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Obtaining the caloric curve from collisions
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It might be possible that thermodynamic properties of nuclear matter, such as the caloric curve, could be
obtained from heavy-ion reactions. Recent experimental and computational studies of nuclear experiments
have obtained contradictory caloric curves for nuclear matter. This work improves on previous theoretical
studies by considering the fragmentation produced by collisions, and introducing the methodology needed to
identify the fragments, their temperature, energy, and a caloric curve. The main findings are the crucial
reduction of energy produced in the promptly emitted particles, the existence of a well-defined fragmentation
time, the connection of the temperature of the detected fragments with that at fragmentation time, and the
possibility of obtaining the caloric curve from collisions.
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I. INTRODUCTION With so many variables affecting the determination of the
caloric curve of nuclear matter, the question to answer is
Nuclear collisions at energies in the hundreds of MeV'sthen, is it at all possible to extract the caloric curve from
produce excited systems which break into several mediumauclear collisions? Recently this question was addressed in a
size fragments[1]. This multifragmentation phenomena, molecular dynamics study for a nuclearlike system in a con-
similar to what happens in inertial confinement reac{@is tainer[19], and for a freely expanding classical systg24].

and in the synthesis of nanostructure surfg@&scould be Although the two calculations are not directly compa-
the adaptation of a macroscopic phase transition to a smalhble, not among themselves nor to experiments, both exer-
and transient many-body system. cises were able to obtain a caloric curve. Sugawa and Horiu-

In the field of nuclear physics, the possibility of achieving chi [19], using an antisymmetrized molecular dynamics,
critical behavior in heavy-ion collisions has attracted a lot ofstudied a contained uniformly excited system with a fixed
attention. This interest on critical exponents was triggered byressure, and obtained a raise-plateau-raise caloric curve. On
the seminal study of critical phenomena in proton-Xe andhe other hand, Strachan and Dof&2] used a classical,
proton-Ar collisions of the Purdue grodg,5] and then un- uniformly excited, Lennard-Jones system freely expanding
dertaken by other groud$]. More recently, modern detec- into space to obtain a caloric curve with a raise-plateau
tion technology has made possible the experimental determshape. The difference between these results comes from the
nation of the caloric curvg7,8], i.e., the relation between the collective expansion present in free finite systeéms not on
system’s temperature and its excitation energy at fragmentanfinite or contained systemswhich acts as an energy sink
tion time. The procedures used, however, present severahd limits the temperature rig22].
complications due mainly to the finite size of the system, its Independent of their differences, these exercises appear to
transient nature, and the limitation of obtaining nothing moreunderline the fact that small breaking systems can yield in-
than the final fragments from the reaction. formation about the caloric curve. But in view of the crucial

As explained by Pochodzalla and Trautmann in R8f,  role played by the geometrical aspects of the breaking sys-
there are complications, for instance, in the reconstruction ofem, i.e., contained vs freely expanding systems, a refined
the energy deposition starting from the exit channels, andjuestion to ask would then be, what is the role played by the
thus, in the calculation of the caloric curve. Other difficulties collision on the obtention of the caloric curve? In other
come from the variation of the size of the systems producedvords, would the strong correlations induced by the highly
in the reactiond10], side feeding affecting the final mass nonlinear dynamics of the collision impede the obtention of
distribution[11], and on the use of final spectra which havethe caloric curve? A calculation more closely matching the
been necessarily modified by the natural evolution of theexperimental collisions is what motivates the present study.
reaction[12]. This work uses the numerical weaponry developed in Ref.

Indeed, experiments using different “thermometers” have[22] to focus on systems that are excited via the collision
led to contradictory caloric curves that go from the typicalwith energetic projectiles, and, again, our main objective is
“rise-plateau-rise” pattern13], to a more peculiar “rise- the determination of the caloric curve. The paper is orga-
plateau” behavior[14,15, and yet to a “rise-rise” shape nized as follows. After describing the model used and the
without the characteristic plateau of first-order phase transifragment-recognition algorithms in Sec. |, Sec. Il describes
tions [16,17. The suppression of the final temperature risetypical time evolutions of the fragmenting systems and the
could be related to a presumably low breakup deris}, characteristic time scales. Section Il proposes a way to cal-
or to an increased fragmentation at high excitation energiesulate the effective excitation energy of the fragmenting sys-
that depletes the heat-storing medium-size fragmidits tem, and Sec. IV studies the effective temperature of the
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fragmenting system and resulting clusters. The resulting ca
loric curve is presented in Sec. V, and some concluding re
marks close the paper in Sec. VI.

