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Proton-proton fusion in effective field theory
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The rate for the fusion processp1p→d1e11ne is calculated using nonrelativistic effective field theory.
Including the four-nucleon derivative interaction, results are obtained in next-to-leading order in the momen-
tum expansion. This reproduces the effects of the effective range parameter. Coulomb interactions between the
incoming protons are included nonperturbatively in a systematic way. The resulting fusion rate is independent
of specific models and wave functions for the interacting nucleons. At this order in the effective Lagrangian
there is an unknown counterterm which limits the numerical accuracy. Assuming the counterterm to have a
natural magnitude, the result is consistent with previous nuclear physics calculations.
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I. INTRODUCTION

One of the most important problems in modern physic
the nature and properties of neutrinos. These were for a
time thought to be massless and stable, but experiments
ing the last decade have consistently shown this to be inc
patible with the observed neutrino oscillations@1#. Histori-
cally and even today the fusion processes in the Sun
among the few available and abundant sources of low-en
neutrinos available for experimental investigations. In or
to study oscillations in the detected fluxes, one needs to
sure of the production rates in the different nuclear reacti
taking place in the Sun.

The basic process is proton-proton fusionp1p→d1e1

1ne . It was explained more than 60 years ago by Bethe
Critchfield when nuclear physics was still at a very primiti
stage@2#. When the field had matured, it was reconsidered
the light of more modern developments by Salpeter who
cluded effective range corrections@3#. Applications to the
specific conditions we have in the Sun were investigated
Bahcall and May@4#. This work was later extended by Ka
mionkowski and Bahcall who also included the effects
vacuum polarization in the Coulomb interaction between
incoming protons@5#. In spite of the enormous progress
nuclear physics during this time, the methods and appr
mations made in these different calculations were essent
the same with a resulting accuracy in the fusion rate of a
percent. Including strong corrections due to mesonic curre
at smaller scales, the uncertainty in the rate can be reduc
much less than one percent@6#. This is very impressive for a
strongly interacting process at low energies where ordin
perturbation theory cannot be used.

In the light of the importance this fundamental proce
plays in connection with the solar neutrino production a
possible neutrino oscillations, it is natural to reconsider
process from the point of view of modern quantum fie
theory instead of the old potential models used previously
first attempt in this direction was made by Ivanovet al. @7#.
In their relativistic model they obtained a result which w
significantly different from the standard result based up
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conventional nuclear physics models. Subsequently it w
pointed out by Bahcall and Kamionowski that their effecti
nuclear interaction was not consistent with what is kno
about proton-proton scattering at low energies where C
lomb effects are important@8#. In a more recent contribution
this defect of their calculation was removed and better ag
ment with standard results have been obtained@9#.

The approach of Ivanovet al. is based upon relativistic
field theory and should in principle yield reliable results. B
it is well known that it is very difficult to use consistently
relativistic formulation for bound states such as the deuter
In addition, the fusion process considered here takes plac
low energies and should therefore instead be descr
within a nonrelativistic framework. Then all the large
momentum degrees of freedom are integrated out and on
left with an effective theory involving only the physicall
important field variables. The underlying, relativistic intera
tions are replaced by nonrenormalizable local interacti
with coupling constants which must be determined from
periments at low energies. Along these lines the prot
proton fusion rate has been calculated by Park, Kubod
Min, and Rho using chiral perturbation theory in the low
energy limit @10#. They obtain results in very good agre
ment with previous nuclear physics calculations. This is to
expected since they make use of phenomenological nuc
wave functions which fit low-energy scattering data ve
well. The drawback is that the results cannot be derived in
entirely analytical way.

A more fundamental approach to nucleon-nucleon int
actions at low energies has been formulated in terms o
effective theory for nonrelativistic nucleons@11–14#. It in-
volves a few basic coupling constants which have been
termined from nucleon scattering data at low energies. W
no more free parameters to fit it can then be used to m
predictions for a large number of other experimentally acc
sible quantities@15#. The effects of pions can be include
using the established counting rules and higher order cor
tions can be derived in a systematic way. When the energ
sufficiently low as for the fusion process considered here,
effects of pions can be integrated out and absorbed into
©2001 The American Physical Society02-1



tin

a

th
th
o

ry

de
ls

s
f

-

s
e
ic
iv
e
rre
ar
an
il
th
n

an

or
n-
um
th
a
d

de
th
t a
a

e

rl
ts
ra
th
on
ine
n
in

he

le
a

ent
a

by

ged.

tons
or
nce
-
of
in

in

be

an
and

n

It is

is

-
c-
is

XINWEI KONG AND FINN RAVNDAL PHYSICAL REVIEW C 64 044002
coupling constants of the contact interactions. The resul
effective field theory which is sometimes called EFT(p” )
then involves only nucleon fields@16#. In proton-proton scat-
tering at low energies the Coulomb repulsion has a domin
role and can naturally be incorporated into this theory@17#.
As a direct result one can derive the difference between
strong scattering length which should be approximately
same as in proton-neutron scattering, and the observed
which is modified by Coulomb effects. The relation is ve
similar to the old result by Jackson and Blatt@18#. Correc-
tions due to effective-range interactions can also be inclu
but with more difficulty due to highly divergent integra
involving Coulomb wave functions@19#.

With this understanding of low-energy proton-proton ela
tic scattering, one can calculate the leading order result
the fusion processp1p→d1e11ne taking place at essen
tial zero initial kinetic energy@20#. With the use of a non-
standard representation of the Coulomb propagator, the re
is in full agreement with the corresponding leading ord
nuclear physics result and depends only on the phys
proton-proton scattering length. To next order in the effect
field theory expansion, one can derive higher order corr
tions @21# which also have the same structure as the co
sponding effective-range corrections from more stand
nuclear physics@3,4#. However, at this order there appears
unknown counterterm in the effective Lagrangian which w
enter as a correspondingly unknown term in the result for
fusion rate. It can be determined from other related reactio
When this is done, we will also have a more accurate
predictive result for the fusion rate.

