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Heat capacity and pairing transition in nuclei

M. Guttormserf, M. Hjorth-Jensen, E. Melby, J. Rekstad, A. Schillemd S. Siem
Department of Physics, University of Oslo, P.O. Box 1048 Blindern, N-0316 Oslo, Norway
(Received 30 April 2001; published 22 August 2001

A simple model based on the canonical-ensemble theory is outlined for hot nuclei. The properties of the
model are discussed with respect to the Fermi gas model and the breaking of Cooper pairs. The model
describes well the experimental level density of deformed nuclei in various mass regions. The origin of the
so-called S shape of the heat capacity cueyéT) is discussed.
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I. INTRODUCTION 1. MODEL

_— ... The total partition functiorZ is described in the canonical
Nuclear structure at low excitation energy depends criti-

callv on the presence of Cooper pairs. Thermal and rotationaﬁnsemble’ where thermal particle excitations, rotations, and
YO P Per pairs. vibrations are treated adiabatically according to
breaking of thesd=0 nucleon pairs gives abrupt structural

changes, such as inc':r'eased level density and rotational-spin Z(T)~Zparoviv - )
alignments. These critical phenomena were addressed earlier
in several theoretical papef$—3|. Thermodynamical quantities such as the entr8pthe aver-

A very exciting feature is the gradual reduction of pair age excitation energ¢E) and the heat capacit®, can then
correlations as function of temperature. Recently, Schillebe calculated from the Helmholtz free energy:
et al. [4] reported the experimental critical temperatdrg
for the pairing transition. The findings were based on using F(T)=-TInZ(T), @
the canonical heat capacity as thermometer. An S-shaped
heat capacity as function of temperature was observed in th
161,169y and "+17%b isotopes. AroundT.~0.5 MeV, a IF
local maximum in the heat capacity signals the breaking of S(T)= _(ﬁ> , (©)]
Cooper pairs and quenching of the pair correlations. This v
property has also been observed in t#i&Er nuclei[5].
Similar fingerprints have been obtained in various calcu-
lations. Finite-temperature Hartree-Fock-Bogoliubov calcu-
lations [6] for 6“Er give almost identical S shape as ob- Cy(T)=
served for %Er. In relativistic Hartree-Fock—BCS v
calculationd 7] the proton and neutron pairing gaps are seen
to vanish aroundT~0.4—-0.5 MeV for %817¢€r. Further- where the Boltzmann constant is set to unikg€ 1) andT
more, in shell model Monte Carlo simulatiofSMMC) is measured in units of MeV.
[8,9], the heat capacities for iron isotopes show a pairing The theoretical basis for the particle partition function
transition around temperatures of 0.7 MeV. was earlier presented in Réfl1], and will not be outlined
The thermal breaking of a Cooper pair results in a tenfoldhere. Essentially, the model includes particle excitations of
increase in number of available energy levels. In this processpin-1/2 fermions scattered into doubly degenerated single-
particles are thermally scattered on available single particl@article levels with equal energy spacieg The resulting
states, giving rise to increased entropy. Recefitly,11], it functions are calledZ; 5., Zy46..., and 22’4’6___ for
was shown that each thermal particle carries an entropy ajdd-mass, even-even, and odd-odd systems, respectively.
~1.7, a feature which is valid for midshell nuclei with mass  The creation of particles costs energy. In order to break
numberA>40. one Cooper pair, the energyAds necessary. The pairing gap
The present work aims to present a simple model for hoparameter is given by the empirical formyli2]
nuclei that includes the main features found experimentally.
In Sec. Il the model is described within the canonical- A=12A"%2 MevV. (6)
ensemble theory, and in Sec. lll some relevant model prop- ] » ]
erties are discussed. The results are compared with recehfe total particle partition functions of even-evess), odd
theoretical and experimental data on various deformed nucléPdd., and odd-oddoo) nuclei can then be expressed as

in Sec. IV. Concluding remarks are given in Sec. V. _ _
g g ZS§r=1+Zze 20T 7,674y

