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In the past, several efficient methods have been developed to solve the Schro¨dinger equation for four-
nucleon bound states accurately. These are the Faddeev-Yakubovsky, the coupled-rearrangement-channel
Gaussian-basis variational, the stochastic variational, the hyperspherical variational, the Green’s function
Monte Carlo, the no-core shell model, and the effective interaction hyperspherical harmonic methods. In this
article we compare the energy eigenvalue results and some wave function properties using the realistic AV88
NN interaction. The results of all schemes agree very well showing the high accuracy of our present ability to
calculate the four-nucleon bound state.
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I. INTRODUCTION

Recent advances in computational facilities, together w
the development of new methods and refinements upon o
ones, allow very precise calculations for few-body syste
These advances are especially remarkable in nuclear ph
considering the complexity of the nuclear interaction. T
three-nucleon~3N! bound-state@1–3# and scattering-state
@4–6# problems are rigorously solved using realistic nucle
potentials @7–9#. These calculational schemes are mos
based on a partial wave decomposition. Stochastic
Monte Carlo methods for bound states, however, are
formed directly using position vectors in configuration spa
Also in momentum space the first steps have been take
avoid partial wave decompositions in both two-nucleon~NN!
@10# and 3N @11,12# systems. Benchmark calculations bas
on different algorithms for the 3N continuum both below
@13,14# and above@15# the deuteron threshold already exis

The complicated calculation of few-body continuu
states can be avoided in the evaluation of reaction cross
tions, even in the presence of realistic forces@16#. In fact the
transition strength can be calculated in an alternative w
where only bound state techniques are needed@17#.

There are a few analytical solutions of 3N bound states
@18# for square-well potentials, against which numerical s
lutions have been checked, but they are far from posses
the complexity of realistic nuclear forces. In the four-bo
system we are only aware of benchmark calculations for f
bosons@3#.

Benchmark calculations are extremely useful to test me
ods as well as calculational schemes. They are also ofte
interest for a general readership, since they may help to s
analogous problems in other fields. We think that this is p
ticularly the case for the quite complex four-fermion syste
Here we would like to address the four-nucleon~4N! bound-
state problem using the AV88 NN potential@19# which is a
simplified, reprojected version of the fully realistic Argonn
AV18 model@8#, but still has most of its complexity, e.g., th
tensor force is built in.

In Sec. II the different methods are briefly introduced a
the results are presented in Sec. III together with a b
summary.

II. METHODS

In order to solve the bound four-nucleon system we e
ploy the Faddeev-Yakubovsky equations~FY! @20–23#, the
coupled-rearrangement-channel Gaussian-basis variat
method ~CRCGV! @24–31#, the stochastic variationa
method~SVM! with correlated Gaussians@32–35#, the hy-
perspherical harmonic variational method~HH! @36–41#, the
Green’s function Monte Carlo~GFMC! @42,43,19,44#
method, the no-core shell model~NCSM! @45–47#, and the
effective interaction hyperspherical harmonic meth
~EIHH! @48#. The various procedures are briefly describ
below.

A. Faddeev-Yakubovsky equations

The 4N Faddeev-Yakubovsky equations in momentu
space are@21–23#
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c15G0t12P@~12P34!c11c2#, ~1!

c25G0t12P̃@~12P34!c11c2#, ~2!

wherec1 andc2 are Yakubovsky components andt12 is the
two nucleon transition matrix determined by a two nucle
Lippmann-Schwinger equation.P, P34, and P̃ are permuta-
tion operators:P5P12P231P13P23, P̃5P13P24, where the
Pi j are transpositions of particlesi and j. The fully antisym-
metrized wave functionC is

C5@12~11P!P34#~11P!c11~11P!~11 P̃!c2 . ~3!

