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Coupling between fragment radial motion and the transversal degrees of freedom in cold fission
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The tunneling of a quasibound dinuclear system along the main radial mode is studied for the case of cold
fission when the very small excitation energy present in the decaying system is distributed among molecular
type transversal collective degrees of freedom. Such a collective mode has typical oscillation periods much
smaller than the tunneling time of the main radial mode and, therefore, we discuss various approaches that are
suitable in dealing with this problem. The modified penetrabilities are obtained at first by solving the coupled
set of Schrdinger equations in the adiabatic and the diabatic approximations. The comparison with the
one-dimensional penetrability is done also in the frame of the Feynman path integral formalism for a very large
inertial mass and small transversal vibrations frequency. In all cases the coupling of thdisaitigl mode to
the transversal degrees of freedom leads to a change in the tunneling probability that is, however, not so strong
to determine significant variations in the fission lifetime.
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[. INTRODUCTION energy present in the system, it appears that during tunneling
the main degrees of freedom that are interfering with the
Recent years have testified to an increased interest in tir@dial motion are the bending vibratiohd/ore specifically
experimental investigation of the cold fission process usinghe fission path, or the most probable escape trajectory that
large Ge detector arrays, such as Gammasphere and Euf®inimizes the actior$ is centered around the symmetry axis
gam. These setups enable the identification of gamma ray& both fragments such that the penetration is maximized
from individual fission fragments of rare processes such akLO]. Displacements perpendicular to the radial direction are
cold binary and ternary fragmentations 8f°Cf through  stable.
triple gamma coincidence techniqii¢]. As a result, the In this paper we consider the.pla.nar motion of a dinuclear
yields for cold binary and ternary fission were extracted fromsystem, formed from the clusterization of the mother nucleus
intensities ofy rays emitted during the deexcitation of pri- >>-Cf in two fragments and solve the Sckinger equation
mary fragment$prior to the emission of neutronsBased on of the radial mode, with account of the transversal vibrations,
a cluster model in which the tunneling is treated only along dn the one- anch-coupled-channels case assuming an adia-
single coordinate, i.e., the radial oftae effect of fragments batic and a diabatic coupling, respectively, between these
deformations is included in the poteniiah partially satis- degrees of freedom. A path-integral approach allows us, un-
factory agreement with the experimental data for the binanger certain approximations, to obtain in closed form the total
cold fission of5°Cf has been obtain€®]. penetrability without being forced to truncate after a definite
Data have also been reported on the spin distribution ofumber of channels like in the coupled-channel case. We
the fission fragments, the first data on rotational states popurésent numerical calculations of the penetrabilities taking as
lation in the cold fission of%’Cf being published in Ref3]. ~ @n example the experimentally observed cold splitting of
Moreover, the average angular momentum for the primary -Cf in two deformed even-even clusters.
fission fragments was extracted for different charge splits
Towards the cold fission limit, i.e., for very small excitation II. FISSION DYNAMICS OF THE DINUCLEAR
energies, the experimental data for even-even fragments, MOLECULE
which are providing very small values of the angular mo- o .
menta, were compared with the results of a theoretical Like in previous paper$2,3,5 we adopt a clustemo-
model, which assumes the formation of the angular momer/€culan model to describe the.blnar.y fission. In this model
tum at the scission point, before the system enters in thE'e fragments are preformed in their ground states, or very
penetration regimg5]. The mechanism responsible for the ¢l0Se to it, and together they are trapped in a quasi-bound
generation of angular momentum in low-energy fission, acState, as a consequence of the mterplay of heavy-ion nuclgar
cording to the above-mentioned reference and older studigd"d Coulomb forces. The breakup of this two-body system is
[6,7] are the bending vibrations. Unconstrained rotations ofieéscribed as the decay of a metastable state from the molecu-
the fragments before the tunneling is terminated seem to b@" Pocket to the Coulomb continuum. _ _
unlikely in view of the high barriers in the direction perpen- ~ Similar to Ref.[5] we assume that the motion of the fis-
dicular to the fission axis. A very recent model of angular
momentum generation in which fragments are allowed to
evolve as individual rotators before the fragments are run- ‘The g vibrations of the fragments are rather weakly coupled to
ning in the reciprocal Coulomb field, overestimates sensithe relative motio{9] and, therefore, are neglected in our further
tively the experimental valug8]. Due to the low excitation considerations.
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whereLiniéi is theith fragments angular momenté, is
the angle between the fission axis and the symmetry axis of
the fragment, andJ; is its moment of inertiasee Fig. 1
The coordinate describing the fission mode in a molecular
model is the interfragment distanBethat is analogous to the
elongation variable in a hydrodynamical model of spontane-
ous fission11].

