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Coupling between fragment radial motion and the transversal degrees of freedom in cold fission
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The tunneling of a quasibound dinuclear system along the main radial mode is studied for the case of cold
fission when the very small excitation energy present in the decaying system is distributed among molecular
type transversal collective degrees of freedom. Such a collective mode has typical oscillation periods much
smaller than the tunneling time of the main radial mode and, therefore, we discuss various approaches that are
suitable in dealing with this problem. The modified penetrabilities are obtained at first by solving the coupled
set of Schro¨dinger equations in the adiabatic and the diabatic approximations. The comparison with the
one-dimensional penetrability is done also in the frame of the Feynman path integral formalism for a very large
inertial mass and small transversal vibrations frequency. In all cases the coupling of the radial~fission! mode to
the transversal degrees of freedom leads to a change in the tunneling probability that is, however, not so strong
to determine significant variations in the fission lifetime.
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I. INTRODUCTION

Recent years have testified to an increased interest in
experimental investigation of the cold fission process us
large Ge detector arrays, such as Gammasphere and E
gam. These setups enable the identification of gamma
from individual fission fragments of rare processes such
cold binary and ternary fragmentations of252Cf through
triple gamma coincidence technique@1#. As a result, the
yields for cold binary and ternary fission were extracted fr
intensities ofg rays emitted during the deexcitation of pr
mary fragments~prior to the emission of neutrons!. Based on
a cluster model in which the tunneling is treated only alon
single coordinate, i.e., the radial one~the effect of fragments
deformations is included in the potential!, a partially satis-
factory agreement with the experimental data for the bin
cold fission of 252Cf has been obtained@2#.

Data have also been reported on the spin distribution
the fission fragments, the first data on rotational states po
lation in the cold fission of252Cf being published in Ref.@3#.
Moreover, the average angular momentum for the prim
fission fragments was extracted for different charge splits@4#.
Towards the cold fission limit, i.e., for very small excitatio
energies, the experimental data for even-even fragme
which are providing very small values of the angular m
menta, were compared with the results of a theoret
model, which assumes the formation of the angular mom
tum at the scission point, before the system enters in
penetration regime@5#. The mechanism responsible for th
generation of angular momentum in low-energy fission,
cording to the above-mentioned reference and older stu
@6,7# are the bending vibrations. Unconstrained rotations
the fragments before the tunneling is terminated seem to
unlikely in view of the high barriers in the direction perpe
dicular to the fission axis. A very recent model of angu
momentum generation in which fragments are allowed
evolve as individual rotators before the fragments are r
ning in the reciprocal Coulomb field, overestimates sen
tively the experimental values@8#. Due to the low excitation
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energy present in the system, it appears that during tunne
the main degrees of freedom that are interfering with
radial motion are the bending vibrations.1 More specifically
the fission path, or the most probable escape trajectory
minimizes the actionS, is centered around the symmetry ax
of both fragments such that the penetration is maximiz
@10#. Displacements perpendicular to the radial direction
stable.

In this paper we consider the planar motion of a dinucl
system, formed from the clusterization of the mother nucle
252Cf in two fragments and solve the Schro¨dinger equation
of the radial mode, with account of the transversal vibratio
in the one- andn-coupled-channels case assuming an ad
batic and a diabatic coupling, respectively, between th
degrees of freedom. A path-integral approach allows us,
der certain approximations, to obtain in closed form the to
penetrability without being forced to truncate after a defin
number of channels like in the coupled-channel case.
present numerical calculations of the penetrabilities taking
an example the experimentally observed cold splitting
252Cf in two deformed even-even clusters.

II. FISSION DYNAMICS OF THE DINUCLEAR
MOLECULE

Like in previous papers@2,3,5# we adopt a cluster~mo-
lecular! model to describe the binary fission. In this mod
the fragments are preformed in their ground states, or v
close to it, and together they are trapped in a quasi-bo
state, as a consequence of the interplay of heavy-ion nuc
and Coulomb forces. The breakup of this two-body system
described as the decay of a metastable state from the mo
lar pocket to the Coulomb continuum.

