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Obtaining the caloric curve from collisions
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It might be possible that thermodynamic properties of nuclear matter, such as the caloric curve, could be
obtained from heavy-ion reactions. Recent experimental and computational studies of nuclear experiments
have obtained contradictory caloric curves for nuclear matter. This work improves on previous theoretical
studies by considering the fragmentation produced by collisions, and introducing the methodology needed to
identify the fragments, their temperature, energy, and a caloric curve. The main findings are the crucial
reduction of energy produced in the promptly emitted particles, the existence of a well-defined fragmentation
time, the connection of the temperature of the detected fragments with that at fragmentation time, and the
possibility of obtaining the caloric curve from collisions.
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I. INTRODUCTION

Nuclear collisions at energies in the hundreds of MeV
produce excited systems which break into several medi
size fragments@1#. This multifragmentation phenomen
similar to what happens in inertial confinement reactors@2#
and in the synthesis of nanostructure surfaces@3#, could be
the adaptation of a macroscopic phase transition to a s
and transient many-body system.

In the field of nuclear physics, the possibility of achievin
critical behavior in heavy-ion collisions has attracted a lot
attention. This interest on critical exponents was triggered
the seminal study of critical phenomena in proton-Xe a
proton-Ar collisions of the Purdue group@4,5# and then un-
dertaken by other groups@6#. More recently, modern detec
tion technology has made possible the experimental dete
nation of the caloric curve@7,8#, i.e., the relation between th
system’s temperature and its excitation energy at fragme
tion time. The procedures used, however, present sev
complications due mainly to the finite size of the system,
transient nature, and the limitation of obtaining nothing mo
than the final fragments from the reaction.

As explained by Pochodzalla and Trautmann in Ref.@9#,
there are complications, for instance, in the reconstructio
the energy deposition starting from the exit channels, a
thus, in the calculation of the caloric curve. Other difficulti
come from the variation of the size of the systems produ
in the reactions@10#, side feeding affecting the final mas
distribution @11#, and on the use of final spectra which ha
been necessarily modified by the natural evolution of
reaction@12#.

Indeed, experiments using different ‘‘thermometers’’ ha
led to contradictory caloric curves that go from the typic
‘‘rise-plateau-rise’’ pattern@13#, to a more peculiar ‘‘rise-
plateau’’ behavior@14,15#, and yet to a ‘‘rise-rise’’ shape
without the characteristic plateau of first-order phase tra
tions @16,17#. The suppression of the final temperature r
could be related to a presumably low breakup density@18#,
or to an increased fragmentation at high excitation ener
that depletes the heat-storing medium-size fragments@9#.
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With so many variables affecting the determination of t
caloric curve of nuclear matter, the question to answe
then, is it at all possible to extract the caloric curve fro
nuclear collisions? Recently this question was addressed
molecular dynamics study for a nuclearlike system in a c
tainer@19#, and for a freely expanding classical system@22#.

Although the two calculations are not directly comp
rable, not among themselves nor to experiments, both e
cises were able to obtain a caloric curve. Sugawa and Ho
chi @19#, using an antisymmetrized molecular dynamic
studied a contained uniformly excited system with a fix
pressure, and obtained a raise-plateau-raise caloric curve
the other hand, Strachan and Dorso@22# used a classical
uniformly excited, Lennard-Jones system freely expand
into space to obtain a caloric curve with a raise-plate
shape. The difference between these results comes from
collective expansion present in free finite systems~but not on
infinite or contained systems!, which acts as an energy sin
and limits the temperature rise@22#.

Independent of their differences, these exercises appe
underline the fact that small breaking systems can yield
formation about the caloric curve. But in view of the cruci
role played by the geometrical aspects of the breaking s
tem, i.e., contained vs freely expanding systems, a refi
question to ask would then be, what is the role played by
collision on the obtention of the caloric curve? In oth
words, would the strong correlations induced by the hig
nonlinear dynamics of the collision impede the obtention
the caloric curve? A calculation more closely matching t
experimental collisions is what motivates the present stu

This work uses the numerical weaponry developed in R
@22# to focus on systems that are excited via the collis
with energetic projectiles, and, again, our main objective
the determination of the caloric curve. The paper is or
nized as follows. After describing the model used and
fragment-recognition algorithms in Sec. I, Sec. II describ
typical time evolutions of the fragmenting systems and
characteristic time scales. Section III proposes a way to
culate the effective excitation energy of the fragmenting s
tem, and Sec. IV studies the effective temperature of
©2001 The American Physical Society05-1
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fragmenting system and resulting clusters. The resulting
loric curve is presented in Sec. V, and some concluding
marks close the paper in Sec. VI.

