictions for the effe
tive masses. The constituent quark mass is shown in Fig.
a function ofT andm. These plots, of course, show the sam
phase structure as discussed above. Atm50 in both models
the quark mass falls smoothly from the correspond
vacuum value and approaches zero asT goes to infinity. One
could define a crossover temperature as corresponding
steepest descent region in the variation ofM. This again
gives a temperature of about 140–150 MeV for the sig
model and about 180–190 MeV for the NJL model. AtT
50 and nonzerom the constituent quark mass shows a d
continuous behavior reflecting a first order chiral transitio

The sigma and pion masses for variousT and m are
shown in Figs. 6 and 7. In both models the sigma mass
decreases smoothly and then rebounds and grows aga
high T. The pion mass does not change much at temperat
below Tc but then increases rapidly, approaching the sig
mass and signaling the restoration of chiral symmetry.
largeT the masses grow linearly with increasingT ~see the
Appendix!. The m5mc case is especially interesting in th
sigma model. Since the sigma field is the order paramete
the chiral phase transition, its mass must vanish at the cri
04520
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-
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g
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a

-
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st
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a
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point for a second order phase transition. This means thaV
has zero curvature at this point. It is, however, not clear w
the sigma mass should be at the critical point in the N

model where the quark condensate^q̄q& is the order param-
eter. Figure 6 indeed shows that the sigma mass is zero
actly at the critical point in the sigma model. This is not t
case in the NJL model, at least within the RPA used here

In Fig. 7 the masses are plotted as a function ofm for T
50 andT5Tc . For T50 one clearly sees discontinuities
the behavior of the masses, characteristic of a first or
phase transition.

An interesting point is that, in the linear sigma mod
there is no stable phase with heavy quarks forT50, i.e., the
quark mass assumes its vacuum value all the way up to
chiral transition, and then drops to a small value in the ph
where chiral symmetry is restored~see Fig. 7!. This behavior
is related to the appearance of a bound state at zero pres
Within the linear sigma model this ‘‘abnormal’’ bound sta
was found by Lee and Wick a long time ago@22#. Recently,
it was shown in Ref.@19# that a similar bound state appea
also in the NJL model. This behavior, however, depends
the values of the coupling constantsg or G. For our choice of
g and G, this behavior is more pronounced in the line
sigma model~see Fig. 5!. In general, if the coupling constan
is sufficiently large, the attractive force between the const
ent quarks becomes large enough to counterbalance
Fermi pressure, thus giving rise to a bound state. To dem
r

FIG. 8. The constituent quark~antiquark! mass as a function of temperature for zero chemical potential~left! and as a function of

chemical potential for zero temperature~right! in the sigma model. The solid line represents the mass forg54.5, the dash-dotted line fo
g53.3, and the dashed line forg52.8.
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FIG. 9. The entropy per baryon numberS/A for the sigma model~left! and the NJL model~right!. In the sigma model the curve
correspond to~from left! S/A5@28,21,17,13,11,9,6,2#. In the NJL model the curves correspond to~from left! S/A5@22,16,11,8,6,5,3,1#.
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strate this we have varied the coupling constantg for the
sigma model within reasonable limits.

The results for the quark mass are shown in Fig. 8. I
seen that, indeed, one can change the smooth crossove
m50 into a first order transition by increasing the coupli
constant~Fig. 8 left panel! and change the first order trans
tion in the case ofT50 into a smooth crossover. In this wa
a heavy quark phase comes into existence as the cou
constant is decreased and the bound state disappears~Fig. 8
right panel!. An analogous investigation for the NJL mod
leads to similar results.

C. Adiabats

Regarding hydrodynamical simulations the entropy
baryonS/A is an interesting quantity. One can easily calc
late it using standard thermodynamic relations,

S

A
53

e1p2mn

Tn
, ~29!

wheree, p, andn are, respectively, the energy density, pre
sure, and net density of quarks and antiquarks (n53nB). By
studying this quantity, one can check if there is a tende
toward convergence of the adiabats toward the critical p
as was claimed in Ref.@6#. If this was the case it would be
easy to actually hit or go close to this point in a hydrod
namical evolution. Figure 9 shows the contours ofS/A in the
(T,m) plane calculated in the sigma model~left! and in the
NJL model~right!. We actually observe a trend that is qui
opposite to this expectation. It turns out that the adiabats
away from the critical point when they hit the first ord
transition line and bend toward the critical point only wh
they come from the smooth crossover region. This is
plained as follows. First, note that all adiabats terminate
zero temperature andm5M vac, i.e., the (T,m) combination
corresponding to the vacuum. The reason is that asT→0
alsoS→0 ~by the third law of thermodynamics!; therefore,
for fixed S/A we have to require thatn→0, which is fulfilled
whenm5M vac. For our choice of parameters, in the sigm
model the point (T,m)5(0,M vac) is also the end point of the
phase transition curve atT50, since the phase transitio
connects the vacuum directly with the phase of restored
ral symmetry; cf. Figs. 5 and 8. For the NJL model, the e
04520
s
for

ng

r
-

-

y
t

-

rn

-
t

i-
d

point of the phase transition curve is not identical w
(0,M vac) but is rather close to it. Therefore, the adiabats t
hit the phase transition curve also have to bend away fr
the critical point and approach the end point of the ph
transition line atT50, i.e.,T decreases andm increases.

