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Proton-proton fusion in effective field theory
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The rate for the fusion procegst p—d+e* + v, is calculated using nonrelativistic effective field theory.
Including the four-nucleon derivative interaction, results are obtained in next-to-leading order in the momen-
tum expansion. This reproduces the effects of the effective range parameter. Coulomb interactions between the
incoming protons are included nonperturbatively in a systematic way. The resulting fusion rate is independent
of specific models and wave functions for the interacting nucleons. At this order in the effective Lagrangian
there is an unknown counterterm which limits the numerical accuracy. Assuming the counterterm to have a
natural magnitude, the result is consistent with previous nuclear physics calculations.
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[. INTRODUCTION conventional nuclear physics models. Subsequently it was
pointed out by Bahcall and Kamionowski that their effective
One of the most important problems in modern physics iswuclear interaction was not consistent with what is known
the nature and properties of neutrinos. These were for a longbout proton-proton scattering at low energies where Cou-
time thought to be massless and stable, but experiments duomb effects are importari8]. In a more recent contribution
ing the last decade have consistently shown this to be inconthis defect of their calculation was removed and better agree-
patible with the observed neutrino oscillatiofld. Histori-  ment with standard results have been obtair®jd
cally and even today the fusion processes in the Sun are The approach of lvanoet al. is based upon relativistic
among the few available and abundant sources of low-enerdjeld theory and should in principle yield reliable results. But
neutrinos available for experimental investigations. In ordeiit is well known that it is very difficult to use consistently a
to study oscillations in the detected fluxes, one needs to beelativistic formulation for bound states such as the deuteron.
sure of the production rates in the different nuclear reactionsn addition, the fusion process considered here takes place at
taking place in the Sun. low energies and should therefore instead be described
The basic process is proton-proton fusioft p—d+e”* within a nonrelativistic framework. Then all the large-
+ve. It was explained more than 60 years ago by Bethe anechomentum degrees of freedom are integrated out and one is
Critchfield when nuclear physics was still at a very primitive left with an effective theory involving only the physically
stag€]2]. When the field had matured, it was reconsidered inmportant field variables. The underlying, relativistic interac-
the light of more modern developments by Salpeter who intions are replaced by nonrenormalizable local interactions
cluded effective range correctioni8]. Applications to the with coupling constants which must be determined from ex-
specific conditions we have in the Sun were investigated byperiments at low energies. Along these lines the proton-
Bahcall and May[4]. This work was later extended by Ka- proton fusion rate has been calculated by Park, Kubodera,
mionkowski and Bahcall who also included the effects ofMin, and Rho using chiral perturbation theory in the low-
vacuum polarization in the Coulomb interaction between theenergy limit[10]. They obtain results in very good agree-
incoming protong5]. In spite of the enormous progress in ment with previous nuclear physics calculations. This is to be
nuclear physics during this time, the methods and approxiexpected since they make use of phenomenological nucleon
mations made in these different calculations were essentiallwave functions which fit low-energy scattering data very
the same with a resulting accuracy in the fusion rate of a fewvell. The drawback is that the results cannot be derived in an
percent. Including strong corrections due to mesonic currentsntirely analytical way.
at smaller scales, the uncertainty in the rate can be reduced to A more fundamental approach to nucleon-nucleon inter-
much less than one percdi®. This is very impressive for a actions at low energies has been formulated in terms of an
strongly interacting process at low energies where ordinargffective theory for nonrelativistic nucleorfd1-14. It in-
perturbation theory cannot be used. volves a few basic coupling constants which have been de-
In the light of the importance this fundamental processtermined from nucleon scattering data at low energies. With
plays in connection with the solar neutrino production andno more free parameters to fit it can then be used to make
possible neutrino oscillations, it is natural to reconsider thepredictions for a large number of other experimentally acces-
process from the point of view of modern quantum fieldsible quantitieqd15]. The effects of pions can be included
theory instead of the old potential models used previously. Aising the established counting rules and higher order correc-
first attempt in this direction was made by Ivaneival. [7]. tions can be derived in a systematic way. When the energy is
In their relativistic model they obtained a result which wassufficiently low as for the fusion process considered here, the
significantly different from the standard result based uporeffects of pions can be integrated out and absorbed into the
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coupling constants of the contact interactions. The resultingsamow-Teller transition mediated by the weak axial current
effective field theory which is sometimes called EF)( operatorA_ which also lowers the isospin by a unit. For a
then involves only nucleon field46]. In proton-proton scat- given kinetic energye and relative velocty ., of the protons
tering at low energies the Coulomb repulsion has a dominarin the initial state, the reaction cross section is then given by
role and can naturally be incorporated into this theldry].  the standard formula

As a direct result one can derive the difference between the

strong scattering length which should be approximately the 2.5
same as in proton-neutron scattering, and the observed one o(E)= A3 S H(E)|(d|A_|pp)|2, (1)
which is modified by Coulomb effects. The relation is very T Vel

similar to the old result by Jackson and BIgt8]. Correc-

tions due to effective-range interactions can also be includedhere the squared matrix element must be spin averaged.
but with more difficulty due to highly divergent integrals HereG, is the weak axial vector coupling constam, is the
involving Coulomb wave functiongl9]. electron mass anf{E) is the Fermi function resulting from

With this understanding of low-energy proton-proton elas-the integration over the available phase space of the leptons
tic scattering, one can calculate the leading order result foin the final stat¢24]. The available energy in the process for
the fusion procesp+p—d-+e* + v, taking place at essen- fusion at rest is set by the neutron-proton mass difference
tial zero initial kinetic energy20]. With the use of a non- AM=M,—M, which is 1.294 MeV and the deuteron bind-
standard representation of the Coulomb propagator, the resuitg energyB=2.225 MeV. This gives an energy release of
is in full agreement with the corresponding leading order0.93 MeV carried away by the leptons. The temperature in
nuclear physics result and depends only on the physicahe core of the Sun is approximately>250° K which cor-
proton-proton scattering length. To next order in the effectiveesponds to an average proton momentum aroynd
field theory expansion, one can derive higher order correc=1.5 MeV and a much smaller energy. We will therefore in
tions [21] which also have the same structure as the correthe following assume that the initial proton enerByap-
sponding effective-range corrections from more standarghroaches zero. The kinetic energy of the lepton pair will be
nuclear physic§3,4]. However, at this order there appears anmuch smaller than the momentug=VBM of the bound
unknown counterterm in the effective Lagrangian which will nucleons with reduced mas4/2 in the deuteron. With the
enter as a correspondingly unknown term in the result for theibove value for the binding energy it follows that
fusion rate. It can be determined from other related reactions=45.7 MeV and thus to a very good approximation one can
When this is done, we will also have a more accurate angust ignore the momentum transfer between the leptons and
predictive result for the fusion rate. the nucleons.

