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Heat capacity and pairing transition in nuclei
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A simple model based on the canonical-ensemble theory is outlined for hot nuclei. The properties of the
model are discussed with respect to the Fermi gas model and the breaking of Cooper pairs. The model
describes well the experimental level density of deformed nuclei in various mass regions. The origin of the
so-called S shape of the heat capacity curveCV(T) is discussed.
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I. INTRODUCTION

Nuclear structure at low excitation energy depends c
cally on the presence of Cooper pairs. Thermal and rotatio
breaking of theseJ50 nucleon pairs gives abrupt structur
changes, such as increased level density and rotational
alignments. These critical phenomena were addressed e
in several theoretical papers@1–3#.

A very exciting feature is the gradual reduction of pa
correlations as function of temperature. Recently, Schi
et al. @4# reported the experimental critical temperatureTc
for the pairing transition. The findings were based on us
the canonical heat capacity as thermometer. An S-sha
heat capacity as function of temperature was observed in
161,162Dy and 171,172Yb isotopes. AroundTc;0.5 MeV, a
local maximum in the heat capacity signals the breaking
Cooper pairs and quenching of the pair correlations. T
property has also been observed in the166,167Er nuclei @5#.

Similar fingerprints have been obtained in various cal
lations. Finite-temperature Hartree-Fock-Bogoliubov cal
lations @6# for 164Er give almost identical S shape as o
served for 166Er. In relativistic Hartree-Fock–BCS
calculations@7# the proton and neutron pairing gaps are se
to vanish aroundT;0.4–0.5 MeV for 166,170Er. Further-
more, in shell model Monte Carlo simulations~SMMC!
@8,9#, the heat capacities for iron isotopes show a pair
transition around temperatures of 0.7 MeV.

The thermal breaking of a Cooper pair results in a tenf
increase in number of available energy levels. In this proc
particles are thermally scattered on available single part
states, giving rise to increased entropy. Recently@10,11#, it
was shown that each thermal particle carries an entrop
;1.7, a feature which is valid for midshell nuclei with ma
numberA.40.

The present work aims to present a simple model for
nuclei that includes the main features found experimenta
In Sec. II the model is described within the canonic
ensemble theory, and in Sec. III some relevant model pr
erties are discussed. The results are compared with re
theoretical and experimental data on various deformed nu
in Sec. IV. Concluding remarks are given in Sec. V.

*Electronic address: magne.guttormsen@fys.uio.no
†Present address: Lawrence Livermore National Laborat

L-414, 7000 East Avenue, Livermore CA 94551.
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II. MODEL

The total partition functionZ is described in the canonica
ensemble, where thermal particle excitations, rotations,
vibrations are treated adiabatically according to

Z~T!'ZparZrotZvib . ~1!

Thermodynamical quantities such as the entropyS, the aver-
age excitation energŷE& and the heat capacityCV can then
be calculated from the Helmholtz free energy:

F~T!52T ln Z~T!, ~2!

by

S~T!52S ]F

]TD
V

, ~3!

^E~T!&5F1TS, ~4!

CV~T!5S ]^E&
]T D

V

, ~5!

where the Boltzmann constant is set to unity (kB51) andT
is measured in units of MeV.

The theoretical basis for the particle partition functio
was earlier presented in Ref.@11#, and will not be outlined
here. Essentially, the model includes particle excitations
spin-1/2 fermions scattered into doubly degenerated sin
particle levels with equal energy spacinge. The resulting
functions are calledZ1,3,5 . . . , Z2,4,6 . . . , and Z̃2,4,6 . . . for
odd-mass, even-even, and odd-odd systems, respectivel

The creation of particles costs energy. In order to bre
one Cooper pair, the energy 2D is necessary. The pairing ga
parameter is given by the empirical formula@12#

D512A21/2 MeV. ~6!