Upon quantization(see for details, Ref.12]) we obtain
the following expression for the kinetic-energy operator:

FIG. 1. Dinuclear nonaxial geometry in cold fission: The sym- . h2 52 n2 92 B2 92
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As one can see the coupling between the three degrees Wfe, therefore, deal with a multidimensional quantum system,
freedom is manifest. At this level some approximations carin which the coordinat® is singled out asollectivebecause

be done. First of all one has to note that in our cluster modek describes the relative nuclear motion. The other two coor-
the initially quasistationary state is confined inside a m°|eCUdinatesel(2) are usually calledntrinsic.

lar pocket, limited on the left at approximately 13.5 fm by a
highly repulsive wall arising from the compression term in

the potential and on the right at approximately 14.5 fm bynuclear molecule is taken according to our previous works
the Coulomb barrier. This fact can be visualized.in Figs.(see[13]’ for examplg: A heavy-ion double folding integral

2—4. In Fig. 2, where we display the contour lines in radial-Where the effective nucleon-nucleon force is a sum of isos-
angular variablesR— 6= 6, = 6,) of the fragment-fragment calar and isovector M3Y and zero-range pseudoexchange in-
potential, which is defined below, a molecular pocket isteractions. In order to cope with the compression effects of
clearly developed in the direction #f=0. This case corre- the overlapping density a phenomenological repulsive poten-
sponds to the so-calledose-to-noseconfiguration when tial was simulated by folding two density profiles with small
fragments are aligned along their symmetry axes. As one cadiffuseness with a short-range effective forg®4]. This

see in Figs. 3 and 4, the minimum corresponding to the moshort-range repulsive force is proportional to the overlapping
lecular pocket is also the deepest one, the other minimagolume. The strength of the repulsive term is fixed by requir-
located off the symmetry are too high to accommodate metgny that the first resonant state in the molecular potential
stable states of energy close or equal to the reaQigalue. pocket coincides with the position of th@ value. We then

In the above-mentioned range Bfvalues, we have always btai lecul ket th d |

Ji<uR?. Consequently, we expand the Hamiltonian in pow—O tain a molecular poc et.t at accommo .ates only one reso-
ers ofJ, / uR?. In the first-order approximation, i.e., neglect- Nance: This requirement is consistent with our assumption
ing all terms directly proportional to(R?) ~2 or higher or- that the cold fission is similar to the cluster radioactivity and

The interaction between the nuclei composing the di-

der, Eq.(2) rewrites a decay[15] and also agrees with the experiment that ob-
serves at infinity the emerging fragments with a maximal

~ h? 9 h? Jp | & kinetic energy that is equal to tii@value. The double-folded
T 2w gr? 231\ uR? 42 potential is computed by making a general multipole expan-

1 . . . . .
sion for two nuclei with distanc® between their centers of
h? J, \ #* K% &P mass and orientation given by the angtas defined above
— 15| —=+— . i
23, wR g2 uR? 96196, (4)  (see the geometry of Fig)1
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FIG. 4. The one-body potential for the cold splittirfg?Cf
—148Ba+ 1040 when 6,=6,=0° (thick-full curve), 6,=6, 212
1 1

=45° (thick-dotted curvg and ;= 6,=90° (thick-dashed curvye !
The thin-full line at energy 214.41 MeV corresponds to the decay 0 5 1001520

energyQ. The strength of the repulsive term was adjusted such that 9 (degrees)
th.?hﬂrSt resonant state in the pocket alafig=0,=0° coincides FIG. 5. Sections of the total potential along the transversal di-
with Q. rection (¢ axis) for different values oR.