In the next section we present the theoretical framework The difficult part of calculating the fusion cross section
which in the following will be used to calculate the proton- (1) lies in the hadronic matrix elemeiit; (p) =(d|A_|pp)
proton fusion rate in next-to-leading order in the momentumyhich is a function of the initial proton momenturp
expansion of the effective theory. This is done both for the= \[EM. Its magnitude can easily be estimafed]. When
proton-neutron and proton-proton sectors. A short summanhe proton momentum goes to zero, thp wave function

by a more detailed calculation of the next-to-leading ordeigimply given by the the Sommerfeld factoC,,

corrections. The derivation of the rate is completed by the_ g=772(1+i4)| where =aM/2p characterizes the

inclusion of the effects of the counterterm. Assuming for it agyrength of the Coulomb repulsion between the prof@sé

natural magnitude, our final result is estimated to have afrhe propability to find the two protons at the same point is
uncertainty of 6—8 %. This is significantly more than in otherinerefore

approaches where it is around 1%)|. The most accurate

calculation has been made by Schiavidgal. [6] who ob- 5

tained a value in the range 7.05-7.06 for the squared overlap c2—_"" )
integral A2(E=0). This is achieved by including the effects 7oe?mn—1

of vacuum polarization and an axial two-body current opera-

tor whose size is determined from tritium beta decay. In theat very low energies wheny gets large, it becomes expo-
present effective theory a corresponding accuracy can onlgentially small and is the dominant effect in the fusion reac-

be hoped for when the counterterm is accurately determinegon. Similarly, in lowest order the deuteron wave function is
in some other processes. Finally, in an appendix we presentsimply

new and simpler method to regularize divergent integrals in-

volving derivatives of the Coulomb wave functions at the y e "
origin. y(r)= ST 3
Il. THEORETICAL FRAMEWORK A rough estimate for the nuclear matrix element is then

In the fusion reactiop+p—d-+e* + v, at low energies

the incoming protons are in an antisymmetric spin singlet . :f 3 —C A /8_77
state. The deuterothhas spinS=1 and the process is thus a Tr(P)= | & e (1) =C, Y @
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This result sets the scale for the fusion rate. It is therefore
natural to define the reduced matrix elemgsit

‘}/3

——IThi(p)] (5 _ _ _ _

877C,7 FIG. 1. Feynman diagram representing the leading order contri-
bution to the deuteron wave function renormalization. The crosses

which contains all the interesting and important physics. It isepresent the coupling to the interpolating field for the deuteron

expected to have a value of the order of one and is now thwhile the lines are nucleon propagators.

conventional way of presenting theoretical results for the fu- ) i .

sion rate. The goal of the present paper is to calculate thisl3]- An equivalent method is the PDS scheme which was

number in a more model-independent way by purely analytiinvented by Kaplan, Savage, and Wisd,12 and is based
cal methods without using any other phenomenological inpuP" dimensional regularization. We will use it here. Tae

than the scattering lengths and effective ranges appearing Riori unknown coupling constants, andC, can be deter-
nucleon-nucleon scattering. mined in terms of experimental quantities measured in low-

energy nuclear reactions. The size of the dimension-six cou-
— pling constantC, will then be determined by the scattering
A. KSW effective field theory lengtha in nucleon-nucleon scattering whi@, is found to

During the last couple of years much progress has beebe proportional to the effective range parametgrBoth of

made in understanding the low-energy properties of fewthese coupling constants will depend on the renormalization

nucleon systems from the nonrelativistic effective fieldmassu which enters in the PDS regularization scheme. It

theory proposed by Kaplan, Savage, and WikH. At these  can be chosen freely in the intervgk u<m,. but physical

length scales the proton and neutron are considered to hesults obtained from the effctive theory should be indepen-

structureless point particles described by a nucleon isodowent of its precise value.

blet N"=(p,n) Schralinger field. For energies well below

the pion massn,, all interactions including those due to B. Proton-neutron interactions and the deuteron

pion exchanges, will be local. In the effective Lagrangian . .

they can be thus represented by terms involving only the The deutero_n V‘_”” appear as a bound stat_e In_proton-

nucleon field and derivatives thereof in such a way that aleutron scattering in the spin-triplet channel. It is then natu-

the symmetries obeyed by the strong interactions are pre@II to .determine the correspo_nding coupling constants by
served. At the lowest energies orywaves will contribute. matching the results to properties at the deuteron pole of the

Including no more than terms of dimension eight in the de_scattering amplitude. The residue at the pole gives the renor-

rivative expansion, there are only two possible interactio alization constanZ of the deuteron interpolating field

terms in the Lagrangian parametrized by the coupling con\-’vhICh replaces the wave .functlon of the b_ound stad. In
stantsC, andC,. It can be written as lowest order of perturbation theory one finds the renormal-

ization constant from the irreducible two-point function

A(p)=

V2 3, (E) shown in Fig. 1. At the two vertices the interpolating

Lo=N|id+ m) N—Co(NTIIN)(NTTIN) " field acts with energf and zero momentum and a strength
which we choose to be 1. In the intermediate state there is
+ %CZ{(NT§’2HN)(NTHN)T+H_C_}, (6) a neutron and a proton which propagate with relative mo-

mentumk. Integrating over all these momenta we then find

o - . o the value of the diagram
where the operatoV =(V —V)/2. The projection operators