The total particle partition functions of even-even~ee!, odd
~odd!, and odd-odd~oo! nuclei can then be expressed as

Zpar
ee 511Z2e22D/T1Z4e24D/T1•••,

Zpar
odd5Z11Z3e22D/T1Z5e24D/T1•••,

Zpar
oo 5Z̃21Z̃4e22D/T1Z̃6e24D/T1•••. ~7!

y,
©2001 The American Physical Society19-1
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M. GUTTORMSENet al. PHYSICAL REVIEW C 64 034319
The number of active particlesn ~i.e., particles not bound in
Cooper pairs! can be evaluated by

nee5~2Z2e22D/T14Z4e24D/T1••• !/Zpar
ee ,

nodd5~Z113Z3e22D/T15Z5e24D/T1••• !/Zpar
odd,

noo5~2Z̃214Z̃4e22D/T16Z̃6e24D/T1••• !/Zpar
oo . ~8!

The rotational partition function is given by

Zrot5 (
I 50,2, . . . ,12

exp@2ArigI ~ I 11!/T#, ~9!

where the rotational parameter

Arig5\2/2u rig ~10!

is expressed by the rigid moment of inertia@13# u rig
52/5MR2;0.0137A5/3 \2 MeV21, whereM andR are the
nuclear mass and radius, respectively. The vibrational p
tion function includes zero and one-phonon states:

Zvib5 (
v50,1

Wvexp~2v\vvib /T!, ~11!

where the multiplicity for the zero-phonon state isW051.
For one-phonon states, we take into accounts three vibrat
~e.g., b, g, and octupole vibrations!, giving multiplicity
W153. Higher order phonon states are neglected, and
phonons are assumed to carry the same energy qua
\vvib . In both partition functions we have omitted the sp
degeneracy (2I 11), since we are dealing with levels and n
states.

III. MODEL PROPERTIES

Figure 1 shows the Helmholtz free energyF, the average
excitation energŷ E&, the entropyS, and the heat capacit
CV as functions of temperature. The model parameters
taken from162Dy ~see Table I! as a typical set applicable fo
rare earth nuclei. In order to calculate the thermodynam
quantities up toT;1 MeV, at least ten broken nucleon pai
have to be incorporated. The free energyF and the average
excitation energŷE& behave smoothly as functions of tem
perature. AroundT;0.65 MeV the nuclei are excited to en
ergies comparable to their respective neutron binding e
gies. The even-even, odd,1 and odd-odd systems hav
different excitation energies at one and the same tempera
where the even-even system requires the highest^E& value.

The entropyS and heat capacityCV represent first and
second derivatives ofF, and are thus more sensible to the
mal changes. For the lowest temperatures the entropy di
ence is;2 between the three mass systems. However,
entropy curves coincide forT.0.6 MeV, displaying almost
identical behavior. It is interesting to test if our model repr

1We use the abbreviationodd for odd-even and even-odd system
since these systems are equivalent in our model.
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duces a Fermi gas in the absence of pairing at th
temperatures.2 The level density parametera for a Fermi gas
with a level spacinge is given by@14#

a5
p2

6
~gp1gn!;

p2

3
g5

p2

3e
. ~12!

Here, the single-particle level-density parameters for prot
and neutrons (gp and gn) are assumed to be approximate
equal. Insertinge50.13 MeV for 162Dy, we obtain a
525 MeV21. This is in exact agreement with the slope (a
5]S/2]T) of the entropy curves forT.0.6 MeV.

The lower right panel of Fig. 1 shows the typical S-sha
of the heat capacity. As this shape is an important fingerp
for pairing transitions in nuclei@4,5,7,9#, we will in the fol-
lowing focus on its origin.

The contribution toCV from collective excitations is neg
ligible, and has no influence on the S shape. This is show
Fig. 2 for the even-even system, where the component
particle, rotational, and vibrational degrees of freedom
displayed. The collective contribution to the entropyS is
small and fairly constant with increasing temperature. Ho
ever, one should note thatSrot is in fact the main componen
at the lowest temperatures withT,0.3 MeV.

For the total entropy and heat capacity, also the effec
the number of pairs is shown in Fig. 2. TheCV curves are

2A simplified Fermi gas hasS;2aT1const.

