## Neutron-proton quadrupole interaction in the nucleon-pair shell model

Yan-an Luo,<sup>1,2,\*</sup> Jin-quan Chen,<sup>3</sup> Tai-fu Feng,<sup>1</sup> and Ping-Zhi Ning<sup>1,2</sup>

<sup>1</sup>Department of Physics, Nankai University, Tianjin 300071, People's Republic of China

<sup>2</sup>Institute of Theoretical Physics, Chinese Academia Sinica, Beijing 100080, People's Republic of China

<sup>3</sup>Department of Physics, Nanjing University, Nanjing 210093, People's Republic of China

(Received 2 January 2001; published 22 August 2001)

The nucleon-pair shell model truncated to the *S*-*D* subspace is applied to nucleus <sup>134</sup>Ba for examining the effects on collectivity due to long-range n-p quadrupole forces. It is found that symmetric and mixed-symmetric states, consequently M1 transitions, are primarily controlled by the n-p quadrupole interaction. In comparison with surface- $\delta$  interaction, when the quadrupole n-p coupling is weak, the model can produce approximately the vibrational limit, and when the quadrupole n-p coupling is strong, the O(6) limit can be realized.

DOI: 10.1103/PhysRevC.64.037303

It has been recognized that in the shell model description, quadrupole-quadrupole interactions are the most important long-range correlations. DeShalit and Goldhaber showed that the quadrupole n-p interaction is responsible for the strong mixing of the shell model configuration, and thus plays a major role in describing rotational spectra [1,2]. The importance of the n-p interaction can also be found in the algebra models. In the IBM-2 [3], the validity of the boson picture is attributed to the attractive n-p interaction, and the n-p interaction is also responsible for the transition from the vibrational to rotational spectra [4]. In the FDSM [5], if the Hamiltonian was chosen as  $-P(\pi) \cdot P(\nu)$ , the rotational spectra in  $SO(8) \times SP(6)$  can be realized, and even if one wants to reproduce the vibrational spectra in the n-p system, the n-p interaction has to be switched on to push the extra states out of the way, although the proton and neutron systems can produce two independent vibrational system by themselves [6]. Furthermore, in the FDSM, the exotic (protons and neutrons move out of phase) and normal (protons and neutrons move with phase coherent) states, termed as mixed-symmetric and symmetric states in the IBM-2 [7], consequently the M1 transitions, were also unified through the quadrupole n-p interaction [8].

The nucleon-pair shell model (NPSM) has attracted much interest recently [9–13]. Since the NPSM is also a fermion model and built from pairs, it should have the same physics as those of the FDSM. It is the aim of this paper to study the effect of the *n*-*p* quadrupole-quarupole interaction in the framework of the NPSM. As an example, the O(6) limit nucleus <sup>134</sup>Ba is used. We choose a rather simple Hamiltonian consisting of single particle term, surface- $\delta$  interaction (SDI) between like nucleons, and *Q*-*Q* interaction between protons ( $\pi$ ) and neutrons ( $\nu$ ),

$$H = H_0 - V(\nu) - V(\pi) - \kappa Q^2(\pi) \cdot Q^2(\nu), \qquad (1)$$

$$H_0 = \sum_{a\sigma} \epsilon_{a\sigma} n_{a\sigma}, \quad \sigma = \pi, \nu.$$
 (2)

The single particle (SP) energies  $H_0 = H_0^{exp}(\pi) + H_0^{exp}(\nu)$ , where  $H_0^{exp}(\pi)$  and  $H_0^{exp}(\nu)$  are fixed as the SP energies of

0556-2813/2001/64(3)/037303(4)/\$20.00

## PACS number(s): 21.60.Cs

the nuclei  ${}^{133}_{51}Sb_{82}$  and  ${}^{131}_{50}Sn_{81}$ , respectively, are taken from Ref. [14] and listed in Table I.

The E2 transitional operator is

$$E2 = e_{\pi}Q_{\pi}^{2} + e_{\nu}Q_{\nu}^{2}, \qquad (3)$$

where  $e_{\pi}$  and  $e_{\nu}$  are effective charges of the protons and neutrons.  $e_{\pi}$  is determined by the  $B(E2;2_1^+\rightarrow 0_1^+)$  for <sup>138</sup>Ba, and is 2.1*e*. From Ref. [15] we know that  $e_{\pi}/e_{\nu}=1$  for 50–82 shells, thus  $e_{\nu}=e_{\pi}=2.1e$  is used in this Brief Report. The M1 transitional operator is

The M1 transitional operator is

7

$$T(M1) = T(M1)_{\pi} + T(M1)_{\nu},$$
  
$$T(M1)_{\sigma} = \sqrt{\frac{3}{4\pi}} (g_{l\sigma} \mathbf{L}_{\sigma} + g_{s\sigma} \mathbf{S}_{\sigma}), \qquad (4)$$

where  $g_{l\sigma}$  and  $g_{s\sigma}$  are the orbital and spin g factors, which are fixed as those in Ref. [16], i.e.,  $g_{l\pi}=1.1$ ,  $g_{l\nu}=-0.1$ ,  $g_{s\pi}=3.910$ , and  $g_{s\nu}=-2.678$  (all in units of  $\mu_N^2$ ).