[T, enforce the correct spin and isospin quantum numbers in d3k 1

the channels under investigation. More specifically, for spin- 2o(E)= 2m)3 > —.
singlet interactiondl,; = o, 7,7, /\/8 while for spin-triplet in- T E-KIM+tie
teractionsll; = 0,07,/ /8. This theory is now valid below  This divergent integral is now made finite using the PDS
an upper momentumA which will be the physical cutoff yeqyjarization schemil1] and gives

when the theory is regularized that way. Since the pion field

is integrated out, all its effects are soaked up in the two M

coupling constant€, and C,. Then the value of the cutoff So(BE)=~ E(M_ V—ME). @)

A will be set by the pion mass,. In this momentum range

all the main properties of few-nucleon systems are now iriThe renormalization constant

principle given by the above Lagrangian. More accurate re-

sults will follow from higher order operators in this field- /1
theoretic descriptiofi16]. Z= |[dX/dE[e-_g ®

The effective Lagrangiaf6) is nonrenormalizable and di-
vergent loop integrals must be regularized. For this purposwhich is evaluated at the deuteron pole where the binding
one can use the OS scheme of Mehen and Stel@&t energy isB=y?/M, thus takes the valug&,=\8my/M at
which is a generalization of the original proposal by Gegeliathis order of perturbation theory. It is independent of the
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FIG. 2. Chain of proton-neutron interactions mediated by the
leading order contact term.

coupling constanflg whose effect must be summed to all

orders in order to find the nonperturbatively bound state in FIG. 4. Elastic scattering due to chain of bubble diagrams with

this channel. When it takes the special renormalized value Coulomb interactions. Incoming and outgoing particles are in Cou-
lomb eigenstates.

47 1
C%(,u) M - 9 C. Coulomb interactions and the proton-proton wave function
YT M
In the absence of strong interactions, the incoming
we see that the reducible chain of bubble interactions in FigProton-proton state with center-of-mass momentpmis

2 just gives the same result as for the single bubble in th@iven by the Coulomb wave functidi28]

irreducible diagram in Fig. 1. In this particular channel one 1
shall therefore not sum such chains of bubble diagrams when _ /o
=— '+ / .
one describes the bound state deuteron by an interpolating Yo(1) p Zo 27+ 1)i"e"F Ap)P cog0)]. (1)

quantum field. While the coupling constaﬁrg must be

treated nonperturbatively, the effects of the derivative couHerep=pr ando,=argl(1+ /7 +i %) is the Coulomb phase-
pling Cg are included only to first order. The correspondingshift. At low energies only th& wave will contribute. It is
renormalidzed coupling constant is found to M&(x)  given in terms of the Kummer functiol (a,b;z) as
=pgM[CS(w)]%/87 where py=1.76 fm is the spin-triplet _ . .

pn effectigle range scattering parameter evaluated at the deu- Fo(p)=C,pe" "M(1-i7.2;2ip) (12
teron pole[12,14. It will also contribute to the renormaliza- o ) )

tion constan via the perturbative diagram in Fig. 3 for the Which is a confluent hypergeometric function.

two-point function. It has the vaIuEZ(E)=CdME22(E) The strong interactions between the protons can now be
which gives the total contribution 2 0 included using the same KSW Lagrangid@) but now with

coupling constant€f and C) which also get renormalized
M ~1/2 [19]. As in the proton-neutron channel one must again con-

Zy=2Zp| 1— 2—C§(,u— V) (e—27) . (100 sider the couplingC§ to all orders in perturbation theory. In
™ this way one finds that proton-proton elastic scattering is
given by the infinite sum of all chains of Coulomb-dressed

In the limit u>y the dependence on the regularization mass, pple diagrams as shown in Fig. 4. Each bubble is given by
w is seen to go away. The previous valigthen gets modi- e Coulomb propagator

fied by the factoryZy=1/\/1— yp4. This corresponds to a

change of the normalization of the deuteron wave function d3q y(r) ek ()
(3) which now becomesyy(r)— Zqi4(r) in agreement Ge(E;r',n)=M 3 q2 Zq_ . (13
with effective range theory in nuclear phys[&Y]. Here it is (2m)° p?—g’+ie

only valid at large distances since properties of the deuteron
at scales less thanr/, are not accessible in this theory. It satisfies the Lippmann-Schwinger equatidBc=G,
Also, it is strictly only valid to first order in an expansion in +GoVcGc whereVc is the Coulomb potential and
powers ofypy Since it is obtained perturbatively in the cou-
pling constantcg. Since the expansion parameter has the
rather large valueypy=0.41, it is desirable to improve the
convergence of perturbation theory in this coupling constant.
This has recently been achieved by Phillips, Rupak, and Savs the free propagator in momentum space. lterating this
age[23] whose method we will apply at the end of the more functional equation we see from Fig. 5 that it corresponds to
conventional approach we present first. the exchange of zero, one, two, and more static photons.
Since a single bubble in Fig. 4 corresponds to the propaga-

Go(E;q',q)= (2m?3s(q'—q) (14

FIG. 5. The Coulomb propagator can be represented by an infi-
FIG. 3. Effective-range correction to the deuteron wave functionnite sum of exchanged static photons between the two charged
renormalization constant. particles.

044002-4



PROTON-PROTON FUSION IN AN EFFECTIVE FIELD THEORY PHYSICAL REVIEW €4 044002
tion of the proton pair with energi = p?/M from zero sepa-

ration and back to zero separation, it has the valy@)

=G¢(E;r'=0r=0) or

d’q  2m7(q) 15
(2m)° g2mn(a) _1 p°—q°+ie’ (15) (a) (b)

Jo(p)=M

The integral is seen to be ultraviolet divergent, but can be F!G: 6. One-body interaction ife) represents the weak axial
regularized in the PDS scheme i=3—e dimensions current vertex while the two-body interaction (b) represents the

S . . . higher order axial vector counterterm.
When contributions from poles id=2 dimensions are sub- 9

tracted, one findgl7] the scattering lengthil9) which picks up an additional term
1 uyn 3 M — uppl2 in the parenthesdd9].
—+In——+4+1—-Cg—H(n)|——.
€ aM 2 41 .