Similar to Ref.@5# we assume that the motion of the fi

1The b vibrations of the fragments are rather weakly coupled
the relative motion@9# and, therefore, are neglected in our furth
considerations.
©2001 The American Physical Society10-1
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sion fragments is confined within the plane. Eliminating t
c.m. motion and using the angular momentum conservat
the classical Hamiltonian of the dinuclear molecule reads

H5
1

2
mṘ21

1

2 S 1

J1
1

1

mR2DL1
21

1

2 S 1

J2
1

1

mR2DL2
2

1
1

mR2 L1L21V~R,u1 ,u2!, ~1!

FIG. 1. Dinuclear nonaxial geometry in cold fission: The sy
metry axes of the two clusters are making the anglesu1 and p
2u2, respectively, with the axis joining the centers of the two fra
ments forbutterflyconfiguration~upper part! and the anglesu1 and
u2 for the antibutterflyconfiguration~lower part!.
04461
n,

whereLi5Ji u̇ i is the i th fragments angular momenta,u i is
the angle between the fission axis and the symmetry axi
the fragmenti, andJi is its moment of inertia~see Fig. 1!.
The coordinate describing the fission mode in a molecu
model is the interfragment distanceR that is analogous to the
elongation variable in a hydrodynamical model of sponta
ous fission@11#.

Upon quantization~see for details, Ref.@12#! we obtain
the following expression for the kinetic-energy operator:

T̂52
\2

2m

]2

]R2
2

\2

2B1~R!

]2

]u1
2

2
\2

2B2~R!

]2

]u2
2

1
\2

J11J21mR2

]2

]u1]u2

1
3\2

8mR2

~J11J2!~J11J212mR2!

~J11J21mR2!2
, ~2!

where

B1(2)~R!5
J2(1)1mR2

J1(2)~J11J21mR2!
→

R→` 1

J1(2)
. ~3!

-

-

l

FIG. 2. Contour plots inR

2u variables of the total potentia
~5! for the splitting 252Cf→148Ba
1104Mo. The lowest minimum is
found for u50 andR514.2 fm.
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FIG. 3. The potential surface
corresponding of the same case
in Fig. 2. The lowest barrier is en
countered in the directionu50.
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As one can see the coupling between the three degree
freedom is manifest. At this level some approximations c
be done. First of all one has to note that in our cluster mo
the initially quasistationary state is confined inside a mole
lar pocket, limited on the left at approximately 13.5 fm by
highly repulsive wall arising from the compression term
the potential and on the right at approximately 14.5 fm
the Coulomb barrier. This fact can be visualized in Fi
2–4. In Fig. 2, where we display the contour lines in radi
angular variables (R2u[u15u2) of the fragment-fragmen
potential, which is defined below, a molecular pocket
clearly developed in the direction ofu50. This case corre-
sponds to the so-callednose-to-noseconfiguration when
fragments are aligned along their symmetry axes. As one
see in Figs. 3 and 4, the minimum corresponding to the m
lecular pocket is also the deepest one, the other minim
located off the symmetry are too high to accommodate m
stable states of energy close or equal to the reactionQ value.
In the above-mentioned range ofR values, we have alway
Ji!mR2. Consequently, we expand the Hamiltonian in po
ers ofJi /mR2. In the first-order approximation, i.e., neglec
ing all terms directly proportional to (mR2)22 or higher or-
der, Eq.~2! rewrites

T̂52
\2

2m

]2

]R2
2

\2

2J1
S 12

J1

mR2D ]2

]u1
2

2
\2

2J2
S 12

J2

mR2D ]2

]u2
2

1
\2

mR2

]2

]u1]u2
. ~4!
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We, therefore, deal with a multidimensional quantum syste
in which the coordinateR is singled out ascollectivebecause
it describes the relative nuclear motion. The other two co
dinatesu1(2) are usually calledintrinsic.