To show the effect of the quadrupole n-p interaction, we perform the following calculations. First, we fix the SDI strengths for protons  $(G_{\pi})$  and neutron holes  $(G_{\nu})$  as 0.15 and 0.11 MeV, respectively. Then we let the quadrupole n-p interaction strength  $\kappa$  vary from 0.02 to 0.5 MeV. The reason for  $G_{\pi}$  being larger than  $G_{\nu}$  is due to the fact that the SP level splitting for proton are larger than that for neutron holes [10].

Part of the important excitation energies are plotted against the *n*-*p* quadrupole interaction strength  $\kappa$  in Fig. 1, from which one can clearly see how the *n*-*p* quadrupole interaction affects the spectra. As those of the FDSM [8], we also predict a number of the 2<sup>+</sup> states in our present calculation.

From Ref. [10] we know that the explicit structure of the wave function expanded in terms of the nonorthogonal (but

TABLE I. The single particle (hole) energies for proton (neutron) for  $_{51}^{133}$ Sb<sub>82</sub>( $_{50}^{131}$ Sn<sub>81</sub>).

| $\epsilon_{\pi}(\text{MeV})$ | 87/2      | $d_{5/2}$  | <i>d</i> <sub>3/2</sub> | $h_{11/2}$ | <i>s</i> <sub>1/2</sub> |
|------------------------------|-----------|------------|-------------------------|------------|-------------------------|
|                              | 0         | 0.963      | 2.69                    | 2.76       | 2.99                    |
| $\epsilon_{\nu}(\text{MeV})$ | $d_{3/2}$ | $h_{11/2}$ | $s_{1/2}$               | $d_{5/2}$  | 87/2                    |
|                              | 0         | 0.242      | 0.332                   | 1.655      | 2.434                   |

<sup>\*</sup>Email address: luoya@nankai.edu.cn



FIG. 1. The variations of the spectrum with the quadrupole n-p interaction.

normalized) multipair basis vectors is helpful and has very close correlation with the electromagnetic transitions, i.e., the strong E2 transition occurs between symmetric states, while the strong M1 transition occurs between mixed-symmetric and symmetric states. Hence, to gain a deeper understanding of the n-p quadrupole interaction in the NPSM, it will be certainly useful to investigate the detailed structure of the wave functions.

Before going further, we should also mention the meaning of symmetric and mixed-symmetric states in the shell model sense. We say that a state whose main component is  $\psi = \alpha |D_{\pi}\rangle + \beta |D_{\nu}\rangle + \cdots$  is a symmetric one-*D* state if  $\alpha \sim \beta$ , and a mixed-symmetric one-*D* state if  $\alpha \sim -\beta$ . These two states are called partner states in FDSM [8]. Similar terminology applies to the two-*D* state, etc.

The main components of the wave functions for part of the states are given in Table II. To save space only the amplitudes larger than 0.2 are shown and the following shorthand notation is used for the multipair basis:

$$\begin{split} |(D_{\pi}^{\dagger})^{n}\pi(S_{\pi}^{\dagger})^{N}\pi^{-n}\pi(D_{\nu}^{\dagger})^{n}\nu(S_{\nu}^{\dagger})^{N}\nu^{-n}\nu;JM\rangle \\ \rightarrow |(D_{\nu})^{n}\nu(D_{\pi})^{n}\pi;JM\rangle, \\ |(S_{\pi}^{\dagger})^{N}\pi(S_{\nu}^{\dagger})^{N}\nu;JM\rangle \rightarrow |S;JM\rangle. \end{split}$$
(5)

In the table the coefficients inside brackets are for the multipair basis states which occur twice and are distinguished by the intermediate angular momentum.