(16) D. Gamow-Teller transition operators

M2
Jo(p)zﬁ

The dominant weak transition matrix elements in the ba-
sic fusion rate formuldl) are due to the elementary isovec-
tor axial current operator

HereCc=0.5772 is Euler’s constant and the function

. 1 H
H(n)=¢(|7,)+ﬂ—ln(|n) 17 AD=Ng7r_N (21)

is known to appear in these Coulomb scattering problemsvhich converts an incoming proton into a neutron with the
[18]. The divergent X piece will be absorbed in counter- proper spin and isospin quantum numbers. This is the ordi-
terms representing electromagnetic interactions at shorterary one-body interaction depicted in Figap But when we
scales. This replaces the bare coupling consEgnwith the  include the dimension-eight derivative operator in Eg).
renormalized valu€8(). It can be found by matching the higher dimension weak transition operators must also be
calculated proton-proton scattering amplitude to the expericonsidered. These were first discussed by Butler and Chen in
mental one. This is usually given by the measured scatteringonnection with elastic and inelastic scattering of neutrinos
length a,= —7.82 fm when the proton momentup—0. on deuteron§22]. In our case there is only one such operator
Thus one find$17] which can be written as

1 Mo s AP =L \(NTIN)T(NTTI_N), (22)
—:_+

p 0\VMJ-
Colp)  4may where the projection operatdi=o,07,/1/8 acts in the
Since the functior(17) is dominated by its real pah(7) spin-triplet  final  proton-neutron state whilelIl_

= 1/(129%)+ O(~*) which goes to zero whep—0, we =azrzr_/\/§ acts on the spin-singlet proton-proton initial
see from the form 0fl,(0) in Eq. (16) that it is natural to state. The weak axial vector coupling constant has been fac-
introduce thex-dependent scattering length tored out so that the effective coupling constant is Just.

This new two-body operator represents weak transitions tak-
N 3 ing place at shorter length scales than considered in the ef-
Ina_M +1- ECE}, (190 fective theory and the corresponding vertex is shown in Fig.
6(b). Typically it represents transitions due to pion interac-
wherea is the fine-structure constant. It corresponds to thdions and other two-body interactions. In the effective theory
Jackson-Blatt relation between the strong and Coulomblt Will act as a counterterm which can absorb the dependence
modified proton-proton scattering lengtfiss]. Then we can  ©n the renormalization mags. Its actual magnitude is pres-

1 1
——=—+aM
a(u)  ap

write ently unknown. It can be estimated from dimensional argu-
ments combined with the renormalization group. Even better
0 47 1 would be to determine it in some other weak process where
Colw) =1 e (200 its contribution could be isolated and measured.
which is now on the same form as HE) for the bound-state I1l. HADRONIC MATRIX ELEMENTS
case.

In next order of the momentum expansion the derivative e are now in position to calculate the hadronic matrix
coupling C3 in Eq. (6) is introduced perturbatively. Again elementsT;(p)=(d|A_|pp) of the weak transition opera-
matching to low-energy proton-proton scattering, one findsor. The initial proton state is constructed in terms of the
CB(u)=pgM[Ch(u)]%/87 where p,=2.79 fm is the the Coulomb wave functions as in the elastic scattering case. For
proton-proton effective range parameter. It is not affected byhe final state deuteron we use the interpolating field which
Coulomb corrections to this order in the effective theory.contains a proton-neutron state with the amplitddehich is
However, theC} coupling gives an important contribution to the wave function renormalization constant. We will initially
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—CBJo). The total contribution from all the three classes of
diagrams thus gives the lowest order transition amplitude
T1i(P)=ZoTo(p), Where

C8p(0)
To(p)=| Ao(P) +Bo(P) ————|. 25
o(P)=| Ao(P) O(p)l—cgao(p) (25

The term involvingC§ can now be expressed in terms of the
proton-proton scattering length, in Eq. (18) and is inde-
pendent of the renormalization scale

For the explicit evaluation of this matrix element it is
necessary to introduce the Coulomb wave functid®).
Since the first term of the momentum integral is the product
of two Fourier transformed functions, we find that it simpli-
fies in coordinate space to

_ FIG: 7. Feynman diagrams contributing to proton-proton fusion Ao(p)= MC?)ewOJ drre—(erip)rM(l_i 7,2:2ipr)
in leading order. 0

consider only the action of the axial current opera@t). MC,e'70 . 9.0 2P 2ip
The effects of spin has been separated out and will not enter (7,+|p)22 1| 1=im, y+ip)"
the following calculation.

(26)

Now the hypergeometric functiopF,(a,b,b;z)=(1-2) "2
A. Leading order result so that the final result can be written as

In lowest order of the effective theory only the dimension- ,
six operators will contribute with coupling constar@§ and Ao(p)=C, €70 mez” arctangf), (27)
C}§ in the deuteron and proton-proton sectors, respectively.
The transition matrix elementy; then gets contributions In the expressioni24) for By(p) we notice that the integral
from three classes of diagrams shown in Fig. 7. After beingover k’ gives the complex conjugate value of the Coulomb
hit by the weak current, the proton-proton system is transwave function at the origin. It therefore takes the form
formed into a bound deuteron. The value of the simplest

diagram in Fig. 7a) is then seen to b&yAy(p) whereZ, is Bo(D) MJ d3k d3q M Pq(K) *(0)
the constant derived in the previous section and o(p)= (2m)3) (2m)° k24 V2 p2—q2+ie¢/q( :
3
f d’k M (k). (23) The integral ovek is just the previous result fohy(q) so
(2m)3 2442 7P that
There is a factof-1) from the deuteron vertex and the bound o (p)= Mj M eZ7arcanty) 2op(q)
proton-neutron propagator isM/(k2+ ¥?). In addition, we olP)= (2m)° °+9* p2—P+ie 2TND—1

have introduced the Fourier transfog(k) of the Coulomb (28)

wave function(11) when the protons have the center-of-mass

momentump. Including next the strong interaction once be- When the momentum of the incoming proton is nonzero it

tween the two protons as shown in Figh) we get the Yields, in general, a complex result.