In the next section we present the theoretical framew
which in the following will be used to calculate the proto
proton fusion rate in next-to-leading order in the moment
expansion of the effective theory. This is done both for
proton-neutron and proton-proton sectors. A short summ
of the leading order calculation is given in Sec. III followe
by a more detailed calculation of the next-to-leading or
corrections. The derivation of the rate is completed by
inclusion of the effects of the counterterm. Assuming for i
natural magnitude, our final result is estimated to have
uncertainty of 6–8 %. This is significantly more than in oth
approaches where it is around 1%@5#. The most accurate
calculation has been made by Schiavillaet al. @6# who ob-
tained a value in the range 7.05–7.06 for the squared ove
integralL2(E50). This is achieved by including the effec
of vacuum polarization and an axial two-body current ope
tor whose size is determined from tritium beta decay. In
present effective theory a corresponding accuracy can
be hoped for when the counterterm is accurately determ
in some other processes. Finally, in an appendix we prese
new and simpler method to regularize divergent integrals
volving derivatives of the Coulomb wave functions at t
origin.

II. THEORETICAL FRAMEWORK

In the fusion reactionp1p→d1e11ne at low energies
the incoming protons are in an antisymmetric spin sing
state. The deuterond has spinS51 and the process is thus
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Gamow-Teller transition mediated by the weak axial curr
operatorA2 which also lowers the isospin by a unit. For
given kinetic energyE and relative veloctyv rel of the protons
in the initial state, the reaction cross section is then given
the standard formula

s~E!5
GA

2me
5

2p3v rel

f ~E!u^duA2upp&u2, ~1!

where the squared matrix element must be spin avera
HereGA is the weak axial vector coupling constant,me is the
electron mass andf (E) is the Fermi function resulting from
the integration over the available phase space of the lep
in the final state@24#. The available energy in the process f
fusion at rest is set by the neutron-proton mass differe
DM5Mn2M p which is 1.294 MeV and the deuteron bind
ing energyB52.225 MeV. This gives an energy release
0.93 MeV carried away by the leptons. The temperature
the core of the Sun is approximately 153106 K which cor-
responds to an average proton momentum aroundp
51.5 MeV and a much smaller energy. We will therefore
the following assume that the initial proton energyE ap-
proaches zero. The kinetic energy of the lepton pair will
much smaller than the momentumg5ABM of the bound
nucleons with reduced massM /2 in the deuteron. With the
above value for the binding energy it follows thatg
545.7 MeV and thus to a very good approximation one c
just ignore the momentum transfer between the leptons
the nucleons.

The difficult part of calculating the fusion cross sectio
~1! lies in the hadronic matrix elementTf i(p)5^duA2upp&
which is a function of the initial proton momentump
5AEM. Its magnitude can easily be estimated@24#. When
the proton momentum goes to zero, thepp wave function
cp(r ) becomes constant over the range of the deuteron.
simply given by the the Sommerfeld factorCh
5e2ph/2uG(11 ih)u where h5aM /2p characterizes the
strength of the Coulomb repulsion between the protons@25#.
The probability to find the two protons at the same point
therefore

Ch
25

2ph

e2ph21
. ~2!

At very low energies whenh gets large, it becomes expo
nentially small and is the dominant effect in the fusion rea
tion. Similarly, in lowest order the deuteron wave function
simply

cd~r !5A g

2p

e2gr

r
. ~3!

A rough estimate for the nuclear matrix element is then

Tf i~p!5E d3r cd~r !cp~r !5ChA8p

g3 . ~4!
2-2
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This result sets the scale for the fusion rate. It is theref
natural to define the reduced matrix element@3#

L~p!5A g3

8pCh
2
uTf i~p!u ~5!

which contains all the interesting and important physics. I
expected to have a value of the order of one and is now
conventional way of presenting theoretical results for the
sion rate. The goal of the present paper is to calculate
number in a more model-independent way by purely anal
cal methods without using any other phenomenological in
than the scattering lengths and effective ranges appearin
nucleon-nucleon scattering.

A. KSW effective field theory

During the last couple of years much progress has b
made in understanding the low-energy properties of fe
nucleon systems from the nonrelativistic effective fie
theory proposed by Kaplan, Savage, and Wise@11#. At these
length scales the proton and neutron are considered t
structureless point particles described by a nucleon isod
blet NT5(p,n) Schrödinger field. For energies well below
the pion massmp , all interactions including those due t
pion exchanges, will be local. In the effective Lagrangi
they can be thus represented by terms involving only
nucleon field and derivatives thereof in such a way that
the symmetries obeyed by the strong interactions are
served. At the lowest energies onlyS waves will contribute.
Including no more than terms of dimension eight in the d
rivative expansion, there are only two possible interact
terms in the Lagrangian parametrized by the coupling c
stantsC0 andC2. It can be written as

L05N†S i ] t1
¹2

2M DN2C0~NTPN!~NTPN!†

1 1
2 C2$~NT¹J 2PN!~NTPN!†1H.c.%, ~6!

where the operator¹J5(¹W 2¹Q )/2. The projection operator
P i enforce the correct spin and isospin quantum number
the channels under investigation. More specifically, for sp
singlet interactionsP i5s2t2t i /A8 while for spin-triplet in-
teractionsP i5s2s it2 /A8. This theory is now valid below
an upper momentumL which will be the physical cutoff
when the theory is regularized that way. Since the pion fi
is integrated out, all its effects are soaked up in the t
coupling constantsC0 andC2. Then the value of the cutof
L will be set by the pion massmp . In this momentum range
all the main properties of few-nucleon systems are now
principle given by the above Lagrangian. More accurate
sults will follow from higher order operators in this field
theoretic description@16#.

The effective Lagrangian~6! is nonrenormalizable and di
vergent loop integrals must be regularized. For this purp
one can use the OS scheme of Mehen and Stewart@26#
which is a generalization of the original proposal by Gege
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@13#. An equivalent method is the PDS scheme which w
invented by Kaplan, Savage, and Wise@11,12# and is based
on dimensional regularization. We will use it here. Thea
priori unknown coupling constantsC0 andC2 can be deter-
mined in terms of experimental quantities measured in lo
energy nuclear reactions. The size of the dimension-six c
pling constantC0 will then be determined by the scatterin
lengtha in nucleon-nucleon scattering whileC2 is found to
be proportional to the effective range parameterr 0. Both of
these coupling constants will depend on the renormaliza
massm which enters in the PDS regularization scheme
can be chosen freely in the intervalg,m<mp but physical
results obtained from the effctive theory should be indep
dent of its precise value.

