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We study the chiral phase transition at nonzero temperdtaed baryon chemical potentiglg within the
framework of the linear sigma model and the Nambu—Jona-La@iilb) model. For small bare quark masses
we find in both models a smooth crossover transition for nonZeand ug=0 and a first order transition for
T=0 and nonzerqug . We calculate explicitly the first order phase transition line and spinodal lines in the
(T,up) plane. As expected they all end at a critical point. We find that, in the linear sigma model, the sigma
mass goes to zero at the critical point. This is in contrast to the NJL model, where the sigma mass, as defined
in the random phase approximation, does not vanish. We also compute the adiabatic lineFjnf)elane.
Within the models studied here, the critical point does not serve as a “focusing” point in the adiabatic

expansion.
DOI: 10.1103/PhysRevC.64.045202 PACS nuniderl1.30.Rd, 12.38.Mh, 12.38.Aw, 11.30.Qc
[. INTRODUCTION parameter is the same as Bé4) model which has a second

order phase transition. Therefore, by universality arguments

Chiral symmetry is spontaneously broken in the QCD[11], the chiral transition ilN;=2 QCD is likely to be of
vacuum. Lattice QCD simulations at nonzero temperalure second order attg=0. Nonzero quark masses introduce a
and zero baryon chemical potentiak indicate that chiral term in the QCD Lagrangian that explicitly breaks chiral
symmetry is restored above a temperaflire150 MeV[1]. symmetry. Then the second order transition becomes a cross-
Even higher temperatures are believed to be created i@ver.
nuclear collisions at ultrarelativistic energies. Consequently, At nonzero baryon chemical potential, it is more difficult
a phase where chiral symmetry is transiently restored may b infer the order of the chiral transition from universality
formed in these collisions. The subsequent expansion cooffgumentg12]. One commonly resorts to phenomenological
the system and takes it to the final hadronic state, wherE‘Odels to describe the chiral transition in this case..Deper_1d—
chiral symmetry is again spontaneously broken. ing on the parameters of these models, thle.y predict a f|r§t

It is important to determine the order of the chiral transi-©rder, a second order, or a crossover transition. However, if

tion, as this influences the dynamical evolution of the sys—there is a second order phase transitiondge=0 and non-

. . o zero T and a first order transition for small and nonzero
tem. For instance, a first order transition may lead to a de-

flagration wave and to a “stall” in the expansion of the #g, then there exists a tricritical point in thd (ug) plane

tem2]. It has b h that a first order t ition i where the line of first order phase transitions meets the line
sys_em[ . as been snown that a first order transition I ¢ g0 000 order phase transitions. For nonzero quark masses,
rapidly expanding matter may manifest itself by strong non

7 i _ this tricritical point becomes a critical point.
statistical fluctuations due to droplet formatig8]. In the It has recently been proposkl that this point could lead

case of strong supercooling it may lead to large fluctuationg, jnteresting signatures in heavy-ion collisions at intermedi-
due to spinodal decompositi¢4,5]. In a second order phase ate energies, if the evolution went through or close to this
transition one may expect the appearance of critical fluctuagyitical point. At this point, susceptibilitiege.g., the heat
tions due to a large correlation lengtB]. Experimentally, capacity diverge, and the order parameter field becomes
large-acceptance detectors are now able to measure averag@ssiess and consequently exhibits strong fluctuations,
as well as event-by-event observables, which in principleynich could be detected in event-by-event observables.
allow one to distinguish between scenarios with a first order,_ In this paper we investigate the thermodynamics of two
a second order, or merely a crossover type of phase trangiopular models of chiral dynamics, the linear sigma model
tion. _ _ _ coupled to quark$13], and the Nambu—Jona-LasinihiJL)