contributionZ,CoB(p) #/,(0), where In the fusion limitp—0 we now find that the first term
(27) simplifies to

koI M k) e M i
@3 (27)? ks 2 o B (29 Ao(P—0)=C et ", (29

Bo(p)=

is a convergent |ntegra| and the last faCmH(O) C e"TO where the parametey= aM/y Slmllarly, the second term
gives the amplitude for the two incoming protons to meet aBo(P) becomes proportional to the integral

the first vertex. Going to higher orders in the coupl@®§we

will add in Coulomb-dressed bubble diagrams as in Fig).7
Each bubble is of the same form as in proton-proton scatter-
ing in Fig. 4 where the contribution from each bubble is
given by Jq(p) in Eg. (15). Adding up these diagrams, they in the same limit when we use=2w7(q) as a new integra-
are seen to form a geometric series with the sGfi(1  tion variable. Repeating this calculation with a different rep-

2% e(></ ar)arctangr y/x)

100 = f dx 5 (30)

- x2+ 772)(
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D <>
®)

DS

(d)

resentation of the Coulomb Green’s function, it can be
shown that the integral takes the val&g]

1
1(x)= ;_exEl(X) (31)

when expressed in terms of the exponential integral
o e_t
X

With Z,=+8my/M for the renormalization constant, we
thus find for the full matrix element the result

8 )
Tsi= \/?C,}e'go[eX—aMapl(X)]. (32

The reduced matrix element in leading order is therefore

DT
()

This is also the canonical result from standard nuclear phys- FIG. 8. Corrections to the fusion amplitude coming in at next-
ics [4]. The parametery=0.15 and thus the integral to-leading order.
1(0.15)=4.96. Combined with the measured valag=

—7.82 fm for the scattering length, we then ha¥g(0)  gince [ddk/(27)9=0 in dimensional regularization. To-

=2-.51 for the r.educed matri>.< elgmeé\nt. In the formula for thegether with the functior\y(p) in Eq. (23) and the related
fusion rate it gives the contributiofg(0)=6.30. From pre-  {,nction

vious applications of the effective thedy5], we know that

leading-order results are typically within 20—30 % of the cor-

rect values. Going to next order in perturbation theory, the

accuracy is expected to increase to 5-10 %. As(p)= Mj

>®

Ao(0)=eX—aMayl (x). (33)

i 3 i o(K) (37
(2m)° K24 'y2 P
B. Effective range corrections

In next order of the momentum expansion of the effectivewe thus have for the matrix eleme(®4)
field theory, there is no operator which inducg@® mixing
of the deuteron state. It will first appear at one order higher L
[12]. The dimension-eight couplings3 andC} give the ad- Ta=2Col12(Y)Ao(P) +1o(¥)A2(p)].
ditional diagrams shown in Fig. 8 in first order perturbation
theory. Each such operatdf, has a momentum matrix ele-
ment (k|V,|q)=C,(k?+g?)/2. The contribution from Fig.
8(a) is seen to be

In the same way as we could express the intety@)) in
terms ofl (), we also find

T -Led d*k [ dq —-M
2272) 2mB] (2mP k212

M _ 2
> (g*+ "Z)Tyz Up(a). Ax(P)=My(0) = ¥*Aq(p). (38)
(34 ‘
Herey,(0)=C, €' whereoy is the CoulomiS-wave phase
This can be expressed in terms of the divergent integral  shift. When we eventually use this result to calculate the
fusion rate from Eq(5), we will take the absolute value and
d3k 1 -M this phase factor will not contribute. We therefore write

(277_)3 k2+’)/2: A (M‘)’) (35)

lo(y)=—M

_1~d 9.2
which is the same as occured in the lowest-order determina- Ta=2C2lo(V)IMC,(p) =27 Ao(P) ],
tion of the wave function renormalization constant in Ef).

It is finite after PDS regularization which gives for the other

L where the same phase factor also should be dropped in the
occuring integral

last term. This result is now to be taken in the fusion limit
p—0 as in the previous section.

The contribution from Fig. &) involves the Coulomb
Green'’s function and its derivative in the triple integral

a2 ,
l(y)=—M (zT)3k2T72:_7|0(7) (36)
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_1Cdcp d3k dsq J’ dsq, G~(E: ’
bl_E 2~0 (277)3 (277)3 (27T)3 C( aqaq)
Xy A PR wp(0>
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where i, (p) = — aM uio(p) in the limit p—0 as shown in
the Appendix. Then we also haveBy(p)=MIly(7y)
—aMuBy(p) and we therefore get

Te=3C3C,[Mlo(y) —2aMuBy(p)] (45)

which now involves only finite and known quantities.

resulting from just one proton bubble. This can be expressed In Fig. 8d) we sum over all the Coulomb-dressed proton
in terms of the functiorBy(p) in Eq. (24) and the related bubbles. The result is given by the multiple integral

function

. _'V'f kg K2
2PN | G @ i 2

Gc(Ek,a) (39

as

1
T =5 C5CEl12(7)Bo(P) + 1o( ¥)Ba(P)1455(0).
With the simplification

B2(p)=MJo(p) — ¥*Bo(P) (40)

we find the total contribution

1

lo(y)CE
To=5 d

ZW[MJo(D)—ZYZBo(D)]Cn (41)

T_1Cp ch d3k J' d3k'J d3q f d3q’
T2721-Cha(p) ) 2m)3) (2m3) 2m)3) (2m)3

X Gc(E;a,q") (9% +k?) Ge(E;k' k)

#p(0).
k'% yz

Again we can reorder the integrand so that the result is ex-
pressed in terms of simpler functions

1
Tq=5C}

> zm[Jz(p)Bo(p) +Jo(P)B2(P)],

where now

Ja(p)= J

involves the derivative of the Coulomb propagator. It is also

(—gk Ge(Ek,) (46)

from all the Coulomb-dressed proton bubble diagrams in Figevaluated in the Appendix. In the limit—0 we find J,(p)

8(b). Here we have again replaceg(0) by C,(p).