Il. THE MODEL

Due to the complications of the breakup process, a com;
plex model with proper auxiliary tools is needed. To begin
with, the evolution of the collision is modeled with a mo-
lecular dynamic§MD) code, but since MD operates at the
“nucleon” level, it is necessary to transform the particle in-
formation into fragment information by means of a
fragment-recognition algorithm. Furthermore, to use the ca-
loric curve as a signature of a phase transition, the time a
which the system fragments must be determined using 4
guantity known as the partition “persistence.”

A. The molecular dynamics model

The virtues of molecular dynamics for the study of
nuclear collisions have been stated elsewh@f. As was
mentioned in the Introduction here we study the behavior of]
a two-dimensional system composed by classical particles
that interact via a two-body Lennard-Jones potential:

o 12 o 12 o 6 o
J— —_ — — | — + _
r lcut r lcut

wherer . is the cutoff radius, and the potential is taken as

zero forr=rc,,. We consider,=3¢. The units of time FIG. 1. Snapshot sequence of the dynamical evolution of a typi-
and energy aré,= \o°m/48e and e, respectively. cal Epenr= 1120 experiment.
This work studies the time evolution of numerical simu-
lations of head-on projectile-target collisions. The target contr,—r;|<r., wherer, is a parameter called the clusteriza-
sists of a randomly oriented two-dimensiondD) drop of  tion radius. If the interaction potential has a cutoff radius
100 particles on its “ground state¢o~ —2.8¢. The projec-  r_ .. thenr. must be equal to or smaller thag,,; in this
tile is a randomly oriented three-particle drop boosted intayork r.=r.,=3c¢. The algorithm that recognizes these
the target at different energies. The numerical integration Oé|usters is known as the “minimum Spanning trdMST)
the equations of motion is performed with a velocity-Verlet The main drawbacks of this method is that only correlations
algorithm with a time step ofi,;=0.0023, assuring an en- in r space are used, neglecting completely the effect of mo-
ergy conservation better than 0.05%. Figure 1 shows an ev@nentum. The MST clusters give incorrect information when
lution corresponding to a typical collision experiment. the system is still dense, and are meaningful only late in the
The range of kinetic projectile energies considered goegvolution when the system is a dilute mixture of free par-
from Epean= 18 to 252@ in the center of mass reference ticles and cool fragments.
frame with 200 collisions performed for each energy. Study- An extension of the MST is the “minimum spanning tree
ing such a rather broad energy range, quite different types gf energy” (MSTE) space algorithm. In this case, a given set

6

V(r)y=4e , (D
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dynamical evolutions are found: from events in which theof particlesi,j, . .. k, belongs to the same clustéy if
projectile is adsorbed by the droplet surface, up to events _
where a mass spectrum with an exponential decay is ob- V ieC;, 3 jeCi/eg;=<0, 2

served. As can be seen in Fig. 2, U-shaped and power-law-

— 2 H
like mass spectra are observed for intermediate energies. Where €;=V(r;j) +(pi—p;)/4x, and x is the reduced
mass of the paifi,j}. MSTE searches for configurational

correlations between particles considering the relative mo-
menta of particle pairs. In spite of not being supported by a
To obtain fragment information, the complete microscopicphysically sound definition of a cluster, the MSTE algorithm
“nucleon” data resulting from MD must be analyzed using typically recognizes fragments earlier than MST. Further-
fragment-recognition algorithms. Many such algorithms ex-more, due to its sensitivity in recognizing promptly emitted

B. Fragment recognition

ist; the ones used here are described next. particles, it is extremely useful to study the preequilibrium
The simplest and more intuitive cluster definition is basedenergy distribution of the participant particles.
on correlations in configuration space: a partichelongs to A more robust algorithm is based on the “most bound

a clusterC if there is another particlgthat belongs t&€C and  partition” (MBP) of the systenf23]. The MBP is the set of
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100

fore[22—-24], with the general feature that partitions obtained
by ECRA stabilize very early in time, much earlier than

those of MST and MSTE. As expected, at asymptotic times
all three algorithms give the same results.

10

C. Partition persistence

0.1 . . . .