The interaction between the nuclei composing the
nuclear molecule is taken according to our previous wo
~see@13#, for example!: A heavy-ion double folding integra
where the effective nucleon-nucleon force is a sum of is
calar and isovector M3Y and zero-range pseudoexchang
teractions. In order to cope with the compression effects
the overlapping density a phenomenological repulsive po
tial was simulated by folding two density profiles with sma
diffuseness with a short-range effective force@14#. This
short-range repulsive force is proportional to the overlapp
volume. The strength of the repulsive term is fixed by requ
ing that the first resonant state in the molecular poten
pocket coincides with the position of theQ value. We then
obtain a molecular pocket that accommodates only one r
nance. This requirement is consistent with our assump
that the cold fission is similar to the cluster radioactivity a
a decay@15# and also agrees with the experiment that o
serves at infinity the emerging fragments with a maxim
kinetic energy that is equal to theQ value. The double-folded
potential is computed by making a general multipole exp
sion for two nuclei with distanceR between their centers o
mass and orientation given by the anglesu1,2 defined above
~see the geometry of Fig. 1!,
0-3
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V~R,u1 ,u2!5 (
l1 ,l2 ,l3

4p

A~2l111!~2l211!
Vl1 l2 l3

m 2m 0 ~R!

3Yl1m~u1,0!Yl22m~u2,0!. ~5!

In Fig. 4 we plotted the total potential~nuclear1Coulomb!
for a selection of relative orientation angles. From the
spection of Fig. 4 one can infer again that the lowest bar
is obtained whenu15u250. Such an energetical argume
supports the idea that the most likely fission trajectory in
binary case follows the path along the symmetry axes of
two fragments. As we had mentioned in Ref.@5# the di-
nuclear system is stable against small nonaxial fluctuatio
which most likely are responsible for the formation of t
fragments spins. Thence, for such small fluctuations, the
tential in the region that is essential for tunneling can
expanded in the powers of the anglesu1,2,

V~R,u1 ,u2!5V~R,0,0!1 1
2 C1u1

21 1
2 C2u2

21C12u1u2 ,
~6!

where the expressions ofC1 and C2 ~the fragment bending
stiffness! and C12 ~the coupling constant! are also given in
Ref. @5#.

The justification for such an approximation in the barr
region can be easily done by taking slices of the total pot
tial in the direction perpendicular to theR axis. As one can
see in Fig. 5, for small angles the potential in the perpend
lar direction can be reasonably approximated with a h
monic curve. However, when the second turning point
reached atR516 fm the potential becomes almost flat a
the harmonic approximation no longer seems to be satis
tory. Thus, when the dinuclear system leaves the barrier,
fragments are no longer constrained in the perpendicula
rection by a ‘‘bound’’ potential and are rotating under t
action of the Coulomb torque.

FIG. 4. The one-body potential for the cold splitting252Cf
→148Ba1104Mo when u15u250° ~thick-full curve!, u15u2

545° ~thick-dotted curve!, andu15u2590° ~thick-dashed curve!.
The thin-full line at energy 214.41 MeV corresponds to the de
energyQ. The strength of the repulsive term was adjusted such
the first resonant state in the pocket alongu15u250° coincides
with Q.
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A. Adiabatic approximation

The solution of the full quantum-mechanical problem
the variablesu[(u1 ,u2) andR,

~ T̂1V̂!C~u,R!5EC~u,R!, ~7!

can be written by means of an expansion@16#

C~u,R!5 (
n1n2

un1n2
~u1 ,u2 ;R!vn

n1n2~R!, ~8!

based on the local adiabatic vibrational eigenfunctio
un1n2

(u;R), depending parametrically on the tunneling coo

dinate R, and the quasistationary wave functionsvn
n1n2(R)

describing the fission mode. The eigenvalue problem of
bound motion reads

Ĥvib~u,R!un1n2
~u;R!5«n1n2

~R!un1n2
~u;R!, ~9!

whereĤvib(u,R) is given by

Ĥvib~u,R!52
\2

2B1

]2

]u1
2

2
\2

2B2

]2

]u2
2

1
\2

mR2

]2

]u1]u2
1

1

2
C1u1

21
1

2
C2u2

21C12u1u2 .