(E(T))=F+TS, 4

ZOdd: Zl+Z3e_2A/T+ Zse—4A/T+ e

*Electronic address: magne.guttormsen@fys.uio.no par
"Present address: Lawrence Livermore National Laboratory, 005 1S AT —aAIT
L-414, 7000 East Avenue, Livermore CA 94551. Zpa=ZotZge 7+ Zge A (7)
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The number of active particlas(i.e., particles not bound in F[Me\él C S ¢
Cooper pairscan be evaluated by ET 30 b
-2 = F
nee:(222e72A/T+4z4e*4A/T+ .. )/Zggr, 4 f_ 25 E_
F 20 |
-6 F
n°%=(Z,+3Ze 2T +5Z5e 4T+ .. .)/Z00, W F 5 £
~ ~ ~ _o B 10 F ,,;"//
N%=(2Z,+4Z,e 22T+ 6Zge **'T+.. )iz (8) hl: B
-12 | P
The rotational partition function is given by B g BEE T
0 0.2 04 06 08 0 0.2 04 06 08
<E> c
Zo= X exi—Agl(1+1)/T], (9 el E 3
=02,..., 12 20 £ 45 E
175 F 40 £
where the rotational parameter 15 E a3
) 125 F 0 E
Arig:h /29”9 (10) 10 ;_ iz g
is expressed by the rigid moment of inertfd3] 6, 7S E 15 £
=2/5MR?~0.013A%3 42 MeV ™!, whereM andR are the 3 10 F
nuclear mass and radius, respectively. The vibrational parti- *° Ll °E L
tion function includes zero and one-phonon states: 0 02 04 05 08 0 02 04 06 08

Temperature T [MeV]

Zin= W, exp —vhw,/T), 11
vib U:Eo,l VX —vhi o/ T) (D FIG. 1. Model calculations for nuclei aroun§®Dy. The four

panels show the free ener§y the entropyS, the thermal excitation
where the multiplicity for the zero-phonon stateWg=1. energy(E), and the heat capacify, as functions of temperatuiie
For one-phonon states, we take into accounts three vibratiorhe same parameter s€fable |, *52Dy) is used for even-even
(e.g., B, v, and octupole vibrations giving multiplicity ~ (solid lineg, odd (dashed lines and odd-odd system&ashed-
W,;=3. Higher order phonon states are neglected, and thdotted lines.
phonons are assumed to carry the same energy quantum
hiwyy,. In both partition functions we have omitted the spinduces a Fermi gas in the absence of pairing at these
degeneracy (2+ 1), since we are dealing with levels and not temperature$ The level density parameterfor a Fermi gas
states. with a level spacing is given by[14]

2 2 71_2

v a
Ill. MODEL PROPERTIES a= 5 (Gp+0n)~ 53 0= 52 (12)

Figure 1 shows the Helmholtz free energythe average
excitation energy E), the entropyS, and the heat capacity Here, the single-particle level-density parameters for protons
Cy as functions of temperature. The model parameters ar@nd neutronsd, andg,) are assumed to be approximately
taken from*%Dy (see Table)las a typical set applicable for equal. Insertinge=0.13 MeV for %Dy, we obtain a
rare earth nuclei. In order to calculate the thermodynamica25 MeV 1. This is in exact agreement with the slop (
quantities up taf ~1 MeV, at least ten broken nucleon pairs =dS/2JdT) of the entropy curves fof >0.6 MeV.
have to be incorporated. The free enefgwand the average The lower right panel of Fig. 1 shows the typical S-shape
excitation energyE) behave smoothly as functions of tem- of the heat capacity. As this shape is an important fingerprint
perature. Around ~0.65 MeV the nuclei are excited to en- for pairing transitions in nucl€i4,5,7,9, we will in the fol-
ergies comparable to their respective neutron binding enetowing focus on its origin.
gies. The even-even, oddand odd-odd systems have  The contribution tcCy from collective excitations is neg-
different excitation energies at one and the same temperaturiégible, and has no influence on the S shape. This is shown in
where the even-even system requires the higfistvalue.  Fig. 2 for the even-even system, where the components of