As stated in the Introduction we consider the caloric curve
0.01 as the functional relationship between the excitation energy
100 of the system and its temperatua¢ fragmentation time

Therefore, we need to estimate the system’s excitation en-
ergy and temperature when the breakup occurs. In order to
do that, the fragment-formation time;;, can be defined as
the time in which the system breaks in a definite way; that is,
after r¢; the fragments might just evaporate only a few
monomers. To estimate; it is necessary to measure the

<multiplicity>

0.1

similitude between partitions at different times; this can be
0.01 achieved with the “microscopic persistence coefficient,”
100 11 111111

P [25];
1 a;
P[X,Y]: Eclni ; nib_ii (4)

whereX={C;} andY={C;} are two different partitionsh,
is the number of pairs of particles in the clus@rof parti-
tion X, a; is the number of pairs of particles that belong to
Lol Lol cluster C; and also are together in a given clus(éf of
1 10 100 partition Y, andn; is the number of particles in clustél; .
mass number P[X.,Y] is equal to 1 if the micr_oscopic composition of the
partition X equals that ofY, and it tends to 0 when none of
FIG. 2. Asymptotic mass spectra corresponding Bge,,,  the constituent particles of a given cluster Xnappear to-
=280e, 1120, and 252@ from top to bottom, respectively. gether in any cluster iw.
It is useful to study the time evolution of the quantities

0.1

0.01

clusters{C;} for which the sum of the fragment internal en-

ergies attains its minimum value: IS"'[X(t)]E(P[X(t),X(t—mo)])eventS,
{ci}:a{rg"[e{ci}:; EC} B [X(1)]=(PLX(1=). X() Deenis
PYIX(1)]=(P[X(t),X(t+dt)])epents: (5)

' ®) where X(t) represents a partition calculated at timex(t
—o) is a partition at asymptotic times, and--)epents

] ) ) represent an average over the whole set of collisions. Simply

where the first sum in Eq(3) is over the clusters of the stated,l5+[X(t)] determines if the particles that are together

partition,KjC'm' is the kinetic energy of particlemeasured in at time t remain together asymptotically. Likewise,
the center of mass frame of the cluster which contains par-

ticle j, andVj; stands for the interparticle potential. It can be P*.[X(t)] measures the I‘.e.CIpI‘.OCEaJ va!ue, €., the degre.e n
shown that clusters belonging to the MBP are related to thg\’hICh the asymptotlcﬂparntmn is contained in the one at time
most-bound density fluctuation inp space[23]. t. Together,P™ and P~ can be used to analyze how the

The algorithm that finds the MBP is known as the “early microscopic composition of the system’s most:bound parti-
cluster recognition algorithm” (ECRA). Since ECRA tion evolves towards its asymptotic form. Finaff [ X(t)]
searches for the most-bound density fluctuationsrip  gives an idea of thectivity of the partition analyzed, and
space, valuable space and velocity correlations can be efhus can be used to define a fragment-formation time,
tracted at all times, especially at the very early stages of thence a certain degree of stabilization is achieved.
evolution. This has been used extensively in many fragmen- Instead of the straightforward use of the quantities intro-
tation studie$20—25 and has helped to discover that excited duced in Eq(5) we found it worthy to analyze the respective
drops break very early in the evolution. normalized quantities:

The performance of these three fragment-recognition .
methods(MST, MSTE, and ECRAhas been illustrated be- ~ P*[X(t)]=P"[X(t)//{P[X(t—%),X"(t—%)])epents:

i jeCj keC;j
j=<k

Ei(;itzz |:E K}:.m._'_j 2 Vj,k
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P IX(1)]=P " [X(OT(PIX(1).X (1) Devents:
PUIX(1)]=PU[X(1)J/(P[X(t+dt), X' (t+d)])events: g
(6)

whereX' stands for a partition composed by the same clus-

ters of partitionX, but each fragment has one particle evapo-

rated. This normalized quantities compare the actual value of ;2_ [ (l) ] I @'u ]
P’s to an evaporativelike reference levél.", P, and P 20L 3 [ 7]
allow us to estimate the time at which microscopic stability £ spA A i
is achieved(i.e., the fragment-formation timeand will be & 10[ _ H .
referred to as the forward, backward, and differential persis- s 3 " 7]
tence coefficients, respectively. oF L 0F— b

0 S 10 15 20 0 5 10 15 20

Time [t,] Time [t,]