The Yakubovsky equations are decomposed into pa
waves. We truncate the partial waves at a two-body to
angular momentumj <6, all other orbital angular moment
at l i<8, and the sum of all angular momenta at( i l i<12. In
this truncation we keep 1572 angular momentum and isos
combinations~often called channels!. This is sufficient to
guarantee convergence of our results as given in Sec. III.
diagonalization is performed by a modified Lanczos meth
@49#. Recent results for realisticNN potentials, and including
three-nucleon forces, are given in@22#.

B. Coupled-rearrangement-channel Gaussian-basis
variational method

The coupled-rearrangement-channel Gaussian basis v
tional method was proposed by Kamimura@24# to solve the
Coulombic three-body problem of the muonic molecular i
(dtm)1, within an accuracy of seven significant figures f
the energy of the very loosely boundJ5v51 state; this
accuracy was required for the comparison with experime
data on the muon catalyzed fusion cycle. Use of basis fu
tions that spanned all the three rearrangement Jacobian c
dinates was essential to the high-precision calculation.
method was also applied to three-nucleon bound st
@25,26# and was found to accomplish a much more rap
convergence in the binding energy with respect to the nu
ber of the three-body angular momentum channels~see Fig.
5 of @26#!.

The method was also successfully used to make ano
high-precision Coulomb three-body calculation of the an
protonic helium atom (p̄1He111e2) in highly excited
metastable states withJ'35 @27#. The calculation agreed
with the high-resolution laser spectroscopic data with
seven significant figures so that the mass of antiproton
derived to two orders of magnitude better precision than p
lished values. The method has been useful in four-body
culations of the structure of light hypernuclei with realist
YN andNN interactions@28–30#.

The total four-body wave function is described as the s
of amplitudes of the rearrangement-Jacobian-coordin
channels with theLS coupling scheme

CJM5(
a

Ca
(K)Fa

(K)1(
a

Ca
(H)Fa

(H) , ~4!
1-2



i

o

i

bi
ng

ed

o
n
t

. I
re

he

p

e

is-
es

ital

ted,
xp

se
acy.
to

um
ria-
all

ge
all

m-
nent
ent
To

ria-
e
re.
are

ntum
bers.
asis
can

s is
ry
al-

ing
er-

the

y in-

ain
ec-

tor,
tral
he
ac-
use
iza-

he

BENCHMARK TEST CALCULATION OF A FOUR- . . . PHYSICAL REVIEW C 64 044001
where antisymmetrized basis functions are described w
quantum numbersa[$nl,NL,L,nl,I ,ss8S,t% by

Fa
(K)5A$„†@fnl~r !cNL~R!#Lwnl~r!‡I

3†@xs~12!x1/2~3!#s8x1/2~4!‡S…JM

3†@h t~12!h1/2~3!#1/2h1/2~4!‡0%, ~5!

Fa
(H)5A$„†@fnl~r 8!cNL~R8!#Lwnl~r8!‡I

3@xs~12!xs8~34!#S…JM@h t~12!h t~34!#0%. ~6!

We employ K-type coordinatesr5x12x2 , R5(x11x2)/2
2x3 , r5(x11x21x3)/32x4 and H-type ones r 85x1
2x2 , R85x32x4 , r85(x11x2)/22(x31x4)/2. A is the
four-nucleon antisymmetrizer andx ’s and h ’s are the spin
and isospin functions, respectively. The functional form
fnl(r ) is taken as

fnlm~r !5r le2(r /r n)2
Ylm~ r̂ !, ~7!

where the Gaussian range parameters are chosen to lie
geometrical progression (r n5r 1an21;n51;nmax), and
similarly for the other functionsc and w. This manner of
choosing the range parameters is very suitable for descri
both the short-range correlations and the long-ra
asymptotic behavior precisely@25,31#.