~10!

The eigenvalues of this Hamiltonian are labeled by the h
monic oscillator quantum numbersn1 andn2,

«n1n2
~R!5(

i 51

2

\V i~R!S ni1
1

2D , ~11!

y
at

FIG. 5. Sections of the total potential along the transversal
rection (u axis! for different values ofR.
0-4
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whereV1(2) can be also found in Eq.~27! of Ref. @5# and the
eigenfunctions are one-dimensional harmonic oscillato
The dependence of«n1n2

on R for different pairs of quantum

numbers (n1 ,n2) is given in Fig. 6. The asymptotic limits o
«n1n2

(R) as R→` should be in principle sums of nuclea
bending vibrations energy. In the present case they will tra
form in rotational energies after the second turning po
when the system is free to rotate.

Substituting Eq.~8! in Eq. ~7! and using Eq.~9! we arrive
at a set of coupled equations for the translational~fission!
wave functions similar to the one considered in the past
other authors@17#,

F2
\2

2m

]2

]R2
1V~R!1«n1n2

~R!2EGvn
n1n2

5 (
n18n28

S X
n

18n
28

n1n2
]

]R
1Y

n
18n

28

n1n2D vn

n18n28 , ~12!

where

X
n

18n
28

n1n2[
\2

m K un
18n

28U ]

]RUun1n2L ,

Y
n

18n
28

n1n2[
\2

2m K un
18n

28U ]2

]R2Uun1n2L . ~13!

The set of equations~12! provides the fission dynamics i
the adiabatic representation, all coupling terms being du
the fission-mode kinetic energy. One should note that
channels that differ by an odd number of phonons, i.e.,n8
5n61,n63, . . . , are notcoupled. From the two types o

coupling terms appearing in Eq.~12!, X
n

18n
28

n1n2 are usually the

most important, particularly as the decay energy increa
because the derivative]/(]R) generates a term proportion
to the radial~fission! momentumPR . The physical signifi-
cance of the nonadiabatic terms can be understood by

sidering the relative magnitudes ofuX
n8n8

n1n2(R)]/(]R)u and the

FIG. 6. Bending vibrations energy~11! as a function of the
radial coordinate in the barrier region.
1 2
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level spacingu«n
18n

28
(R)2«n1n2

(R)u @18#. Under semiclassi-

cal conditions the derivative]/(]R) extracts the reduced mo
mentumPR /\. Hence the condition necessary to neglect
terms on the right-hand side of Eq.~12! is that

U^un
18n

28
u]/~]R!uun1n2

&\v~R!

«n
18n

28
~R!2«n1n2

~R!
U!1. ~14!

Consequently, the matrix element^un
18n

28
u]/(]R)uun1n2

& has

the magnitude of the inverse of a distancedR related to the
rate of change ofun1n2

with R. Second, the level spacin

u«n
18n

28
2«n1n2

u may be used to define anR-dependent fre-

quency component of the bending motionvn
18n

28→n1n2
(R).

Thus the above inequality can be reduced to

udRvn
18n

28→n1n2
~R!/v~R!u@1, ~15!

showing that the time required to travel the distancedR at
velocity v(R)51/mPR must be sufficiently large to allow
many periods of the bending motion.

According to Eq.~15!, deviations from the adiabatic limi
are expected to increase in importance for

~i! small dR51/^un
18n

28
u]/(]R)uun1n2

& implying a rapid

change in the composition of the bending oscillations wa
function,

~ii ! small vn
18n

28→n1n2
(R), implying a small level spacing

u«n
18n

28
2«n1n2

u, and

~iii ! large v(R), implying a high fission velocity in the
tunneling region.