Ill. DYNAMICAL EVOLUTION

. FIG. 3. Mean velocity transfer coefficientsl, (solid lineg and
Armed with the tools presented befor@D, MST, M, (dashed lines are shown for beam energi&$ e = 280e (a),

+ - dt
MSTE, and ECRA, an®™, P, andP™) we now proceed o0 ") "1 150 (o) and 180@ (d). The maximum value is

FO study the dynamlcgl evolution (.)f the collisions descrll‘q’edachieved approximately when the shock front reaches the middle of
in Sec. Il A. Analyzing the projectile-target momentum

=) o . the drop.M,>M, reflects the symmetry of the collision, ahdi,
transfer allows the characterization of the collision 'nt°~|\/|y is a signal of an isotropic collision pattern.

stages and the identification of promptly emitted particles.
This in turn makes possible the study of the time evolution otem and builds a collective expansive motion. The disordered
the excitation energy and the determination of the fragmenteollisional mode is the only one present in uniformly excited

formation time. systems where it is responsible for the production of
fragments and their outward flux that spread them into space
A. Collision stages [22,23.

. - ) The MSTE algorithm can be used to study the size of the
__Two stages are seen in the collisions studied, an orderegiy oot MSTE cluster, the total multiplicity, and the persis-
initial highly collisional stage produced when the projectile e coefficients. Figuresal—4(c) show the time evolution
hits the drop surface, and a disordered chaotic collision palss thege three quantities. The picture emerging indicates that,
tern that distributes the energy. The ordered CO||ISIOI’.IS of t,h%iue to the violent initial collision, some particles acquire a
first stage form a shock wave responsible for a rapid emis; of kinetic energy which prevents them from being a part

sion of energetic light particles from the surface. As thisof the biagest fraament. albeit of beina confiqurationall
wave travels through the drop, it produces density fluctuac ag g ’ 9 9 y

) ) o lose to it or even inside. This reduces the mass of the big-
tions and internal fractures while it transfers momentum an(g

- . o ) - 'gest MSTE fragment in this early stagep tot~3ty), and
initiates the disordered collisions that thermalize the exc'taincreases the total multiplicity. This trend is sustained until

. . the average momentum per particle allows the particles that
To get a deeper understanding of this process we calculalge configurationally close to be bound. After the initial re-
the “mean velocity transfer,” defined as duction of the fragment size, there is a coalescencelike be-

NT R - havior that makes the partition multiplicity shrink and the
M;(t)= izzo [vi(t+dt) —vi(1)] € eents: biggest cluster grow until it reaches a maximumtat7t,.

This time marks the end of the initial energy deposition pro-
wherej denotes the inciderik) and perpendiculafy) direc-  cess and in what follows, it will be referred as tieposition
tions, dt=0.25, ande; is a unit vector in thex or y direc-  time, tq.
tions. Figure 3 shows the temporal evolution\f andM, The persistence coefficient§) can be used to understand
for projectile energyEean= 280e, 630, 1120, and 175@. how the partition reaches its microscopic composition at
In all casesM,>M, at the first stage of the collision, as asymptotic times. Figure(d) shows the temporal evolution
expected from the centrality of the collisions. The maximumof P*[X(t)] and P [X(t)] calculated using MSTE parti-
value of M, and M, is simultaneously attained at-2t,  tions for Eyean= 1120 and usingt..=50t,. The backward
— 3ty, when the shock front reaches the middle region of thepersistence coefficient shows an initial steep decrease, corre-
drop and more particles are involved in the momentum transsponding to a fragment production stage, followed by a sub-
ference process. At-4t,— 7ty the shock wave has crossed sequent increase due to a reabsorptionlike dynamics that sub-
the drop andM,~M, for the whole range of energies con- sists up toty. (Remember that higP~ values indicate that
sidered; at this time the memory of the entrance channel imore particles that belong to a given asymptotic cluster are
lost. together at time.) Consistently, the®* coefficient shows a

The isotropic collisiongdisordered collisional modeare  plateau during this reabsorption stage that also extends up to
responsible for the momentum redistribution among the party, followed then by a monotonic increase due to an evapo-
ticles remaining in the system. This energy heats up the sysationlike dynamics of the MSTE clusters. During this stage
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FIG. 5. Histograms of the asymptotic velocity modulus for

monomers calculated fdf .= 280 and 252@. The solid outline
transparent histogram corresponds to counts produced by the com-
) plete set of asymptotic monomers; the gray histogram corresponds
Time [t)] to counts produced by the promptly emitted ones.