The entropyS and heat capacitf, represent first and particle, rotational, and vibrational degrees of freedom are
second derivatives df, and are thus more sensible to ther- displayed. The collective contribution to the entrofyis
mal changes. For the lowest temperatures the entropy diffesmall and fairly constant with increasing temperature. How-
ence is~2 between the three mass systems. However, thever, one should note th&}, is in fact the main component
entropy curves coincide foF>0.6 MeV, displaying almost at the lowest temperatures wilh<0.3 MeV.
identical behavior. It is interesting to test if our model repro-  For the total entropy and heat capacity, also the effect of

the number of pairs is shown in Fig. 2. T, curves are

IWe use the abbreviatioodd for odd-even and even-odd systems,
since these systems are equivalent in our model. 2A simplified Fermi gas haS~2aT+ const.
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TABLE I. Model parametersA andA4 are taken from Eq¥6)
and (10), 2w, from systematics, and is tuned to fit the data of
Fig. 6.

_/\'\,\ A = 0.94 MeV E A=0.13 MeV

50 50 F

40

NUCleUS A Arig hwvib €

(MeV) (keV) (MeV) (MeV) %0

20

S8Fe 1.58 42.0 2.0 0.80 10
106pg 1.17 15.4 1.4 0.21
162Dy 0.94 7.6 0.9 0.13
24 0.78 4.1 0.8 0.08

Heat capacity Cy

T T T[T T T [T [T T T T[T T T[T 77T

rticles n

identical for six and ten pairs up ©~0.7 MeV, but from
there on the six pair system is exhausted and not able ta
absorb energy at the same rate as when more Cooper pai’qf) 10
are present. The figure shows that the S shape can be evalrg
ated rather accurately without taking very many pairs intog 5
account. On the other hand, if too few pairs are included, one

may easily misinterpret the shape of t8¢ curve. For the 0 Al o e
162Dy mass region, six Cooper pairs are sufficient to deter- Temperature T IMeV]

mine the S shape.

Figure 3 shows the heat capacitypper panelsand the FIG. 3. Heat capacity and number of unpaired nucleons for nu-
corresponding number of unpaired particléswer panels  clei around®®Dy. In the right panels the pairing gap is reduced to
for ten pairs of nucleons. In the left panels a realistic pairing} =€=0.13 MeV. The calculations are shown for even-eteolid
gap parameter oA =0.94 MeV has been chosen. We iden- I!nes), odd (dashed lines and odd-odd systemé&lashed-dotted
tify three temperature regions of interesty The T  lines.
~0.2-0.8 MeV region with different S shapes for even-
even, odd, and odd-odd-systen(is) the Fermi gas regime
with T~0.8—-1.0 MeV, exhibiting the same linear heat ca-for T>1 MeV due to the finite number of particles in the
pacity for the three systems, afid) the dramatical change systems.

The pronouncedC,, maximum atT~1.0—-1.2 MeV is
due the low number of available Cooper pairs; the lower left
panel of Fig. 3 shows that-15 nucleons are already un-
paired at this temperature. As—o, we find C,,— 20, 21,
and 22 for the even-even, odd, and odd-odd systems, respec-
tively. This corresponds to the situation where all pairs are
broken, giving &Cy, value equal to the total number of nucle-
ons in the system.Since a system with one particle in an
infinite harmonic oscillator give€,—1 for T—o and the
effective Pauli blocking between the nucleons is negligible,
we obtainCy=n.

In the right panels of Fig. 3, the pairing gap is reduced to
A=€e=0.13 MeV. Now the S shape of tl®&, curve can be
seen to vanish in thA —0 limit, telling that the S shape is
connected with the pairing strength. Furthermore, we see that
the heat capacity reaches a maximum levelCgf~35 at
lower temperaturd ~0.7 MeV. At this point the remaining
number of particles bound in Cooper pairs is low, and the
depairing mechanism again looses its capability to create
more heat capacity. It might be surprising though that the-
number of depaired particles does not increase much faster
with temperature. The answer to this is that in our model, not
only the energy 2 is required to break up a pair, but also the