It is seen that a small n-p quadrupole interaction will cause a strong mixing between the proton and neutron states, and give rise to two new orthogonal partner states. For example, when  $\kappa = 0.05$  MeV, the  $2^+_1$  state is  $0.5481 | D_{\nu} \rangle$  $+0.3329|D_{\pi}\rangle + ...$ , and the  $2^{+}_{2}$  state is  $-0.2356|D_{\nu}\rangle$  $+0.3403|D_{\pi}\rangle$  + ... The former is identified as the symmetric state and the latter the mixed-symmetric state. One can also see that the symmetry of the  $2^+_2$  and  $2^+_3$  states is opposite for  $\kappa$ . For  $\kappa < 0.1$  MeV, the  $2^+_2$  state is s mixed symmetric one-D pair state with some admixture of two-D pair, and the  $2^+_3$  state is basically a symmetric two-D pair state. But from  $\kappa = 0.1$  MeV on, the symmetry of the  $2^+_2$  and  $2_3^+$  states exchanges, i.e., the  $2_2^+$  state is basically a symmetric two-D pair state, while the  $2^+_3$  state is a mixed-symmetric one-D pair state with some admixture of the two-D pair components. Table II also shows that the number of the Dpairs in the states  $0_1^+, 2_1^+, \ldots$  increases with  $\kappa$ . This behav-

| к    | State       | S      | $D_{\nu}$ | $D_{\pi}$ | $D_{\pi}D_{\nu}$ | $D_{\nu}^2$ | $D^2_{\pi}$ | $D^2_{\pi}D_{\nu}$ | $D^2_{\nu}D_{\pi}$ | $D^2_{\nu}D^2_{\pi}$ | $D_{\pi}^{3}$ | $D^3_{\pi}D_{\nu}$ |
|------|-------------|--------|-----------|-----------|------------------|-------------|-------------|--------------------|--------------------|----------------------|---------------|--------------------|
| 0.05 | $0_{1}^{+}$ | 0.6344 |           |           | 0.1837           |             | -0.2743     |                    |                    |                      |               |                    |
|      | $2^{+}_{1}$ |        | 0.5481    | 0.3329    |                  |             |             | -0.2065            |                    |                      |               |                    |
|      | $2^{+}_{2}$ |        | -0.2356   | 0.3403    |                  | 0.2016      | 0.3198      |                    |                    |                      |               |                    |
|      | $2^{+}_{3}$ |        | 0.2395    |           |                  | 0.5840      |             |                    |                    | -0.2832              |               |                    |
|      | $4_{1}^{+}$ |        |           |           |                  |             | 0.4069      |                    |                    |                      | 0.5938        |                    |
|      | $6_{1}^{+}$ |        |           |           |                  |             |             |                    |                    |                      | 0.9220        |                    |
| 0.1  | $0_{1}^{+}$ | 0.7264 |           |           | 0.3371           |             | -0.1081     |                    |                    |                      |               | -0.1083            |
|      | $2^{+}_{1}$ |        | 0.5884    | 0.4158    |                  |             |             |                    |                    |                      |               |                    |
|      | $2^{+}_{2}$ |        | -0.2153   |           | 0.2385           | 0.4026      | 0.3289      |                    |                    |                      |               |                    |
|      | $2^{+}_{3}$ |        | 0.2786    | -0.2593   | 0.2080           | 0.4804      |             |                    |                    |                      |               |                    |
|      | $4_{1}^{+}$ |        |           |           | 0.2855           |             | 0.4127      |                    |                    |                      | 0.4756        | 0.2297             |
|      | $6_{1}^{+}$ |        |           |           |                  |             |             | 0.2503             |                    |                      | 0.8384        | 0.2686             |
| 0.2  | $0_{1}^{+}$ | 0.8876 |           |           | 0.5451           | 0.1410      | 0.1481      |                    |                    | 0.1373               |               |                    |
|      |             |        |           |           |                  |             |             |                    |                    | (0.1147)             |               |                    |
|      | $2^{+}_{1}$ |        | 0.6798    | 0.4980    |                  |             |             | 0.2446             | 0.2294             |                      |               |                    |
|      | $2^{+}_{2}$ |        | -0.2923   |           | 0.4319           | 0.5044      | 0.4608      |                    |                    |                      |               |                    |
|      | $2^{+}_{3}$ |        | 0.2445    | -0.4077   | 0.2924           | 0.4334      | -0.2042     | -0.3174            |                    |                      |               |                    |
|      | $4_{1}^{+}$ |        |           |           | 0.4403           | 0.3135      | 0.4330      |                    |                    |                      | 0.2843        | 0.2627             |
|      | $6_{1}^{+}$ |        |           |           |                  |             |             | 0.3757             |                    |                      | 0.6986        | 0.3197             |

TABLE II. The main components of the eigenstates with the quadrupole n-p interaction strength.