FIG. 4. Mass of the biggest MSTE clust@ and the multiplic-
ity of MSTE fragments(b) for E,...=280¢ (solid lines, Epeam 1IN Calculations of contained or infinite systems, demands a

=630 (dotted line$, Epean=112C (dashed lines E,.am  S€Nsible definition of the excitation energy which necessarily
=175C¢ (long-dashed lingsandE,.,,= 2520 (dot-dashed lines should depend on the PEP’s.

(c) shows the forward persistence coefficiént (solid lines and The PEP’s can be defined as those unbound light clusters
the backward persistence coefficight (dashed linegsfor MSTE (mass=<4) detected by the MSTE algorithm at tinhg and
partitions forEpean=1120 experiments. that remain unbound at any later tirfiee., no reabsorption

. ] . N The number of PEP’s can be quantified as in Fig. 5 which
of the evolution, the MST algorithm identifies one large clus-spows the velocity distribution of monomers for beam ener-
ter with ~80%-90% of the mass of the system, revealinggies 28@¢ and 252@. The histograms show the asymptotic

that the system iShSti” dense. I dosti velocity distributions calculated for all monomes®lid out-
In summary, _t ere 1s an |n_|t|a stagéasting up tot ine transparent histogrgmand for PEP monomers only
~3ty) characterized by the existence of an ordered shoc

. . . . ray histogram PEP’s account for most of the monomer
wave (with M,>M,) Wh'Ch expels light partlc_les from the roduction and for the large velocity asymmetry observed at
surface, reduces the biggest fragment, and increases mulﬁ

T O = oth beam energies.
plicity (i.e., decrease® ). At t~4ty—T7t, the wave has , . L
crossed the drop distributing the energy uniformiyl.( With the PEPs defined, their kinetic energy can be used to

~M,) and a coalescencelike behavior setgads seen by a estimate the energy that remgins in the system. Figuws 6

rise of P~) washing out the memory of the entrance channelgnd qu) sh(;)w the ?nerg_y Carf“id bby the PEP's and the "T“”l"
reducing the partition multiplicity, and enlarging the biggest€" Of PEP'S as a function of the beam energy, respectively.
cluster up to~80%—90% of the total mass. This is finally With the number of PEP’s and their energy quantified, the

followed by an evaporationlike dynamics of the clusters a<£n€rgy that remains in the system aftgrcan also be ob-
indicated by a monotonic increase Bf . tained. Figure &) shows the excitation energy of the target,
E*, as a function of the beam energy. These figures show
o that the fraction of the available energy that leaves the sys-
B. PEP’s and excitation energy tem as a consequence of this early emission is considerable.
As in the experimental ca$&7], the observed presence of Moreover, the excitation energy shows a saturation behavior
promptly emitted particlesPEP’S makes it impossible to indicating that there is a limit in the amount of energy that
know a priori how much of the beam energy is used ascan be transferred in a collision, an effect not present in
excitation energy. This complication, conspicuously absentalculations of uniformly excited systems.
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% B { 7] FIG. 7. Temporal dependence of the persistence coefficient cal-
G 30— ] culated for collisions withE,.,,= 630e (circles, 112C (squarey
g 50 __ } _— 175C (diamond$, and 252@ (triangles, obtained using ECRA
g i i.-" ] partitions and a value alt=2t,.
“ ok ¢ —
@ ® =20ty,15,12t,, and 1@, for these energies, respectively.
5.0 ! I ! { | The temporal evolution of the MBDF can be traced using
L _ P* andP~, as done with MSTE clusterSec. lll A). The
40 — _ corresponding time evolution of the forward and backward
I O . } i persistence coefficients for the ECRA partitions, which use
< i { """" correlations inr-p space, are shown in Figs(e8—8(d) for
e 30 * 1 collisions with beam energies of 6801120, 1750, and
m B 7 2520, and takingt,,=50t,. The fact thatP* reaches the
2.0 — } — reference beforeP™ reflects an initial overproduction of
- © ECRA fragments, due to the highly nonequilibrium energy
1.0 8 I 1 l I injection process. However, after preequilibrium, the subse-
0 1000 2000 3000 quent dynamics “smoothes” the density fluctuationsrip

phase space and a coalescentlike behavior for the ECRA
clusters can be observed. On the other hand, similar to the
results of the MSTE clustefgf. Fig. 4(c)], an evaporative-
like dynamics was observed for ECRA partitions calculated
after t>r¢;, i.e., after the clusters are already formed and
vary their microscopic composition only by monomer evapo-
C. Fragment-formation time ration. This underlines the fact that; appears to be well
suited to define théragment-formation time