II. THE MODEL

Due to the complications of the breakup process, a co
plex model with proper auxiliary tools is needed. To beg
with, the evolution of the collision is modeled with a mo
lecular dynamics~MD! code, but since MD operates at th
‘‘nucleon’’ level, it is necessary to transform the particle i
formation into fragment information by means of
fragment-recognition algorithm. Furthermore, to use the
loric curve as a signature of a phase transition, the time
which the system fragments must be determined usin
quantity known as the partition ‘‘persistence.’’

A. The molecular dynamics model

The virtues of molecular dynamics for the study
nuclear collisions have been stated elsewhere@20#. As was
mentioned in the Introduction here we study the behavio
a two-dimensional system composed by classical parti
that interact via a two-body Lennard-Jones potential:

V~r !54eF S s

r D 12

2S s

r cut
D 12

2S s

r D 6

1S s

r cut
D 6G , ~1!

wherer cut is the cutoff radius, and the potential is taken
zero for r>r cut . We considerr cut53s. The units of time
and energy aret05As2m/48e ande, respectively.

This work studies the time evolution of numerical sim
lations of head-on projectile-target collisions. The target c
sists of a randomly oriented two-dimensional~2D! drop of
100 particles on its ‘‘ground state,’’e0;22.8e. The projec-
tile is a randomly oriented three-particle drop boosted i
the target at different energies. The numerical integration
the equations of motion is performed with a velocity-Ver
algorithm with a time step oft int50.0025t0 assuring an en-
ergy conservation better than 0.05%. Figure 1 shows an
lution corresponding to a typical collision experiment.

The range of kinetic projectile energies considered g
from Ebeam518e to 2520e in the center of mass referenc
frame with 200 collisions performed for each energy. Stu
ing such a rather broad energy range, quite different type
dynamical evolutions are found: from events in which t
projectile is adsorbed by the droplet surface, up to eve
where a mass spectrum with an exponential decay is
served. As can be seen in Fig. 2, U-shaped and power-
like mass spectra are observed for intermediate energies

B. Fragment recognition

To obtain fragment information, the complete microsco
‘‘nucleon’’ data resulting from MD must be analyzed usin
fragment-recognition algorithms. Many such algorithms e
ist; the ones used here are described next.

The simplest and more intuitive cluster definition is bas
on correlations in configuration space: a particlei belongs to
a clusterC if there is another particlej that belongs toC and
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ur i2r ju<r cl , wherer cl is a parameter called the clusteriz
tion radius. If the interaction potential has a cutoff radi
r cut , then r cl must be equal to or smaller thanr cut ; in this
work r cl5r cut53s. The algorithm that recognizes thes
clusters is known as the ‘‘minimum spanning tree’’~MST!.
The main drawbacks of this method is that only correlatio
in r space are used, neglecting completely the effect of m
mentum. The MST clusters give incorrect information wh
the system is still dense, and are meaningful only late in
evolution when the system is a dilute mixture of free p
ticles and cool fragments.

An extension of the MST is the ‘‘minimum spanning tre
in energy’’~MSTE! space algorithm. In this case, a given s
of particlesi , j , . . . ,k, belongs to the same clusterCi if

; i eCi , ' j eCi /ei j <0, ~2!

where ei j 5V(r i j )1(pi2pj )
2/4m, and m is the reduced

mass of the pair$ i , j %. MSTE searches for configurationa
correlations between particles considering the relative m
menta of particle pairs. In spite of not being supported b
physically sound definition of a cluster, the MSTE algorith
typically recognizes fragments earlier than MST. Furth
more, due to its sensitivity in recognizing promptly emitte
particles, it is extremely useful to study the preequilibriu
energy distribution of the participant particles.