Eigenenergies and wave-function coefficientsC’s are de-
termined by solving the Schro¨dinger equation with the
Rayleigh-Ritz variational principle. It is to be emphasiz
that truncation is not made for the partial waves of theNN
interaction, in contrast to the Faddeev-Yakubovsky meth
but is done only for the angular momenta of basis functio
as in most variational methods. This makes it possible
accomplish a very quick convergence; the result in Sec
usesl ,L,l<2 ~this is the same as in the case of the th
nucleon bound states, mentioned above!. For instance, this
amounts to 100 channels for the calculation in Sec. III.

C. Stochastic variational method

The correlated Gaussian trial function is written in t
following form @32–34#:

C5(
i 51

K
ciAH @uLi~ x̂!jSi#JMjTMTiexpS 2

1

2
xAixD J , ~8!

whereA is the antisymmetrizer,x stands for a set ofA21
intrinsic coordinates (x1 ,x2 , . . . ,xA21) andjSMi (jTMTi) is
the spin~isospin! function of theA-particle system. These
functions are constructed by successively coupling the s
~isospin! of the nucleons

jSMi5„†@x1/2~1!x1/2~2!#s12
x1/2~3!‡s123

. . . …SMi ~9!

~similarly for the isospin part!. The nonspherical~orbital!
part of the trial function is represented by a successiv
coupled product of spherical harmonics
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uLMi~ x̂!5†„@Yl 1
~ x̂1!Yl 2

~ x̂2!# l 12
Yl 3

~ x̂3!…l 123
. . . ‡LMi . ~10!

The indexi in the above equation stands for a label to d
tinguish the different possible intermediate coupling schem
as well as the different possible total spin and total orb
angular momentum.

The expansion over the partial waves has to be trunca
but the correlations included in the Gaussian part, e
(21

2xAix), make the trial function flexible enough, so the
truncations are not expected to seriously affect the accur
In the present calculation we included all partial waves up

(
i 51

A21

l i<4. ~11!

The trial function containsA(A21)/2 nonlinear variational
parameters. The total spin, total orbital angular moment
and intermediate coupling quantum numbers are also va
tional parameters in the sense that one has to include
possibilities which improve the energy. We have a lar
number of parameters to be optimized and it is not at
clear how to select the optimal quantum numbers.

This variational basis is nonorthogonal, none of the co
ponents is indispensable, and one can replace a compo
by a linear combination of others. This gives us an excell
opportunity to use a stochastic optimization procedure.
optimize the variational basis we used the ‘‘stochastic va
tional method’’ @32–35#. In the SVM one searches for th
best wave function by a random trial and error procedu
Random trial functions are generated and their energies
compared. Randomness in this case means that the qua
numbers and the nonlinear parameters are random num
Trial functions giving the lowest energy are selected as b
states. Details and various applications of the approach
be found in@32–35#.

The number of basis states used in the calculation
about 150 for the triton and 300 for the alpha particle. Ve
small bases already give quite acceptable results, for the
pha particle, for example, 50 basis states give the bind
energy within 1 MeV. The SVM results seem to be conv
gent in the model space defined with 300 basis states and
partial-wave truncation with( i 51

A21l i<4. We have tried to
increase the accuracy by adding 700 more states and b
cluding the partial waves up to( i 51

A21l i<6 but the results are
practically unchanged. The 1000 bases give only 2 keV g
in energy. The enlargement of the basis improves the exp
tation values, especially that of the kinetic energy opera
but this change is canceled by a similar change in the cen
potential. We think that the upper bound provided by t
SVM calculation is very close to the exact energy. The
curacy achieved with few basis dimension is due to the
of the correlated Gaussian basis and the efficient optim
tion procedure.

D. Hyperspherical harmonic variational method

The hyperspherical harmonic~HH! functions constitute a
general basis for expanding the wave functions of anA-body
system@36–38#. Very precise results can be obtained for t
1-3
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three-nucleon bound state@39#. In the HH variational
method, the wave function is written as

C5(
m

um~r!Fm
(K) , ~12!

where r is the hyper-radius. The quantitiesFm
(K) are fully

antisymmetrized HH-spin-isospin functions of quantu
numbersm[$n,m,l 1 ,l 2 ,l 3 ,l 12,L,s,s8,S,t,t8,T% constructed
using theK-type Jacobi coordinatesx1,2,3. Explicitly,

Fm
(K)5A„~sinb!2mPn

n,l 311/2
~cos 2b!Pm

l 111/2,l 211/2
~cos 2g!

