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In the past, several efficient methods have been developed to solve thaliSgbroequation for four-
nucleon bound states accurately. These are the Faddeev-Yakubovsky, the coupled-rearrangement-channel
Gaussian-basis variational, the stochastic variational, the hyperspherical variational, the Green’s function
Monte Carlo, the no-core shell model, and the effective interaction hyperspherical harmonic methods. In this
article we compare the energy eigenvalue results and some wave function properties using the realistic AV8
NN interaction. The results of all schemes agree very well showing the high accuracy of our present ability to
calculate the four-nucleon bound state.
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I INTRODUCTION 1= Got12P[ (1= P3g) b1+ ], ey
Recent advances in computational facilities, together with
the development of new methods and refinements upon older o= Gt 1 ,P[ (1= Pag) by + o], 2)

ones, allow very precise calculations for few-body systems.

These advances are especially remarkable in nuclear physi :
considering the complexity of the nuclear interaction. ThetﬁVTOe:,]eu(ﬁe%r:]dt(f;naszﬁo\r(]aﬁ:tz\:(sg)étg?giﬁggegfaa?ﬁolSnﬂ]cel eon
three-nucleon(3N) bound-state[1-3] and scattering-state : ) ~

[4—6] problems are rigorously solved using realistic nuclear-PPMann-Schwinger equatiof, Ps4, andP are permuta-
potentials[7—9]. These calculational schemes are mostlytion operatorsP=P,Py3+ P13P,3, P=P13P,4, where the
based on a partial wave decomposition. Stochastic anflij are transpositions of particlésandj. The fully antisym-
Monte Carlo methods for bound states, however, are peinetrized wave functionV is

formed directly using position vectors in configuration space.

Also in momentum space the first steps have been taken to Y=[1—(1+P)Pg](1+P) 1+ (1+P)(1+P)ihp. (3
avoid partial wave decompositions in both two-nucléNiN)
[10] and N [11,17 systems. Benchmark calculations base
on different algorithms for the 8 continuum both below
[13,14] and abovd 15] the deuteron threshold already exist.

dThe Yakubovsky equations are decomposed into partial
waves. We truncate the partial waves at a two-body total

The complicated calculation of few-body continuum angular momentunj=<6, all other orbital angular momenta

states can be avoided in the evaluation of reaction cross set E."TS' arl_d the Sllj(m offgl)l;zngularl momentaEtatislzd _In .
tions, even in the presence of realistic for&§]. In fact the IS truncation we keep angufar momentum and 1Sospin

transition strength can be calculated in an alternative Waycomblnatlons(often called channels This IS sqfﬂment to

where only bound state techniques are neddad guarantee convergence of our results as given in Sec. lll. The
There are a few analytical solutions oNDound states diagonalization is performed by a modified Lanczos method

[18] for square-well potentials, against which numerical So[49]. Recent results for realistidN potentials, and including

lutions have been checked, but they are far from possessirjfaree'numeon forces, are given|i22].
the complexity of realistic nuclear forces. In the four-body
system we are only aware of benchmark calculations for four B. Coupled-rearrangement-channel Gaussian-basis
bosond 3]. variational method

Benchmark calculations are extremely useful to test meth-
ods as well as calculational schemes. They are also often ‘ﬁfo
interest for a general readership, since they may help to solv&
analogous problems in other fields. We think that this is par
ticularly the case for the quite complex four-fermion system
Here we would like to address the four-nuclddil) bound-
state problem using the AVBNN potential[19] which is a
simplified, reprojected version of the fully realistic Argonne
AV18 model[8], but still has most of its complexity, e.g., the

The coupled-rearrangement-channel Gaussian basis varia-
nal method was proposed by Kamimuygs] to solve the
oulombic three-body problem of the muonic molecular ion
(dtu)*, within an accuracy of seven significant figures for
‘the energy of the very loosely bount=v=1 state; this
accuracy was required for the comparison with experimental
data on the muon catalyzed fusion cycle. Use of basis func-
tions that spanned all the three rearrangement Jacobian coor-

) L dinates was essential to the high-precision calculation. The
tensor force is built in.