B. Proton-neutron interactions and the deuteron

The deuteron will appear as a bound state in prot
neutron scattering in the spin-triplet channel. It is then na
ral to determine the corresponding coupling constants
matching the results to properties at the deuteron pole of
scattering amplitude. The residue at the pole gives the re
malization constantZ of the deuteron interpolating field
which replaces the wave function of the bound state@12#. In
lowest order of perturbation theory one finds the renorm
ization constant from the irreducible two-point functio
S(E) shown in Fig. 1. At the two vertices the interpolatin
field acts with energyE and zero momentum and a streng
which we choose to be21. In the intermediate state there
a neutron and a proton which propagate with relative m
mentumk. Integrating over all these momenta we then fi
the value of the diagram

S0~E!5E d3k

~2p!3

1

E2k2/M1 i e
.

This divergent integral is now made finite using the PD
regularization scheme@11# and gives

S0~E!52
M

4p
~m2A2ME!. ~7!

The renormalization constant

Z5A 1

udS/dEuE52B
~8!

which is evaluated at the deuteron pole where the bind
energy isB5g2/M , thus takes the valueZ05A8pg/M at
this order of perturbation theory. It is independent of t

FIG. 1. Feynman diagram representing the leading order co
bution to the deuteron wave function renormalization. The cros
represent the coupling to the interpolating field for the deute
while the lines are nucleon propagators.
2-3
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XINWEI KONG AND FINN RAVNDAL PHYSICAL REVIEW C 64 044002
coupling constantC0
d whose effect must be summed to a

orders in order to find the nonperturbatively bound state
this channel. When it takes the special renormalized valu

C0
d~m!5

4p

M

1

g2m
~9!

we see that the reducible chain of bubble interactions in F
2 just gives the same result as for the single bubble in
irreducible diagram in Fig. 1. In this particular channel o
shall therefore not sum such chains of bubble diagrams w
one describes the bound state deuteron by an interpola
quantum field. While the coupling constantC0

d must be
treated nonperturbatively, the effects of the derivative c
pling C2

d are included only to first order. The correspondi
renormalized coupling constant is found to beC2

d(m)
5rdM @C0

d(m)#2/8p where rd51.76 fm is the spin-triplet
pn effective range scattering parameter evaluated at the
teron pole@12,16#. It will also contribute to the renormaliza
tion constantZ via the perturbative diagram in Fig. 3 for th
two-point function. It has the valueS2(E)5C2

dMES0
2(E)

which gives the total contribution

Z25Z0F12
gM

2p
C2

d~m2g!~m22g!G21/2

. ~10!

In the limit m@g the dependence on the regularization m
m is seen to go away. The previous valueZ0 then gets modi-
fied by the factorAZd51/A12grd. This corresponds to a
change of the normalization of the deuteron wave funct
~3! which now becomescd(r )→AZdcd(r ) in agreement
with effective range theory in nuclear physics@27#. Here it is
only valid at large distances since properties of the deute
at scales less than 1/mp are not accessible in this theor
Also, it is strictly only valid to first order in an expansion i
powers ofgrd since it is obtained perturbatively in the co
pling constantC2

d . Since the expansion parameter has
rather large valuegrd50.41, it is desirable to improve th
convergence of perturbation theory in this coupling consta
This has recently been achieved by Phillips, Rupak, and S
age@23# whose method we will apply at the end of the mo
conventional approach we present first.

FIG. 2. Chain of proton-neutron interactions mediated by
leading order contact term.

FIG. 3. Effective-range correction to the deuteron wave funct
renormalization constant.
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C. Coulomb interactions and the proton-proton wave function

In the absence of strong interactions, the incom
proton-proton state with center-of-mass momentump is
given by the Coulomb wave function@28#

cp~r !5
1

r (
l 50

`

~2l 11!i l eis l F l ~r!Pl @cos~u!#. ~11!

Herer5pr ands l 5argG(11l 1 ih) is the Coulomb phase
shift. At low energies only theS wave will contribute. It is
given in terms of the Kummer functionM (a,b;z) as

F0~r!5Chre2 irM ~12 ih,2;2ir! ~12!

which is a confluent hypergeometric function.
The strong interactions between the protons can now

included using the same KSW Lagrangian~6! but now with
coupling constantsC0

p and C2
p which also get renormalized

@19#. As in the proton-neutron channel one must again c
sider the couplingC0

p to all orders in perturbation theory. In
this way one finds that proton-proton elastic scattering
given by the infinite sum of all chains of Coulomb-dress
bubble diagrams as shown in Fig. 4. Each bubble is given
the Coulomb propagator

GC~E;r 8,r !5ME d3q

~2p!3

cq~r 8!cq* ~r !

p22q21 i e
. ~13!

It satisfies the Lippmann-Schwinger equationGC5G0
1G0VCGC whereVC is the Coulomb potential and

G0~E;q8,q!5
M

p22q21 i e
~2p!3d~q82q! ~14!

is the free propagator in momentum space. Iterating
functional equation we see from Fig. 5 that it corresponds
the exchange of zero, one, two, and more static photo
Since a single bubble in Fig. 4 corresponds to the propa

e

n

FIG. 4. Elastic scattering due to chain of bubble diagrams w
Coulomb interactions. Incoming and outgoing particles are in C
lomb eigenstates.

FIG. 5. The Coulomb propagator can be represented by an
nite sum of exchanged static photons between the two cha
particles.
2-4
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tion of the proton pair with energyE5p2/M from zero sepa-
ration and back to zero separation, it has the valueJ0(p)
5GC(E;r 850,r50) or

J0~p!5ME d3q

~2p!3

2ph~q!

e2ph(q)21

1

p22q21 i e
. ~15!

The integral is seen to be ultraviolet divergent, but can
regularized in the PDS scheme ind532e dimensions.
When contributions from poles ind52 dimensions are sub
tracted, one finds@17#

J0~p!5
aM2

4p F1

e
1 ln

mAp

aM
112

3

2
CE2H~h!G2

mM

4p
.

~16!