A more robust algorithm is based on the ‘‘most bou
partition’’ ~MBP! of the system@23#. The MBP is the set of

FIG. 1. Snapshot sequence of the dynamical evolution of a t
cal Ebeam51120e experiment.
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OBTAINING THE CALORIC CURVE FROM COLLISIONS PHYSICAL REVIEW C64 044605
clusters$Ci% for which the sum of the fragment internal e
ergies attains its minimum value:

$Ci%5
argmin
$Ci% FE$Ci %

5(
i

Eint
Ci G ,

Eint
Ci 5(

i F (
j PCi

K j
c.m.1 (

j ,kPCi
j <k

Vj ,kG , ~3!

where the first sum in Eq.~3! is over the clusters of the
partition,K j

c.m. is the kinetic energy of particlej measured in
the center of mass frame of the cluster which contains p
ticle j, andVi j stands for the interparticle potential. It can b
shown that clusters belonging to the MBP are related to
most-bound density fluctuation inr -p space@23#.

The algorithm that finds the MBP is known as the ‘‘ear
cluster recognition algorithm’’ ~ECRA!. Since ECRA
searches for the most-bound density fluctuations inr -p
space, valuable space and velocity correlations can be
tracted at all times, especially at the very early stages of
evolution. This has been used extensively in many fragm
tation studies@20–25# and has helped to discover that excit
drops break very early in the evolution.

The performance of these three fragment-recognit
methods~MST, MSTE, and ECRA! has been illustrated be

FIG. 2. Asymptotic mass spectra corresponding toEbeam

5280e, 1120e, and 2520e from top to bottom, respectively.
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fore @22–24#, with the general feature that partitions obtain
by ECRA stabilize very early in time, much earlier tha
those of MST and MSTE. As expected, at asymptotic tim
all three algorithms give the same results.

C. Partition persistence

As stated in the Introduction we consider the caloric cu
as the functional relationship between the excitation ene
of the system and its temperatureat fragmentation time.
Therefore, we need to estimate the system’s excitation
ergy and temperature when the breakup occurs. In orde
do that, the fragment-formation time,t f f , can be defined as
the time in which the system breaks in a definite way; that
after t f f the fragments might just evaporate only a fe
monomers. To estimatet f f it is necessary to measure th
similitude between partitions at different times; this can
achieved with the ‘‘microscopic persistence coefficien
P @25#:

P@X,Y#5
1

(cl
ni (cl

ni

ai

bi
, ~4!

whereX[$Ci% andY[$Ci8% are two different partitions,bi

is the number of pairs of particles in the clusterCi of parti-
tion X, ai is the number of pairs of particles that belong
cluster Ci and also are together in a given clusterCj8 of
partition Y, andni is the number of particles in clusterCi .
P@X,Y# is equal to 1 if the microscopic composition of th
partition X equals that ofY, and it tends to 0 when none o
the constituent particles of a given cluster inX appear to-
gether in any cluster inY.

It is useful to study the time evolution of the quantities

P̂1@X~ t !#[^P@X~ t !,X~ t→`!#&events,

P̂2@X~ t !#[^P@X~ t→`!,X~ t !#&events,

P̂dt@X~ t !#[^P@X~ t !,X~ t1dt!#&events, ~5!

where X(t) represents a partition calculated at timet, X(t
→`) is a partition at asymptotic times, and̂•••&events
represent an average over the whole set of collisions. Sim
stated,P̂1@X(t)# determines if the particles that are togeth
at time t remain together asymptotically. Likewise
P̂2@X(t)# measures the reciprocal value, i.e., the degree
which the asymptotic partition is contained in the one at ti
t. Together,P̂1 and P̂2 can be used to analyze how th
microscopic composition of the system’s most-bound pa
tion evolves towards its asymptotic form. FinallyP̂dt@X(t)#
gives an idea of theactivity of the partition analyzed, and
thus can be used to define a fragment-formation time,t f f ,
once a certain degree of stabilization is achieved.

Instead of the straightforward use of the quantities int
duced in Eq.~5! we found it worthy to analyze the respectiv
normalized quantities:

P1@X~ t !#[ P̂1@X~ t !#/^P@X~ t→`!,X8~ t→`!#&events,
5-3
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P2@X~ t !#[ P̂2@X~ t !#/^P@X~ t !,X8~ t !#&events,

Pdt@X~ t !#[ P̂dt@X~ t !#/^P@X~ t1dt!,X8~ t1dt!#&events,
~6!

whereX8 stands for a partition composed by the same cl
ters of partitionX, but each fragment has one particle evap
rated. This normalized quantities compare the actual valu
P̂’s to an evaporativelike reference level.P1, P2, and Pdt

allow us to estimate the time at which microscopic stabi
is achieved~i.e., the fragment-formation time!, and will be
referred to as the forward, backward, and differential per
tence coefficients, respectively.