FIG. 1. Model calculations for nuclei around162Dy. The four
panels show the free energyF, the entropyS, the thermal excitation
energŷ E&, and the heat capacityCV as functions of temperatureT.
The same parameter set~Table I, 162Dy) is used for even-even
~solid lines!, odd ~dashed lines!, and odd-odd systems~dashed-
dotted lines!.
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HEAT CAPACITY AND PAIRING TRANSITION IN NUCLEI PHYSICAL REVIEW C 64 034319
identical for six and ten pairs up toT;0.7 MeV, but from
there on the six pair system is exhausted and not abl
absorb energy at the same rate as when more Cooper
are present. The figure shows that the S shape can be e
ated rather accurately without taking very many pairs i
account. On the other hand, if too few pairs are included,
may easily misinterpret the shape of theCV curve. For the
162Dy mass region, six Cooper pairs are sufficient to de
mine the S shape.

Figure 3 shows the heat capacity~upper panels! and the
corresponding number of unpaired particles~lower panels!
for ten pairs of nucleons. In the left panels a realistic pair
gap parameter ofD50.94 MeV has been chosen. We ide
tify three temperature regions of interest:~i! The T
;0.2–0.8 MeV region with different S shapes for eve
even, odd, and odd-odd-systems,~ii ! the Fermi gas regime
with T;0.8–1.0 MeV, exhibiting the same linear heat c
pacity for the three systems, and~iii ! the dramatical change

TABLE I. Model parameters:D andArig are taken from Eqs.~6!
and ~10!, \vvib from systematics, ande is tuned to fit the data of
Fig. 6.

Nucleus D Arig \vvib e
~MeV! ~keV! ~MeV! ~MeV!

58Fe 1.58 42.0 2.0 0.80
106Pd 1.17 15.4 1.4 0.21
162Dy 0.94 7.6 0.9 0.13
234U 0.78 4.1 0.8 0.08

FIG. 2. Entropy and heat capacity for162Dy. The effects of the
various degrees of freedom are displayed. The abrupt change
reducing the number of nucleon pairs from ten to six pairs is e
dent.
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-for T.1 MeV due to the finite number of particles in th
systems.

The pronouncedCV maximum atT;1.021.2 MeV is
due the low number of available Cooper pairs; the lower
panel of Fig. 3 shows that;15 nucleons are already un
paired at this temperature. AsT→`, we find CV→20, 21,
and 22 for the even-even, odd, and odd-odd systems, res
tively. This corresponds to the situation where all pairs
broken, giving aCV value equal to the total number of nucle
ons in the system.3 Since a system with one particle in a
infinite harmonic oscillator givesCV→1 for T→` and the
effective Pauli blocking between the nucleons is negligib
we obtainCV5n.

In the right panels of Fig. 3, the pairing gap is reduced
D5e50.13 MeV. Now the S shape of theCV curve can be
seen to vanish in theD→0 limit, telling that the S shape is
connected with the pairing strength. Furthermore, we see
the heat capacity reaches a maximum level ofCV;35 at
lower temperatureT;0.7 MeV. At this point the remaining
number of particles bound in Cooper pairs is low, and
depairing mechanism again looses its capability to cre
more heat capacity. It might be surprising though that t
number of depaired particles does not increase much fa
with temperature. The answer to this is that in our model,
only the energy 2D is required to break up a pair, but also th

3For the respective systems, we have ten Cooper pairs plus
one, or two particles.
en

i-

FIG. 3. Heat capacity and number of unpaired nucleons for
clei around162Dy. In the right panels the pairing gap is reduced
D5e50.13 MeV. The calculations are shown for even-even~solid
lines!, odd ~dashed lines!, and odd-odd systems~dashed-dotted
lines!.
9-3
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M. GUTTORMSENet al. PHYSICAL REVIEW C 64 034319
unpaired particles have to be placed into the single-part
level scheme at some finite energyE, since the Pauli block-
ing prevents them to populate the lowest levels in the sin
particle level scheme, which are all occupied by other
paired nucleons.

In Fig. 4 an interpretation of the S shape is given for t
even-even system. In the left panel, a ‘‘background’’ is su
tracted fromCV , using a straight line through 0.3 and 0
MeV of temperature. This line is intended to mimic the u
derlying heat capacity originating from a Fermi gas type
system. However, the gas properties are strongly conne
to the depairing process, and the subtracted peak in the lo
left panel should be taken with care.