T ©
|

I
)
LA LA e

S Cy

45

30 10 pairs

20 10 pairs

25 35

30
20

Spar+ Srot+Svib 25

20

0
0 02 04 06 08 02 04 06 08
Temperature T [MeV]

FIG. 2. Entropy and heat capacity ft?Dy. The effects of the
various degrees of freedom are displayed. The abrupt change wherfFor the respective systems, we have ten Cooper pairs plus zero,
reducing the number of nucleon pairs from ten to six pairs is evi-one, or two particles.
dent.
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In the right panels of Fig. £, is evaluated by the use of
Eq. (13) for %2Dy. The p values are estimated from Table |
of Ref.[11]. With an energy window oBE=0.2 MeV, we
obtain W5, =22 and W,,=556; numbers which are also
consistent with the numbers of senioréfy=2 and 4 states in
the model of Ref.[10]. The high multiplicities give a
strength, width, and position of the peak that compare quali-
tatively well with the peak in the lower left panel. From this
comparison, we interpret the local maximum of the S-shaped
C PPN PRI RN SRS F, S - i AVEAVS ERra Cy curve atfT~0.5 MeV as the point at which the depairing
o] 02 04 06 038 Q 02 04 06 0.8 . . . .

E 3 process is at the strongest. Hence, we define this point as the
Subtracted - Subtracted critical temperaturd ., for the pairing transition.
2 To close this section, we comment on the weakening of
the S shape when going from even-even to odd and odd-odd
systems; an effect which is clearly seen in the lower right
panel of Fig. 1. The reason for the weakening can be under-
stood from the entropy plot displayed in the right upper
panel of Fig. 1. There, we saw that the entropy of each va-
lence nucleoh is reduced from a value o6~2 at T
Aty B N ~0.3 MeVto zero af ~0.6 MeV. Since the corresponding
0 0z 04 06 03 0 0z 04 06 03 heat capacity relates t64S/dT, a negative contribution to
Temperature T [MeV] Cy appears and a quenching of the amplitude of the S-curve
is apparent.

50 F Total (model) Total (Schottky)

40 |

30 |

Q = N W » OO N 0 ©
T

Heat capacity Cy
o

O = N G MO N e

! I

O = N W Ao N
T

FIG. 4. Heat capacity for®Dy. The peaks in the lower panels
are obtained by subtracting a linear backgroddashed lines In
the right panels we have assumed a Schottky-like partition function;

IV. COMPARISON WITH DATA
see text.

Our model is described within the canonical ensemble,
unpaired particles have to be placed into the single-particlevhile experimental data refer to the microcanonical en-
level scheme at some finite energysince the Pauli block- semble. However, there are two ways to compare our model
ing prevents them to populate the lowest levels in the singlewith experiments. With a known experimental level density
particle level scheme, which are all occupied by other unp, the partition function can be constructed from
paired nucleons.

In Fig. 4 an interpretation of the S shape is given for the
even-even system. In the left panel, a “background” is sub- Z(T)=> SE,p(E,)e &', (14)
tracted fromCy, using a straight line through 0.3 and 0.9 [
MeV of temperature. This line is intended to mimic the un-

derlying heat capacity originating from a Fermi gas type OfWhereEi is the excitation energy angkE; are the energy bins

system. Ho.V\./ever, the gas properties are strongly_ connectedjsed_ From this partition function all thermodynamical quan-
to the depairing process, and the subtracted peak in the Iow'ﬁ[ies can be deduced, see, e.g., E@—(5). The drawback

leﬂT?\Zn?le:SIOtilrJ]ld bi;ik;r:ov\x/ltsh chrrneé resemblance with thof this method, is that the level density function has to be
9p nown up to high excitation energies, typicallf

Schottky anomaly, which describes a particle placed in a two

level systen[15]. However, the maximum heat capacity of ~40 MeV. The other way is to evaluate the microcanonical