Beam Energy [¢]

FIG. 6. The energy carried by the promptly emitted parti¢is
number of PEP’s produce@d), and the excitation energy per par-
ticle of the remaining systerft) as a function of the beam energy.

After the depositiontime, ty (see Sec. Ill A, the energy
remaining in the system is fully distributed, and the den-
sity correlations induced by the initial shock wave start to
build up a collective expansion. Eventually, this expansion
will turn those early fluctuations into well defined fragments
in r space making them recognizable by the MST algorithm.
The caloric curve should reflect the state of the system at the
phase change; here we take this time as the fragment-
formation time, 7¢;, associated to the stabilization of the
ECRA density fluctuations.

As mentioned in Sec. Il B, ECRA searches for the most-
bound density fluctuatioitMBDF) in phase space, cf. Eqg.
(3); we study the stabilization of these partitions using the
differential persistence coefficienB® [cf. Eq. (6)]. Since
P9 is normalized to be equal to 1 when the microscopic
composition of a partition at time differs from the one at
t+dt by just one “evaporated” particles;; can then be de-
fined as the earliest time whé'((t)=1. Figure 7 shows the
temporal evolution o' calculated using ECRA partitions  FiG. 8. Forward(solid lineg and backwarddashed lingsper-
from experiments with Epe,n=630e,1120,175C, and  sjstence coefficients, calculated over ECRA partitions for collisions
2520, dt=2ty, and considering only fragments of mass with E,,.=630¢ (a), 112 (b), 175 (c), and 252@ (d). See
greater than three particles. The results obtained 7gre text for details.

Persistence

Persistence

| I T
10 20 30 40 50

Time [t,] Time [t]
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1.25

ences arise in the microscopic dynamics of the ECRA
clusters when collisional eventsee Fig. 8 are compared
with isotropically excited systems. In the explosions, the di-
rect persistence coefficients are always smaller than the in-
verse persistence ones. Moreover,Ris crosses the refer-
ence value afteP™, an evaporativelike behavior of the
ECRA clusters can be associated for this kind of excitation in
the early stage of the evolution. As mentioned above, this is
not the case for collisional experiments.

1
%075

0.5%

0 5 10 15 20 25 The picture emerging suggests that the particle correla-
) tions in phase space have to be built from scratch in explo-
Time [t)] sions. Likewise, the collective radial flux built from interpar-

) , , ticle disorderedcollisions cools down the system leading to a
FIG. 9. Temporal dependence of the differential persistence copicroscopic stabilization of the density fluctuatiofise.,
efficient calculated for ECRA partitions for uniformly excited sys- ep A cjysters The persistence coefficients indicate that the
tems withE* =2.2¢ (circles, 2.8¢ (squarey 3.4e (diamondsg, and lat luster dvnamics is mainly evaporative
3.8¢ (triangles, and using a value alt=2t,. ater clus y y P :
Collisions, on the other hand, appear to have a two-stage
development. A first stage of high momentum trangtere
Fig. 3 with a mechanical shock front produces large num-
The differences between collision-induced breakups anéers of light ECRA clusters and internal surfaces, followed
those produced by the addition of a uniform excitativex- by a second stage with an isotropic collision pattern. In this
plosions$ ) can be educational. To simulate this second kindsecond stage, the system is still dense and a coalescentlike
of experiments 2D 100 Lennard-Jones particle drops werbehavior sets in enlarging the ECRA clusters and starting an
given random velocities according to a Maxwell-Boltzmannexpansion. This process continues until the density is low-
distribution with a variance compatible with a given excita- ered by this radial expansion.
tion energieg22]. Although the microscopic dynamics of the MBDF'’s cal-
Figure 9 shows the time evolution &'(t) for ECRA  culated by ECRA are quite different for early times, similar
partitions calculated over explosive experiments with excitafragment-formation times;; are found for both explosions
tion energies per particle of 222.8¢,3.4¢, and 3.& (corre-  and collisions. Furthermore, the finding of stages followed
sponding to collisional events  with Ey.am by aradial expansion in the collisions appears to be in agree-
=630e, 1120, 175Q,, and 252@, respectively. The ment with experimental observatiofk7].
fragment-formation times extracted from the figure afg
=20y, 12y, 9y, and &, in general agreement with the IV. TEMPERATURE
corresponding times of the collisions. ) ) )
On the other hand, Fig. 10 shows the forward and back- The next step leading to the caloric curve is the_calc_ula-
ward persistence coefficient8;' (t) and P~ (t), for the ex- tion of the temperature of the system at fragmentation time.