In Sec. Il the different methods are briefly introduced andmemOd was also applied to three-nucleon bound states

. ! 125,26 and was found to accomplish a much more rapid
gzemﬁzlrj;ts are presented in Sec. lll together with a brIEElé:onvergence in the binding energy with respect to the num-

ber of the three-body angular momentum chaniste Fig.
5 of [26)).
The method was also successfully used to make another
In order to solve the bound four-nucleon system we emhigh-precision Coulomb three-body calculation of the anti-
ploy the Faddeev-Yakubovsky equatioffsY) [20-23, the  protonic helium atom §+He"*+e™) in highly excited
coupled-rearrangement-channel Gaussian-basis variation@letastable states with~35 [27]. The calculation agreed
method (CRCGV) [24-31, the stochastic variational with the high-resolution laser spectroscopic data within
method (SVM) with correlated Gaussiarf82-39, the hy-  seven significant figures so that the mass of antiproton was
perspherical harmonic variational meth@tH) [36-41], the  derived to two orders of magnitude better precision than pub-
Green's function Monte Carlo(GFMC) [42,43,19,44 |ished values. The method has been useful in four-body cal-
method, the no-core shell mod@ICSM) [45—-47, and the  culations of the structure of light hypernuclei with realistic
effective interaction hyperspherical harmonic methody N andNN interactiong28—30.
(EIHH) [48]. The various procedures are briefly described The total four-body wave function is described as the sum
below. of amplitudes of the rearrangement-Jacobian-coordinate
channels with thé.S coupling scheme

IIl. METHODS

A. Faddeev-Yakubovsky equations

The AN Faddeev-Yakubovsky equations in momentum Viu=> COPK LS cpth (4)
space ar¢21-23 a @
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where antisymmetrized basis functions are described with » 5y 1y, (XY, (X Y, (X 1. (10
quantum numbere:={nl.NL.A.».1,58 S.1} by i ) =LY (X)) Y100 D1, Y 1,6y - - - Jomi - (10)

The indexi in the above equation stands for a label to dis-

K) _

cbfl )_A{([[¢nl(r)'/’NL(R)]A%A(P)]I tinguish the different possible intermediate coupling schemes

as well as the different possible total spin and total orbital

X ,
[[xs(12) x1/2(3) I X112 4) 19)am angular momentum.

X[ 7:(12) 91 3) 1112712 4) 1o} (5) The expansion over the partial waves has to be truncated,

but the correlations included in the Gaussian part, exp

1_ . - . -
DM = A{([[ () (R (p)] (—3xAix), make the trial function flexible enough, so these

truncations are not expected to seriously affect the accuracy.
X[ xs(12) xs (3919 ml 7:(12) 7(34H]o}.  (6)  In the present calculation we included all partial waves up to

We employ K-type coordinates =x;—X,, R=(X1+X5)/2 !

—X3, p=(X;+Xs+X3)/3—%, and H-type onesr’'=x; 21 li=4. (12)
—Xo, R'=X3—X4, p' =(X1+X,)/12—(X3+Xx,)/2. A is the

four-nucleon antisymmetrizer angs and »'s are the spin  The trial function containé\(A— 1)/2 nonlinear variational
and isospin functions, respectively. The functional form ofparameters. The total spin, total orbital angular momentum

¢ni(r) is taken as and intermediate coupling quantum numbers are also varia-
) tional parameters in the sense that one has to include all
Grm(1)=r'e ("M%, (1), (7)  possibilities which improve the energy. We have a large

number of parameters to be optimized and it is not at all

where the Gaussian range parameters are chosen to lie inclgar how to select the optimal quantum numbers.
geometrical progression r{=r;a" ;n=1~n.,), and This variational basis is nonorthogonal, none of the com-
similarly for the other functionsy and ¢. This manner of ponents is indispensable, and one can replace a component
choosing the range parameters is very suitable for describingy a linear combination of others. This gives us an excellent
both the short-range correlations and the long-rang@pportunity to use a stochastic optimization procedure. To
asymptotic behavior precise[25,31]. optimize the variational basis we used the “stochastic varia-