Theoretically, the QCD phase diagram in th€,4g)  model[14]. Both models are tuned to reproduce correctly
plane has recently received much attentisee[6,8-10).  properties of the physical vacuum. Our goal is to study the
QCD with Ny=2 flavors of massless quarks has a globalchiral transition and to verify the existence of the critical
SU(2).XSU(2)r symmetry. This symmetry is spontane- point at nonzero chemical potential and temperature. We also
ously broken in the QCD vacuum, such that the order paramstydy the behavior of isentropes in the vicinity of the phase
eter ¢ ~(q, gk) acquires a nonvanishing expectation value transition line in the T, ug) plane. These results can then be
whereq' is the quark field i,j are the flavor indicesAt zero  used in dynamical simulations to confront the predictions of
baryon chemical potential, the effective theory for this orderRefs.[2—6] with experimental data.
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The structure of the paper is as follows. In Sec. Il wefor instance, Ref[7]). We believe that our approach is more
study the thermodynamics of the linear sigma model couplegustified at highT and u when constituent quarks become
to quarks. This part of the paper is an extension of our prelight but mesonic excitations are heaygee below. Of
vious study in Ref[16]. In Sec. Il we do the same for the course, due to the confining forces, at Idwand u quarks
NJL model. Section IV presents numerical results. We conand antiquarks will recombine into mesons, baryons, and an-
clude in Sec. V with a summary of our results. Our units aretibaryons. We can only hope that this hadronization process

h=c=kg=1; the metric tensor ig*”"=diag(+,—,—,—). will not drastically change the character of the chiral transi-
tion that we study here. Then, up to an overall normalization
Il. THERMODYNAMICS OF THE LINEAR SIGMA factor,

MODEL

VU [ — _
First we consider the linear sigma model which includes £~ ex;{ - T) f DqDq EXP[ LQ[l Yo, —9(o
qguark degrees of freedom. The model reads

— .1 . +iys7 m)]d+1qy°
L=qliy*d,~9(o+iysT-m]qt 5 (3,00 0+ d,m- otm) Y57 m1A+ uay q]

- VU ..
—U(o,7), (1) =eXp( - T) det{[p,y“+uy’—g(o+iys-m)]IT}.
where the potential is (4)
. A2 5. 22 22 All thermodynamic quantities can now be obtained from
U(o,m)= Z(‘T tm—v%)"—Ho. @ the grand canonical potential
- - - - TihzZ
Here q is the light quark fieldg=(u,d). The scalar fieldr __ _ - —
s the light quark fieldy=(u,d) ! QT == =UeD+ Qg 6
and the pion fieldmr= (7, m,,m3) together form a chiral

+TlIn (6)

field ® = (o, 7). This Lagrangian is invariant under chiral where the contribution of quarks and antiquarks follows
SU(2) X SU(2)g transformations if the explicit symmetry from Eq. (4):
are usually chosen such that the chiral symmetry is sponta- d® u—E
neously broken in the vacuum and the expectation values of {qq(T )=~ qu 3| ETTIn 1+exg —
=93 MeV is the pion decay constant. The consthinis
fixed by the partially conserved axial vector curré@CAC)
pion mass. Then one finds?=f2—m2/\2. The coupling Here, vq=2N:N;=12 is the number of internal' degrees of
constantA? is determined by the sigma masg=2)2f2  freedom of the quarkd\.=3, andE=yp“+M? is the va-
pling constang is usually fixed by the requirement that the tiquark massM is defined to be
constituent quark mass in vacuuM,,,.=gf., is about 1/3
Let us consider a spatially uniform system in thermody-The divergent first term in Eq6) comes from the negative
namical equilibrium at temperatur® and quark chemical energy states of the Dirac sea. As follows from the standard
reads coupling constank? and the constani?. However, a loga-
rithmic correction from the renormalization scale remains.
logarithmic terms are explicitly included in calculations
= J DgDqDo D ex;{ J (E+MEYOQ)}, (3)  within the NJL modelsee below. Therefore one can use the
X

breaking termH o is zero. The parameters of the Lagrangian
the meson fields ardo)=f, and (7)=0, where f_
1+ exp{ — 'uT_ E)
relation which givesH=f_m? , wherem =138 MeV is the
+ me, which we set to 600 MeV, yielding2~20. The cou- lence quark and antiquark energy. The constituent q(sark
of the nucleon mass, which gives=3.3. M*=g*(c*+ 7;2)' 0
potential u= ug/3. In general, the grand partition function renormalization procedure it can be partly absorbed in the
Z=Trexf — (H—ul)/T] This term is neglected in the following calculations. Similar
comparison of these two models to draw conclusions about

T 3 ) the importance of these corrections.
where [, =i/ dt/yd°x andVis the volume of the system.  after integrating Eq.(6) by parts the contribution of va-

