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Caloric curve for finite nuclei in relativistic models
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In this work we calculate the caloric curyexcitation energy per particle as a function of temperattome
finite nuclei within the nonlinear Walecka model for different proton fractions. It is shown that the caloric
curve is sensitive to the proton fraction. Freeze-out volume effects in the caloric curve are also studied.
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The production of several intermediate mass fragments imined by a delicate balance between nuclear Coulomb and
a short time scale during heavy-ion collisions is known assurface energies. The surface energy favors nuclei with a
nuclear multifragmentation. At several hundred MeV/large number of nucleons, while the nuclear Coulomb self-
nucleon, the multifragment decay follows the formation ofenergy favors small nuclei.
an equilibrated projectile remnant. The existence of equili- In the present work we calculate the caloric curve, given
bration is consistent with different experimental observaPy the temperature dependent excitation energy per particle,
tions, such as the symmetry of the measured rapidity distrifor the nuclei obtained with the approach mentioned above.
butions of fragments witiz=3 [1]. The spectator matter In particular, we will study the influence of the proton-
has, therefore, been used to investigate a thermally driveReutron asymmetry. We chose the systettf§m and'**sm
liquid-gas phase transitiofl—3]. One of the evidences of because they lie in the mass and charge range of interest for
this transition in infinite systems is the fact that the heatthe experiments we are analyzifig,2,21. In the first two
capacity exhibits a peak at a given temperature. However ifeéferences the caloric curve presented is obtained with pre-
finite systems the situation is more complicafgdi—6. The ~ fragments in the mass range from 50100 to 200. In R3f.
caloric equation of state, which is given by the excitationthe data were obtained for a compound nucleus of mass
energy per nucleon in terms of the thermodynamic tempera=160. We took two isotopes with quite different number of
ture is an important quantity to be investigated in the searcieutrons in order to study the effect of proton-neutron asym-
for a signal of a phase transition. Nevertheless, it was remetry. In the framework of the Thomas-Fermi theory there
cently pointed out that the identification of the existence of are no shell effects. Hence, we are calculating average prop-
phase transition cannot be based only on the behavior of th@rties. We expect that the caloric curve of a given system
caloric curve and a more detailed knowledge of the thermomay depend quantitatively on the system mass but the quali-
dynamic phase diagram is also requif@d In particular it ~ tative features, namely, the dependence of proton-neutron
was shown that the interpretation of the data is sensitive t@symmetry and the effect of freeze-out volume, will be simi-
the use of a variable free volume in the calculation. lar. In multifragmentation calculations an input parameter

Recently there has been a big development in the descrigalled the freeze-out radius is normally uged, so that a
tion of nuclei and nuclear matter in terms of the relativisticPhase transition at constant volume is simulated. We inves-
many-body theory. In particular, the phenomenological modtigate the consequences on the caloric curve when thermali-
els developed using the relativistic mean-field theory dezation in a freeze-out volume is imposed in the present
scribe well the ground state of both stable and unstable niramework.
clei [8,9]. These same models are used to describe the We start from the Lagrangian density of the relativistic
properties of neutron stars and superndie®. Therefore, it ~ nonlinear Walecka mod¢lL8,19
is important to test these models at finite temperature and
different densities. ]n particular, iF would_ b_e interesting to :Z{y {i&“—g VM_%;_SM_eA,L
compare the caloric curve obtained within a relativistic m v 2
Thomas-Fermi calculation with the recent experimental data,
and verify whether the proton-neutron asymmetry of the hot —(M—gs¢)
source gives information on the symmetry energy term of
these models.
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Within the framework of relativistic models, the liquid- — ih¢4_ EQ Qrv 4 EmZV /2 Eg .Brv
gas phase transition in nuclear matter has been investigated 4! 4= r 2K 4-rr
at zero and finite temperatures for symmetric and asymmet- 1 1
ric semi-infinite systemfl0—14. With the help of the Tho- + Emiﬁu' P~ — ZFMVFMV, (1)