A. Adiabatic approximation

—u 0
¢ 2(R)

V(R O,,0)= 3 am v
S V2N 1) (20, 1)

XY)\l,u( 0110)Y)\2f,u.( 0210)' (5)

The solution of the full quantum-mechanical problem in
the variables#=(6,,6,) andR,

(T+V)¥(6,R)=EV(6,R), @)
In Fig. 4 we plotted the total potentighuclear-Coulomb
for a selection of relative orientation angles. From the in-can be written by means of an expansjd6]
spection of Fig. 4 one can infer again that the lowest barrier
is obtained wherg; = 6,=0. Such an energetical argument _ ‘5. NNy
supports the idea that the most likely fission trajectory in the (e, R)_r%z Unyn,( 01,62, R)v,"*(R), (8)
binary case follows the path along the symmetry axes of the
two fragments. As we had mentioned in R€] the di-  based on the local adiabatic vibrational eigenfunctions
nuclear system is stable against small nonaxial fluctuatlone‘un +.(8:R), depending parametrically on the tunneling coor-
; : ; ; 1M2
which most likely are responsible for the formation of the dinate R, and the quasistationary wave functiom%l”Z(R)

fragments spins. Thence, for such small fluctuations, the po- . . :
tential in the region that is essential for tunneling can bedescribing the fission mode. The eigenvalue problem of the

expanded in the powers of the anglgs,, bound motion reads

V(R,6;,0,)=V(R,0,0)+ 3C1 67+ 3C,605+ C1,6, 65, Huin( 0,R)Un n,(6:R) =80 n,(R)Un n (BR),  (9)
(6)
, _ whereH,,(8,R) is given by
where the expressions @, andC, (the fragment bending
stiffnesg and C,, (the coupling constaptare also given in 2 2 B2 R
Ref. [5]. Ayp(OR) = — o — — = —
2By 992 2B; 965

The justification for such an approximation in the barrier
region can be easily done by taking slices of the total poten-

tial in the direction perpendicular to tHe axis. As one can N ht P et icia
see in Fig. 5, for small angles the potential in the perpendicu- uR2 30100, 2 17 ez Az
lar direction can be reasonably approximated with a har- 10

monic curve. However, when the second turning point is

reached aR=16 fm the potential becomes almost flat and_l_h . | f this Hamiltoni labeled by the h
the harmonic approximation no longer seems to be satisfac- € .e'gemﬂ"‘ ?es 0 tIS aml boman a(rje abeled Dy the har-
tory. Thus, when the dinuclear system leaves the barrier, th@ronic oscillator quantum numbeng andns,

fragments are no longer constrained in the perpendicular di- 2 1

rection by a “bound” potential and are rotating under the R=S 20.(R (n-+ _) 11
action of the Coulomb torque. enyny(R) izl (R m*3 ) A
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FIG. 7. Radial impulse of the dinuclear system as a function of
the interfragment distance. The main picture describes the evolution
of P up to the moment when it reaches its asymptotic value. In the
inset we magnified the evolution &g only in the barrier’s region.