; level density from our canonical model. This can be per-
m ~ m 0,
such a model iCy~0.45 at a temperature of 40% of the formed by an inverse Laplace transformatiorZofJsing the

energy gap between the levels. For atomic nuclei, we ma e o § . i
define a similar, but extended Schottky model: Either no¥addle point approximatiofrawler-Darwin methoj we ob

pairs are broken at excitation ener§y=0, or one pair is tain [16]
broken atE=2A, or two pairs are broken &=4A and so

on. This picture is an extreme simplification, and we include eS
here only zero, one, and two pairs. Thus, our Schottky-like p((E))= (15
partition function reads Tv2m

Zoer=1+W,ae 28T+ W, e 44T, (13)  The level density can then be compared with experimental

values, and complete knowledge on the level density up to

The multiplicities in front of the Boltzmann factors representNigh excitation energies is not necessary. One drawback
the number of levels & =2A andE=4A and are estimated

from experimental data usingy=p- SE, wherep is the level

density andSE is the energy window considered. “4Interpreted as the entropy gap between the various S c[ts
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FIG. 5. Test on the saddle-point approximation. The solid lines FIG. 6. Calculated level densities of even-eysalid line), odd
are entropy and heat capacity obtained from our modef¥#y.  (dashed ling and odd-odddashed-dotted linenuclei around®®Fe,
The dashed lines are calculated by making an inverse Laplace tran&2%Pd, 62Dy, and 2% as a function of average excitation energy
formation with the saddle-point approximation and then back agaifE). The open circles, squares, and triangles are experimental level-
with a Laplace transformation; see text. density anchor pointsl1] extracted at certain excitation energies
The solid circles for'®%Py are experimental data points from

. . . . . ... Ref.[4].
using the saddle-point approximation is that the excitation ef.[4]

energy(E) is a thermal average with a large standard varia-
tion of 0E=TJE~T\/2aT, with a being the level-density ) . . .
parameter. A second drawback is the approximation itselfP€Ctéd to have a value in between the single-particle spacing
which we have tested by a “forward-backward” Laplace €sp __and ___the = BCS  quasiparticle  spacing e
transformation. In Fig. 5 we compare the original entropy= V(€sp—A)“+A°—A, where\ is the Fermi level.
and heat capacity, with the ones obtained by using(ES). In this work, € is chosen as a free parameter, determined
to obtainp, and then using Eq14) to obtain a new and its from a fit to known experimental I_evel densities_. For each
correspondings and Cy,. The comparison reveals a general Nucleus we adopt two level density anchor points, as de-
smoothing for temperaturés<0.5—0.6 MeV. The entropy duced in Ref[11]. The lower anchor point is based on the
is seen to be reproduced rather well, however, the heat c&ounting of known discrete levels. This method is rather ac-
pacity is more sensitive to the approximation. curate, except for the odd-odd nuclei, where the number of
The model presented in Sec. Il rests on the assumptiol@vels might be several hundred per MeV, and thus difficult
that the single-particle level scheme can be approximated bip measure. The other anchor point is based on average
equidistant levels. This assumption is never fulfilled inneutron-resonance spacing data at the neutron-binding en-
atomic nuclei, but within the canonical ensemble, the variou§"3y- . _
deduced thermodynamical quantities are strongly smoothed Figure 6 shows anchor points and level densitiesscu-
with respect to excitation energy. Therefore, even with soméated using Eq(15). The parameters are listed in Table |,
nonuniformity, the model might still give realistic results. Wheree is adjusted to obtain the approximate slopepdh
Probably, heavy and strongly deformed nuclei are the bedhe log-plot. The agreement with the anchor points is good,
candidates for our model. and also the odd and odd-odd systems fall nicely into the

For test cases, we have chosen midshell nuclei aroungystematics. For the®®"**Dy isotopes, the experimental
S8e, 106pq, 162Dy, and 23%U. All four mass regions reveal a Igvel densities from Ref4] are s_hown as.well. The calc_ula—
rather uniform Nilsson single-particle energy distribution tions reveal good agreement with experiment as function of
without large energy gaps. The pairing gapand rotational ~ €Xcitation energy.
parameter, are calculated according to Ed$) and (10).