mas Fermi approximation, we have investigated droplet for-
mation in the liquid-gas phase transition in c$ldb,16 and - .
hot [17] asymmetric nuclear matters using the nonlineatvhere ¢, V¥, b*, and A* are, respectively, the scalar-
(NL) Walecka mode[8,18]. As shown in Refs[15,17], the  isoscalar, vector-isoscalar, vector-isovector meson fields, and
optimal nuclear size of a droplet in a neutron gas is deterthe electromagnetic field,,=d,V,—d,V,, I§W=aﬂ5y
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_avﬁﬂ_gp(ﬁﬂx 6)1 and F= %Av_ dA, with the follow- _ TABL_E l. Output results_ given by the solution of the coupled
ing parameters: the nucleon mads-938 MeV, the masses differential equations for different temperatures @‘)Srrbg (Y

of the mesonsmg=492.25 MeV, m,=795.36 MeV,m,  — 041

=763.0 MeV, the electromagnetic coupling constant T B/A e (T)
=4m/137, and the self-interacting coupling constaats (MeV) (MeV/nucleon (MeV/nucleon
and\. The set of constants we use is normally identified as
NL1 [8], with C?=g?M?/m?, i=s, v, p, where C2 0 -8.2 0.0

=373.176, C;=245.458, C2=149.67, x/Mx 10 3= 293 3 ~76 0.7
X 2.4578, and\ X 10 3= —6g;‘>< 3.4334. This parametriza- 4 -7.1 1.2
tion gives a good description of the ground-state properties 5 —6.4 1.8
of all stable nuclei. 6 -54 2.8

The thermodynamic potential is obtained within the 6.5 -4.8 34

Thomas-Fermi approximation. After it is minimized in terms
of the meson and electromagnetic fields, the following
coupled differential equations have to be solved:

d3
fn=2% jﬁ[dfmfi)wm(m—fi)]

V2¢:m2¢+3,<¢2+ ixdﬁ— )
S 2 31 gSPSI 1 ’ ) ) )
+5[(V$)"=(VV)"=(Vbo)*=(VAg)*]
V3Vo=mVo—g,ps, 3 1 2 2
b migre 2t Zngtomivi- i
g
Vzbozmﬁbo_ fppsy (4) ®

The coupled differential equations are solved numerically.

V2A,=—ep (5) For more details on the analytical and numerical procedure,
0 P please refer t§15,17). Three kinds of instabilities can occur

in this system. The condition for mechanical stability re-

where quires that 6’P/(9pB)Yp20, whereP is the pressure and,
=pp/pg is the proton fraction. The condition for diffusive

d*p M* stability implies the inequalities du,/dYp)p =0 and
ps=2 2 f (2m)° — (fie i) (pnldYp)pr=<0. Finally, the thermodynamical stability is

expressed by:vz(ds*/d'DU,YP>O, whereC, is the spe-
. cific heat ande* =¢(T)—e(T=0) is the excitation energy
with per particle, with the total energy per particle at any tempera-
ture given by[20] &(T)=[(&(r)/A)d%, where A=Z+N.
) The two-phase liquid-gas coexistence is governed by the
(PO =T ey =™ (©  Gibbs condition. ' _ o
We have first solved the equations of motion for an infi-
) ) ) ~nite system in order to obtain appropriate boundary condi-
wherev; = u; — Vo are the effective chemical potentials with tions for the program which integrates the set of coupled
wi being the chemical potentials for particles of typend  nonlinear differential equatior®)—(5) in the Thomas-Fermi
approximation. Once the fields are obtained, all thermody-
g, g, namic quantities of interest can be easily calculated. The
Voo=0,Vo+ ?bo+ €Ay, Vno=0,Vo— 7bo; binding energy per nucleon B/A=¢(T)—938 MeV.
In Table I, we show the binding e%%r)gy per nucleon and
) ) the excitation energy per patrticle for t mgg, Which has
€=\p°+M*%, M* =M —g,¢ is the effective nucleon, mass  proton fraction equal to 0.41. In Table II, the same quanti-

and T is the temperature. Moreovepg=pp+pn, P3=Pp  ties are shown for thetS®Smy, with a proton fraction of

~pn With 0.37. Notice that, independently of the proton fraction, the
excitation energy per particle increases with temperature in
d*p the range of temperatures shown. For higher temperatures we
PiZZJ —(fiy—=fi), i=p,n (7)  were not able to obtain convergence for a droplet of the size
(2m) considered.