III. DYNAMICAL EVOLUTION

Armed with the tools presented before~MD, MST,
MSTE, and ECRA, andP1, P2, andPdt) we now proceed
to study the dynamical evolution of the collisions describ
in Sec. II A. Analyzing the projectile-target momentu
transfer allows the characterization of the collision in
stages and the identification of promptly emitted particl
This in turn makes possible the study of the time evolution
the excitation energy and the determination of the fragme
formation time.

A. Collision stages

Two stages are seen in the collisions studied, an orde
initial highly collisional stage produced when the project
hits the drop surface, and a disordered chaotic collision
tern that distributes the energy. The ordered collisions of
first stage form a shock wave responsible for a rapid em
sion of energetic light particles from the surface. As th
wave travels through the drop, it produces density fluct
tions and internal fractures while it transfers momentum a
initiates the disordered collisions that thermalize the exc
tion.

To get a deeper understanding of this process we calcu
the ‘‘mean velocity transfer,’’ defined as

M j~ t !5K (
i 50

N U@vW i~ t1dt!2vW i~ t !#•êj u&events,

wherej denotes the incident~x! and perpendicular~y! direc-
tions, dt50.25, andêj is a unit vector in thex or y direc-
tions. Figure 3 shows the temporal evolution ofMx andM y
for projectile energyEbeam5280e, 630e, 1120e, and 1750e.
In all casesMx.M y at the first stage of the collision, a
expected from the centrality of the collisions. The maximu
value of Mx and M y is simultaneously attained att;2t0
23t0, when the shock front reaches the middle region of
drop and more particles are involved in the momentum tra
ference process. Att;4t027t0 the shock wave has crosse
the drop andMx;M y for the whole range of energies con
sidered; at this time the memory of the entrance channe
lost.

The isotropic collisions~disordered collisional mode! are
responsible for the momentum redistribution among the p
ticles remaining in the system. This energy heats up the
04460
-
-
of

s-

d

.
f
t-

ed

t-
e

s-

-
d
-

te

e
s-

is

r-
s-

tem and builds a collective expansive motion. The disorde
collisional mode is the only one present in uniformly excit
systems where it is responsible for the production
fragments and their outward flux that spread them into sp
@22,23#.

The MSTE algorithm can be used to study the size of
biggest MSTE cluster, the total multiplicity, and the pers
tence coefficients. Figures 4~a!–4~c! show the time evolution
of these three quantities. The picture emerging indicates t
due to the violent initial collision, some particles acquire
lot of kinetic energy which prevents them from being a p
of the biggest fragment, albeit of being configurationa
close to it or even inside. This reduces the mass of the
gest MSTE fragment in this early stage~up to t;3t0), and
increases the total multiplicity. This trend is sustained un
the average momentum per particle allows the particles
are configurationally close to be bound. After the initial r
duction of the fragment size, there is a coalescencelike
havior that makes the partition multiplicity shrink and th
biggest cluster grow until it reaches a maximum att'7t0.
This time marks the end of the initial energy deposition p
cess and in what follows, it will be referred as thedeposition
time, td .

The persistence coefficients~6! can be used to understan
how the partition reaches its microscopic composition
asymptotic times. Figure 4~c! shows the temporal evolution
of P1@X(t)# and P2@X(t)# calculated using MSTE parti
tions for Ebeam51120e and usingt`550t0. The backward
persistence coefficient shows an initial steep decrease, c
sponding to a fragment production stage, followed by a s
sequent increase due to a reabsorptionlike dynamics that
sists up totd . ~Remember that highP2 values indicate that
more particles that belong to a given asymptotic cluster
together at timet.! Consistently, theP1 coefficient shows a
plateau during this reabsorption stage that also extends u
td , followed then by a monotonic increase due to an eva
rationlike dynamics of the MSTE clusters. During this sta