Below we adopt the mean-field approximation, replacing |ence quarks and antiquarks can be rewritten as

and 7 in the exponent by their expectation values. In other .

words, we neglect both quantum and thermal fluctuations of Vg (=, P

the meson fields and retain only quarks and antiquarks as QQE(T'“):_G_;L dpE[nq(T’“)J’na(T'“)]’ ®
qguantum fields. In this respect our model differs from other

realizations of the sigma model, where quark degrees of freewhere ng and ng are the quark and antiquark occupation
dom are neglected but mesonic excitations are inclyded, numbers,
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— d’p 1
Ps:<qCI>=9<TVqJ (ZTPE[nq(T,ManiT,M)],
(13

The baryon chemical potential is determined by the net

baryon density

190 v ) B
(10

nB:

The net quark density is obviousty=3ng. The values for
the o and 7 fields and thereby the quark masses in &9.
are obtained by minimizing) with respect too and T,

Q) -

%=)\2(0'2+772—02)0'—H+gps=0, (11
Q) - - -
__):)\2(0'2+772_U2)7T+gpps:0. (12

o

1
E[nq(T,,lL)‘an‘(T,,u)].

(14)

pos=(dsic) =07 | 22

These densities generate the source terms in the equations of
motions for the meson field41) and(12). The minima of()
defined by Eqgs(11) and (12) correspond to the stable or
metastable states of matter in thermodynamical equilibrium
where the pressure B=—Q,,,,. The o and pion masses

are determined by the curvature@fat the global minimum:

M%,:F, M2 = —. (15)
0' .

The scalar and pseudoscalar densities of valence quarks and

antiquarks can be expressed[ 5]

Explicitly they are given by the expressions

o @ 272 E3\1+exd (E+u)/T]  1+exg(E—pu)/T]
w* ! + ! ) 16
TE2\ 2(1+CcosH(E+ w)/T]) * 2(1+cosh(E—w)/T])/ | (16)
M2 =m2+ \2 2f2 qufdpzl 1 1 1
A Mt T 0 ) PP E T exf(E+ )/ T] T 1+ exd(E— w)/T])" (7

Here we have set the expectation value of the pion field to
zero, 7=0, and thusM?=g2c?. This version of the sigma

model was used earlier in Ref16] for thermodynamical
calculations at nonzer® and =0, and at nonzerg. and

_ G — , — -
L=q(iy*9,~mo)q+ 5 [(qa)*+(aiys7a)?], (18

wheremy is the small current quark mass. At vanishimg

T=0. Some useful formulas for the case of a small quarknis NJL Lagrangian is invariant under chir@U(2),

mass are given in the Appendix.

IIl. THERMODYNAMICS OF THE NJL MODEL

The NJL model has been widely used earlier for describ

ing hadron properties and the chiral phase transitiah1§.

The simplest version of the model including only scalar an

X SU(2)g transformations. Since the coupling const&ht
has dimension (energy¥, the theory is nonrenormalizable.
Therefore, a three-momentum cutdffis introduced to regu-
larize divergent integrals. It defines an upper energy limit for

this effective theory. Withm, fixed at 5.5 MeV, free param-

deters of the model are chosen to reproduce correctly the

pseudoscalar four-fermion interaction terms is given by the

Lagrangian

'As demonstrated in Ref19], the inclusion of the vector—axial

vector terms may significantly change the parameters of the chiral
phase transition, in particular, the position of the critical point. But
this does not change the qualitative conclusions of the present
paper.
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FIG. 1. The phase diagrams for the sigma matit) and the NJL modelright) in the (x,T) plane. The middle curve is the critical line
and the outer lines are the lower and upper spinodal li@ds.the critical point.

vacuum values of the pion decay consté38 MeV) and the M = mo—G<a(J>- (22)
pion mass(138 MeV). This gives the following parameters
[20]: G=5.496 GeV? andA=631 MeV. The constituent
guark mass in vacuum is then 337 MeV. With these param
eters the chiral transition occurs at the temperatiire
~190 MeV [18] (for ©=0), which is significantly higher
than in the sigma model. _
The partition function for the NJL model reads ps=(dd)=Mur, jp

The right-hand side of this equation involves the scalar den-
sity (chiral condensaje

3

d’p 1
A2 E[N(T 1)+ (T, ) — 1],
(23

Z=Trexr[—(ﬂ—uﬁ0]=f DqDq exr“(“uqyoq)}
x wheren, andng are the valence quark and antiquark occu-

(19) pation numbers defined in E¢9). Here the last term in
brackets gives the contribution from the Dirac d@ich
corresponds to the vacuum part of the sigma modeld
cannot be neglected. The rest comes from valence quarks and
G antiquarks, similar to the sigma modelompare with Eq.