3†@h t~12!h~3!# t8h~4!‡TTz
~x1! l 1~x2! l 2~x3! l 3

3$†@Yl 1
~ x̂1!Yl 2

~ x̂2!# l 12
Yl 3

~ x̂3!‡L

3†@xs~12!x~3!#s8x~4!‡S%JJz
…, ~13!

where cosb5x3 /r, cosg5x2 /(r sinb) and x and h denote
spin and isospin functions, respectively. Moreover,n5 l 1

1 l 212m12 andPn
a,b are Jacobi polynomials~the integers

n andm range from zero to infinity!. The coefficientsum(r)
depend on the hyper-radiusr5A(x1)21(x2)21(x3)2 and
can be determined by solving a set of second-order diffe
tial equations derived from the Rayleigh-Ritz variation
principle. For A54 the necessary matrix elements of t
potential have been calculated by exploiting the techniq
discussed in Ref.@40#.

The main difficulty in applying the HH technique t
nuclear systems is the very slow convergence of the exp
sion due to the strong repulsion between the particles at s
distances. In theA54 case, it has been found convenient
separate the HH states in different classes and to study
convergence by including the states of one class at time@41#.
The adopted criterion has been to first include the HH fu
tions describing two-body correlations and, successiv
those incorporating three- and four-body correlations. Mo
over, the HH functions having the lowest orbital angular m
mentum quantum numbersl i ( i 51,2,3) have been include
first.

E. Green’s function Monte Carlo method

Green’s function Monte Carlo methods use stocha
sampling to evaluate path integrals of the form

C05 lim
t→`

C~t!, ~14!

C~t!5e2(H2E0)tCT , ~15!

5@e2(H2E0)nt#nCT , ~16!

where CT is an approximate trial function obtained in
variational or in an approximate constrained-path GFMC c
culation and we have introduced a small time step,t
5nnt. An approximate expression for the propagator,

G~R,R8!5^Rue2(H2E0)ntuR8&, ~17!
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with error proportionate to at least the second power ofDt is
used. In the present work we use a symmetrized produc
exact two-body propagators, which has error proportionat
(Dt)3 @19,44#.

Green’s function Monte Carlo calculations for light nucl
with spin-isospin dependent interactions sample the part
coordinates while explicitly summing over the spin-isosp
degrees of freedom@42#. The first alpha particle calculation
includingL•S terms employed the Reid V8 interaction@43#.
The chief advantage of these methods is that they can
extended to larger nuclei. More computationally efficie
versions of the algorithm have been introduced and calc
tions extended up toA58 @19,44#.

Convergence of the ground-state energy is governed
the spectra of the Hamiltonian. Calculations reported h
were performed tot50.12 MeV21. Since the first excited
state of4He is above 20 MeV, any errors inCT are damped
out by at least exp(22.4), an order of magnitude. In fact ou
studies show that the errors inCT correspond to much highe
excitation energies and̂H& converges byt;0.05 MeV21.

The GFMC method allows us to compute mixed expec
tion values of the form̂C(t)uOuCT&. For H, this gives the
exact ground state energy ift is large enough. Expectatio
values of other quantities, such as pieces of the Hamilton
are often obtained through a linear extrapolation in the e
of the trial wave function:

^C~t!uOuC~t!&'2^C~t!uOuCT&2^CTuOuCT&, ~18!

though it is possible to go beyond this approximation.