Eigenenergies and wave-function coefficie@ts are de-  tional method”[32-33. In the SVM one searches for the
termined by solving the Schdinger equation with the best wave function by a random trial and error procedure.
Rayleigh-Ritz variational principle. It is to be emphasizedRandom trial functions are generated and their energies are
that truncation is not made for the partial waves of ki compared. Randomness in this case means that the quantum
interaction, in contrast to the Faddeev-Yakubovsky methodiumbers and the nonlinear parameters are random numbers.
but is done only for the angular momenta of basis functionstial functions giving the lowest energy are selected as basis
as in most variational methods. This makes it possible tétates. Details and various applications of the approach can
accomplish a very quick convergence; the result in Sec. l1fe found in[32-33.
usesl,L,\<2 (this is the same as in the case of the three The number of basis states used in the calculations is
nucleon bound states, mentioned abowor instance, this about 150 for the triton and 300 for the alpha particle. Very

amounts to 100 channels for the calculation in Sec. lll.  small bases already give quite acceptable results, for the al-
pha particle, for example, 50 basis states give the binding
energy within 1 MeV. The SVM results seem to be conver-
gent in the model space defined with 300 basis states and the
The correlated Gaussian trial function is written in the partial-wave truncation witrEiA;lllisA We have tried to

following form [32-34: increase the accuracy by adding 700 more states and by in-

cluding the partial waves up B/ 'l;<6 but the results are

“ 2 1 ractically unchanged. The 1000 bases give only 2 keV gain

q,_i:El e [aLi(X)§Si]JM§TMTieXp( 2XAiX) ] ® |F|)q energy%/ The enlgrgement of the basisgi]mprovgs the exgpec—
tation values, especially that of the kinetic energy operator,

where A is the antisymmetrizer stands for a set oA —1 but this change is canceled by a similar change in the central
intrinsic coordinatesXy Xz, . .. Xa-1) andé&smi (§mi) is potential. We think that the upper bound provided by the
the spin (isospin function of the A-particle system. These SVM calculation is very close to the exact energy. The ac-

functions are constructed by successively coupling the spifuracy achieved with few basis dimension is due to the use
(isospin of the nucleons of the correlated Gaussian basis and the efficient optimiza-

tion procedure.

C. Stochastic variational method

Esmi= (Ixu D x12A2) s X123 s - - Dsmi - (9) _ S
D. Hyperspherical harmonic variational method

(similarly for the isospin pajt The nonsphericalorbital) The hyperspherical harmonielH) functions constitute a
part of the trial function is represented by a successivelgeneral basis for expanding the wave functions oAdrody
coupled product of spherical harmonics system[36—38§. Very precise results can be obtained for the
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three-nucleon bound statg39]. In the HH variational with error proportionate to at least the second powek ofs

method, the wave function is written as used. In the present work we use a symmetrized product of
exact two-body propagators, which has error proportionate to
V= E (), 1 (A1)°[19.44.

Green'’s function Monte Carlo calculations for light nuclei
with spin-isospin dependent interactions sample the particle
where p is the hyper-radius. The quantiti&ﬁf) are fully  coordinates while explicitly summing over the spin-isospin
antisymmetrized HH-spin-isospin functions of quantumdegrees of freedoif®2]. The first alpha particle calculations
numbersu={n,m,l,l,,l3,l1,,L,s,8",S1t,t",T} constructed includingL -S terms employed the Reid V8 interactipf3].

using theK-type Jacobi coordinates , 5. Explicitly, The chief advantage of these methods is that they can be
extended to larger nuclei. More computationally efficient
W)= A((sinB)?™P!'* ¥ cos 28) P V22 M cos 29) versions of the algorithm have been introduced and calcula-
tions extended up t&=8 [19,44].
X[[m(12) n(3)]p (4 Jrr (x0)'1(x2) 2(x5) "2 Convergence of the ground-state energy is governed by
. . . the spectra of the Hamiltonian. Calculations reported here
XY, (XD Y1, (X2) 11, Y1, (Xa) I were performed tor=0.12 MeV 1. Since the first excited
state of*He is above 20 MeV, any errors i are damped
X[[xs(12x(3)]s x(4)Istas), (13 out by at least exp¢2.4), an order of magnitude. In fact our

studies show that the errors¥n; correspond to much higher

where cog=x3/p, cosy=x/(psinp) and x and » denote  excitation energies anH) converges by-~0.05 MeV *.
spin and isospin functions, respectively. Moreover; |, The GFMC method allows us to compute mixed expecta-
+1,+2m+2 andP}" are Jacobi polynomialéhe integers  tion values of the for{¥(7)|O|¥). For H, this gives the
n andm range from zero to infinity The coefficients, (p)  exact ground state energy ifis large enough. Expectation
depend on the hyper-radiys= y(x1)*+ (x,)*+(x3)® and  values of other quantities, such as pieces of the Hamiltonian,
can be determined by solving a set of second-order differerare often obtained through a linear extrapolation in the error
tial equations derived from the Rayleigh-Ritz variational of the trial wave function:
principle. ForA=4 the necessary matrix elements of the
potential have been calculated by exploiting the techniques (¥ (D[O|W(7))=~2(¥(7)|O|¥ 1) —(¥+|O| V1), (18)
discussed in Ref40].