plosive experiments considered before. Qualitative differ-Since at this time the system can still be derisk Sec.
Il A) with a temperature varying in space, two complemen-

tary measures of temperature will be used: a “local” tem-
perature (using local velocity fluctuations around a local
mean and a cluster temperatufasing velocity fluctuations
around each cluster’s mearThis appears to be justified as
isotropically excited drops are known to achieve thermal
equilibrium during the breakup22]. Purists with reserva-

D. Comparison to uniformly excited systems

S——T—T—7—— 57— 71—

Persistence

L a) 4 L ® . . .
L (). L tions about using thermodynamic concepts for small and
% 0 20 30 a0 % 10 20 30 40 transient systems are referred to in R¢f6,27. We now
S———77 S———7——7— define these temperatures and study their temporal evolution.

| e L A. Local temperature
o / 1 o _/ | To calculate the local temperaturB,., a square grid is

placed over the region of interest and the local velocity fluc-
| [ | | [ | tuations of the particles in every cell are calculated. For-
O 0 20 30 40 ‘o 10 20 30 40 mally,

Time [t Time [t Tioe= 3 {((v)i=(V)D))es (7)

FIG. 10. Forward(solid line and backwarddashed lingper- ~ Wherev represents the particle velocitigs,- - ); stands for
sistence coefficients, calculated for ECRA clusters for isotropicallyaverage over particles in céll and(- - - )¢, for an average
excited systems witk* = 2.2¢ (), 2.8¢ (b), 3.4 (c), and 3.& (d). over all events. Cells are ¢f.;,= 30 of side cells to assure
See text for details. approximately a mean cell population of seven particles for

Persistence
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? 0.8
= 06
g i ©
o 04— @° 0@, °—

100
Time [t P ]
[t,] . k
FIG. 11. Mean local temperaturg,. as a function of time, B ]
calculated for collisions wittE,,= 280 (left triangles, Epeam e .
=630¢ (circles, 1120 (squares 175C (diamond$, and 252@ °]
(up triangles. ]
100

t<20ty. To further quantify the temperature of the central

cells, the averag,,.(t) is calculated over central cells with FIG. 13. Cluster temperature as a function of fragment_mass,
a center not farther thandfrom the center of mass of the calculated for ECRA clusters &t 7 (@), andt=t.. (b) for colli-
system. Approximately 40% of the particles remains in thaSionS With Epean=630e (circles, 112Q: (squares 175C¢ (dia-
region fort=40t, for the more energetic experiments. monds, and 252@ (triangles.
_ Figure 11 shows that the system cools down rapidly untily 555 frame of the cluster to which it belongs. Figure 12
Tioc~0.3¢ at t~15, for all energies considered shows the typical dependence B on the ECRA-cluster
(280€,630¢,112Q, 1750, and 252@). Note that forEpeam  masses calculated iBpo,,=1120 events att=5,7, and
=280e and 63@ an overcooling loop can be seen. For these2(t,. Since a saturating behavior is observed for clusters
less energetic collisions, the generated expansion is weakith n;=>20, a mean cluster temperatuf,,s, can be de-
enough to allow the attractive interactions to produce a temfined as the average temperature of clusters with more than
porary increase of the system density before it breaks. Thigo particles.
effect is suppressed for larger energies, where the expansion The ECRA clusters are formed by a compromise between
is much stronger. the maximum temperature the clusters can sustain and the
cohesive effects of the pair potential interaction. Initially, the
B. Cluster temperature cluster constituents are close to their initial positions with
large (more negative values of the potential which permit
dhem stand hotter temperatures. As the system evolves and
€he clusters become more rarefied, the potential energy in-
creasegsbecomes less negativeeducing the maximum tem-