=—aMudy(p) which together with the related result for

The remaining diagrams involve the proton derivativeB;(p) gives

couplingCh . Figure &c) gives

1 dq [ dk [ d o
Te=3%2) 2ny? (277)4(277)3 75y CSEO
X(K2+0%) (). (42)

This can again be expressed in terms of the functiy(p)
andC,(p) and their derivatives. In particular, we define

" _Mf d®k dq ¢?
2PV | oy 2m? it 2

Gc(Ek,q) (43
and introduce

ek,
lﬂz(p):fﬁgk (k) (44)

which is the double derivative of the Coulomb wave function

1, C,Chl(p)

Td:Z 21-ChJo(p)

[Mlo(y)—2aMuBo(p)]. (47)

It has the same structure ds in Eq. (45 and they can
therefore be combined into a simpler result.

The deuteron side of the diagrams in Fige)8s seen to
be justBy(p). Summing up the bubbles on the proton side,
we find

1 Cich

Te= > W[Jz(p) o(P) +Jo(P) ¢2(P) 1Bo(P).

In the limit p— 0 this simplifies again with the result

CHo(p)

nma“ﬂ uBo(p). (48)

Te=-CiC

Similarly we find that the diagrams in Fig(f8 gives

at the origin. Both of them are highly divergent, but can be 1 c 2
calculated in the PDS regularization scheme and expressed szzcg(m [J2(p)Jo(p)
—*oYo

in terms of already introduced functions. This is shown in the

Appendix. We thus find for this diagram

T.=3C8 o(P)B5(P) + ¥h2(P)Bo(p) ],

+Jo(P)J2(P) 140(P)Bo(p)

which becomes
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Cho(p) \? where A4(0) is the leading-order resu(83) but now ex-
Ti= —C'ZJC,?(W> aM uBo(p) (490  pressed in terms of the next-to-leading order scattering
0Jo(P) length (53). With the already established value for the cou-
in the low-energy limitp—0. pling constantC‘z’ we see that it is now multiplied by the
Adding now up the contributions from all the diagrams in factor 1+ yp4/2. This can be interpreted as the first term in
Fig. 8, we obtain the sum the expansion of the deuteron normalization fadgrdis-
cussed in the previous section. While this term in the result is
> d 1 b, ~d Mlo(y)C,, independent of the renormalization scalewe see that the
To==y"Calo()To(p) + §(C2+Cz)m last term is generally not. However, whenis much larger
0 than the other mass scales given by the scattering lengths,
aM uCEC,Bo(p) this dependence goes away and we are left with the definite
[1-CBl(PT” result
where To(p) is the lowest order matrix elemeli25). The _ N o
full transition matrix element to this order is therefore A2(0) 5= Ao(0)[1+ 2 ypal+ 2857 (ppt pa)- (55

TH=2Z,To(p) +ZoT2(p), o . .
It has a structure which is very similar to the reduced matrix
where Z, is the next-to-leading order renormalization con-element in the standard nuclear physics effective-range ap-

stant(10). Reordering and combining terms, we obtain proximation[3,4]
Z, ' Ti=A Bo(p)C i aMpuCh
o Tn=Ao(P)+Bo(PICyl T epy o [1-Cluo(p) 2 Aer(0)=Z Ag(0)+ 2ap 2 (pptpa)].  (56)
(50)
+ ﬂcg(ﬂ)(ﬂ_ )2 With the known values for the different nucleon parameters,
am the result in this old approximation is thereforezg(0)
cP =2.66 or AZx(0)=7.08. On the other hand, our next-to-
X | Ag(p)+Bo(p) +°} (51 leading order result55) givesA,(0),,s.,=2.54 which is just
1-CoJo(p) a 1.4% addition to the leading order result we previously

d obtained . This is surprisingly small, but results from an al-

M2 ch+cC : :

_ C.(u—7y) 272 (52) most total cancellation between the two effective-range cor-
gm MY 1-Cho(p) rections in Eq.(55). The net result for the squared matrix

element isA3(0),,.,=6.45 which is seen to be 8% below
In the bubble integrally(p) we can takep—0 since it is  the effective-range value.

finite. The functionBy(p) is also finite in this limit while
Ao(p) becomes proportional to the Coulomb facty(p)

which diverges. As shown previously in the application of C. Contribution from counterterm
the same effective theory to low-energy, elastic proton-

proton scattering, the first square bracket is now just thqze
physical proton-proton scattering lengt), calculated in
next-to-leading order with the resutt9]

A complete calculation of the fusion rate in next-to-
ading order must include all operators contributing to this
order in the momentum expansion of effective theory. Until
now we have only included the effects of the dimension-8

p p operators coupling four nucleons with a derivative interac-
p=a 5 5 5 1. (53  tion. Since our result above in general depends on the renor-
4\ 1-CpJo(0) [1—C4Io(0)] malization scale, it signals that the calculation is incomplete.

. . ) .. . There should be additional interaction terms that in principle
The last term is the effective-range correction which is im-gpq1q absorb all dependence on the renormalization scale.
portant in prder to have a physically mea_nmgful result forrhis is in fact the case as shown by Butler and Cf2g} and
the scattering length. We see that when this is zero, we hav§iscussed in the introductory section. It has the structure as
the previous resultl8) used in leading order. _ given in Eq.(22) and corresponds to the weak current cou-
The_ transition matrix element in next-to-leading order ISpling directly to the four-nucleon vertex. In a more funda-
now given by Eq.(52). Isolating a common factor, the re- menta| theory it could be due to weak interactions via virtual
duced matrix elemert®) follows as pions, coupling to excited nucleons or more general two-
body operators in nuclear physics language. Obviously, this

Ay(0)=Aq(0)| 1+ %Cg(,u)(,u—y)z cognterterm will z_;tl-so modify the numerical result for the
fusion rate in addition to softening the dependence.
CB()+C(w) In our case it g'ives a cqntr?bqtion depicted py the Feyn-
_apyz(,u_ ¥) 2 5 2 , (54) ~ man diagram in Fig. @. It is similar to the previously cal-
2Co(w) culated contribution from Fig.(@) in Eq. (34) and becomes
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(a)

FIG. 9. Contributions to the fusion amplitude from the counter-
term.