In Fig. 7 we illustrate that~iii ! is indeed not satisfied in
the tunneling region, where the radial momentumPR reaches
up to 2% from the asymptotic value. This was expected
cause in the cold fission the prescission kinetic energy
almost nil@19#. The radial momentumPR was determined by
first solving the one-dimensional time-dependent Sch¨-
dinger equation~TDSE! for the variableR as described in

FIG. 7. Radial impulse of the dinuclear system as a function
the interfragment distance. The main picture describes the evolu
of PR up to the moment when it reaches its asymptotic value. In
inset we magnified the evolution ofPR only in the barrier’s region.
0-5
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Ref. @20# and then computing the expectation value of t
operator2 i ]/]R at different moments of time. However,
departure from the adiabaticity condition~15!, in conjunction
with ~ii !, occurs when the dinuclear system approaches
end of the tunneling region. This can be easily seen in Fi
where the validity of Eq.~15! is studied in the barrier’s re
gion. For the momentum we take the average value extra
from Fig. 7.

As for the lifetime of the resonant state in the radial on
dimensional potential, we obtain in the frame of the abo
mentioned TDSE, for the splitting252Cf→148Ba1104Mo,
T1/251.3310218 s. On the other hand, the calculated peri
of transversal oscillations 2p/vn

18n
28→n1n2

(R) ranges be-

tween 3310221 and 2310220 s, and, therefore, the above
mentioned request that several oscillations are taking p
during the tunneling is satisfied.

Accepting that the tunneling motion is well described
the adiabatic approximation the system of equations~12! will
be decoupled. The additional potential«n1n2

(R) corrects the

one-dimensional potentialV(R) for the changing amount o
energyfrozenin the bending degrees of freedom@21#. Thus,
if the transversal degrees of freedom are completely dec
pled, the monopolar part of the potential is modified only
a constant term.

A further improvement of this approximation may be o
tained by the distorded-wave Born approximation~DWBA!
of Eq. ~12!. Following Refs.@16,22# some simplifying as-
sumptions can be made. As can be noticed from Fig. 4,
sential for the description of the penetration through the b
rier is the region between the two turning points (Rt1 and
Rt2) where the decay energyQ is intersecting the barrier
Then in the DWBA one can generalize the penetrabi
given in Eq.~30! of Ref. @16# as a function of the adiabati
one from one transversal degree of freedom to two deg
of freedom,

PDWBA5PadiabF 12
\

4 (
i 51

2

~ni
21ni11!

3E
Rt1

Rt2
dR

S d ln l i

dR D 2

A2m~V~R!1«n1n2
~R!2Q!

G ,

~16!

with l i(R)5AJiV i(R)/p\(12Ji /mR2) and the adiabatic
penetrability is evaluated simply with the Gamow formula

B. Diabatic representation

The diabatic representation is obtained by expanding
total wave function in terms of a set of vibrational wa
functionsx i(u) most conveniently defined as the eigenfun
tions of the vibrational Hamiltonian~10! atR→`. In view of
the above discussion on this asymptotic point, we chos
‘‘infinity’’ the second turning point of the one-dimensiona
barrier in the R variable. Thus substituing the ansa
04461
e
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C(u,R)5( ix i(u)f i(R) in the eigenvalue problem~8! and
taking as eigenvalue the decay energy of the correspon
cold fission reaction, we get the set of coupled-chann
equations

2
\2

2m

]2f i

]R2
1@V~R!2Q#f i52(

j
^x j uĤvibux i&f j .

~17!

Under certain assumptions it is possible to simplify sign
cantly this set of coupled-channels equations. In what
lows we assume that the coupling interaction occurring in
right-hand side of Eq.~17! factors into a relative part, evalu
ated at the position of the unperturbed one-dimensional
rier (R5Rb), and an intrinsic part~see Ref.@23# and refer-
ences therein!,

^x j uĤvibux i&>« i j d i j 1 (
k51

2

Fk~Rb!^x j uGk~u!ux i&. ~18!

In our case when the fission mode, described by the coo
nate R, is coupled to two internal degrees of freedom,
quantum state is labeled by the harmonic oscillator numb
n1 andn2. In this case the formulas are lengthy and even
ally we do not get less insight in the studied phenomeno
we limit ourselves to the case of butterfly vibrations that a
a subclass of bending vibrations. Then the small anglesu1
andu2 are approximately related@24#,

q[u1'2
R2

R1
u2 , ~19!

whereR1 andR2 are the fragments radii along the symmet
axes. We thus have the following expressions for the vari
quantities occurring in the coupling matrix~18!:

«n5
1

2
\ṽ0~R`!S n1

1

2D S B̃~R`!