F. No-core shell model method

The NCSM is an approach applicable to both few-nucle
systems as well as to light nuclei@45#. The calculations are
performed in a finite model space in the harmonic-oscilla
~HO! basis. The model space (P) is spanned by states wit
the total number of HO quantaN<Nmax. The Hamiltonian,

H5T1V, ~19!

is modified by a HO center-of-mass potential. Thus, we w
with

HA
V5(

i 51

A F pi
2

2m
1

1

2
mV2r i

2G
1 (

i , j 51

A FV~rW i2rW j !2
mV2

2A
~rW i2rW j !

2G . ~20!

As theNN potential depends on the relative coordinates,
added HO term has no influence on the internal motion in
full space. The effective Hamiltonian, appropriate to the
nite P space, is derived by the Hermitian version of the Le
Suzuki method@46#. In general, the effective Hamiltonian i
anA-body operator. We make an approximation by using j
a two~three!-body effective interaction, which is obtained b
applying the Lee-Suzuki approach to the two~three!-nucleon
system usingHA

V with the sums restricted to two~three!
nucleons, but with theA in the interaction term kept fixed to
1-4
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e.g.,A54 for 4He. Consequently, we deal with a two~three!-
nucleon system bound in a HO potential. The effect
two~three!-body interaction, then replaces the interacti
term in HA

V . We note that the effective interaction, by co
struction, converges to the original bare interaction as
basis space is increased and, thus, the NCSM calcula
converges to the exact solution with the basis-space enla
ment. In fact, it converges much faster than the correspo
ing bare interaction calculation performed in the same ba
Eventually, theA-nucleonP-space calculation can be pe
formed either in a Slater-determinant single-particle HO
sis or in a properly antisymmetrized Jacobi-coordinate
basis. The latter is used in the present4He calculation. In the
past, we applied this approach successfully to the4He inter-
acting by the CD-BonnNN potential. It turns out that the
convergence with the AV88 is significantly slower. The limi-
tation to a two-body effective interaction is inadequate in
P spaces that we could access (Nmax518). Therefore, we
performed the calculations using the three-body effective
teraction. The mean values of the different operators w
calculated using the corresponding effective operators c
puted within the Lee-Suzuki approach in a two-body a
proximation using the formula derived in Ref.@47#.

G. Effective interaction hyperspherical harmonic method

Similarly to the preceding method the EIHH approa
introduces a two-body effective interactionVe f f @48#. The
division of the total HH space inP andQ spaces is realized
via the HH quantum numberK @P(Q) space:K<(.)Kmax#.
Two powerful algorithms recently developed for the co
struction of symmetrized HH functions are employ
@50,51#. In hyperspherical coordinates the total Hamiltoni
is written as

H5
1

2m S 2Dr1
K̂2

r2 D 1(
i , j

Vi j , ~21!

wherer is the hyper-radius andDr contains derivatives with
respect tor only. The grand-angular momentum operatorK̂2

is a function of the variables of particlesA and (A21) and
of K̂A22 the grand angular momentum operator of theA
22) residual system@52#. Then from the total Hamiltonian
one can extract a ‘‘two-body’’ Hamiltonian of particlesA and
(A21)

H2~r!5
1

2m

K̂2

r2
1VA(A21) , ~22!

which, however, contains the hyperspherical part of the t
kinetic energy. Since the HH functions of the (A22) system
are eigenfunctions ofK̂A22

2 one has an explicit dependenc
of H2 on the quantum numberKA22 of the residual system
i.e.,H2→H2

KA22. Applying the Hermitian version of the Lee
Suzuki method@46# to H2 one gets an effective Hamiltonia
H2e f f . The effective interactionVe f f is obtained from
04400
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Ve f f
KA22~r!5H2e f f

KA22~r!2
1

2m

K̂2

r2
. ~23!