FIG. 6. Bending vibrations energfll) as a function of the
radial coordinate in the barrier region.

where(}, ,) can be also found in Eq27) of Ref.[5] and the

eigenfunctions are one-dimensional harmonic oscillators, . B . .
The dependence @fnlnz on R for different pairs of quantum fevel Sp??mgk”i”é(R)_ 8.”1”2(R)| [18]. Under semiclassi-
numbers 6, ,n,) is given in Fig. 6. The asymptotic limits of cal conditions the derivativé/(JR) extracts the reduced mo-

Snlnz(R) as R— should be in principle sums of nuclear mentumPg/%. Hence the condition necessary to neglect the

t the right-hand side of E@.2) is that
bending vibrations energy. In the present case they will trans-erms on the right-hand side of E2) is tha

form in rotational energies after the second turning point Viv(R)
when the system is free to rotate.

Substituting Eq(8) in Eq. (7) and using Eq(9) we arrive enn(R)—gnn.(R)
at a set of coupled equations for the translatioffisision 12 re
wave functions similar to the one considered in the past b
other author$17],

<uniné|ﬁ/((yR)|un

1N2

<1. (14)

Xonsequently, the matrix eIeme(uniné|&/(aR)|unln2> has
the magnitude of the inverse of a distani related to the

B2 o2 rate of change oﬁnln2 with R. Second, the level spacing
nq{n
_ﬂ_aRz"i_V(R)"i_Snlnz(R)_E v, b2 |&nin,—€nn,| May be used to define aR-dependent fre-
quency component of the bending motimp,iné_,nlnz(R).
=Y xnlnziJrYnlnz ning (12) Thus the above inequality can be reduced to
~ \ TR gny )T
| R0y nyn,(R0(R)[>1, (15)

where
showing that the time required to travel the distadte at

NNy h? d velocity v(R)=1/uPg must be sufficiently large to allow
N o Uniny 55 |Unin, /> many periods of the bending motion. _ o
According to Eq.(15), deviations from the adiabatic limit
52 2 are expected to increase in importance for
Y:}:fzz_<uniné — un1n2>- (13 (i) small 6R=1/(uq:n| 9/ (9R)|un,n,) implying a rapid
2 H JR change in the composition of the bending oscillations wave
function,

The set of equation§l2) provides the fission dynamics in
the adiabatic representation, all coupling terms being due to
the fission-mode kinetic energy. One should note that thésning_gnlnzL and

(i) small wninéﬂnlnz(R), implying a small level spacing

channels that differ by an odd number of phonons, né., (iii) large v(R), implying a high fission velocity in the
=n*=1n=*=3,..., are notcoupled. From the two types of tunneling region.
M2 the tunneling region, where the radial momentBgrreaches

most important, particularly as the decay energy increasegy, to 29 from the asymptotic value. This was expected be-
because the derivativé/(JR) generates a term proportional cayse in the cold fission the prescission kinetic energy is

to the radial(fission momentumPg. The physical signifi-  3imost nil[19]. The radial momentur®g was determined by

cance of the nonadiabatic terms can be understood by Cofrst solving the one-dimensional time-dependent $chro

sidering the relative magnitudes|O(n}nf(R)a/(aR)| and the dinger equation TDSE) for the variableR as described in
12
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Ref. [20] and then computing the expectation value of the 035 — L
operator—id/dR at different moments of time. However, a — m=01,=0.n ;=2.n ;=0 /
departure from the adiabaticity conditiéts), in conjunction = **| = m=0.n=0.n ;=0,n =2 7 s
with (ii), occurs when the dinuclear system approaches thez os| =" 7=01=21,=2.1,=2 /o]
end of the tunneling region. This can be easily seen in Fig. 8 vt mE2mp=0.0,=2n0=2 P
where the validity of Eq(15) is studied in the barrier’s re- 22 02 ]
gion. For the momentum we take the average value extracte: 1

from Fig. 7. s | ]