=alivkg. — a0 (aa) = —(qg)? (13)].
£=a(iy",~mo)a+ &(aa)(aq) 2 (qa)”, (20 From Eq.(20), the grand canonical potential for the NJL
model can be written as

In the mean-field approximation the Lagrangid®) is rep-
resented in a linearized forpl7,18,21:

such that the partition function becomes

. exp[ vV &(qu)?

Q (M —mg)? f d®p
== "V
det[(p,y*+uy’—M)/T], 2G p<r(2m)3

T 2

(21) E—un
+TInf1+exp ———] |+ TIn|1+exp — ——|||.

. . . T T
where the constituent quark mass is determined from the gap
equation (24
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FIG. 2. The thermodynamical potentials for the sigma modelleft) and the NJL modelright). For both models.=0. The levels

correspond tdstarting from the topT=[0,100,135,155,175,190MeV for the sigma model anii=[0,100,140,170,200,230MeV for the
NJL model.
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FIG. 3. The thermodynamical potentials for the sigma modelleft) and the NJL model{right). For both modelsT=0. The levels
correspond to (starting from the top w=[0,225,279,306,322,345,3f3MeV in the sigma model and u
=[0,288,343,348,35,378,39paveV for the NJL model.

The minimization of(} with respect tdVl gives the gap equa- mesons are described as collectige excitations. Their

tion (22). The expressioti24) is formally identical with EQ.  masses can be obtained from the poles of the quark-antiquark
(6) derived for the sigma model, but now the first term in scattering amplitude which can be computed, for instance, in
curly brackets, coming from the Dirac sea, is treated explicthe random phase approximatiRPA) [18,20. In this way,

itly after introducing the cutoff momentumh. One can cal- one can derive the following equations for the sigma and

culate this vacuum contribution explicitly, pion masses:
Q,.=—v f d3p \/p2+M2 m
vac A ) oa(2m)3 0=V0+(M§—4M2)GI(M,MU), (26)
vgA? 2\ ¢ J1+z2%+1
=— 2|1+ 1+ = |- = Ih———|,
872 2 2 z mo )
O=V+MWGI(M,MW). (27)
(29)

where z=M/A. Expanding this expression in powers of ; ; o )
one can obtain contributions @ of orderM2, M*, ... . As ;I;E:df:r;ctlonl(x,y) is the quark-antiquark propagator de

mentioned above, in the sigma model the vacuum terms are
partly absorbed in the coefficients of the effective potential

U(o, 7). However, the logarithmic terriv* In(A/M) cannot vq 1
be removed in this way. Therefore, the NJL model has addi- '(X.Y)= FPJ <Adpp2E[1—nq—ng]
tional nonlinear terms in the vacuum energy which are re- 7 P
sponsible for the differences in the thermodynamic proper-
ties of the two models.

The sigma and pion masses are not as straightforward t@here E= \x?+ p?, and the occupation numbeng and ng
obtain as in the linear sigma model because in the NJL modelre as defined in Ed9). In this integral? means principal
they are not represented as dynamical fields. In this modelalue.

E2— 1/4y?’
(28)
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e 50 e 50
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= -50 = -50
< <
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& &
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o —200 o —200
—250F. . . . . —250F . . . . 1
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FIG. 4. The thermodynamical potentidbsfor the sigma modefleft) and the NJL modelright). For the sigma model cageis fixed to
207 MeV and the levels correspond (&tarting from the topT=[0,50,75,100,125,130MeV. For the NJL model casg is fixed to 332
MeV and the levels correspond (starting from the topT=/0,28,46,70,105,133 MeV.
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FIG. 5. The constituent quartantiquark mass in the sigma modékeft) and the NJL mode{right) as a function ofu andT.