HereCE50.5772 is Euler’s constant and the function

H~h!5c~ ih!1
1

2ih
2 ln~ ih! ~17!

is known to appear in these Coulomb scattering proble
@18#. The divergent 1/e piece will be absorbed in counte
terms representing electromagnetic interactions at sho
scales. This replaces the bare coupling constantC0

p with the
renormalized valueC0

p(m). It can be found by matching th
calculated proton-proton scattering amplitude to the exp
mental one. This is usually given by the measured scatte
length ap527.82 fm when the proton momentump→0.
Thus one finds@17#

1

C0
p~m!

5
M

4pap
1J0~0!. ~18!

Since the function~17! is dominated by its real parth(h)
51/(12h2)1O(h24) which goes to zero whenp→0, we
see from the form ofJ0(0) in Eq. ~16! that it is natural to
introduce them-dependent scattering length

1

a~m!
5

1

ap
1aM F ln

mAp

aM
112

3

2
CEG , ~19!

wherea is the fine-structure constant. It corresponds to
Jackson-Blatt relation between the strong and Coulom
modified proton-proton scattering lengths@18#. Then we can
write

C0
p~m!5

4p

M

1

1/a~m!2m
~20!

which is now on the same form as Eq.~9! for the bound-state
case.

In next order of the momentum expansion the derivat
coupling C2

p in Eq. ~6! is introduced perturbatively. Again
matching to low-energy proton-proton scattering, one fin
C2

p(m)5rdM @C0
p(m)#2/8p where rp52.79 fm is the the

proton-proton effective range parameter. It is not affected
Coulomb corrections to this order in the effective theo
However, theC2

p coupling gives an important contribution t
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the scattering length~19! which picks up an additional term
2mrp/2 in the parentheses@19#.

D. Gamow-Teller transition operators

The dominant weak transition matrix elements in the b
sic fusion rate formula~1! are due to the elementary isove
tor axial current operator

A2
(1)5N†st2N ~21!

which converts an incoming proton into a neutron with t
proper spin and isospin quantum numbers. This is the o
nary one-body interaction depicted in Fig. 6~a!. But when we
include the dimension-eight derivative operator in Eq.~6!
higher dimension weak transition operators must also
considered. These were first discussed by Butler and Che
connection with elastic and inelastic scattering of neutrin
on deuterons@22#. In our case there is only one such opera
which can be written as

A2
(2)5L1A~NTPN!†~NTP2N!, ~22!

where the projection operatorP5s2st2 /A8 acts in the
spin-triplet final proton-neutron state while P2

5s2t2t2 /A8 acts on the spin-singlet proton-proton initi
state. The weak axial vector coupling constant has been
tored out so that the effective coupling constant is justL1A .
This new two-body operator represents weak transitions
ing place at shorter length scales than considered in the
fective theory and the corresponding vertex is shown in F
6~b!. Typically it represents transitions due to pion intera
tions and other two-body interactions. In the effective theo
it will act as a counterterm which can absorb the depende
on the renormalization massm. Its actual magnitude is pres
ently unknown. It can be estimated from dimensional arg
ments combined with the renormalization group. Even be
would be to determine it in some other weak process wh
its contribution could be isolated and measured.

III. HADRONIC MATRIX ELEMENTS

We are now in position to calculate the hadronic mat
elementsTf i(p)5^duA2upp& of the weak transition opera
tor. The initial proton state is constructed in terms of t
Coulomb wave functions as in the elastic scattering case.
the final state deuteron we use the interpolating field wh
contains a proton-neutron state with the amplitudeZ which is
the wave function renormalization constant. We will initial

FIG. 6. One-body interaction in~a! represents the weak axia
current vertex while the two-body interaction in~b! represents the
higher order axial vector counterterm.
2-5
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XINWEI KONG AND FINN RAVNDAL PHYSICAL REVIEW C 64 044002
consider only the action of the axial current operator~21!.
The effects of spin has been separated out and will not e
the following calculation.

A. Leading order result

In lowest order of the effective theory only the dimensio
six operators will contribute with coupling constantsC0

d and
C0

p in the deuteron and proton-proton sectors, respectiv
The transition matrix elementTf i then gets contributions
from three classes of diagrams shown in Fig. 7. After be
hit by the weak current, the proton-proton system is tra
formed into a bound deuteron. The value of the simpl
diagram in Fig. 7~a! is then seen to beZ0A0(p) whereZ0 is
the constant derived in the previous section and

A0~p!5E d3k

~2p!3

M

k21g2
cp~k!. ~23!

There is a factor~-1! from the deuteron vertex and the boun
proton-neutron propagator is2M /(k21g2). In addition, we
have introduced the Fourier transformcp(k) of the Coulomb
wave function~11! when the protons have the center-of-ma
momentump. Including next the strong interaction once b
tween the two protons as shown in Fig. 7~b!, we get the
contributionZ0C0B0(p)cp(0), where

B0~p!5E d3k

~2p!3

d3k8

~2p!3

M

k21g2
GC~E;k,k8! ~24!

is a convergent integral and the last factorcp(0)5Cheis0

gives the amplitude for the two incoming protons to mee
the first vertex. Going to higher orders in the couplingC0

p we
will add in Coulomb-dressed bubble diagrams as in Fig. 7~c!.
Each bubble is of the same form as in proton-proton sca
ing in Fig. 4 where the contribution from each bubble
given byJ0(p) in Eq. ~15!. Adding up these diagrams, the
are seen to form a geometric series with the sumC0

p/(1

FIG. 7. Feynman diagrams contributing to proton-proton fus
in leading order.
04400
er

-

ly.

g
-
t

s

t

r-

2C0
pJ0). The total contribution from all the three classes

diagrams thus gives the lowest order transition amplitu
Tf i(p)5Z0T0(p), where

T0~p!5FA0~p!1B0~p!
C0

pcp~0!

12C0
pJ0~p!

G . ~25!

The term involvingC0
p can now be expressed in terms of th

proton-proton scattering lengthap in Eq. ~18! and is inde-
pendent of the renormalization scalem.

For the explicit evaluation of this matrix element it
necessary to introduce the Coulomb wave function~12!.
Since the first term of the momentum integral is the prod
of two Fourier transformed functions, we find that it simp
fies in coordinate space to

A0~p!5MCheis0E
0

`

drre2(g1 ip)rM ~12 ih,2;2ipr !