As for the lifetime of the resonant state in the radial one- “35 nifl
dimensional potential, we obtain in the frame of the above-%
mentioned TDSE, for the splitting®Cf— 48a+ %Mo, = o005}
T1,=1.3x10 ¥ s. On the other hand, the calculated period

o 00
of transversal oscillations ﬁlwninéﬂnlnz(R) ranges be- 146 148 150 152 154 156 158 160

tween 3x 10 %! and 2x10™?° s, and, therefore, the above- Rt
mentioned request that several oscillations are taking place g g The range of validity of the adiabaticity criterion as a

during the tunneling is satisfied. _ _ function of R for the “molecular” transitions (20)-(00), (02)
Accepting that the tunneling motion is well described in _, o0, (22)—(20), and (22)-~(02). At the left end of the barrier
the adiabatic approximation the system of equatid2swill  the criterion is safely fulfilled whereas at the right end it is less

be decoupled. The additional potentig| , (R) corrects the  satisfactory.

one-dimensional potentidl(R) for the changing amount of

energyfrozenin the bending degrees of freedd@i]. Thus, WV (6,R)=2,x;(60) ¢;(R) in the eigenvalue probler8) and

if the transversal degrees of freedom are completely decouaking as eigenvalue the decay energy of the corresponding
pled, the monopolar part of the potential is modified only bycold fission reaction, we get the set of coupled-channels

a constant term. equations
A further improvement of this approximation may be ob-
tained by the distorded-wave Born approximati@WBA) h? 52 .
of Eq. (12). Following Refs.[16,22] some simplifying as- - ﬂﬁ“L[V(R)_Q]‘f’i:_Ej: (xilHuilxi) b -
sumptions can be made. As can be noticed from Fig. 4, es- (17)

sential for the description of the penetration through the bar-
rier is the region between the two turning poin®,( and  Under certain assumptions it is possible to simplify signifi-
Ri,) where the decay energ® is intersecting the barrier. cantly this set of coupled-channels equations. In what fol-
Then in the DWBA one can generalize the penetrabilitylows we assume that the coupling interaction occurring in the
given in Eq.(30) of Ref.[16] as a function of the adiabatic right-hand side of Eq(17) factors into a relative part, evalu-
one from one transversal degree of freedom to two degreested at the position of the unperturbed one-dimensional bar-
of freedom, rier (R=Ry), and an intrinsic partsee Ref[23] and refer-
ences therein

2

2
h ~
Powea=Padaf 1-7 > (nZ+n+1) <Xj|Hvib|Xi>Esij5ij+k§_:l Fr(Ro)(x;|Gk(0)] xi). (18)
i=1 -
dinn\2 In our case when the fission mode, described by the coordi-
( ') nate R, is coupled to two internal degrees of freedom, a
dR quantum state is labeled by the harmonic oscillator numbers

n,; andn,. In this case the formulas are lengthy and eventu-
ally we do not get less insight in the studied phenomenon if
(16)  we limit ourselves to the case of butterfly vibrations that are
a subclass of bending vibrations. Then the small angles
with \i(R)=V3iQ;(R)/74(1-J;/uR?) and the adiabatic and g, are approximately relatei@4],
penetrability is evaluated simply with the Gamow formula.

Ri2
X dR
J Ru \2u(V(R) 800 (R)— Q)

B. Diabatic representation =01~ R, 02, (19
The diabatic representation is obtained by expanding th
total wave function in terms of a set of vibrational wave
functionsy;(#) most conveniently defined as the eigenfunc-
tions of the vibrational HamiltoniaflL0) at R—cc. In view of
the above discussion on this asymptotic point, we chose as 1 _ 1
“infinity” the second turning point of the one-dimensional gn:—th(RW)( n+ —)
barrier in the R variable. Thus substituing the ansatz 2 2

ﬁ/hereRl andR, are the fragments radii along the symmetry
axes. We thus have the following expressions for the various
quantities occurring in the coupling matrig8):

B(R..) . C(Ry)
B(R,) C(R.,)

(20
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tional fission modgis coupled to intrinsic degrees of free-
, (21 dom (transversal modes We define the intrinsic Hamil-

tonian H;,, as the vibrational Hamiltonian from Eq10).