&k [ d’q M
(2m®] 2m)P 2y 2

Ta'=Lia Pp(@)=—L1aC,lo(y).

(57)

The strong interactions in the initial state, now to lowest
order in the derivative expansion, gives the series of dia
grams shown in Fig. ®). They form again an infinite geo-
metric series whose sum

CbJo(P)

TCt: _
b 1-CgJdo(p)

L1aC,lo(y) (58)

is given by the proton-proton physical scattering length
from Eq. (18) anda(u) from Eq. (20) in the fusion limitp
—0. With the regularized value for the integigl we thus
find the total contribution from the counterterms to be

ap. (59

TC=—L,,C M -
=—Lia 7;477(,“ V)| al)

The corresponding reduced matrix element then follows

from Eq. (5) after multiplication by the wavefunction renor-
malization constank.

We now include this new contribution as a correction to
the matrix element54) coming from the ordinary axial cur-
rent interactions. For the combined result we then have

ASY(0)=A(0)

a(w)

1 a,y?
= e A
1+27pd ype (u 7){

X (60)

M d
Lia(p) = 5{Ch(m) +Co(n)]

The coupling constant ;5 of the counterterm must have a
dependence on the renormalization scalso that the total
n dependence in the last term is negligible. When y we
see that this requirement leads to

47T/1A

v (61

LlA(M),u,>'y=

PHYSICAL REVIEW C 64 044002

systematically below the effective-range result following
from Eq. (56), but are within the 5—10 % uncertainty range
expected at this order.

D. Z4 parametrization

It has already been pointed out that our results for the
proton-proton fusion have a very similar structure to what
one finds in the effective-range approximation in nuclear
physics. This has also been seen in other processes investi-
gated within the same effective theory and at higher orders in
the perturbative expansiorl2,1€. It is understood when
one realizes that these processes are dominated by the prop-
erties of the deuteron wave function at large distance scales
which is contained in the effective-range approximation. In
the KSW field theory, these properties are coded into the
coupling constant€3 and C3. While C§ is responsible for
binding the deuteron and must be treated nonperturbatively,
the effects ofcg are to be treated perturbatively and gives
the detailed behavior of the wave function at large distances.
In the abovalg was determined by matching to the effective
range parametepy. In order to get better agreement with
low-energy proton-neutron scattering data which are related
directly to the deuteron bound state wave function via ana-
Iytical continuation, it has been pointed out by Phillips, Ru-
pak and Savage that one should instead ma&tghto the
wave function normalization parametgy [23]. This gives
the result

27 Z4—1
WM (n—y)?’

where Z3=1.69. They have shown that this markedly im-
proves the convergence of the perturbative calculation of
many processes involving deuterons at low energies. Rupak
has recently applied this improved method to neutron-proton
fusionn+p—d+ vy at energies relevant to big-bang nucleo-
synthesis as discussed ab$86]. Including one higher order

in the perturbative expansion of the elctric transition ampli-
tude, he has then obtained an accuracy of 1% for the calcu-
lated cross section.

In our case we can now use this new value @rin the
result(54) for the reduced matrix element. Including also the
counterterm as in Eq60), we then obtain our final result.
Again the counterterm coupling constant will have the form
(61) for large values of the renormalization mass. Choosing
pm=m_, we now find thatAg(O) varies between 7.04 and
7.70 when the parametef,, takes values in the interval
[—1,1]. With the size of the unknown counterterm in this
range, we thus have the central valtg(0)=7.37 with a

CY(u)= (62)

where/ 1, is an unknown dimensionless constant. It is set byconservative estimate for the uncertainty of 6—8 %. We thus

physics on scales shorter tharml/ and its natural value
should be around one as pointed out in R22] In order to

find a somewhat higher value for the fusion rate in this im-
proved perturbative calculation compared with results from

get a rough idea of the sensitivity of the result on this pa-effective range theory56) and the inclusion of axial two-

rameter, we takex=m,_ which is the scale at which one

body effectd6]. It is to be expected that when this calcula-

should match the effective theory to the more fundamentation is extended to higher orders, these different ways of

theory involving pions. Then varying’;, in the interval
[—1,1], we find that the fusion rate measured |5'(0)|?

determining the coupling constam;i will not matter so
much for the final result. As a representative value for the

varies linearly from 6.22 to 6.84. These values are seen to bieision rate from effective field theory at this stage, we can
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take the average of our two central values with and withouposition to obtain the proton-proton fusion rate with much
Z4 parametrization and thus obtain a result in better agredess uncertainty. This will place our understanding of this

ment with the standard nuclear physics result. fundamental process on a more solid basis. Needless to say,
it will also strengthen our knowledge of the neutrino produc-
IV. DISCUSSION AND CONCLUSION tion rate in the Sun.

Note addedDuring the editorial process a new paper by
Effective field theory is a very powerful approach to low- Butler and Chen32] appeared where the fusion rate is cal-

energy phsyics. It can hardly be said to be wrong when useaulated within the same gffective t.heo.ry including interac-
correctly since it is just based upon the basic symmetries dfons to two orders higher in the derivative expansion. These
the problem and standard quantum field theory. In that way if€W results reduce significantly _the uncertainties in the
is a very conservative approach since it does not admit ad2féSent paper, but the problem with the unknown counter-
sumptions about the physics on scales shorter than it €M Persists.
meant to handle. Instead of such specific and model-
erend_ent assumptions, one ha_ts higher_-dimensional contact ACKNOWLEDGMENTS
interactions and counterterms with coupling constants which
represent the unknown physics. The most common criticism We want to thank John Bahcall, Jiunn-Wei Chen, Peter
against effective field theory is therefore that it is not acculepage, Gautam Rupak, Martin Savage, and Mark Wise for
rate enough since the results may depend on one or moencouragement and many helpful discussions. Most of this
such coupling constants which are reopriori known. One  work was done in the Department of Physics and INT at the
can make estimates of these unknown coupling constantdniversity of Washington in Seattle and we are grateful for
based upon some kind of naturalness supported by dimemenerous support and hospitality.
sional analysis and the renormalization group.