5
MCheis0

~g1 ip !22F1S 12 ih,2;2;
2ip

g1 ip D . ~26!

Now the hypergeometric function2F1(a,b,b;z)5(12z)2a

so that the final result can be written as

A0~p!5Cheis0
M

p21g2e2h arctan(p/g). ~27!

In the expression~24! for B0(p) we notice that the integra
over k8 gives the complex conjugate value of the Coulom
wave function at the origin. It therefore takes the form

B0~p!5ME d3k

~2p!3E d3q

~2p!3

M

k21g2

cq~k!

p22q21 i e
cq* ~0!.

The integral overk is just the previous result forA0(q) so
that

B0~p!5ME d3q

~2p!3

M

q21g2

e2h arctan(q/g)

p22q21 i e

2ph~q!

e2ph(q)21
.

~28!

When the momentum of the incoming proton is nonzero
yields, in general, a complex result.

In the fusion limit p→0 we now find that the first term
~27! simplifies to

A0~p→0!5Ch

M

g2 ex1 is0, ~29!

where the parameterx5aM /g. Similarly, the second term
B0(p) becomes proportional to the integral

I ~x!5E
0

`

dx
2x

ex21

e(x/p)arctan(px/x)

x21p2x2
~30!

in the same limit when we usex52ph(q) as a new integra-
tion variable. Repeating this calculation with a different re

n

2-6
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resentation of the Coulomb Green’s function, it can
shown that the integral takes the value@20#

I ~x!5
1

x
2exE1~x! ~31!

when expressed in terms of the exponential integral

E1~x!5E
x

`

dt
e2t

t
.

With Z05A8pg/M for the renormalization constant, w
thus find for the full matrix element the result

Tf i5A8p

g3 Cheis0@ex2aMapI ~x!#. ~32!

The reduced matrix element in leading order is therefore

L0~0!5ex2aMapI ~x!. ~33!

This is also the canonical result from standard nuclear ph
ics @4#. The parameterx50.15 and thus the integra
I (0.15)54.96. Combined with the measured valueap5
27.82 fm for the scattering length, we then haveL0(0)
52.51 for the reduced matrix element. In the formula for t
fusion rate it gives the contributionL0

2(0)56.30. From pre-
vious applications of the effective theory@15#, we know that
leading-order results are typically within 20–30 % of the c
rect values. Going to next order in perturbation theory,
accuracy is expected to increase to 5–10 %.

B. Effective range corrections

In next order of the momentum expansion of the effect
field theory, there is no operator which inducesS-D mixing
of the deuteron state. It will first appear at one order hig
@12#. The dimension-eight couplingsC2

d andC2
p give the ad-

ditional diagrams shown in Fig. 8 in first order perturbati
theory. Each such operatorV2 has a momentum matrix ele
ment ^kuV2uq&5C2(k21q2)/2. The contribution from Fig.
8~a! is seen to be

Ta5
1

2
C2

dE d3k

~2p!3E d3q

~2p!3

2M

k21g2
~q21k2!

M

q21g2
cp~q!.

~34!

This can be expressed in terms of the divergent integral

I 0~g!52ME d3k

~2p!3

1

k21g2
5

2M

4p
~m2g! ~35!

which is the same as occured in the lowest-order determ
tion of the wave function renormalization constant in Eq.~7!.
It is finite after PDS regularization which gives for the oth
occuring integral

I 2~g!52ME d3k

~2p!3

k2

k21g2
52g2I 0~g! ~36!
04400
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since *ddk/(2p)d50 in dimensional regularization. To
gether with the functionA0(p) in Eq. ~23! and the related
function

A2~p!5ME d3k

~2p!3

k2

k21g2
cp~k! ~37!

we thus have for the matrix element~34!

Ta5 1
2 C2

d@ I 2~g!A0~p!1I 0~g!A2~p!#.

In the same way as we could express the integralI 2(g) in
terms ofI 0(g), we also find

A2~p!5Mcp~0!2g2A0~p!. ~38!

Herecp(0)5Cheis0 wheres0 is the CoulombS-wave phase
shift. When we eventually use this result to calculate
fusion rate from Eq.~5!, we will take the absolute value an
this phase factor will not contribute. We therefore write

Ta5 1
2 C2

dI 0~g!@MCh~p!22g2A0~p!#,

where the same phase factor also should be dropped in
last term. This result is now to be taken in the fusion lim
p→0 as in the previous section.

The contribution from Fig. 8~b! involves the Coulomb
Green’s function and its derivative in the triple integral

FIG. 8. Corrections to the fusion amplitude coming in at ne
to-leading order.
2-7
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Tb15
1

2
C2

dC0
pE d3k

~2p!3E d3q

~2p!3E d3q8

~2p!3
GC~E;q,q8!

3
M

q21g2
~q21k2!

2M

k21g2
cp~0!

resulting from just one proton bubble. This can be expres
in terms of the functionB0(p) in Eq. ~24! and the related
function

B2~p!5ME d3k

~2p!3

d3q

~2p!3

k2

k21g2
GC~E;k,q! ~39!

as

Tb15
1

2
C2

dC0
p@ I 2~g!B0~p!1I 0~g!B2~p!#cp~0!.

With the simplification

B2~p!5MJ0~p!2g2B0~p! ~40!

we find the total contribution

Tb5
1

2
C2

d
I 0~g!C0

p

12C0
pJ0~p!

@MJ0~p!22g2B0~p!#Ch ~41!

from all the Coulomb-dressed proton bubble diagrams in F
8~b!. Here we have again replacedcp(0) by Ch(p).

The remaining diagrams involve the proton derivati
couplingC2

p . Figure 8~c! gives

Tc5
1

2
C2

pE d3q

~2p!3E d3k

~2p!3E d3k8

~2p!3

M

k821g2
GC~E;k8,k!

3~k21q2!cp~q!. ~42!