This Ve f f replacesVi j in Eq. ~21! when we project the solu
tion on theP space. This effective potential has the followin
property:Ve f f→Vi j for P→1. Due to the ‘‘effectiveness’’ of
the operator the solution of the Schro¨dinger equation con-
verges faster to the true one. The HH formulation leads
various advantages:~i! Ve f f itself is r dependent, therefore i
contains some information on the ‘‘medium,’’~ii ! because of
the above mentionedKA22 dependence the~A-2! residual
system is not a pure spectator, and~iii ! an additional confin-
ing potential is not needed, since the presence ofr in Eq.
~22! automatically confines the two-body system to the ran
0<r A2(A21),A2r. We would like to point out that
Ve f f(Kmax) can be viewed as a kind of momentum expa
sion, since the short range resolution is increased with gr
ing Kmax. As discussed for the NCSM approach one obta
a better convergence for the calculation of mean values
troducing corresponding effective operators. Of course
the calculation of the mean value of the Hamiltonian, i.
Eb , one already makes use of an effective operator, nam
H2e f f

KA22 .

III. RESULTS

The AV88 interaction appears to be an ideal test poten
to compare the different calculational schemes. It is deriv
from the realistic AV18 interaction@8# by neglecting the
charge dependence and the terms proportional toL2 and
(L•S)2. Furthermore, in this work we omit the electroma
netic part of the interaction. The potential is local and its s
and isospin dependences are represented by operators
cause of its form it is tractable for all of the calculation
schemes described above.

The potential consists of eight parts:

V~r !5Vc~r !1Vt~r !~t•t!1Vs~r !~s•s!

1Vst~r !~s•s!~t•t!1Vt~r !S121Vtt~r !S12~t•t!

1Vb~r !~L•S!1Vbt~r !~L•S!~t•t!

5(
i 51

8

Vi~r !Oi , ~24!

where (s•s),(t•t),S12, and (L•S) stand for spin-spin,
isospin-isospin, tensor, and spin-orbit interactions@8#, re-
spectively, andVi(r ) are radial functions of Yukawa- an
Woods-Saxon types. The AV18 and AV88 are defined with
\2/mN541.47108 MeV fm2, computed from the average o
the proton and neutron masses. Most of the results repo
here were obtained using the traditional value of 41.47; t
results in a change in̂H& of only '2.6 keV, far less than the
estimated errors in the various methods.

First, we compare the binding energy resultsEb , the ex-
pectation values of the kinetic and potential energy and
radii in Table I. We find good agreement forEb within 3
digits or within 0.5%. This is quite remarkable in view of th
1-5
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very different techniques and the complexity of the nucl
force chosen. Except for NCSM and EIHH, the expectat
values ofT andV also agree within three digits. The NCSM
results are, however, still within 1% and EIHH within 1.5
of the others, but note that the EIHH results forT andV are
obtained with bare operators. The uncertainty in the NC
results is of the same size, i.e., 1 MeV, as that for the GFM
Finally, the given radii are also in very good agreement.

The HH calculation includes about 4500 states withL
5 l 11 l 21 l 3<6. The states withL56 give a contribution to
the binding energy of approximately 0.04 MeV. It is to b
noticed that the HH spin-isospin statesFm

(H) havingL<6 but
constructed with theH-type Jacobi coordinates are linear
dependent on those considered in the expansion and th
fore it is unnecessary to include them. The contribution
Fm

(K) ~and Fm
(H)) to the binding energy withL>8 has been

estimated to be approximately 0.01 MeV.
The errors quoted for the GFMC results are just

Monte Carlo statistical errors. Various tests show that
energy is converged to at least this accuracy for change
Dt or the maximumt. There should be no other sources
systematic error in this simple test case.