The main difficulty in applying the HH technique to
nuclear systems is the very slow convergence of the expan-
sion due to the strong repulsion between the particles at short F. No-core shell model method
distances. In thé\=4 case, it has been found convenientto  The NCSM is an approach applicable to both few-nucleon
separate the HH states in different classes and to study thgstems as well as to light nuclet5]. The calculations are
convergence by including the states of one class atf#tp  performed in a finite model space in the harmonic-oscillator
The adopted criterion has been to first include the HH func{HO) basis. The model spac®) is spanned by states with
tions describing two-body correlations and, successivelythe total number of HO quantd<N,,.,. The Hamiltonian,
those incorporating three- and four-body correlations. More-

though it is possible to go beyond this approximation.

over, the HH functions having the lowest orbital angular mo- H=T+V, (19
mentum quantum numbets(i=1,2,3) have been included . i
first. is modified by a HO center-of-mass potential. Thus, we work
with
E. Green’s function Monte Carlo method A 1
2
Green's function Monte Carlo methods use stochastic Z 2m >mt3 mOr| }
sampling to evaluate path integrals of the form
A 2
Vo= limW¥(7), (14 + 2 V(- - ——(r—?[. (20
T— 0 i<j=1 2A
V(r)=e H-Emp (15) As the NN potential depends on the relative coordinates, the
added HO term has no influence on the internal motion in the
=[e”H-EdA7p_ (16)  full space. The effective Hamiltonian, appropriate to the fi-

nite P space, is derived by the Hermitian version of the Lee-
where W+ is an approximate trial function obtained in a Suzuki method46]. In general, the effective Hamiltonian is
variational or in an approximate constrained-path GFMC calanA-body operator. We make an approximation by using just
culation and we have introduced a small time step, @ twathreg-body effective interaction, which is obtained by

=nA 7. An approximate expression for the propagator, ~ applying the Lee-Suzuki approach to the toeg-nucleon
system usinngA2 with the sums restricted to twihree
G(R,R")=(R|e” H"EdA7R"), (17)  nucleons, but with tha in the interaction term kept fixed to,
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e.g.,A=4 for *He. Consequently, we deal with a titlorea- 1 K?
. . . VKA—z( )ZHKA—z( )= — —. (23
nucleon system bound in a HO potential. The effective eff (P 2eff \P) 7 50 2

two(three-body interaction, then replaces the interaction
term inHj, . We note that the effective interaction, by con- g Vs replacesv;; in Eq. (21) when we project the solu-

struction, converges to the original bare interaction as thgon on theP space. This effective potential has the following
basis space is increased and, thus, the NCSM Ca":U'atiO[B}operty:Veff—Ni- for P—1. Due to the “effectiveness” of
converges to the exact solution with the basis-space enlarggse operator the Jsolution of the SéHifoger equation con-
ment. In fact, it converges much faster than the correspondserges faster to the true one. The HH formulation leads to
ing bare interaction calculation performed in the same basis,4rious advantages)) V.. itself is p dependent, therefore it
Eventually, theA-nucleonP-space calculation can be per- . ntains some informa?ion on the “mediuntjf) because of
formed either in a Slater-determinant single-particle HO bayo apove mentione®, , dependence théA-2) residual

sis or in a properly antisymmetrized Jacobi-coordinate Hosystem is not a pure spectator, 4iit) an additional confin-
basis. The latter is used in the preséHt calculation. In the ing potential is not needed, since the presence i Eq.

past, we applied this approach successfully totHe inter- (553 tomatically confines the two-body system to the range
acting by the CD-BonrNN potential. It turns out that the 0<ra_(a 1)< \/Ep We would like to point out that

convergence with the AV8is significantly slower. The limi- Vi (Ko Can be viewed as a kind of momentum expan-
e ma:

tation to a two-body effective interaction is inadequate in thesion, since the short range resolution is increased with grow-
P spaces that we could acceds.(,,=18). Therefore, we