IV. NUMERICAL RESULTS ©=0, and for various values gi at T=0. The first case is

In the case of the linear sigma model everything is deter:‘:'hown in Fig. 2, where the left panel is for the sigma model
mined when the gap equatiddl) is solved in the T, ) and the right panel for the NJL model. Or_le clearly sees the
plane, whereas in the NJL model the meson masses have %gnooth crossover of the s_ymmetry breaking pattern_ in both
be solved for as well. Below we present results of our nu'giiist')el\lt\?vt:etr??k:éhgjaloetl;:crg}/rﬁrgﬁaCaonn dsgﬁ"emlggaelr?nyag:fr;eljhw of
merical calculationgsee also the Appendix the potential in vacuuinis about 100 MeV/fr in the NJL
model, whereas in the sigma model it is significantly smaller,
=60 MeV/fn?. To a large extent this difference is respon-
As our calculations show, both models exhibit a first ordersible for the difference in the temperatures corresponding to
chiral phase transition at<T. and nonzero chemical poten- the crossover transition: about 140 MeV in the sigma model
tial. In Fig. 1 we present the resulting phase diagrams in thand about 180—190 MeV in the NJL model.

(T,u) plane calculated for the two models. The middle line In Fig. 3 the same plot is shown f@=0 and a nonzero
corresponds to the states where two phases coexist in the firgt Here, one clearly observes the pattern characteristic of a
order phase transition. Along this line the thermodynamidirst order phase transition: two minima corresponding to
potential ) has two minima of equal depth separated by aphases of restored and broken symmetry separated by a po-
potential barrier whose height grows toward lower temperatential barrier. The barrier height is larger in the sigma model
tures. At the critical poinC the barrier disappears and the than in the NJL model, thus indicating a weaker first order
transition is of second order. The other lines in Fig. 1 aregphase transition in the NJL model. It now follows that some-
spinodal lines which constrain the regions of spinodal instawhere in between these two extremes, for sqmendT,,

bility where (dng/du)+<0. Information about the time there exists a critical point for a second order phase transi-
scales of this instability is important for dynamical simula- tion. Indeed, this point is found and shown in Fig. 1. The
tions[4,5,16,23,24 corresponding values arel {,u.)=(99,207) MeV in the

It is instructive to plot the thermodynamic potential as asigma model, and T.,ux.)=(46,332) MeV in the NJL
function of the order parameter for various valuesToat — model. The behavior of the thermodynamic potentialuat

A. Phase diagrams
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wn wn

i} [ Ll

w w)

2 4007 @ 400

= =

5 i &

» 2007 @ 200

= L =
ol 0 . . .
0 50 100 150 200 250 0 100 200 300 400

TEMPERATURE [MeV] TEMPERATURE [MeV]

FIG. 6. The sigma mastsolid line) and pion masgdashed ling in the sigma modelleft) and NJL model(right) as functions of
temperature foje =0 (right pain and for u= u. (left pair.
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FIG. 7. The sigma magsolid line) and pion masgdashed lingin the sigma mode(left) and NJL mode(right) as functions of chemical
potential forT=0 (right pain and forT=T, (left pair.