The NCSM binding energy result is based on extrapo
tion from calculations using the three-body effective inter
tion in model spaces up toNmax516 in the HO frequency
range\V516–43 MeV. The mean values of different oper
tors, evaluated forNmax516 consisting of 2775 basis state
and\V528 MeV, were computed using effective operato
as the use of bare operators is completely insufficient
particular for theVc(r ) and T. Note that we have here
^Teff&1^Veff& close, but not exactly equal tôHeff&, due to
approximations used. Overall, the NCSM results are less
curate than the other methods. The NCSM convergence
is rather slow for the AV88. However, the method is flexible
to handle also nonlocal realistic potentials like the CD-Bo
with a faster convergence rate due to a softer repulsive c
The advantage of the method is its applicability to thep-shell
nuclei.

The EIHH calculation is carried out withKmax520 ~about
3000 HH states!. The error estimate is based on the conv
gence with respect toKmax, i.e., difference of results fo
Kmax518 and 20. An inspection of Table I shows thatEb and
radius are converged to a very high precision (Eb : 0.04%;
radius: 0.007%, not shown in Table I!. On the contrarŷ T&

TABLE I. The expectation valueŝT& and ^V& of kinetic and
potential energies, the binding energiesEb in MeV, and the radius in
fm.

Method ^T& ^V& Eb A^r 2&

FY 102.39~5! 2128.33~10! 225.94~5! 1.485~3!

CRCGV 102.30 2128.20 225.90 1.482
SVM 102.35 2128.27 225.92 1.486
HH 102.44 2128.34 225.90~1! 1.483
GFMC 102.3~1.0! 2128.25~1.0! 225.93~2! 1.490~5!

NCSM 103.35 2129.45 225.80~20! 1.485
EIHH 100.8~9! 2126.7~9! 225.944~10! 1.486
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and ^V& still change by about 1% fromKmax518 to Kmax

520. Of course, by construction of the EIHH method, al
^T& and ^V& have to converge to the true result. In order
have a higher precision one can proceed in two ways:~i!
increase ofKmax, ~ii ! use of effective operators. Particular
advantageous is the use of effective operators, since it all
us to make rather precise calculations with a small numbe
basis functions~see discussion of EIHH result for Fig. 1!. As
Table I shows it is not necessary to use effective opera
for long-range observables like the radius, while observab
that contain short range information~high momentum con-
tributions!, like ^T& and ^V&, should, in principle, be calcu
lated with effective operators.

A more detailed test of the wave function is to evalua
the expectation values of the eight individual potential e
ergy operators in Eq.~24!. The results are shown in Table I
The agreement is, in general, rather good and well wit

TABLE II. Expectation values of the eight potential operators
Eq. ~24! in MeV.

Method ^Vc& ^Vt& ^Vs& ^Vst&

FY 16.54 25.038 29.217 257.55
CRCGV 16.54 25.035 29.215 257.51
SVM 16.54 25.036 29.213 257.51
HH 16.57 25.034 29.255 257.59
GFMC 16.5~5! 25.03~6! 29.21~7! 257.3~5!

NCSM 16.16 24.92 29.77 257.89

Method ^Vt& ^Vtt& ^Vb& ^Vbt&

FY 0.707 269.06 10.79 215.50
CRCGV 0.708 268.99 10.60 215.30
SVM 0.707 269.03 10.78 215.49
HH 0.702 269.03 10.76 215.46
GFMC 0.71~3! 268.8~5! 10.62~15! 215.40~15!

NCSM 0.68 269.13 11.23 215.80

FIG. 1. Correlation functions in the different calculation
schemes: EIHH~dashed-dotted curves!, FY, CRCGV, SVM, HH,
and NCSM~overlapping curves!.
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1%, except for NCSM with discrepancies up to 6% but th
are generally 4% or less. In the case of the CRCGV,
expectation values for the spin-orbit operators are a bit
from the rest, but again still within 4%. There are no resu
given for the EIHH.

Table III shows the expectation values of the sum of
first four operators in Eq.~24! ~called central!, of the two
tensor operators and of the two spin-orbit operators. Ag
no results are given for the EIHH. Except for the NCS
with differences up to 3.2%, all the values agree quite w
each other.