A cluster-based temperature can be obtained looking

cluster temperature of a fragme@t is defined as

1 perature the clusters can sustain. Finally, as the clusters attain
Te=— 2 ch'm', (8)  their asymptotic composition, the temperature stabilizes. The
b shift observed in Fig. 12 at early timess 5t, is due to the
the lack of development of the radial flux.
wheren; is the number of particles in clustér, andKf'm' is Figures 18a) and 13b) show the cluster temperatur&g

the kinetic energy of particl¢ measured in the center of at fragment-formation time,r, and att, for Epeam
=280¢,630¢,1120Q,175C, and 252@. At 74, although the
system is still denséhe biggest MST cluster has90% of

the total mass the cluster temperatures calculated for ECRA
clusters have already achieved their asymptotic values and
are in agreement with the corresponding local temperatures

Tioc- This behavior has also been found in explosivelike
experimentgsee Ref[24], and references thergin
Two remarks are in order. First, it should be clear by now
that the temperature of the systeah 7;; can be extracted
100 from the estimation of thasymptotiacluster temperatures in
both cases, collisional and explosivelike experiments. Sec-
ond, it is worth noting that in our analysis we did not have to
FIG. 12. Mass dependence of ECRA-cluster temperatures fonvoke anyglobal equilibriumhypothesissuch as the exis-
collisions with Epear= 1120 calculated at time$=>5t, (circles, tence of a freeze-out voluma order to calculate the system
t="7t, (squarel andt=20t, (diamonds. temperature. Instead, our temperature definitions rely on a

mass
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T ' I (Since in these experiments no particles, or just a few, are
0.5 ] evaporated, the temperature is calculated for the larger clus-
L | ter that remains after the projectile collisipfor higher ex-
citation energies we show both the average local tempera-
ture, T\yc, and the cluster temperaturds, s, att= 7.
As seen in Fig. 14, the caloric curve is similar to the one
obtained for isotropically excited systerf®4]. Here again,
the relevant feature is the rather constant temperature behav-
ior in the region that corresponds to the fragmentation re-
gime and beyond. In other words, data from collisions appear
Excitation Energy [€] to yigld a “_rise-plateau” shape for thg caloric curve, without
the final “rise” expected for the heating of a possible “gas-
FIG. 14. Caloric curve calculated with data obtained from col-€ous” phase.
lisions. For low energy experimentsircles, the temperature of the
biggest fragment is shown. For high energy events, the system tem- VI. CONCLUSIONS
pera’[urefOC (squaresand the cluster temperature at fragmentation
times T, (triangles are shown.

Temperature [€]

As a conclusion we now answer the question asked in
Sec. |, namely would the correlations induced by the colli-
sion impede the obtention of the caloric curve? The answer is
“an unconditional “no.” Even though collisions produce
many PEP’s and induce internal surfaces and large density
correlations, the temperature information of the system at
V. CALORIC CURVE fragmentation time appears to be reflected in the cluster tem-

After the simulation of the collision dynamics, the detec- perature with high fidelity. This, in conclusion, makes colli-

tion of PEP’s and fragments, the identification of fragmenta-.SIOnS a useful tOOI. to explore the _calorlc curve of fragment-
tion time, and the calculation of the excitation energy andn9 systems, provided the excitation energy responsible for

temperature, the caloric curve can finally be obtained. ForEhe fragmentation process is properly calculated. Work in

mally this quantity, which has been investigated experimenprogr(.ess is developing a more reallgtlc_MD model to.|dent|fy
tally [28,13,14,16,17,7)8and computationally19,22,24, is partlc'lpant nucleon's'and their excitation energy kinemati-
the functional relationship of the system temperature with itscaIIy in nuclear collisions.

excitation energy. In this section we will extend the analysis
to collisionally excited Lennard-Jones drops.

Figure 14 shows the caloric curve calculated for a broad This work was supported by the National Science Foun-
range of energies for collisionally excited systems. For comdation (PHY-96-00038, the Universidad de Buenos Aires
pleteness, the caloric curve for low energy experimeats, (EX-070), and CONICET. J.A.L. acknowledges the hospital-
<1e, where no fragmentation is expected, is also calculatedty of the Universidad de Buenos Aires.

local equilibriumscenario which seems to describe the frag
mentation process in a more natural W2y
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