This can again be expressed in terms of the functionsB0(p)
andCh(p) and their derivatives. In particular, we define

B28~p!5ME d3k

~2p!3

d3q

~2p!3

q2

k21g2
GC~E;k,q! ~43!

and introduce

c2~p!5E d3k

~2p!3 k2cp~k! ~44!

which is the double derivative of the Coulomb wave functi
at the origin. Both of them are highly divergent, but can
calculated in the PDS regularization scheme and expre
in terms of already introduced functions. This is shown in
Appendix. We thus find for this diagram

Tc5 1
2 C2

p@c0~p!B28~p!1c2~p!B0~p!#,
04400
d
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ed
e

wherec2(p)52aMmc0(p) in the limit p→0 as shown in
the Appendix. Then we also haveB28(p)5MI 0(g)
2aMmB0(p) and we therefore get

Tc5 1
2 C2

pCh@MI 0~g!22aMmB0~p!# ~45!

which now involves only finite and known quantities.
In Fig. 8~d! we sum over all the Coulomb-dressed prot

bubbles. The result is given by the multiple integral

Td5
1

2
C2

p
C0

p

12C0
pJ0~p!

E d3k

~2p!3E d3k8

~2p!3E d3q

~2p!3E d3q8

~2p!3

3GC~E;q,q8!~q21k2!GC~E;k8,k!
M

k821g2
cp~0!.

Again we can reorder the integrand so that the result is
pressed in terms of simpler functions

Td5
1

2
C2

p
ChC0

p

12C0
pJ0~p!

@J2~p!B0~p!1J0~p!B28~p!#,

where now

J2~p!5E d3k

~2p!3E d3q

~2p!3 k2GC~E;k,q! ~46!

involves the derivative of the Coulomb propagator. It is a
evaluated in the Appendix. In the limitp→0 we findJ2(p)
52aMmJ0(p) which together with the related result fo
B28(p) gives

Td5
1

2
C2

p
ChC0

pJ0~p!

12C0
pJ0~p!

@MI 0~g!22aMmB0~p!#. ~47!

It has the same structure asTc in Eq. ~45! and they can
therefore be combined into a simpler result.

The deuteron side of the diagrams in Fig. 8~e! is seen to
be justB0(p). Summing up the bubbles on the proton sid
we find

Te5
1

2

C2
pC0

p

12C0
pJ0~p!

@J2~p!c0~p!1J0~p!c2~p!#B0~p!.

In the limit p→0 this simplifies again with the result

Te52C2
pCh

C0
pJ0~p!

12C0
pJ0~p!

aMmB0~p!. ~48!

Similarly we find that the diagrams in Fig. 8~f! gives

Tf5
1

2
C2

pS C0
p

12C0
pJ0~p!

D 2

@J2~p!J0~p!

1J0~p!J2~p!#c0~p!B0~p!

which becomes
2-8
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Tf52C2
pChS C0

pJ0~p!

12C0
pJ0~p!

D 2

aMmB0~p! ~49!

in the low-energy limitp→0.
Adding now up the contributions from all the diagrams

Fig. 8, we obtain the sum

T252g2C2
dI 0~g!T0~p!1

1

2
~C2

p1C2
d!

MI 0~g!Ch

12C0
pJ0~p!

2
aMmC2

pChB0~p!

@12C0
pJ0~p!#2 ,

where T0(p) is the lowest order matrix element~25!. The
full transition matrix element to this order is therefore

Tf i5Z2T0~p!1Z0T2~p!,

whereZ2 is the next-to-leading order renormalization co
stant~10!. Reordering and combining terms, we obtain

Z0
21Tf i5A0~p!1B0~p!ChF C0

p

12C0
pJ0~p!

2
aMmC2

p

@12C0
pJ0~p!#2G

~50!

1
gM

4p
C2

d~m!~m2g!2

3FA0~p!1B0~p!
ChC0

p

12C0
pJ0~p!G ~51!

2
M2

8p
Ch~m2g!

C2
p1C2

d

12C0
pJ0~p!

. ~52!

In the bubble integralJ0(p) we can takep→0 since it is
finite. The functionB0(p) is also finite in this limit while
A0(p) becomes proportional to the Coulomb factorCh(p)
which diverges. As shown previously in the application
the same effective theory to low-energy, elastic proto
proton scattering, the first square bracket is now just
physical proton-proton scattering lengthap calculated in
next-to-leading order with the result@19#

ap5
M

4p S C0
p

12C0
pJ0~0!

2
aMmC2

p

@12C0
pJ0~0!#2D . ~53!

The last term is the effective-range correction which is i
portant in order to have a physically meaningful result
the scattering length. We see that when this is zero, we h
the previous result~18! used in leading order.

The transition matrix element in next-to-leading order
now given by Eq.~52!. Isolating a common factor, the re
duced matrix element~5! follows as

L2~0!5L0~0!F11
gM

4p
C2

d~m!~m2g!2G
2apg2~m2g!

C2
p~m!1C2

d~m!

2C0
p~m!

, ~54!
04400
f
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where L0(0) is the leading-order result~33! but now ex-
pressed in terms of the next-to-leading order scatter
length ~53!. With the already established value for the co
pling constantC2

d we see that it is now multiplied by the
factor 11grd/2. This can be interpreted as the first term
the expansion of the deuteron normalization factorZd dis-
cussed in the previous section. While this term in the resu
independent of the renormalization scalem, we see that the
last term is generally not. However, whenm is much larger
than the other mass scales given by the scattering leng
this dependence goes away and we are left with the defi
result

L2~0!m@g5L0~0!@11 1
2 grd#1 1

4 apg2~rp1rd!. ~55!

It has a structure which is very similar to the reduced ma
element in the standard nuclear physics effective-range
proximation@3,4#

LER~0!5AZd@L0~0!1 1
4 apg2~rp1rd!#. ~56!

With the known values for the different nucleon paramete
the result in this old approximation is thereforeLER(0)
52.66 or LER

2 (0)57.08. On the other hand, our next-to
leading order result~55! givesL2(0)m@g52.54 which is just
a 1.4% addition to the leading order result we previou
obtained . This is surprisingly small, but results from an
most total cancellation between the two effective-range c
rections in Eq.~55!. The net result for the squared matr
element isL2

2(0)m@g56.45 which is seen to be 8% below
the effective-range value.