But these counterterms do not really represent a weakness
of effective field theory. Since they are interactions appear- APPENDIX

ing in a Lagrangian, they will appear with the same strength e will here regularize and evaluate the divergent inte-
in many different processes. If one or more of these allow fofya|s involving Coulomb wave functions which are needed
the determination of the corresponding coupling constantSoy the effective-range corrections to the fusion rate. Some of
one can then make much more accurate predictions for thgem have previously been encountered in connection with
other reactions. One recent example is radiative neutrorhigher order corrections to low-energy proton-proton elastic
proton capturé+p—d-+y. When the process takes place atscattering19]. They were then calculated by a method based
very low energies or at rest, it is dominated by a magnetiGn, regularization of the Fourier-transformed Coulomb wave-

dipole transition which at next-to-leading order also involvessnctions. We will here use a different and simpler method.
a four-nucleon counterterm very similar to the one we have The simplest integral iS,(p) in Eq. (46) which we re-

considered here for proton-proton fusion. From the measuregyite as

rate at these low energies, the counterterm can then be deter-

mined numerically[16]. The same neutron-proton fusion P o

process is also a key reaction in big-bang nucleosynthesi o 2 2

where it takes place at energies upto around 1 MeV. Chel;jZ(p)_p JO(pHJ (277)3 (277)3(k ~PHKIGe(E)l).
and Savage have now calculated the corresponding cross sec-

tion with an uncertainty of 4% based on the measured counI
terterm[29]. A similar accuracy can be expected also for
proton-proton fusion if the counterterm can be determined.

In principle the counterterm could be measured in man)} toG(E) satifies the Li Schwi i
other reactions, but most of them are either insensitive to thBrOPagatoGc(E) satifies the Lippmann-Schwinger equation

counterterm or involve three body interactions. For exampl c=GotGoVcGe whereGO(E) is the free propagatc([té})

in inelastic scattering of neutrinos on deuterons at SNO, thi@ndVc is the Coulomb potephal. n momer)tuzm space it has
unknown term will enter both the charged-current andin® Matrix element(k|Vc|k')=4ma/(k—k’)*. The first
neutral-current cross sections linearly and approximately®™ Will now give zero with the use of dimensional regular-
with the same size as shown by Butler, Chen, and K@ag  Zation

But since only the ratio between these two processes will be

measured accurately, the counterterm cannot be determined d%
with the required precision in these experiments. However, f WZO' (A1)
similar reactions initiated by antineutrinos from reactors

where the fluxes are known, could be useful. The unknown

counterterm could also be determined in tritiypndecay We then insert two complete sets of momentum eigenstates
when we know how to describe it by effective field theory. between the three operators in the matrix elements in the
Some progress has already been made in this dire(@ibln ~ second term. The denominator in the free propagatpthen

As shown by Rupak for radiative neutron capture, with ancancels against the factkf—p? in the integral. We are thus
accurately measured counterterm, we should then be in tHeft with

t represents a Coulomb-dressed bubble propagator with a
derivative interaction at one vertex. Here we have introduced
he free eigenmomentum statélgl and |q). The Coulomb
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d’k &k [ d%q 4ma
——3(k?=p*)(k|GoVcG —p2 _ q
3 3y’
= —MJ ((Zj k)3f d’k S dma 2(k’|GC(E)|q>. After a shift of integration variable, we have the result
™)) (2m)° (k=k')

=[p®—aM Ad
In the integral ovek we now shift the integration variable V2(P)=Lp"— aMuldo(p) *4)

k—k+k’ and use the PDS regularization result when making use the the PDS regularized inte¢Aa).
The last integral we need Bj(p) in Eq. (43). Rewriting

d’k 47 . .
T it as above, it takes the form
f 277 au. (A2)
The remaining two integrals ov&’ andq then simply gives B(p)=p2Bo(p) + M d3k3 qu a-p’ Gc(E:k,q),
Jo(p). We thus have the result (27)° (27)° K24 42
Jo(p)=[p?— aMuldo(p). (A3)  Wwhere the first term is the finite integré4). In the second

Except for a higher order term in the fine-structure constanf{e'™m We can use the Lippmann-Schwinger equation for the
«, this agrees with what we obtained with the much moreCoulomb propagator. Again we find that the denominator of

cumbersome wavefunction regularization metfibd]. the free propagator cancels e_lgaiqét— pz_ in the numerator.
The next integraly,(p) in Eq. (44) corresponds to the The first term in the integral gives then just the intedgép)

double drivative of the Coulomb wave function at the origin. N Ed- (39). Going through the same steps as above with
We can write it as insertion of complete sets of states, the second term is then

reduced to the finite integréy(p). In this way we obtain

d3
—n2 2_ 12 ,
Pa(p)=p flfo(p)+j (277)3(k P)(K|#p), B4(p)=MIo(p)+[p2— aM ]Bo(p) (A5)
where |i,) is a Coulomb state with momentum It can  which again is a surprising simple result.
formally be expressed in terms of the free staeas We notice that these three divergent Coulomb integrals
—[1+ GV _ contain the common factq@®— oM w in the results. This can
|w”> [1+GcVellp) be understood as coming from the divergence of the double
One then has derivative of the Coulomb wave functiaf,(r) at the origin.

It satisfies the Schiinger wave equation

d3k s
(1) =Eghy(r),

1 2
— V2 Ve(n)

d3k
:f (Zw)a(kz_pz)[<k|GOVc|p>+<k|GchGch|p>]
where the energf=p?/ M. When we now take the limit
—0, it follows that

d3k —
= V2p(r)r~o=[P?— aM ul¥;(0) (A6)
using GcVc|p)=|#p) —|p) in the last term. Inserting now
again two complete sets of free momentum states as above since the regularized integréh2) is just the Coulomb po-

follows that tential at the origin.
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