FIG. 3. Mean velocity transfer coefficients,Mx ~solid lines! and
M y ~dashed lines!, are shown for beam energiesEbeam5280e ~a!,
650e ~b!, 1120e ~c!, and 1800e ~d!. The maximum value is
achieved approximately when the shock front reaches the midd
the drop.Mx.M y reflects the symmetry of the collision, andMx

;M y is a signal of an isotropic collision pattern.
5-4
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OBTAINING THE CALORIC CURVE FROM COLLISIONS PHYSICAL REVIEW C64 044605
of the evolution, the MST algorithm identifies one large clu
ter with ;80% –90% of the mass of the system, reveal
that the system is still dense.

In summary, there is an initial stage~lasting up to t
;3t0) characterized by the existence of an ordered sh
wave ~with Mx.M y) which expels light particles from the
surface, reduces the biggest fragment, and increases m
plicity ~i.e., decreasesP2). At t;4t027t0 the wave has
crossed the drop distributing the energy uniformly (Mx
;M y) and a coalescencelike behavior sets in~as seen by a
rise ofP2) washing out the memory of the entrance chann
reducing the partition multiplicity, and enlarging the bigge
cluster up to;80% –90% of the total mass. This is final
followed by an evaporationlike dynamics of the clusters
indicated by a monotonic increase ofP1.

B. PEP’s and excitation energy

As in the experimental case@17#, the observed presence o
promptly emitted particles~PEP’s! makes it impossible to
know a priori how much of the beam energy is used
excitation energy. This complication, conspicuously abs

FIG. 4. Mass of the biggest MSTE cluster~a! and the multiplic-
ity of MSTE fragments~b! for Ebeam5280e ~solid lines!, Ebeam

5630e ~dotted lines!, Ebeam51120e ~dashed lines!, Ebeam

51750e ~long-dashed lines!, andEbeam52520e ~dot-dashed lines!.
~c! shows the forward persistence coefficientP1 ~solid lines! and
the backward persistence coefficientP2 ~dashed lines! for MSTE
partitions forEbeam51120e experiments.
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in calculations of contained or infinite systems, demand
sensible definition of the excitation energy which necessa
should depend on the PEP’s.

The PEP’s can be defined as those unbound light clus
~mass<4) detected by the MSTE algorithm at timetd and
that remain unbound at any later time~i.e., no reabsorption!.
The number of PEP’s can be quantified as in Fig. 5 wh
shows the velocity distribution of monomers for beam en
gies 280e and 2520e. The histograms show the asymptot
velocity distributions calculated for all monomers~solid out-
line transparent histogram! and for PEP monomers onl
~gray histogram!. PEP’s account for most of the monom
production and for the large velocity asymmetry observed
both beam energies.

With the PEPs defined, their kinetic energy can be use
estimate the energy that remains in the system. Figures~a!
and 6~b! show the energy carried by the PEP’s and the nu
ber of PEP’s as a function of the beam energy, respectiv
With the number of PEP’s and their energy quantified,
energy that remains in the system aftertd can also be ob-
tained. Figure 6~c! shows the excitation energy of the targe
E* , as a function of the beam energy. These figures sh
that the fraction of the available energy that leaves the s
tem as a consequence of this early emission is considera
Moreover, the excitation energy shows a saturation beha
indicating that there is a limit in the amount of energy th
can be transferred in a collision, an effect not present
calculations of uniformly excited systems.

FIG. 5. Histograms of the asymptotic velocity modulus f
monomers calculated forEbeam5280e and 2520e. The solid outline
transparent histogram corresponds to counts produced by the
plete set of asymptotic monomers; the gray histogram correspo
to counts produced by the promptly emitted ones.
5-5
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C. Fragment-formation time

After the depositiontime, td ~see Sec. III A!, the energy
remaining in the system is fully distributed, and ther -p den-
sity correlations induced by the initial shock wave start
build up a collective expansion. Eventually, this expans
will turn those early fluctuations into well defined fragmen
in r space making them recognizable by the MST algorith
The caloric curve should reflect the state of the system at
phase change; here we take this time as the fragm
formation time,t f f , associated to the stabilization of th
ECRA density fluctuations.