=u. and variousT is shown in Fig. 4. One can see that the point for a second order phase transition. This means(hat
potential has only one minimum which is flattest at the criti-nas zero curvature at this point. Itis, however, not clear what
cal point. the sigma mass should be at the critical point in the NJL
model where the quark condensatg) is the order param-
B. Effective masses eter. Figure 6 indeed shows that the sigma mass is zero ex-
Now let us consider the model predictions for the effec_actly gt the critical point in the sigma_l model. This is not the
tive masses. The constituent quark mass is shown in Fig. 5 &€ in the NJL model, at least within the RPA used here.
a function ofT and u. These plots, of course, show the same N Fig. 7 the masses are plotted as a functionudor T
phase structure as discussed abovexAtO in both models =0 andT=T.. For T=0 one clearly sees discontinuities in
the quark mass fa”s Smoothly from the Correspondinghe behavior of the masses, characteristic of a first order
vacuum value and approaches zerd apes to infinity. One  phase transition.
could define a crossover temperature as corresponding to a An interesting point is that, in the linear sigma model,
steepest descent region in the variationMf This again  there is no stable phase with heavy quarksTfer0, i.e., the
gives a temperature of about 140-150 MeV for the sigmajuark mass assumes its vacuum value all the way up to the
model and about 180—190 MeV for the NJL model. ARt chiral transition, and then drops to a small value in the phase
=0 and nonzerq: the constituent quark mass shows a dis-where chiral symmetry is restorésee Fig. 7. This behavior
continuous behavior reflecting a first order chiral transition. is related to the appearance of a bound state at zero pressure.
The sigma and pion masses for variolisand x are  Within the linear sigma model this “abnormal” bound state
shown in Figs. 6 and 7. In both models the sigma mass firsivas found by Lee and Wick a long time af22]. Recently,
decreases smoothly and then rebounds and grows again iatvas shown in Ref[19] that a similar bound state appears
high T. The pion mass does not change much at temperaturegso in the NJL model. This behavior, however, depends on
below T, but then increases rapidly, approaching the sigmahe values of the coupling constamter G. For our choice of
mass and signaling the restoration of chiral symmetry. Atg and G, this behavior is more pronounced in the linear
large T the masses grow linearly with increasifig'see the sigma model(see Fig. 5. In general, if the coupling constant
AppendiX. The u= u. case is especially interesting in the is sufficiently large, the attractive force between the constitu-
sigma model. Since the sigma field is the order parameter &#nt quarks becomes large enough to counterbalance the
the chiral phase transition, its mass must vanish at the criticdfermi pressure, thus giving rise to a bound state. To demon-

3 : 3 400F ]
= ; =
8 300 2
9 : % 300F 3
= F b= A . 3
& E = E A E
] F & 200F | 3
) E - E h ]
= : = i ' E
7 : % 100F \ E
=z E z 3 \ E
(@} E O E AN
(@] E (&) £ e~
of . . . ; ok . . = ]
0 50 100 150 200 250 0 100 200 300 400
TEMPERATURE [MeV] CHEMICAL POTENTIAL [MeV]

FIG. 8. The constituent quartantiqguark mass as a function of temperature for zero chemical potefigfi) and as a function of
chemical potential for zero temperatureght) in the sigma model. The solid line represents the masg fo4.5, the dash-dotted line for
g=3.3, and the dashed line fgr=2.8.
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FIG. 9. The entropy per baryon numb8fA for the sigma mode(left) and the NJL modelright). In the sigma model the curves
correspond tdfrom left) S'/A=[28,21,17,13,11,9,6]2In the NJL model the curves correspond(tmm left) S/A=[22,16,11,8,6,5,3]1

strate this we have varied the coupling constgrfor the  point of the phase transition curve is not identical with
sigma model within reasonable limits. (0,M,9 but is rather close to it. Therefore, the adiabats that
The results for the quark mass are shown in Fig. 8. It ishit the phase transition curve also have to bend away from
seen that, indeed, one can change the smooth crossover fiie critical point and approach the end point of the phase
w=0 into a first order transition by increasing the couplingtransition line afT=0, i.e., T decreases and increases.
constant(Fig. 8 left panel and change the first order transi-  This behavior is quite opposite to the case underlying the
tion in the case off =0 into a smooth crossover. In this way claim in Ref.[6], where the hadronization of a large number
a heavy quark phase comes into existence as the coupliraf quark and gluon degrees of freedom into relatively few
constant is decreased and the bound state disap{fégrs8  pion degrees of freedom leads to the release of latent heat
right panel. An analogous investigation for the NJL model and consequently to a reheatifigcrease ofT) through the
leads to similar results. phase transition. Remember, however, that in our case there
is actually no change in the number of degrees of freedom in
C. Adiabats the two phases. The change is only in the respective quark

. . . . . h i “f ing” effect in th
Regarding hydrodynamical simulations the entropy perrnasses Consequently, there is no *focusing” effect in the

. : . : . linear sigma and NJL models.
baryonS/A is an interesting quantity. One can easily calcu- On the other hand, the behavior of the adiabats in Fig. 9 is
late it using standard thermodynamic relations, ’

quite typical for an ordinary liquid-gas phase transition. Here
S e+p—pun liquid and gas are represented, respectively, by chirally sym-
—=3——, (29 metric and broken phases. This analogy was further elabo-
A n rated in Ref[19].