FIG. 2. The variations of the part of the *E*2 transition strength with *n*-*p* interaction  $\kappa$ .

ior is consistent with the well known fact that the n-p Q-Q force favors the formation of the D pairs. One can see that although the F spin [17] does not present in the fermion picture, the symmetric and mixed-symmetric states can also be unified through the n-p quadrupole interaction in the NPSM calculation.

Some important *E*2 transition rates with the *n*-*p* quadrupole interaction strength  $\kappa$  are displayed in Fig. 2. It is seen that, consistent with the analysis of the wave functions, the *E*2 transition between the yrast states as well as that between the  $2_2^+$  and  $2_1^+$  states are all increased rapidly with  $\kappa$  when  $\kappa$  is small, and then become gradually saturated. One can also see that  $B(E2;0_2^+ \rightarrow 2_2^+)$  increase against  $\kappa$ , while  $B(E2;0_2^+ \rightarrow 2_1^+)$  decrease with  $\kappa$ . For large  $\kappa$  value,  $B(E2;0_2^+ \rightarrow 2_2^+)$  is much larger than  $B(E2;0_2^+ \rightarrow 2_1^+)$ , a typical feature of the O(6) limit.

From Ref. [8] we know that the M1 transition can only proceed via the partner states, and since the *n*-*p* quadrupole interaction is responsible for the splitting of the symmetric and mixed-symmetric states, it also control the M1 transitions. To show how the *n*-*p* quadrupole interaction affects the M1 transitions in the NPSM calculation, we present  $B(M1;2_2^+ \rightarrow 2_1^+)$ ,  $B(M1;2_3^+ \rightarrow 2_1^+)$  as well as the sum of these two M1 transitions in Fig. 3. One can see that in agree-



FIG. 3. The variations of the part of the M1 transition strength with the quadrupole n-p interaction.

ment with the detailed structure of the wave functions and the results of the FDSM (see Ref. [8]), the *M*1 transition can only proceed via the partner states. For  $\kappa \leq 0.1$  MeV, the *M*1 transition mainly occurred between the  $2_2^+$  and  $2_1^+$ states. While after  $\kappa = 0.1$  MeV,  $B(M1; 2_3^+ \rightarrow 2_1^+)$  is dominant. That is to say that for the weak *n*-*p* coupling case, which is suitable for the vibrational limit, the *M*1 transitions are very different from those of the strong coupling case, which is suitable for the SO(6) limit. From Fig. 3 one can also see that the sum of the two *M*1 transition rates always increases with  $\kappa$ . When  $\kappa$  is large, it also becomes saturate as that of the *E*2 transitions between the yrast states.

From the above analysis, one can see that the n-p quadrupole interaction enhance the collectivity of low-lying states. As in the FDSM, it is also the n-p quadrupole interaction that is responsible for the splitting of the symmetric and mixed-symmetric states and produce the M1 transitions in the NPSM calculation.

In our present calculation, we also found that similar to that of the FDSM, even for the very large n-p quadrupole interaction, the NPSM truncated in the SD subspace still can not give rise to the rotational spectra in the 50–82 shell. For large  $\kappa$  value, only the SO(6) limit can be realized in the NPSM calculation. To show the effects that the n-p quadrupole interactions have in producing the vibartional and SO(6)



FIG. 4. The vibrational and O(6) limit spectra.



FIG. 5. The spectrum and transitions of <sup>134</sup>Ba. The parameters we used are  $G_{\pi}$ =0.169 MeV,  $G_{\nu}$ =0.06 MeV, and  $\kappa$ =0.212 MeV. The effective charges for proton and neutron hole are  $e_{\pi}$ =  $e_{\nu}$ =2.1e. The experimental B(E2) values are taken from Ref. [18].

limit spectra, two examples are given in Fig. 4. The left one is for the vibrational spectra with the parameters fixed as  $G_{\pi} = 0.2$  MeV,  $G_{\nu} = 0.13$  MeV, and  $\kappa = 0.12$  MeV, and the right one is for the SO(6) limit with  $G_{\pi} = 0.15$  MeV,  $G_{\nu} = 0.11$  MeV, and  $\kappa = 0.3$  MeV. One can see that in comparison with the SDI strength, for the weak n-p quadrupole coupling, the vibrational spectra can be produced (except for the  $2^+_3$  state, which is too low in energy position), while for strong n-p quadrupole coupling, the SO(6) limit is realized. To check the vibrational mode and the SO(6) limit, the quadrupole moment for the vibrational states and the relative B(E2) values for the SO(6) limit are investigated. For example, the quadrupole moment of the  $2^+_2$  state in the vibrational limit of the  $SO(8) \times SP(6)$  limit in the FDSM is -4.038 eb, and it is -4.197 eb in our present calculation. In the SO(6) limit,  $B(E2;0_2^+ \rightarrow 2_1^+)/B(E2;0_2^+ \rightarrow 2_2^+)$  is 0.03, which implies that the E2 transition from the  $0^+_2$  to  $2^+_1$  state is forbidden, a typical feature of the SO(6) limit. This behavior can also be found in Fig. 2.