As mentioned in Sec. II B, ECRA searches for the mo
bound density fluctuation~MBDF! in phase space, cf. Eq
~3!; we study the stabilization of these partitions using
differential persistence coefficient,Pdt @cf. Eq. ~6!#. Since
Pdt is normalized to be equal to 1 when the microsco
composition of a partition at timet differs from the one at
t1dt by just one ‘‘evaporated’’ particle,t f f can then be de-
fined as the earliest time whenPdt(t)51. Figure 7 shows the
temporal evolution ofPdt calculated using ECRA partition
from experiments with Ebeam5630e,1120e,1750e, and
2520e, dt52t0, and considering only fragments of ma
greater than three particles. The results obtained aret f f

FIG. 6. The energy carried by the promptly emitted particles~a!,
number of PEP’s produced~b!, and the excitation energy per pa
ticle of the remaining system~c! as a function of the beam energ
04460
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520t0 ,15t0 ,12t0 , and 10t0 for these energies, respectively
The temporal evolution of the MBDF can be traced usi

P1 and P2, as done with MSTE clusters~Sec. III A!. The
corresponding time evolution of the forward and backwa
persistence coefficients for the ECRA partitions, which u
correlations inr -p space, are shown in Figs. 8~a!–8~d! for
collisions with beam energies of 630e, 1120e, 1750e, and
2520e, and takingt`550t0. The fact thatP1 reaches the
reference beforeP2 reflects an initial overproduction o
ECRA fragments, due to the highly nonequilibrium ener
injection process. However, after preequilibrium, the sub
quent dynamics ‘‘smoothes’’ the density fluctuations inr -p
phase space and a coalescentlike behavior for the EC
clusters can be observed. On the other hand, similar to
results of the MSTE clusters@cf. Fig. 4~c!#, an evaporative-
like dynamics was observed for ECRA partitions calcula
after t@t f f , i.e., after the clusters are already formed a
vary their microscopic composition only by monomer evap
ration. This underlines the fact thatt f f appears to be wel
suited to define thefragment-formation time.

FIG. 7. Temporal dependence of the persistence coefficient
culated for collisions withEbeam5630e ~circles!, 1120e ~squares!,
1750e ~diamonds!, and 2520e ~triangles!, obtained using ECRA
partitions and a value ofdt52t0.

FIG. 8. Forward~solid lines! and backward~dashed lines! per-
sistence coefficients, calculated over ECRA partitions for collisio
with Ebeam5630e ~a!, 1120e ~b!, 1750e ~c!, and 2520e ~d!. See
text for details.
5-6
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OBTAINING THE CALORIC CURVE FROM COLLISIONS PHYSICAL REVIEW C64 044605
D. Comparison to uniformly excited systems

The differences between collision-induced breakups
those produced by the addition of a uniform excitation~‘‘ ex-
plosions’’ ! can be educational. To simulate this second k
of experiments 2D 100 Lennard-Jones particle drops w
given random velocities according to a Maxwell-Boltzma
distribution with a variance compatible with a given excit
tion energies@22#.

Figure 9 shows the time evolution ofPdt(t) for ECRA
partitions calculated over explosive experiments with exc
tion energies per particle of 2.2e,2.8e,3.4e, and 3.8e ~corre-
sponding to collisional events with Ebeam
5630e, 1120e, 1750e, and 2520e, respectively!. The
fragment-formation times extracted from the figure aret f f
520t0 , 12t0 , 9t0, and 8t0 in general agreement with th
corresponding times of the collisions.

On the other hand, Fig. 10 shows the forward and ba
ward persistence coefficients,P1(t) and P2(t), for the ex-
plosive experiments considered before. Qualitative diff

FIG. 9. Temporal dependence of the differential persistence
efficient calculated for ECRA partitions for uniformly excited sy
tems withE* 52.2e ~circles!, 2.8e ~squares!, 3.4e ~diamonds!, and
3.8e ~triangles!, and using a value ofdt52t0.

FIG. 10. Forward~solid line! and backward~dashed line! per-
sistence coefficients, calculated for ECRA clusters for isotropic
excited systems withE* 52.2e ~a!, 2.8e ~b!, 3.4e ~c!, and 3.8e ~d!.
See text for details.
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ences arise in the microscopic dynamics of the EC
clusters when collisional events~see Fig. 8! are compared
with isotropically excited systems. In the explosions, the
rect persistence coefficients are always smaller than the
verse persistence ones. Moreover, asP1 crosses the refer
ence value afterP2, an evaporativelike behavior of th
ECRA clusters can be associated for this kind of excitation
the early stage of the evolution. As mentioned above, thi
not the case for collisional experiments.