Glo — hin=Ds I DnE )8 This sub-Hamiltonian can be split further into a part
Ot |G(O)[xn) = V(N=1) Gz V(n+1)(n+2) ”'“(+222') HY.(61,6,) that is independent on the collective coordinate

R and the interactiodH (61 ,6,;R) [25],

The meaning of different quantities occuring in the above R R )
formulas is given in Ref[5]. Hing( 01,02) =H2.(61,0,)+ 6H(61,60,5;R).  (27)

For illustration we take three channels into account, e.g.,
n=0, 1, 2. Since according to EqR2) the channel witm
=1 is not coupled to the other two channels, there will be n
scattering of the initiah=0 state on an outgoing state with
n=1 and, therefore, it will not contribute to the total pen-
etrability. Equation(17) can be decoupled by means of a
unitary transformation, as has been pointed out for fusio
processes in Ref23],

C(Ry) B(R.)
C(R.)  B(Ry

1 .-
F(Ry)= 7 fiao(R.)

Jn order to make the problem tractable, we evalule at a
fixed valueR=R,,, which is usually taken to be in the bar-
rier region. UsuallyR, is taken to be the position of the
barier’s top. Thus an expansion in the powerfafroundr,,

r;s performed,

intr

n oH
OHiny(01,607;R)= R (R=Ryp)
R=R

izj Uni<Xj|ﬂvib|Xi>U;ml:}\m5nm- (23 )
i AH s 1 &zﬂintr 2
The two eigenvalues of the matrpy;|Hyip| x;) read +o1l == (R—Ry)
| JR
~ = R=R
N12=fiag(R..) = Vhag(R.,) 2+ 2F2, (24) "
+O[(R—Ry)?]. (28)

Thus every channel is now described by an independent

Schralinger equations, each of effective potentM(R) | e in the previous section we take the case of butterfly

+teothi, vibrations, when the nonaxial vibrations of the fragments
2 g2 composing the dinuclear system are in phase. We obtain the
L _ _ following expressions for the two parts of the intrinsic
+V(R)+e¢(Rp) +Ai(R U;i¢;=0 L, 0 =a AT .
21 gR2 (R)Fe0(Rp) +Ni(Ro) = Q 2 i Hamiltonian in the intrinsic coordinate
(i=1,2. (25
"0 P — h* & 12 >

Then, using outgoing boundary conditions, i.ed, Hinee( 61'92’R)__§3(9_qz+§ @od™ (29)
R—R, X
— t,e*nR the total penetrability can be casted as a

weighted sum of channels penetrabilities calculated at the

shifted energieQ—eq—\;, OHiny(01,02;R)

2 . a? (1 RZ)Z(l 3 (R R))
P(Q)=2, [UiolP(Q~20—\)- (26) R Ry 2Ry, °

- - o> 1| (aC
This procedure can be easily extended to a larger number of X(R=Ry)— + =| | —
channels, the difference being that the eigenvalues and the 9?2 2| \dR R=R,
matrices performing the diagonalization of the coupling ma-
trix are no longer available in a concise analytical form. 1/ 92¢

2\ r2 (R—Ry) [(R=Rp)g?. (30)
C. Path-integral approach R=R,

An alternative way to handle the problem is given by the

path-integral formalisnj23]. The tunneling probability can |ntroducing the creation and annihilation operataranda*

be obtained from the Feynman's transition amplitude, with-for the harmonic oscillator the Hamiltonian becomes
out resorting to the wave function as in the previously dis-

cussed approaches. - ~ aa g PP
As we mentioned earlier, the problem considered in this ~ Hinr=7iwo(a”a+3z)+[f(R)+g(R)](a"a™ +aa)

paper, namely, the coupling between the fission mode and the An

bound transversal degrees of freedom represents a particular —[f(R—-9(R)](2a"a+1), (3D

example of a multidimensional quantum mechanical system

where the main collective degree of freeddthe transla- where
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hoo B R,|?/ R R R p————
f(R):TO—2<1—R—2) (3R——5)<R——1>, 000 | - diabatc
,U,Rb 1 b b ’ ——= one-dimensional
. | C(R) 0.005 .
wqo aJdln <
g(R)= ) = 0,004 S P—
4 JR R=R, °~:N ______
So03E S e .
1 a2C(R)) (R—Ry) | (R=Ry) 0002 i
2R R v .
b 0.001 | i