As a further property of the wave function we consid
the NN correlation function

C~r !5^Cud~rW2rW12!uC&, ~25!

where rW125rW12rW2. It is apparently normalized a
4p*C(r )r 2dr51. The results for the various calculation
schemes, except for the GFMC are shown in Fig. 1. T
agreement among the FY, CRCGV, SVM, HH, and NCSM
essentially perfect. For the EIHH it is necessary to use
effective operator in order to obtain good convergence a
for r ,1.2 fm. Due to the use of rather unsophisticated co
puters, the EIHH calculation forC(r ) is performed with the
rather lowKmax value of 12~about 400 HH states!; however,
a rather good agreement with the other methods is alre
obtained at this low value.

Finally, we show in Table IV the probabilities for findin
the three different total orbital angular momenta in ourN
model system. The agreement among the different meth
is very good with a small excursion in NCSM.

To summarize, we have demonstrated that the Sc¨-
dinger equation for a four-nucleon system can be hand
quite reliably by different methods leading to very go
agreement in the binding energy, in expectation values of
kinetic and potential energies and in simple wave funct
properties. The AV88 NN potential encompasses most of t
complexity of realisticNN forces and, thus, the benchma
calculations are highly nontrivial and demonstrate the ma
rity and reliability of various methods. These results are go
foundations for further investigations of nuclear structure
more complex systems and/or for otherNN interaction
models.

TABLE III. Expectation values of potential energy operators
MeV.

Method Central Tensor Spin-orbital

FY 255.26 268.35 24.72
CRCGV 255.22 268.28 24.70
SVM 255.23 268.32 24.71
HH 255.31 268.32 24.71
GFMC 255.05~70! 268.05~70! 24.75~5!

NCSM 256.43 268.45 24.57
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We have chosen the AV88 potential because it can b
handled without any approximation by all of our method
More realisticNN potentials such as AV18@8#, CD-Bonn@7#,
and Nijmegen I,II@9# pose additional difficulties for at leas
some of the methods. There are new operator forms w
higher order derivatives or very strong nonlocalities. Al
some of the potentials are defined partial wave by par
wave.

Whereas in the four-body system the FY and NCS
schemes can handle all types ofNN potentials directly, the
GFMC method relies on AV88 and treats the difference t
AV18 in perturbation theory. The SVM can in principle tre
any local potential, such as AV18, but the (L•S)2 terms re-
quire additional computational effort. Also the remainin
methods, HH, CRCGV, and EIHH, can handle more comp
cated potentials, although at present applications have b
restricted to local potentials. GFMC, NCSM, SVM, an
EIHH have already obtained solutions forA.4, whereas FY
up to now has been restricted toA<4. An advantage of the
methods, CRCGV and EIHH, is that they do not need
heavy computational facilities as the other methods.
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TABLE IV. Probabilities of total orbital angular momentum
components in %.

Method S wave P wave D wave

FY 85.71 0.38 13.91
CRCGV 85.73 0.37 13.90
SVM 85.72 0.368 13.91
HH 85.72 0.369 13.91
NCSM 86.73 0.29 12.98
EIHH 85.73~2! 0.370~1! 13.89~1!
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@45# P. Navrátil and B.R. Barrett, Phys. Rev. C59, 1906~1999!; P.
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Glöckle, and P.U. Sauer, Phys. Rev. C44, 2319~1991!.
@50# N. Barnea and A. Novoselsky, Ann. Phys.~N.Y.! 256, 192

~1997!; Phys. Rev. A57, 48 ~1998!.
@51# A. Novoselsky and J. Katriel, Phys. Rev. A49, 833 ~1994!; A.

Novoselsky and N. Barnea,ibid. 51, 2777~1995!; N. Barnea,
ibid. 59, 1135~1999!.

@52# V.D. Efros, Yad. Fiz.15, 226~1972! @Sov. J. Nucl. Phys.15, 1
28 ~1972!#.
1-8