B̃~Rb!
1

C̃~Rb!

C̃~R`!
D , ~20!

FIG. 8. The range of validity of the adiabaticity criterion as
function of R for the ‘‘molecular’’ transitions (20)→(00), (02)
→(00), (22)→(20), and (22)→(02). At the left end of the barrier
the criterion is safely fulfilled whereas at the right end it is le
satisfactory.
0-6
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F~Rb!5
1

4
\ṽ0~R`!S C̃~Rb!

C̃~R`!
2

B̃~R`!

B̃~Rb!
D , ~21!

^xn8uG~u!uxn&5An~n21!dn8n221A~n11!~n12!dn8n12 .
~22!

The meaning of different quantities occuring in the abo
formulas is given in Ref.@5#.

For illustration we take three channels into account, e
n50, 1, 2. Since according to Eq.~22! the channel withn
51 is not coupled to the other two channels, there will be
scattering of the initialn50 state on an outgoing state wit
n51 and, therefore, it will not contribute to the total pe
etrability. Equation~17! can be decoupled by means of
unitary transformation, as has been pointed out for fus
processes in Ref.@23#,

(
i , j

Uni^x j uĤvibux i&U jm
215lmdnm . ~23!

The two eigenvalues of the matrix^x j uĤvibux i& read

l1,25\ṽ0~R`!6A\ṽ0~R`!212F2. ~24!

Thus every channel is now described by an independ
Schrödinger equations, each of effective potentialV(R)
1«01l i ,

F2
\2

2m

]2

]R2
1V~R!1«0~Rb!1l i~Rb!2QG(

j
Ui j f j50

~ i 51,2!. ~25!

Then, using outgoing boundary conditions, i.e.,fn

→
R→R`

tneiknR the total penetrability can be casted as
weighted sum of channels penetrabilities calculated at
shifted energiesQ2«02l i ,

P~Q!5(
i 51

2

uUi0u2P~Q2«02l i !. ~26!

This procedure can be easily extended to a larger numbe
channels, the difference being that the eigenvalues and
matrices performing the diagonalization of the coupling m
trix are no longer available in a concise analytical form.

C. Path-integral approach

An alternative way to handle the problem is given by t
path-integral formalism@23#. The tunneling probability can
be obtained from the Feynman’s transition amplitude, wi
out resorting to the wave function as in the previously d
cussed approaches.

As we mentioned earlier, the problem considered in t
paper, namely, the coupling between the fission mode and
bound transversal degrees of freedom represents a parti
example of a multidimensional quantum mechanical sys
where the main collective degree of freedom~the transla-
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tional fission mode! is coupled to intrinsic degrees of free
dom ~transversal modes!. We define the intrinsic Hamil-
tonian Ĥ intr as the vibrational Hamiltonian from Eq.~10!.
This sub-Hamiltonian can be split further into a pa
Ĥ intr

0 (u1 ,u2) that is independent on the collective coordina

R and the interactiondĤ intr(u1 ,u2 ;R) @25#,

Ĥ intr~u1 ,u2!5Ĥ intr
0 ~u1 ,u2!1dĤ intr~u1 ,u2 ;R!. ~27!

In order to make the problem tractable, we evaluateĤ intr
0 at a

fixed valueR5Rb , which is usually taken to be in the ba
rier region. UsuallyRb is taken to be the position of th
barier’s top. Thus an expansion in the powers ofR aroundRb
is performed,

dĤ intr~u1 ,u2 ;R!5S ]Ĥ intr

]R
D

R5Rb

~R2Rb!

1
1

2!S ]2Ĥ intr

]R2 D
R5Rb

~R2Rb!2

1O@~R2Rb!3#. ~28!