This behavior is quite opposite to the case underlying
claim in Ref.@6#, where the hadronization of a large numb
of quark and gluon degrees of freedom into relatively fe
pion degrees of freedom leads to the release of latent
and consequently to a reheating~increase ofT) through the
phase transition. Remember, however, that in our case t
is actually no change in the number of degrees of freedom
the two phases. The change is only in the respective qu
masses. Consequently, there is no ‘‘focusing’’ effect in t
linear sigma and NJL models.

On the other hand, the behavior of the adiabats in Fig.
quite typical for an ordinary liquid-gas phase transition. He
liquid and gas are represented, respectively, by chirally s
metric and broken phases. This analogy was further ela
rated in Ref.@19#.

V. CONCLUSIONS

We investigated the thermodynamics of the chiral ph
transition within the linear sigma model coupled to quar
and the Nambu–Jona-Lasinio model. These models h
similar vacuum properties but treat the contribution of t
Dirac sea differently. In the sigma model this contribution
‘‘renormalized out’’ while in the NJL model it is included
explicitly up to a momentum cutoffL. By comparing ther-
modynamic properties of these two models one can ch
the importance of these vacuum terms. In both models,
small bare quark masses, we have found a smooth cross
for nonzero temperature and zero chemical potential an
first order transition for zero temperature and nonzero che
cal potential. The first order phase transition line in t
(T,m) plane ends in the expected critical point. It has be
found that thes mass is zero at the critical point in the sigm
model whereas in the NJL model it always remains nonze
The behavior of the adiabats in both models shows a pat
opposite to the expectations for the chiral/confinement tr
sition of @6#. In fact, the phase transition found in these tw
models turned out to be of the liquid-gas type. However,
strength of this phase transition depends significantly on
2-8
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coupling constants of the models. From the comparison
conclude that the phase transition pattern is generally we
in the NJL model than in the sigma model. This is main
due to additional vacuum terms discussed above. Certain
will be interesting to use both models in hydrodynamic
simulations in order to confirm or disprove possible obse
able signatures of the phase transition discussed in the in
duction. In particular, the sigma model, which contains d
namical s and pion fields, would be suitable to study th
long wavelength enhancement of thes field at the critical
point. Such simulations are in progress.

ACKNOWLEDGMENTS

The authors thank J. Borg, L. P. Csernai, P. Ellis, B. F
man, A. D. Jackson, L. M. Satarov, and A. Wynveen
useful discussions. O.S. thanks the Yale Relativistic He
Ion Group for kind hospitality and support from Grant N
DE-FG02-91ER-40609. The work of A´ .M. is supported by
the U.S. Department of Energy under Grant No. DE-FG
87ER40328. I.N.M. thanks the Humboldt Foundation for
nancial support. D.H.R. thanks RIKEN, BNL, and the U.
Department of Energy for providing the facilities essent
for the completion of this work.

APPENDIX

In the chirally symmetric phase the constituent quark~an-
tiquark! massM is small; it goes to zero in the chiral limit
Therefore, it is instructive to evaluate the thermodynam
potentialV(T,m,M ) for small M. In this limit Vqq̄ can be
represented as a power series inM. Below we give explicit
expressions for the sigma model. Taking into account t
Vqq̄ is an even function ofM, one can write

Vqq̄~T,m;M !5V0~T,m!1
M2

2 S ]2Vqq̄

]M2 D
M50

1••• .

~A1!

Here the first termV0(T,m)[Vqq̄(T,m,0) can easily be cal-
culated for arbitraryT andm. The well-known result is
et

ov

04520
e
er

, it
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-
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-
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y

-

.
l

c

at

V0~T,m!52
nq

2p2 F7p4

180
T41

p2

6
T2m21

1

12
m4G . ~A2!

The quark number and entropy densities for massless fe
ons are obtained by differentiatingV0(T,m) with respect to
m andT, respectively,

n5
nq

6p2
~p2T2m1m3!, ~A3!

s5
nq

6p2 S 7p4

15
T31p2Tm2D . ~A4!

The second term in Eq.~A1! differs only by a factor ofM
from the scalar density defined in Eq.~13!. A straightforward
calculation gives

S ]2V

]M2D
M50

5S rs

M D
M→0

5nqS T2

12
1

m2

4p2D . ~A5!

This can be used to estimate the pion and sigma mass
largeT and/orm. ExpressingM2 in terms of meanp ands
fields, Eq.~15!, and using the definition of effective mass
from Eq. ~7!, one arrives at the following asymptotic (M
→0) expression for the pion and sigma masses:

Mp
2 5Ms

25g2nqS T2

12
1

m2

4p2D . ~A6!

It shows that deep in the chiral symmetric phase the pion
sigma masses are degenerate and large. At high tempera
(T@m), Mp5Ms5gT, where g;3 in our calculations.
Therefore, the contribution of pion and sigma excitations
the thermodynamical potential is suppressed by the Bo
mann factore2Ms /T5e2g.

In the case of the NJL model the above expressions
slightly modified due to the finite cutoffL in the momentum
integration.
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