(32

0.0 | | | | | |
1 2 3 4 5 6 7 8 9 10 11

In the barrier region we checked numerically thgtR) N - number of channels
>f(R), which is mainly due to the large values of the rela-
tive inertia moment, i.e xR2>B. Therefore, we can discard
the terms multiplied byf(R), which are coming from the
vibrational kinetical part of Eq(30). Consequently the form
of the intrinsic Hamiltonian in the second quantization rep-
resentation reads

FIG. 9. Total pene’[rabilit)EPnlnz as a function of the number
of channels\.

studied in this paper the coupling is quadratic in the intrinsic
coordinate but the same inequality seems to work.

As we mentioned above, in the adiabatic case, states with

Hintr:[ﬁz’o+29(R)](é+é—+%)+9(R)(é—+é++é‘é)' lower quantum numbers have larger tunngling probapilit_ies.

(33) According to Ref.[28], where also a coupling quadratic in
the vibrational coordinate is taken, by increasing the cou-

We then obtain a case similar to the example discussed ipling strength, i.e., increasing the oscillations frequency or
Ref. [26] for fusion. We consider the limiting case sfnall  decreasing the mass inertia, and, therefore, moving towards
frequencylarge inertia when we letwo—0 and B—o, the adiabatic limit, the most probable quantum state for the
which is approximately true when we approach the end ofransmitted wave is the ground state. This is also in agree-
the barrier(see, for example, Fig.)fsimultaneously with ment to the result obtained in the present paper.

Bao=fixed. Accordingly, the penetrability for a given en- __The diabatic coupling will provide values of the penetra-
ergy can be put in the following vivid integral form for a bility that are smaller as compared to the case when the main

iven decav enerak26 coordinate is not coupled. In Fig. 10 we plotted the penetra-
g y 0b26] bility computed with the help of Eq26) for different chan-
nels. Forn=4 we computed the eigenvalues and the ele-

1 0
= o) - dxe PPJ[E,V(R)+x°g(R)], (34  ments of the unitary matri&) numerically. Figure 10 reveals
m the increase of the penetrability with the number of channels
like in the adiabatic and DWBA approaches. The eigenchan-
nels with effective energie® —eo—\; above the barrier’'s
maximum were excluded from the su(@6). After taking

Il NUMERICAL RESULTS into account eight channels we obtained a stable value of the
' penetrability.

In Fig. 9 we give the total penetrabilities in the adiabatic For the barrier position we chose the unperturbed value,
(Padiap @nd in the DWBA Ppwea) cases compared to the
one-dimensional penetrabilityPg) . We take into account up
to four phonons, i.e., the maximum allowed excitation en-
ergy is e5,. According to Fig. 6 the maximum ok, 0.00045 - 1
<6 MeV, i.e., it is in the vicinity of the neutron-emission
threshold as one should have for the cold-fission reaction. IrS , 004 | |
comparison to DWBA the adiabatic approximation overesti-
mates the penetrability. One has to stress that the adiabat
approximation provides a correction of the penetrability only §
due to the zero-point energies of the transversal modes. It~
both cases the channel penetrability is reduced with increas  0.0003 .
ing n4,Nn, but the total penetrabilitﬁnlnzPnlnz will be larger
as compared to the one-dimensional case. In connection witl  ¢.90025 I I I I
this result one should recall the work of Brirék al. [27] !
which states that the penetrability computed for a Hamil-
tonian in which the intrinsic coordinate enters linearly in the  FIG. 10. Penetrability26) as a function of the number of chan-
coupling term satisfies the inequaliB< P yiap. IN the case nelsN.