Like in the previous section we take the case of butte
vibrations, when the nonaxial vibrations of the fragmen
composing the dinuclear system are in phase. We obtain
following expressions for the two parts of the intrins
Hamiltonian in the intrinsic coordinateq:

Ĥ intr
0 ~u1 ,u2 ;R!52

\2

2B̃
]2

]q2
1

1

2
B̃ṽ0

2q2, ~29!

dĤ intr~u1 ,u2 ;R!

52
\2

mRb
2 S 12

R2

R1
D 2S 12

3

2Rb
~R2Rb! D

3~R2Rb!
]2

]q2
1

1

2F S ]C̃

]R
D

R5Rb

1
1

2S ]2C̃

]R2D
R5Rb

~R2Rb!G ~R2Rb!q2. ~30!

Introducing the creation and annihilation operatorsâ andâ1

for the harmonic oscillator the Hamiltonian becomes

Ĥ intr5\ṽ0~ â1â1 1
2 !1@ f ~R!1g~R!#~ â1â11ââ!

2@ f ~R!2g~R!#~2â1â11!, ~31!

where
0-7
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f ~R!5
\ṽ0

4

B̃
mRb

2 S 12
R2

R1
D 2S 3

R

Rb
25D S R

Rb
21D ,

g~R!5
\ṽ0

4 F S ] ln C̃~R!

]R
D

R5Rb

1
1

2C̃~R!
S ]2C̃~R!

]R2 D
R5Rb

~R2Rb!G ~R2Rb!.

~32!

In the barrier region we checked numerically thatg(R)
@ f (R), which is mainly due to the large values of the re
tive inertia moment, i.e.,mRb

2@B̃. Therefore, we can discar
the terms multiplied byf (R), which are coming from the
vibrational kinetical part of Eq.~30!. Consequently the form
of the intrinsic Hamiltonian in the second quantization re
resentation reads

Ĥ intr5@\ṽ012g~R!#~ â1â1 1
2 !1g~R!~ â1â11ââ!.

~33!

We then obtain a case similar to the example discusse
Ref. @26# for fusion. We consider the limiting case ofsmall

frequency–large inertia, when we let ṽ0→0 and B̃→`,
which is approximately true when we approach the end
the barrier~see, for example, Fig. 6!, simultaneously with
B̃ṽ05fixed. Accordingly, the penetrability for a given en
ergy can be put in the following vivid integral form for
given decay energy@26#

P5
1

A2p
E

2`

1`

dxe2x2/2P0@E,V~R!1x2g~R!#, ~34!

whereP0 is the one-dimensional penetrability in the variab
R.

III. NUMERICAL RESULTS

In Fig. 9 we give the total penetrabilities in the adiaba
(Padiab) and in the DWBA (PDWBA) cases compared to th
one-dimensional penetrability (P0). We take into account up
to four phonons, i.e., the maximum allowed excitation e
ergy is «22. According to Fig. 6 the maximum of«22
,6 MeV, i.e., it is in the vicinity of the neutron-emissio
threshold as one should have for the cold-fission reaction
comparison to DWBA the adiabatic approximation overe
mates the penetrability. One has to stress that the adia
approximation provides a correction of the penetrability o
due to the zero-point energies of the transversal modes
both cases the channel penetrability is reduced with incr
ing n1 ,n2 but the total penetrability(n1n2

Pn1n2
will be larger

as compared to the one-dimensional case. In connection
this result one should recall the work of Brinket al. @27#
which states that the penetrability computed for a Ham
tonian in which the intrinsic coordinate enters linearly in t
coupling term satisfies the inequalityP<Padiab. In the case
04461
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studied in this paper the coupling is quadratic in the intrin
coordinate but the same inequality seems to work.

As we mentioned above, in the adiabatic case, states
lower quantum numbers have larger tunneling probabiliti
According to Ref.@28#, where also a coupling quadratic i
the vibrational coordinate is taken, by increasing the c
pling strength, i.e., increasing the oscillations frequency
decreasing the mass inertia, and, therefore, moving tow
the adiabatic limit, the most probable quantum state for
transmitted wave is the ground state. This is also in agr
ment to the result obtained in the present paper.