‘ d th lculati . the th body effective i ing Kax- As discussed for the NCSM approach one obtains
periormed the calculations using the three-body elective Ny, payar convergence for the calculation of mean values in-
teraction. The mean values of the different operators wer

i ) i ?roducing corresponding effective operators. Of course for
calculated using the corresponding effective operators com

o ) . he calculation of the mean value of the Hamiltonian, i.e.,
puted within the Lee-Suzuki approach in a two-body ap

. . . . . "E,, one already makes use of an effective operator, namel
proximation using the formula derived in R¢#47]. H'.’<A_2 y P y
2eff -

G. Effective interaction hyperspherical harmonic method IIl. RESULTS
Similarly to the preceding method the EIHH approach . ) _ )
introduces a two-body effective interactiaf.;; [48]. The The AV8 mteractlon appears Fo be an ideal test_ potentlal
division of the total HH space iR andQ spaces is realized to compare th.e Q|fferent (_:alculat_lonal schemes. It. is derived

via the HH quantum numbé¢ [ P(Q) spaceK < (>)K .- from the realistic AV18 interaction8] by ne_glectmg the
Two powerful algorithms recently developed for the Con_chargg dependence and the terms proportional tcand
struction of symmetrized HH functions are employed(L'S) . Furthermore, in this work we omit the electromag-

[50,51. In hyperspherical coordinates the total Hamiltoniannetic part of the interaction. The potential is local and its spin

is written as and isospin dependences are represented by operators. Be-
cause of its form it is tractable for all of the calculational
1 K2 schemes described above.
H=-—| —A +— +E Vi, (22 The potential consists of eight parts:
2”‘( g pz) <

V(r)=V(r)+V(r)(7- 1)+ V,(r)(o-0)
wherep is the hyper-radius andl, contains derivatives with

~ +V 1) (o o)(7-7) + V(1) S+ Vi 1) Spa( 7 7)
respect tg only. The grand-angular momentum opera{dr

is a function of the variables of particlésand (A—1) and +Vp(r)(L-S)+Vp(r)(L-S)(7 7)

of Ko_, the grand angular momentum operator of tife ( 8

—2) residual systenj52]. Then from the total Hamiltonian => Vi(n0;, (24)
one can extract a “two-body” Hamiltonian of particlésand =1

(A-1)

where (- 0),(7-7),S;5, and (L-S) stand for spin-spin,
isospin-isospin, tensor, and spin-orbit interactid8s, re-
spectively, anadV;(r) are radial functions of Yukawa- and
Woods-Saxon types. The AV18 and AV&re defined with
#2/my=41.47108 MeV fm, computed from the average of

. . . Hhe proton and neutron masses. Most of the results reported
Wh'ch' however, 'contams the hypgrsphencal part of the tOtahere were obtained using the traditional value of 41.47; this
kinetic energy. Since the HH functions of th&{ 2) system y

) ) -, o results in a change iH) of only ~2.6 keV, far less than the
are eigenfunctions oKj;_, one has an explicit dependence gstimated errors in the various methods.

of H on the quantum numbdt,_ of the residual system,  First, we compare the binding energy resiiis, the ex-
i.e.,H,—H,* 2 Applying the Hermitian version of the Lee- pectation values of the kinetic and potential energy and the
Suzuki method46] to H, one gets an effective Hamiltonian radii in Table I. We find good agreement f&;, within 3
Hoets. The effective interactioV ¢ is obtained from digits or within 0.5%. This is quite remarkable in view of the

F(Z

1
Hz(P):%?‘FVA(AA), (22)
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TABLE |. The expectation value§T) and (V) of kinetic and 0.025 T T T T T

potential energies, the binding energigsin MeV, and the radius in
fm. 0.02

Method (T) (V) Ey W(r?) -

|
0.015

FY 102.395) —128.3310) —25.945) 1.4853) é

CRCGV 102.30 —128.20 —25.90 1.482 :