C. Contribution from counterterm

A complete calculation of the fusion rate in next-t
leading order must include all operators contributing to t
order in the momentum expansion of effective theory. Un
now we have only included the effects of the dimension
operators coupling four nucleons with a derivative intera
tion. Since our result above in general depends on the re
malization scale, it signals that the calculation is incomple
There should be additional interaction terms that in princi
should absorb all dependence on the renormalization sc
This is in fact the case as shown by Butler and Chen@22# and
discussed in the introductory section. It has the structure
given in Eq.~22! and corresponds to the weak current co
pling directly to the four-nucleon vertex. In a more fund
mental theory it could be due to weak interactions via virtu
pions, coupling to excited nucleons or more general tw
body operators in nuclear physics language. Obviously,
counterterm will also modify the numerical result for th
fusion rate in addition to softening them dependence.

In our case it gives a contribution depicted by the Fey
man diagram in Fig. 9~a!. It is similar to the previously cal-
culated contribution from Fig. 8~a! in Eq. ~34! and becomes
2-9
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Ta
ct5L1AE d3k

~2p!3E d3q

~2p!3

M

k21g2
cp~q!52L1AChI 0~g!.

~57!

The strong interactions in the initial state, now to lowe
order in the derivative expansion, gives the series of d
grams shown in Fig. 9~b!. They form again an infinite geo
metric series whose sum

Tb
ct52L1AChI 0~g!

C0
pJ0~p!

12C0
pJ0~p!

~58!

is given by the proton-proton physical scattering lengthap
from Eq. ~18! anda(m) from Eq. ~20! in the fusion limitp
→0. With the regularized value for the integralI 0, we thus
find the total contribution from the counterterms to be

Tct52L1ACh

M

4p
~m2g!Fm2

1

a~m!Gap . ~59!

The corresponding reduced matrix element then follo
from Eq. ~5! after multiplication by the wavefunction reno
malization constantZ0.

We now include this new contribution as a correction
the matrix element~54! coming from the ordinary axial cur
rent interactions. For the combined result we then have

L2
ct~0!5L0~0!F11

1

2
grdG2

apg2

4p
~m2g!Fm2

1

a~m!G
3FL1A~m!2

M

2
@C2

p~m!1C2
d~m!#G . ~60!

The coupling constantL1A of the counterterm must have
dependence on the renormalization scalem so that the total
m dependence in the last term is negligible. Whenm@g we
see that this requirement leads to

L1A~m!m@g5
4pl 1A

Mm2
, ~61!

wherel 1A is an unknown dimensionless constant. It is set
physics on scales shorter than 1/mp and its natural value
should be around one as pointed out in Ref.@22# In order to
get a rough idea of the sensitivity of the result on this p
rameter, we takem5mp which is the scale at which on
should match the effective theory to the more fundame
theory involving pions. Then varyingl 1A in the interval
@21,1#, we find that the fusion rate measured byuL2

ct(0)u2

varies linearly from 6.22 to 6.84. These values are seen t

FIG. 9. Contributions to the fusion amplitude from the count
term.
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systematically below the effective-range result followin
from Eq. ~56!, but are within the 5–10 % uncertainty rang
expected at this order.

D. Zd parametrization

It has already been pointed out that our results for
proton-proton fusion have a very similar structure to wh
one finds in the effective-range approximation in nucle
physics. This has also been seen in other processes inv
gated within the same effective theory and at higher order
the perturbative expansion@12,16#. It is understood when
one realizes that these processes are dominated by the
erties of the deuteron wave function at large distance sc
which is contained in the effective-range approximation.
the KSW field theory, these properties are coded into
coupling constantsC0

d andC2
d . While C0

d is responsible for
binding the deuteron and must be treated nonperturbativ
the effects ofC2

d are to be treated perturbatively and giv
the detailed behavior of the wave function at large distanc
In the aboveC2

d was determined by matching to the effectiv
range parameterrd . In order to get better agreement wit
low-energy proton-neutron scattering data which are rela
directly to the deuteron bound state wave function via a
lytical continuation, it has been pointed out by Phillips, R
pak and Savage that one should instead matchC2

d to the
wave function normalization parameterZd @23#. This gives
the result

C2
d~m!5

2p

gM

Zd21

~m2g!2 , ~62!

where Zd51.69. They have shown that this markedly im
proves the convergence of the perturbative calculation
many processes involving deuterons at low energies. Ru
has recently applied this improved method to neutron-pro
fusion n1p→d1g at energies relevant to big-bang nucle
synthesis as discussed above@30#. Including one higher order
in the perturbative expansion of the elctric transition amp
tude, he has then obtained an accuracy of 1% for the ca
lated cross section.

In our case we can now use this new value forC2
d in the

result~54! for the reduced matrix element. Including also t
counterterm as in Eq.~60!, we then obtain our final result
Again the counterterm coupling constant will have the fo
~61! for large values of the renormalization mass. Choos
m5mp , we now find thatL2

2(0) varies between 7.04 an
7.70 when the parameterl 1A takes values in the interval
@21,1#. With the size of the unknown counterterm in th
range, we thus have the central valueL2

2(0)57.37 with a
conservative estimate for the uncertainty of 6–8 %. We th
find a somewhat higher value for the fusion rate in this i
proved perturbative calculation compared with results fr
effective range theory~56! and the inclusion of axial two-
body effects@6#. It is to be expected that when this calcul
tion is extended to higher orders, these different ways
determining the coupling constantC2

d will not matter so
much for the final result. As a representative value for
fusion rate from effective field theory at this stage, we c

-
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take the average of our two central values with and with
Zd parametrization and thus obtain a result in better ag
ment with the standard nuclear physics result.

IV. DISCUSSION AND CONCLUSION

Effective field theory is a very powerful approach to low
energy phsyics. It can hardly be said to be wrong when u
correctly since it is just based upon the basic symmetrie
the problem and standard quantum field theory. In that wa
is a very conservative approach since it does not admit
sumptions about the physics on scales shorter than
meant to handle. Instead of such specific and mod
dependent assumptions, one has higher-dimensional co
interactions and counterterms with coupling constants wh
represent the unknown physics. The most common critic
against effective field theory is therefore that it is not ac
rate enough since the results may depend on one or m
such coupling constants which are nota priori known. One
can make estimates of these unknown coupling const
based upon some kind of naturalness supported by dim
sional analysis and the renormalization group.