The vibrational energy quantufiw,;, is taken as the energy

at which the first vibrational states appear in the experimen- >The experimental data are taken at a given excitation enefgies
tal level schemes of the respective mass re@iaf). The last  while the calculations give as a function of average excitation
parameter needed is the level-gap parametavhich is ex-  energy(E).
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FIG. 7. Comparison between semiexperimeritadper panel FIG. 8. Calculated heat capacities for even-eygolid lines,
and theoretical(lower panel heat capacity for'6%%Dy. The  odd(dashed lines and odd-odddashed-dotted lingsuclei around
semiexperimental values are taken from Réf. S8Fe, 196pd, 62Dy, and 2%4U. In addition, the heat capacities from

SMMC simulations(scanned from Fig. 4 of Ref9]) are displayed
as open triangles’fFe) and circles CFe).
With the established parameters, we may now calculate
the heat capacitZ, from our model and compare with ex-
periments. Due to the imperfection of the saddle-point ap
proximation, we takep({E)) from the saddle-point approxi-
mation (which is tuned to experiments in Fig.),6and
generateCy, from the corresponding function of Eq.(14).
In the lower part of Fig. 7 the theoretic&, curves are
shown for 163169y, The experimentaC,, curves, shown in

results. In particular, the feature th@t, becomes constant
[9], or even drop$8] aboveT~0.7 MeV is surprising. This
effect might originate from shell gapsvhich are not in-
cluded in our modelor too few particles and/or orbitals
considered in the SMMC calculations. It would be interest-

; . ing to test if the SMMC calculations are capable of repro-
the upper part, are based on expgrlmental Ieyel density daEhcing the anchor points for Fe in Fig. 6. Doing so, one
from Ref.[4]. Since the construction & requires data t0 g4 remember that our anchor points represent densities

much higher energies thap experimentally knowE (' ¢ jevels and not states, which are usually employed in
~7-8 MeV), the level density has to be extrapolated. Heregy,mc calculations.

we have used the parametrization of Egielyal. [18], in
accordance with our recent wolré]. The effective level den-
sity parameterg~17.5 MeV 1) has a major impact on the
Cy curve for T>0.5 MeV. Figure 7 shows rather good
agreement between experiment and model fdr A simple model for hot nuclei has been outlined. The
<0.5-0.6 MeV. In particular the odd-even mass entropymain properties of the model are determined by the pairing-
difference is well reproduced. At higher temperatures thegap parameteA and the energy-gap parameteassociated
comparison is poor due to the arbitrary extrapolation of thewith an infinite single-particle level scheme for protons and
experimental level densities. neutrons. We have demonstrated how various thermodynami-
In Fig. 8 the heat capacit§, from our model, using the cal quantities can be extracted.
parameters of Table I, is displayed for the four mass regions. The model properties have been discussed with empha-
The curves look similar; the differences are mainly thesize on the S shape of the heat capacity. This shape is
change in the scaling of thé, and T axes for the various strongly related to the bunch of newly created levels from
mass regions. The figure also includes the calculations othe pair-breaking process at2A and ~4A of excitation
58.5%e performed by Liu and Alhass|@]. These data points energy.
show some discrepancies with the work of Rombattal. The model calculations are compared with experimental
[8]. However, both SMMC calculations obtain a critical tem- data from theA~58, 106, 162, and 234 mass regions. Using
perature around 0.7 MeV, while we obtain a value around 1.2he saddle-point approximation with only one free parameter,
MeV. Even when changing freely the number of particles, the experimental level densities of even-even, odd, and odd-
andA in our model, we are not able to reproduce the SMMCodd systems are reproduced.

V. CONCLUSIONS
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The critical temperature of the pair transition {1y  to understand the thermodynamics of these hot iron
was calculated to b&.~0.5 MeV, in agreement with ex- isotopes.
periments. In the’®>¥Fe region we calculat&,~1.2 MeV,
which is significantly higher than the value 6f0.7 MeV AU LS SIS
obtained in shell model Monte Carlo simulations. Thus, We wish to acknowledge the support from the Norwegian
further theoretical and experimental efforts are neededResearch CounciNFR).
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