SVM 102.35 —-128.27 -25.92 1.486 = 0.01

HH 102.44 —128.34 —25.901) 1.483 ©

GFMC 102.31.0 —128.251.00 —25.932) 1.4905) 0.005

NCSM 103.35 —129.45 —25.80200 1.485

EIHH 100.89)  —126.79) —25.94410) 1.486 .
very different techniques and the complexity of the nuclear r [fm]

force chosen. Except for NCSM and EIHH, the expectation
values ofT andV also agree within three digits. The NCSM
results are, however, still within 1% and EIHH within 1.5%
of the others, but note that the EIHH results ToandV are
obtained with bare operators. The uncertainty in the NCSM )
results is of the same size, i.e., 1 MeV, as that for the GFMcand (V) still change by about 1% fron ;=18 t0 Kpay
Finally, the given radii are also in very good agreement. ~ =20. Of course, by construction of the EIHH method, also
The HH calculation includes about 4500 states with (T) and(V) have to converge to the true result. In order to
=1,+1,+1,<6. The states witl.=6 give a contribution to have a higher precision one can proceed in two ways:
the binding energy of approximately 0.04 MeV. It is to be increase oK, (ii) use of effective operators. Particularly
noticed that the HH spin-isospin sta@ﬁ*) having£<6 but ~ advantageous is the use of effective operators, since it allows
constructed with thé4-type Jacobi coordinates are linearly US to make rather precise calculations with a small number of
dependent on those considered in the expansion and ther@asis functiongsee discussion of EIHH result for Fig). As

fore it is unnecessary to include them. The contribution offable I shows it is not necessary to use effeptive operators
®™) (and ®™) to the binding energy witlC=8 has been for long-range observables like the radius, while observables
o 2

estimated to be approximately 0.01 MeV. that contain short range informatighigh momentum con-

The errors quoted for the GFMC results are just thelfiPutions, like (T) and(V), should, in principle, be calcu-
Monte Carlo statistical errors. Various tests show that théated with effective operators. o
energy is converged to at least this accuracy for changes in A more detailed test of the wave function is to evaluate
A7 or the maximumr. There should be no other sources of (e expectation values of the eight individual potential en-
systematic error in this simple test case. ergy operators in_ Eq24). The results are shown in Tablelll..
The NCSM binding energy result is based on extrapola—The agreement is, in general, rather good and well within
tion from calculations using the three-body effective interac- _ _ _ _
tion in model spaces up tN,.,=16 in the HO frequency TABL_E Il. Expectation values of the eight potential operators in
rangefiQ=16—43 MeV. The mean values of different opera- E9- (24 in MeV.
tors, evaluated foN,,,=16 consisting of 2775 basis states

FIG. 1. Correlation functions in the different calculational
schemes: EIHHdashed-dotted curvgsFY, CRCGV, SVM, HH,
and NCSM(overlapping curves

andz ) =28 MeV, were computed using effective operators Method {Ve) (Vo) (Vo) Von
as the use of bare operators is completely insufficient, ingy 16.54 ~5.038 ~9.217 ~57.55
particular for theV (r) and T. Note that we have here crccv 16.54 ~5.035 ~9.215 _57.51
(Tem +(Ve) close, but not exactly equal {Heg), due to sym 16.54 5036 -9.213  —57.51
approximations used. Overall, the NCSM results are less acyy 16.57 ~5034 —9.7255 —57.59
curate than the other methods. The NCSM convergence ratggyc 16.55) -5.036) -9.217) —57.35)
is rather slow for the AV8. However, the method is flexible Ncgy 16.16 —4.92 —977 5789
to handle also nonlocal realistic potentials like the CD-Bonn
with a faster convergence rate due to a softer repulsive core
The advantage of the method is its applicability to pkshell Method V) Vi (Vo) Vo)
nuclei. FY 0.707 —69.06 10.79 —15.50
The EIHH calculation is carried out witk,,,,,=20 (about =~ CRCGV 0.708  —68.99 10.60 —-15.30
3000 HH states The error estimate is based on the conver- sym 0.707 —69.03 10.78 —15.49
gence with respect t&,,., i.e., difference of results for HH 0.702 —69.03 10.76 —15.46
Kmax=18 and 20. An inspection of Table | shows tikgtand GEMC 0.743) —68.95) 10.6215) —15.4q15)
radius are converged to a very high precisid, { 0.04%; NCSM 0.68 ~69.13 11.23 ~15.80

radius: 0.007%, not shown in Tablg On the contraryT)
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TABLE lll. Expectation values of potential energy operators in  TABLE IV. Probabilities of total orbital angular momentum

MeV. components in %.