In Tables IIl and IV, we give the binding and the excita-
and the energy density, obtained from the thermodynamition energies per particle when a freeze-out volume of, re-
potential reads spectively, 6/, and 9V, is used withV,, the volume afl
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TABLE II. Output results given by the solution of the coupled TABLE IV. The same as Table lll for a fixed volume/g.
differential equations for different temperatures §3fSmyo, (Y,
=0.37). T B/A e*(T) A Yq
(MeV) (MeV/nucleon (MeV/nucleon

T B/A e*(T)
(MeV) (MeV/nucleon (MeV/nucleon) 0 —79 0.0 166 0.37
3 —-7.0 0.9 161 0.38
0 —-7.9 0.0 4 —6.2 1.7 156 0.39
2 —7.7 0.3 5 -5.1 2.8 150  0.41
25 -75 04 6 -3.4 4.5 142 041
3 -7.3 0.7 6.5 -2.2 5.3 134 041
4 —6.8 11
5 —6.1 1.8
6 —-5.2 2.7 lation. This agrees with the observed value at around 2 MeV
6.5 —4.8 31 excitation energieg21]. Experimental results obtained at

higher bombarding energi¢4,2] give higher excitation en-
) ] ergies for the same temperatures. It can be seen from Fig. 1
=0. We have considered a freeze-out radius oA2Zm for  of Ref. [2] that the higher excitation energies correspond to
6V, and 2.\"® fm for 9V, with A=166. In this case the smaller sources. The larger sources with an ave#ge,q
solutions obtained consist of a droplet immersed in a gas ok g0 have excitation energiest <5 MeV. In the present
evaporated particles in such a way that they mimic a sourcgpproach the solutions obtained in a fixed volume, corre-
of changing mass. As temperature increases more particlegond to droplets in a gas of free particles. These solutions
evaporate, mainly neutrons, and the fraction of protons in th@aye higher excitation energies than the ones obtained with
droplet increases. This can be seen in Tables Ill and IVng a priori fixed volume. In average, this situation corre-
where the number of particles that remain inside the droplerspondS to smaller systems at higher energies. This could ex-
as well as the droplet proton fractiofy are given. We con- pjain the change of slope that is observed in the calculated
clude that the larger the freeze-out volume, the faster th@ata poth forlV=6V, andV="9V,, in such a way that they
excitation energy increases with temperature and the larger {gsme closer to the experimental d@fa2]. The same effect
the proton fraction in the droplet. This picture is consistentyas obtained in Ref23], where an exact analytical solution
with the discussion presented [if]. _ of the statistical multifragmentation model was found in the
The results for the excitation energies shown in all tableghermodynamic limit. For a fixed nucleon density, the caloric
are displayed in Fig. 1. Also shown are the experimental dat@yrve rises more slowly for lower densities and its leveling
of Refs.[1,2], and the Fermi-gas law* =1KkT? with k  occurs at lower temperatures. The leveling of the caloric
=10.0 (thin dashed lineand 13.0(thin full line). We have  cyrve is associated with the fast change of the configurations

considered that the measured temperalig; (Thetp), Ob-  from a state dominated by one liquid fragment to a gaseous
tained from the isotope yield ratiodHe/*He and °Li/ "Li

(®Hel*He and?H/3H), satisfy, in the range of densities con-
sidered,T,,,/T~0.85 and have scaled the experimental data
accordingly[2].