wheree, p, andn are, respectively, the energy density, pres-
sure, and net density of quarks and antiquarks 8ng). By
studying this quantity, one can check if there is a tendency We investigated the thermodynamics of the chiral phase
toward convergence of the adiabats toward the critical pointransition within the linear sigma model coupled to quarks
as was claimed in Ref6]. If this was the case it would be and the Nambu-Jona-Lasinio model. These models have
easy to actually hit or go close to this point in a hydrody-similar vacuum properties but treat the contribution of the
namical evolution. Figure 9 shows the contoursSbA inthe  Dirac sea differently. In the sigma model this contribution is
(T,u) plane calculated in the sigma mod#dft) and in the  “renormalized out” while in the NJL model it is included
NJL model(right). We actually observe a trend that is quite explicitly up to a momentum cutofi. By comparing ther-
opposite to this expectation. It turns out that the adiabats turmodynamic properties of these two models one can check
away from the critical point when they hit the first order the importance of these vacuum terms. In both models, for
transition line and bend toward the critical point only whensmall bare quark masses, we have found a smooth crossover
they come from the smooth crossover region. This is exfor nonzero temperature and zero chemical potential and a
plained as follows. First, note that all adiabats terminate afirst order transition for zero temperature and nonzero chemi-
zero temperature and= M, i.e., the {T,u) combination cal potential. The first order phase transition line in the
corresponding to the vacuum. The reason is thaTasO  (T,u) plane ends in the expected critical point. It has been
alsoS—0 (by the third law of thermodynamigstherefore, found that ther mass is zero at the critical point in the sigma
for fixed S/A we have to require that— 0, which is fulfiled  model whereas in the NJL model it always remains nonzero.
when u=M,,.. For our choice of parameters, in the sigmaThe behavior of the adiabats in both models shows a pattern
model the point T, «) = (0,M,J is also the end point of the opposite to the expectations for the chiral/confinement tran-
phase transition curve at=0, since the phase transition sition of [6]. In fact, the phase transition found in these two
connects the vacuum directly with the phase of restored chimodels turned out to be of the liquid-gas type. However, the
ral symmetry; cf. Figs. 5 and 8. For the NJL model, the endstrength of this phase transition depends significantly on the

V. CONCLUSIONS
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coupling constants of the models. From the comparison we v [Tt 2 1
conclude that the phase transition pattern is generally weaker — Qq(T,u)=— —qz mT‘%L FTZ’MZJF 1—2,u4 . (A2)
in the NJL model than in the sigma model. This is mainly 2m

due to additional vacuum terms discussed above. Certainly, it . .
will be interesting to use both models in hydrodynamicaIThe quark number and entropy densities for massless fermi-

simulations in order to confirm or disprove possible obseryONS are obtained by differentiatin@o(T, ») with respect to
able signatures of the phase transition discussed in the intrét @nd T, respectively,
duction. In particular, the sigma model, which contains dy-

namical o and pion fields, would be suitable to study the _ Va2 3
! ! ” n=——(mTu+ , A3
long wavelength enhancement of thefield at the critical 6772(7T wt ) (A3)
point. Such simulations are in progress.
vg (7 3, 27,2
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from Eq. (7), one arrives at the following asymptotidV(
In the chirally symmetric phase the constituent quam  —0) expression for the pion and sigma masses:
tiquark massM is small; it goes to zero in the chiral limit.
Therefore, it is instructive to evaluate the thermodynamic

potential (T, «,M) for small M. In this limit ;4 can be
represented as a power seriesMn Below we give explicit

expressions for the sigma model. Taking into account thaj shows that deep in the chiral symmetric phase the pion and
Qqq is an even function oM, one can write sigma masses are degenerate and large. At high temperatures
) (T>w), M, =M_,=gT, whereg~3 in our calculations.
I Qqq Therefore, the contribution of pion and sigma excitations to
IM?2 the thermodynamical potential is suppressed by the Boltz-
(A1) mann factore Mo/T=g9,
In the case of the NJL model the above expressions are

Here the first ternf)o(T, 1) =Q44(T,1,0) can easily be cal- slightly modified due to the finite cutoft in the momentum

92Q

m (AB)

M=0

APPENDIX

T2 MZ

2_M2_ 2
MI=Mi=¢g Vq(

MZ
Qg T, M) =0T, )+ —

M=0

culated for arbitraryT and w. The well-known result is integration.
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