The diabatic coupling will provide values of the penetr
bility that are smaller as compared to the case when the m
coordinate is not coupled. In Fig. 10 we plotted the pene
bility computed with the help of Eq.~26! for different chan-
nels. Forn>4 we computed the eigenvalues and the e
ments of the unitary matrixÛ numerically. Figure 10 reveals
the increase of the penetrability with the number of chann
like in the adiabatic and DWBA approaches. The eigench
nels with effective energiesQ2«02l i above the barrier’s
maximum were excluded from the sum~26!. After taking
into account eight channels we obtained a stable value of
penetrability.

For the barrier position we chose the unperturbed va

FIG. 9. Total penetrability(Pn1n2
as a function of the numbe

of channelsN.

FIG. 10. Penetrability~26! as a function of the number of chan
nelsN.
0-8
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i.e., Rb515.3 fm, whereas for the asymptotic value, i.
when the bending regime breaks down and the vibratio
energy is transferred into rotations, we tookR`516 fm,
which is very close to the right end of the barrier~second
touching point!.

In order to see which range for thex variable, occurring in
the integral formula~34!, is essential, we draw in Fig. 11 th
effective potentialV(R)1x2g(R). As one can see for in
creasingx the barrier becomes thicker and higher and, the
fore, the one-dimensional penetrabilityP0@V(R)1x2g(R)#
decreases. The integrand will be even more damped du
the presence of the gaussian exponential exp(2x2/2). For
values ofx larger than a certainxcr , where the minimum of
the potential intersects theQ-value line,P050, because no
metastable state of energyQ can be accomodated. Thus, th
value of the integral can be safely determined forx in the
range @0,1.5# for the given case. We get thatP(E)55.94
31023 as compared toP0(E)52.2831023. Therefore, in
the path integral approach, like in the adiabatic and DW
treatments, the penetrability is increased as compared to
spherical case if we include several channels in the calc
tion. One should mention that thesmall frequency–large in-
ertia is found at the other extreme in respect to the adiab
case that corresponds to large frequencies@27#.

FIG. 11. The effective potentialV(R)1x2g(R) occurring in the
integral formula for the penetrability~34! for different values ofx.
For increasingx the barrier, i.e., the region bounded by theQ-value
line and the potential, increases in height and width leading thu
an exponential decrease in penetrability.
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IV. SUMMARY AND OUTLOOK

The main result of this paper is that in cold fission t
coupling of the radial~fission! mode with the transversal mo
lecular degrees of freedom tends to modify the penetrabi
In the adiabatic, DWBA andsmall frequency–large inertia
approximations the penetrability is increased as compare
the radial one-dimensional cases whereas in the diabatic
lowered. However, we stress that these modifications
within the same order of magnitude and, therefore, are
affecting the lifetimes in a sensitive manner.

The fact that the tunneling time in the radial coordinate
larger by two orders of magnitude in comparison with t
oscillation period of the transversal modes, enables us
apply the adiabatic Born-Oppenheimer approximation. In
adiabatic case the calculations are revealing a slow decr
ing of the penetrability with the transversal oscillations qua
tum numbers. In the diabatic case we observe the same tr
i.e., the increase in the number of channels taken into
count leads to a larger value of the penetrability. As we s
the adiabatic approximation is less suitable when the tun
ing path approaches the second turning point due to
gradual disapearence of the transversal barrier.

Concerning the above-mentioned aspect, i.e., that a la
number of oscillations takes place during the tunneling m
tion, we would like to stress upon the fact that this mak
possible the detection of these molecular-like collect
states byg deexcitation. As we saw in a previous paper@5#
the account of these degrees of freedom is essential in e
lishing the fragments angular momentum.

It is also worthwhile to mention that in the case of co
fusion the coupling of the incident chanel to other chann
can modify the barriers and lead to an enhanced fusion c
section below the barrier. However, in that case the coup
of the main tunneling mode, is made with degrees of fr
dom, other than the one considered by us in the case of
fission. Moreover, the fragments considered in the pres
paper are sensitively deformed contrary to the case of fus
when the projectile is spherical or only weakly deformed
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