The picture emerging suggests that the particle corr
tions in phase space have to be built from scratch in exp
sions. Likewise, the collective radial flux built from interpa
ticle disorderedcollisions cools down the system leading to
microscopic stabilization of the density fluctuations~i.e.,
ECRA clusters!. The persistence coefficients indicate that t
later cluster dynamics is mainly evaporative.

Collisions, on the other hand, appear to have a two-st
development. A first stage of high momentum transfer~see
Fig. 3! with a mechanical shock front produces large nu
bers of light ECRA clusters and internal surfaces, follow
by a second stage with an isotropic collision pattern. In t
second stage, the system is still dense and a coalescen
behavior sets in enlarging the ECRA clusters and starting
expansion. This process continues until the density is lo
ered by this radial expansion.

Although the microscopic dynamics of the MBDF’s ca
culated by ECRA are quite different for early times, simil
fragment-formation timest f f are found for both explosions
and collisions. Furthermore, the finding of stages follow
by a radial expansion in the collisions appears to be in ag
ment with experimental observations@17#.

IV. TEMPERATURE

The next step leading to the caloric curve is the calcu
tion of the temperature of the system at fragmentation tim
Since at this time the system can still be dense~cf. Sec.
III A ! with a temperature varying in space, two compleme
tary measures of temperature will be used: a ‘‘local’’ tem
perature~using local velocity fluctuations around a loc
mean! and a cluster temperature~using velocity fluctuations
around each cluster’s mean!. This appears to be justified a
isotropically excited drops are known to achieve therm
equilibrium during the breakup@22#. Purists with reserva-
tions about using thermodynamic concepts for small a
transient systems are referred to in Refs.@26,27#. We now
define these temperatures and study their temporal evolu

A. Local temperature

To calculate the local temperature,Tloc , a square grid is
placed over the region of interest and the local velocity flu
tuations of the particles in every cell are calculated. F
mally,

Tloc
i 5 1

2 ^~^v2& i2^v& i
2!&ev , ~7!

wherev represents the particle velocities,^•••& i stands for
average over particles in celli, and ^•••&ev for an average
over all events. Cells are ofl cell53s of side cells to assure
approximately a mean cell population of seven particles
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t,20t0. To further quantify the temperature of the cent
cells, the averageT̄loc(t) is calculated over central cells wit
a center not farther than 9s from the center of mass of th
system. Approximately 40% of the particles remains in t
region for t<40t0 for the more energetic experiments.

Figure 11 shows that the system cools down rapidly u
T̄loc;0.3e at t;15t0 for all energies considere
(280e,630e,1120e,1750e, and 2520e). Note that forEbeam
5280e and 630e an overcooling loop can be seen. For the
less energetic collisions, the generated expansion is w
enough to allow the attractive interactions to produce a te
porary increase of the system density before it breaks. T
effect is suppressed for larger energies, where the expan
is much stronger.

B. Cluster temperature

A cluster-based temperature can be obtained looking
the internal kinetic energies of the ECRA fragments. T
cluster temperature of a fragmentCi is defined as

TCi
5

1

ni
(

j PCi

K j
c.m., ~8!

whereni is the number of particles in clusterCi , andK j
c.m. is

the kinetic energy of particlej measured in the center o

FIG. 11. Mean local temperatureT̄loc as a function of time,
calculated for collisions withEbeam5280e ~left triangles!, Ebeam

5630e ~circles!, 1120e ~squares!, 1750e ~diamonds!, and 2520e
~up triangles!.

FIG. 12. Mass dependence of ECRA-cluster temperatures
collisions with Ebeam51120e calculated at timest55t0 ~circles!,
t57t0 ~squares!, andt520t0 ~diamonds!.
04460
l

t

il

e
ak
-
is
ion

at
e

mass frame of the cluster to which it belongs. Figure
shows the typical dependence ofTC on the ECRA-cluster
masses calculated inEbeam51120e events att55,7, and
20t0. Since a saturating behavior is observed for clust
with ni>20, a mean cluster temperature,Tclus , can be de-
fined as the average temperature of clusters with more
20 particles.