But these counterterms do not really represent a weak
of effective field theory. Since they are interactions appe
ing in a Lagrangian, they will appear with the same stren
in many different processes. If one or more of these allow
the determination of the corresponding coupling consta
one can then make much more accurate predictions for
other reactions. One recent example is radiative neut
proton capturen1p→d1g. When the process takes place
very low energies or at rest, it is dominated by a magne
dipole transition which at next-to-leading order also involv
a four-nucleon counterterm very similar to the one we ha
considered here for proton-proton fusion. From the measu
rate at these low energies, the counterterm can then be d
mined numerically@16#. The same neutron-proton fusio
process is also a key reaction in big-bang nucleosynth
where it takes place at energies upto around 1 MeV. C
and Savage have now calculated the corresponding cross
tion with an uncertainty of 4% based on the measured co
terterm @29#. A similar accuracy can be expected also f
proton-proton fusion if the counterterm can be determine

In principle the counterterm could be measured in ma
other reactions, but most of them are either insensitive to
counterterm or involve three body interactions. For exam
in inelastic scattering of neutrinos on deuterons at SNO,
unknown term will enter both the charged-current a
neutral-current cross sections linearly and approxima
with the same size as shown by Butler, Chen, and Kong@22#.
But since only the ratio between these two processes wil
measured accurately, the counterterm cannot be determ
with the required precision in these experiments. Howe
similar reactions initiated by antineutrinos from reacto
where the fluxes are known, could be useful. The unkno
counterterm could also be determined in tritiumb decay
when we know how to describe it by effective field theo
Some progress has already been made in this direction@31#.
As shown by Rupak for radiative neutron capture, with
accurately measured counterterm, we should then be in
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position to obtain the proton-proton fusion rate with mu
less uncertainty. This will place our understanding of th
fundamental process on a more solid basis. Needless to
it will also strengthen our knowledge of the neutrino produ
tion rate in the Sun.

Note added. During the editorial process a new paper
Butler and Chen@32# appeared where the fusion rate is ca
culated within the same effective theory including intera
tions to two orders higher in the derivative expansion. Th
new results reduce significantly the uncertainties in
present paper, but the problem with the unknown coun
term persists.
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APPENDIX

We will here regularize and evaluate the divergent in
grals involving Coulomb wave functions which are need
for the effective-range corrections to the fusion rate. Some
them have previously been encountered in connection w
higher order corrections to low-energy proton-proton elas
scattering@19#. They were then calculated by a method bas
on regularization of the Fourier-transformed Coulomb wa
functions. We will here use a different and simpler metho

The simplest integral isJ2(p) in Eq. ~46! which we re-
write as

J2~p!5p2J0~p!1E d3k

~2p!3E d3q

~2p!3~k22p2!^kuGC~E!uq&.

It represents a Coulomb-dressed bubble propagator wi
derivative interaction at one vertex. Here we have introdu
the free eigenmomentum states^ku and uq&. The Coulomb
propagatorGC(E) satifies the Lippmann-Schwinger equatio
GC5G01G0VCGC whereG0(E) is the free propagator~14!
andVC is the Coulomb potential. In momentum space it h
the matrix element̂ kuVCuk’ &54pa/(k2k8)2. The first
term will now give zero with the use of dimensional regula
ization

E ddk

~2p!d 50. ~A1!

We then insert two complete sets of momentum eigenst
between the three operators in the matrix elements in
second term. The denominator in the free propagatorG0 then
cancels against the factork22p2 in the integral. We are thus
left with
2-11
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E d3k

~2p!3 ~k22p2!^kuG0VCGCuq&

52ME d3k

~2p!3E d3k8

~2p!3

4pa

~k2k8!2
^k8uGC~E!uq&.

In the integral overk we now shift the integration variabl
k→k1k8 and use the PDS regularization result

E d3k

~2p!3

4pa

k2
5am. ~A2!

The remaining two integrals overk8 andq then simply gives
J0(p). We thus have the result

J2~p!5@p22aMm#J0~p!. ~A3!

Except for a higher order term in the fine-structure const
a, this agrees with what we obtained with the much mo
cumbersome wavefunction regularization method@19#.

The next integralc2(p) in Eq. ~44! corresponds to the
double drivative of the Coulomb wave function at the orig
We can write it as

c2~p!5p2c0~p!1E d3k

~2p!3 ~k22p2!^kucp&,

where ucp& is a Coulomb state with momentump. It can
formally be expressed in terms of the free stateup& as

ucp&5@11GCVC#up&.

One then has

E d3k

~2p!3 ~k22p2!^kucp&

5E d3k

~2p!3 ~k22p2!@^kuG0VCup&1^kuG0VCGCVCup&#

5E d3k

~2p!3 ~k22p2!^kuG0VCucp&

using GCVCup&5ucp&2up& in the last term. Inserting now
again two complete sets of free momentum states as abo
follows that
,
ga

er

04400
t
e

.

, it

c2~p!5p2c0~p!2ME d3k

~2p!3E d3q

~2p!3

4pa

~k2q!2
^qucp&.

After a shift of integration variable, we have the result

c2~p!5@p22aMm#c0~p! ~A4!

when making use the the PDS regularized integral~A2!.
The last integral we need isB28(p) in Eq. ~43!. Rewriting

it as above, it takes the form

B28~p!5p2B0~p!1ME d3k

~2p!3

d3q

~2p!3

q22p2

k21g2
GC~E;k,q!,

where the first term is the finite integral~24!. In the second
term we can use the Lippmann-Schwinger equation for
Coulomb propagator. Again we find that the denominator
the free propagator cancels againstq22p2 in the numerator.
The first term in the integral gives then just the integralI 0(p)
in Eq. ~35!. Going through the same steps as above w
insertion of complete sets of states, the second term is
reduced to the finite integralB0(p). In this way we obtain

B28~p!5MI 0~p!1@p22aMm#B0~p! ~A5!

which again is a surprising simple result.
We notice that these three divergent Coulomb integr

contain the common factorp22aMm in the results. This can
be understood as coming from the divergence of the dou
derivative of the Coulomb wave functioncp(r ) at the origin.
It satisfies the Scho¨dinger wave equation

F2
1

M
“

21VC~r !Gcp~r !5Ecp~r !,

where the energyE5p2/M . When we now take the limitr
→0, it follows that

2“

2cp~r !r→05@p22aMm#cp~0! ~A6!

since the regularized integral~A2! is just the Coulomb po-
tential at the origin.
d
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