+

P

wherePy is the one-dimensional penetrability in the variable
R.

0.0005

rabp

net

0.00035 | b

5 7 11
N - number of channels
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218 IV. SUMMARY AND OUTLOOK

The main result of this paper is that in cold fission the
coupling of the radidfission mode with the transversal mo-
lecular degrees of freedom tends to modify the penetrability.
In the adiabatic, DWBA andgmall frequencylarge inertia
approximations the penetrability is increased as compared to
the radial one-dimensional cases whereas in the diabatic it is
lowered. However, we stress that these modifications are
2 within the same order of magnitude and, therefore, are not
""" . N affecting the lifetimes in a sensitive manner.

The fact that the tunneling time in the radial coordinate is
larger by two orders of magnitude in comparison with the
oscillation period of the transversal modes, enables us to
R (fm) apply the adiabatic Born-Oppenheimer approximation. In the
adiabatic case the calculations are revealing a slow decreas-
ing of the penetrability with the transversal oscillations quan-
tum numbers. In the diabatic case we observe the same trend,
i.e., the increase in the number of channels taken into ac-
(0] .
count leads to a larger value of the penetrability. As we saw,
the adiabatic approximation is less suitable when the tunnel-
, , . ing path approaches the second turning point due to the
.e., Ry=15.3 fm, whereas for the asymptotic value, !'e"?radual disapearence of the transversal barrier.
when the bending regime breaks down and the vibrational' o cerming the above-mentioned aspect, i.e., that a large
energy is transferred into rotations, we toBk=16 fm,  ,nher of oscillations takes place during the tunneling mo-
which is very close to the right end of the barri@econd  ion e would like to stress upon the fact that this makes
touching poin}. . . _ possible the detection of these molecular-like collective

In order to see which range for tlxevariable, occurring in states byy deexcitation. As we saw in a previous paps}

the integral formuld34), is gssential, we draw in Fig. 11 the 0 40c0unt of these degrees of freedom is essential in estab-
effective potentialV(R) +x“g(R). As one can see for in- lishing the fragments angular momentum.

creasingx the barrier becomes thicker and higherzand, there- |t is also worthwhile to mention that in the case of cold
fore, the one-dimensional penetrabiliBe[ V(R) +x°g(R)]  fysjon the coupling of the incident chanel to other channels
decreases. The integrand will be even more damped due {0, moify the barriers and lead to an enhanced fusion cross
the presence of the gaussian exponential €xp). For  gsoction helow the barrier. However, in that case the coupling
values ofx larger than a certair,,, where the minimum of ot the main tunneling mode, is made with degrees of free-
the potential intersects th@-value line,Po=0, because no gy other than the one considered by us in the case of cold
metastable state of energycan be accomodated. Thus, the fission. Moreover, the fragments considered in the present
value of the integral can be safely determined Xan the  aper are sensitively deformed contrary to the case of fusion

range[0,1.9 for the given case. We get th&(E)=5.94  \yhen the projectile is spherical or only weakly deformed.
X102 as compared td®,(E)=2.28x10 3. Therefore, in

the path integral approaqh, Il_ke_ in the adiabatic and DWBA ACKNOWLEDGMENTS

treatments, the penetrability is increased as compared to the

spherical case if we include several channels in the calcula- One of the authoréS.M.) would like to acknowledge the
tion. One should mention that ttsenall frequencylarge in-  financial support from Alexander von Humboldt Stiftung. We
ertia is found at the other extreme in respect to the adiabatiare also grateful to Dipl. Phys. W. Krause for technical
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FIG. 11. The effective potentil(R) +x2g(R) occurring in the
integral formula for the penetrabilit{34) for different values ok.
For increasing the barrier, i.e., the region bounded by tQesalue
line and the potential, increases in height and width leading thus t
an exponential decrease in penetrability.

case that corresponds to large frequen{23s. assistance.
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