Method Central Tensor Spin-orbital Method Swave P wave D wave
FY —55.26 —68.35 —4.72 FY 85.71 0.38 13.91
CRCGV —55.22 —68.28 —4.70 CRCGV 85.73 0.37 13.90
SVM —55.23 —68.32 —-4.71 SVM 85.72 0.368 13.91
HH —55.31 —68.32 —-4.71 HH 85.72 0.369 13.91
GFMC —55.0570) —68.0570) —4.755) NCSM 86.73 0.29 12.98
NCSM —56.43 —68.45 —4.57 EIHH 85.732) 0.37Q1) 13.891)

1%, except for NCSM with discrepancies up to 6% but they We have chosen the AV8potential because it can be
are generally 4% or less. In the case of the CRCGYV, théandled without any approximation by all of our methods.
expectation values for the spin-orbit operators are a bit ofMore realisticNN potentials such as AV1@], CD-Bonn[7],
from the rest, but again still within 4%. There are no resultsand Nijmegen ,1[[9] pose additional difficulties for at least
given for the EIHH. some of the methods. There are new operator forms with
Table 11l shows the expectation values of the sum of thehigher order derivatives or very strong nonlocalities. Also
first four operators in Eq(24) (called centrgl of the two  some of the potentials are defined partial wave by partial
tensor operators and of the two spin-orbit operators. Againyvave.
no results are given for the EIHH. Except for the NCSM  Whereas in the four-body system the FY and NCSM
with differences up to 3.2%, all the values agree quite wellschemes can handle all types N potentials directly, the

each other. GFMC method relies on Av8and treats the difference to
As a further property of the wave function we consider AV18 in perturbation theory. The SVM can in principle treat
the NN correlation function any local potential, such as AV18, but the-©)? terms re-

quire additional computational effort. Also the remaining
methods, HH, CRCGV, and EIHH, can handle more compli-
C(r)=(¥|&(Fr—F)| V), (25  cated potentials, although at present applications have been
oL . . restricted to local potentials. GFMC, NCSM, SVM, and
where rp=ry—f,. It is apparently normalized as gjHH have already obtained solutions #E4, whereas FY
47 [C(r)r’dr=1. The results for the various calculational up to now has been restricted Ao<4. An advantage of the

schemes, except for the GFMC are shown in Fig. 1. Thenethods, CRCGV and EIHH, is that they do not need as
agreement among the FY, CRCGV, SVM, HH, and NCSM ispgay computational facilities as the other methods.

essentially perfect. For the EIHH it is necessary to use an
effective operator in order to obtain good convergence also
for r<1.2 fm. Due to the use of rather unsophisticated com-
puters, the EIHH calculation fa€(r) is performed with the The work of A.N. was supported by the Deutsche Fors-
rather lowK .« value of 12(about 400 HH statgshowever, chungsgemeinschaft. The numerical FY calculations were
a rather good agreement with the other methods is alreadyerformed on the CRAY T90 and T3E of the John von Neu-
obtained at this low value. mann Institute for Computing in lah, Germany. The work

Finally, we show in Table IV the probabilities for finding of J.C. was supported by the U.S. Department of Energy
the three different total orbital angular momenta in ot 4 under Contract No. W-7405-ENG-36 and that of S.C.P. and
model system. The agreement among the different methods.B.W. by the U.S. Department of Energy, Nuclear Physics
is very good with a small excursion in NCSM. Division, under Contract No. W-31-109-ENG-38. The

To summarize, we have demonstrated that the SchraGFMC calculations were made on the parallel computers of
dinger equation for a four-nucleon system can be handlethe Argonne Mathematics and Computer Science Division.
quite reliably by different methods leading to very good The work of P.N. was done under auspices of the U.S. De-
agreement in the binding energy, in expectation values of thpartment of Energy by the Lawrence Livermore National
kinetic and potential energies and in simple wave functionLaboratory under Contract No. W-7405-ENG-48 and sup-
properties. The AV8 NN potential encompasses most of the ported from LDRD Contract No. 00-ERD-028. B.R.B. ac-
complexity of realisticNN forces and, thus, the benchmark knowledges NSF Grant No. PHY-0070858. The work of K.V.
calculations are highly nontrivial and demonstrate the matuand Y.S. was supported by the JSPS-HAS Collaboration
rity and reliability of various methods. These results are good2000—-2002, Yamada Science Foundation, and OTKA Grant
foundations for further investigations of nuclear structure forNo. T029003. The work of W.L. and G.O. was supported by
more complex systems and/or for oth&N interaction the Italian Ministry for Scientific and Technological Re-
models. search(MURST).
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