We conclude that the excitation energy f°Sm (thick
long-dashed curve proton fraction 0.37, increases slightly
slower with temperature than fol°Sm (thick full curve),
proton fraction 0.41, although the difference is not large.
These two curves are consistent with dat@2df] and a level
density parametef/k, k=13.0 in the Fermi-gas model re-

w

T (MeV)

TABLE lll. Output results given by the solution of the coupled
differential equations for different temperatures ﬁSFSmm in a
fixed volume 6/,

3]

T B/A e*(T) A Yq ! ! | ! ! |
(MeV) (MeV/nucleon (MeV/nucleon 0 0 1 2 3 4 5 6 7

e* (MeV)

0 -7.9 0.0 166 0.37

71 0.8 163 0.38 FIG. 1. The caloric curves are shown f§§°Smyo, (Yp=0.37,
—-6.3 1.6 158 0.39  thick long-dashed ling §3°Smyg (Y,=0.41, thick full line; at 6V,
-5.4 25 154  0.40 (thick dash-dotted lineand 9V, (thick short-dashed lindixed vol-
-39 4.0 148  0.40 umes for %6Sm, and for the Fermi-gas laj21] (k=10.0, thin
5 —-3.0 4.9 143 0.40 dashed line an&=13.0, thin full ling. Experimental results from
[2] (square [1] (triangles, and[21] (big star$ are also displayed.

oo s w
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multifragment configuration. We can draw a similar conclu-Walecka model has shown to be adequate to describe nuclear
sion from Tables I, IV and Fig. 1: the leveling of the thick properties and therefore it is a good candidate to generate an
dash-dotted and short-dashed curves occurs faster when teguation of state for astrophysical purposes.

droplet(liquid phasé becomes smaller. It would be interest- ~ When a freeze-out radius is imposed, our procedure yields
ing to study the effect of the symmetry energy on the |eve|.calor_ic curves, whigh come ploser to j[he experimental results
ing of the caloric curve in the statistical multifragmentation obtained in heavy-ion collisions at higher enerdigg]. In
model of Ref[23]. this case we have smaller droplets with a higher proton frac-

In summary, we have studied the excitation energies ofion immersed in a gas of particles, mainly neutrons. This
arising droplets in a vapor system, upTe=6.5 MeV. The could be interpreted as an oversimplified picture of the sec-
droplets are described in terms of a non-linear Walecka-typ nd regime in the statistical model predictifize], namely,

I i ! L e coexistence phase with a multifragment mixture. This
model within the Thomas-Fermi approximation. We haveinterpretation is supported by the results of HeB].

used the NL1 parametrization, which is known to describe . S .

. . o Although the thermodynamical equilibrium analysis over-
well the ground-state properties of nuclei. The excitation N~ molifies the problem of hiah enerav heavy-ion collisions it
ergies of droplets either corresponding ¥¥Sm or 6%sm, P P 9 ay Y

. . hs useful for providing a concrete description of warm nuclei

for temperatures between 3 and 6.5 MeV, are consistent wit . s .

; . . R . and for showing qualitative features that should be present in
the caloric curve in the Fermi-gas approximation with a level . . .

) . . . more microscopic calculations.

density parameteh/13. This result agrees with experimental
data obtained in heavy-ion collisions at intermediate energies We acknowledge the computation facilities offered by
[21]. We have shown that the caloric curve is sensitive to theCentro de Fsica Computacional of the University of Coim-
proton fraction and therefore to the symmetry term of thebra. C.P. would also like to thank the warm hospitality in the
model used. Experimentally the dependence on the protoDepartamento de Gica, Universidade Federal de Santa
fraction could be studied by comparing data obtained fromCatarina. This work was partially supported by CNPq, Brazil
sources with different proton fractions. For the range of tem-and CFT, Portugal under the Contract Nos. PRAXIS/2/2.1/
peratures studied, the NL1 parametrization of the nonlineaFIS/451/94 and POCTI/1999/FIS/35308.
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