The ECRA clusters are formed by a compromise betw
the maximum temperature the clusters can sustain and
cohesive effects of the pair potential interaction. Initially, t
cluster constituents are close to their initial positions w
large ~more negative! values of the potential which perm
them stand hotter temperatures. As the system evolves
the clusters become more rarefied, the potential energy
creases~becomes less negative! reducing the maximum tem
perature the clusters can sustain. Finally, as the clusters a
their asymptotic composition, the temperature stabilizes.
shift observed in Fig. 12 at early times,t55t0, is due to the
the lack of development of the radial flux.

Figures 13~a! and 13~b! show the cluster temperaturesTC
at fragment-formation time,t f f , and at t` for Ebeam
5280e,630e,1120e,1750e, and 2520e. At t f f , although the
system is still dense~the biggest MST cluster has;90% of
the total mass!, the cluster temperatures calculated for ECR
clusters have already achieved their asymptotic values
are in agreement with the corresponding local temperatu
T̄loc . This behavior has also been found in explosiveli
experiments~see Ref.@24#, and references therein!.

Two remarks are in order. First, it should be clear by n
that the temperature of the systemat t f f can be extracted
from the estimation of theasymptoticcluster temperatures in
both cases, collisional and explosivelike experiments. S
ond, it is worth noting that in our analysis we did not have
invoke anyglobal equilibriumhypothesis~such as the exis-
tence of a freeze-out volume! in order to calculate the system
temperature. Instead, our temperature definitions rely o

or

FIG. 13. Cluster temperature as a function of fragment ma
calculated for ECRA clusters att5t f f ~a!, and t5t` ~b! for colli-
sions with Ebeam5630e ~circles!, 1120e ~squares!, 1750e ~dia-
monds!, and 2520e ~triangles!.
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local equilibriumscenario which seems to describe the fra
mentation process in a more natural way@29#.

V. CALORIC CURVE

After the simulation of the collision dynamics, the dete
tion of PEP’s and fragments, the identification of fragmen
tion time, and the calculation of the excitation energy a
temperature, the caloric curve can finally be obtained. F
mally this quantity, which has been investigated experim
tally @28,13,14,16,17,7,8# and computationally@19,22,24#, is
the functional relationship of the system temperature with
excitation energy. In this section we will extend the analy
to collisionally excited Lennard-Jones drops.

Figure 14 shows the caloric curve calculated for a bro
range of energies for collisionally excited systems. For co
pleteness, the caloric curve for low energy experiments,E*
,1e, where no fragmentation is expected, is also calcula

FIG. 14. Caloric curve calculated with data obtained from c
lisions. For low energy experiments~circles!, the temperature of the
biggest fragment is shown. For high energy events, the system

peratureT̄loc ~squares! and the cluster temperature at fragmentat
timesTclus ~triangles! are shown.
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~Since in these experiments no particles, or just a few,
evaporated, the temperature is calculated for the larger c
ter that remains after the projectile collision.! For higher ex-
citation energies we show both the average local temp
ture,Tloc , and the cluster temperatures,Tclus , at t5t f f .

As seen in Fig. 14, the caloric curve is similar to the o
obtained for isotropically excited systems@24#. Here again,
the relevant feature is the rather constant temperature be
ior in the region that corresponds to the fragmentation
gime and beyond. In other words, data from collisions app
to yield a ‘‘rise-plateau’’ shape for the caloric curve, witho
the final ‘‘rise’’ expected for the heating of a possible ‘‘ga
eous’’ phase.

VI. CONCLUSIONS

As a conclusion we now answer the question asked
Sec. I, namely would the correlations induced by the co
sion impede the obtention of the caloric curve? The answe
an unconditional ‘‘no.’’ Even though collisions produc
many PEP’s and induce internal surfaces and large den
correlations, the temperature information of the system
fragmentation time appears to be reflected in the cluster t
perature with high fidelity. This, in conclusion, makes col
sions a useful tool to explore the caloric curve of fragme
ing systems, provided the excitation energy responsible
the fragmentation process is properly calculated. Work
progress is developing a more realistic MD model to ident
participant nucleons and their excitation energy kinem
cally in nuclear collisions.
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