Finally, the detail fitting of  ${}^{134}$ Ba is shown in Fig. 5. One can see that the spectra can be considered as in agreement with the experiments. For  ${}^{134}$ Ba, two almost degenerate 2<sup>+</sup>

states  $(2_3^+ \text{ and } 2_4^+)$  share the *M*1 transition in experiments [18]; the sum of the two *B*(*M*1) values is 0.20  $\mu_N^2$ . As those calculated in the IBM and FDSM [8,18], our predicted strong *M*1 transition occurs between the  $2_3^+$  and  $2_1^+$  state, which is 0.087 $\mu_N^2$ , much smaller than the experiments. But if we use the effective orbital *g* factors as  $g_{1\pi}=1.2$ ,  $g_{1\nu}=-0.2$  (all in units of  $\mu_N^2$ ) and keep  $g_{s\pi}$  and  $g_{s\nu}$  as before, a reasonable *B*(*M*1) value between the  $2_3^+$  and  $2_1^+$  states is obtained, which is  $0.171\mu_N^2$ .

In summary, from the studying of the effects of the quadrupole n-p interaction in the framework of the NPSM truncated in the SD subspace, the general physics of the fermion model constructed from S and D pairs are obtained. It is found that the symmetric and mixed-symmetric states, consequently the M1 transitions are primarily controlled by the quadrupole n-p force. From the investigation of the competing feature of the surface- $\delta$  interaction and the quadrupole n-p interaction, we found that in comparison with the surface- $\delta$  interaction, when the quadrupole n-p coupling is weak, the results are similar to the vibrational limit, and when the quadrupole n-p coupling is strong, the O(6) limit can be realized.

- [1] P. Federman and S. Pittel, Phys. Lett. 77B, 29 (1972).
- [2] S. C. K. Nair, A. Ansari, and L. Satpathy, Phys. Lett. **71B**, 257 (1977).
- [3] T. Otsuka, in Algebraic Approaches to Nuclear Structure, edited by R. F. Casten (Gordon and Breach, New York, 1993).
- [4] A. Arima, T. Otsuka, F. Iachello, and T. Talmi, Phys. Lett. 66B, 205 (1977).
- [5] C. L. Wu, D. H. Feng, X. G. Chen, J. Q. Chen, and M. Guidry, Phys. Rev. C 36, 1157 (1987); C. L. Wu, D. H. Feng, and M. Guidry, Adv. Nucl. Phys. 21, 227 (1994).
- [6] Hua Wu and Michel Vallières, Phys. Rev. C 39, 1066 (1989).
- [7] A. Arima and I. Iachello, Adv. Nucl. Phys. 13, 139 (1984).
- [8] X. W. Pan and Da Hsuan Feng, Phys. Rev. C 50, 818 (1994).
- [9] Jin-Quan Chen, Nucl. Phys. A626, 686 (1997).
- [10] Jin-Quan Chen and Yan An Luo, Nucl. Phys. A639, 615

(1998).

- [11] Y. A. Luo and J. Q. Chen, Phys. Rev. C 58, 589 (1998).
- [12] Yan-An Luo, Jin-Quan Chen, and J. P. Draayer, Nucl. Phys. A669, 101 (2000).
- [13] Y. M. Zhao *et al.*, Phys. Rev. C **62**, 014315 (2000); **62**, 014316 (2000).
- B. Fogelberg and J. Blomquist, Nucl. Phys. A429, 205 (1984);
  W. J. Baldridge, Phys. Rev. C 18, 530 (1978).
- [15] S. Raman, C. W. Nestor, Jr., and K. H. Bhatt, Phys. Rev. C 37, 805 (1988).
- [16] L. Zamick, Phys. Lett. 167B, 1 (1986).
- [17] F. Iachello, Phys. Rev. Lett. 53, 1427 (1984).
- [18] B. Fazekas, T. Belgya, G. Molnár, A. Veres, R. A. Gatenby, S. W. Yates, and T. Otsuka, Nucl. Phys. A548, 249 (1992).