The resulting peak shows some resemblance with
Schottky anomaly, which describes a particle placed in a
level system@15#. However, the maximum heat capacity
such a model isCV;0.45 at a temperature of 40% of th
energy gap between the levels. For atomic nuclei, we m
define a similar, but extended Schottky model: Either
pairs are broken at excitation energyE50, or one pair is
broken atE52D, or two pairs are broken atE54D and so
on. This picture is an extreme simplification, and we inclu
here only zero, one, and two pairs. Thus, our Schottky-
partition function reads

ZSch511W2De22D/T1W4De24D/T. ~13!

The multiplicities in front of the Boltzmann factors represe
the number of levels atE52D andE54D and are estimated
from experimental data usingW5r•dE, wherer is the level
density anddE is the energy window considered.

FIG. 4. Heat capacity for162Dy. The peaks in the lower panel
are obtained by subtracting a linear background~dashed lines!. In
the right panels we have assumed a Schottky-like partition funct
see text.
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In the right panels of Fig. 4CV is evaluated by the use o
Eq. ~13! for 162Dy. Ther values are estimated from Table
of Ref. @11#. With an energy window ofdE50.2 MeV, we
obtain W2D522 and W4D5556; numbers which are als
consistent with the numbers of seniorityS52 and 4 states in
the model of Ref.@10#. The high multiplicities give a
strength, width, and position of the peak that compare qu
tatively well with the peak in the lower left panel. From th
comparison, we interpret the local maximum of the S-sha
CV curve atT;0.5 MeV as the point at which the depairin
process is at the strongest. Hence, we define this point a
critical temperatureTc for the pairing transition.

To close this section, we comment on the weakening
the S shape when going from even-even to odd and odd-
systems; an effect which is clearly seen in the lower rig
panel of Fig. 1. The reason for the weakening can be un
stood from the entropy plot displayed in the right upp
panel of Fig. 1. There, we saw that the entropy of each
lence nucleon4 is reduced from a value ofS;2 at T
;0.3 MeV to zero atT;0.6 MeV. Since the correspondin
heat capacity relates toT]S/]T, a negative contribution to
CV appears and a quenching of the amplitude of the S-cu
is apparent.

IV. COMPARISON WITH DATA

Our model is described within the canonical ensemb
while experimental data refer to the microcanonical e
semble. However, there are two ways to compare our mo
with experiments. With a known experimental level dens
r, the partition function can be constructed from

Z~T!5(
i

dEir~Ei !e
2Ei /T, ~14!

whereEi is the excitation energy anddEi are the energy bins
used. From this partition function all thermodynamical qua
tities can be deduced, see, e.g., Eqs.~2!–~5!. The drawback
of this method, is that the level density function has to
known up to high excitation energies, typicallyE
;40 MeV. The other way is to evaluate the microcanoni
level density from our canonical model. This can be p
formed by an inverse Laplace transformation ofZ. Using the
saddle-point approximation~Fawler-Darwin method!, we ob-
tain @16#

r~^E&!5
eS

TA2pC
. ~15!

The level density can then be compared with experime
values, and complete knowledge on the level density up
high excitation energies is not necessary. One drawb

4Interpreted as the entropy gap between the various S curves@10#.

n;
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HEAT CAPACITY AND PAIRING TRANSITION IN NUCLEI PHYSICAL REVIEW C 64 034319
using the saddle-point approximation is that the excitat
energy^E& is a thermal average with a large standard va
tion of sE5TAC;TA2aT, with a being the level-density
parameter. A second drawback is the approximation its
which we have tested by a ‘‘forward-backward’’ Laplac
transformation. In Fig. 5 we compare the original entro
and heat capacity, with the ones obtained by using Eq.~15!
to obtainr, and then using Eq.~14! to obtain a newZ and its
correspondingS andCV . The comparison reveals a gener
smoothing for temperaturesT,0.520.6 MeV. The entropy
is seen to be reproduced rather well, however, the heat
pacity is more sensitive to the approximation.

The model presented in Sec. II rests on the assump
that the single-particle level scheme can be approximate
equidistant levels. This assumption is never fulfilled
atomic nuclei, but within the canonical ensemble, the vari
deduced thermodynamical quantities are strongly smoo
with respect to excitation energy. Therefore, even with so
nonuniformity, the model might still give realistic result
Probably, heavy and strongly deformed nuclei are the b
candidates for our model.

For test cases, we have chosen midshell nuclei aro
58Fe, 106Pd, 162Dy, and 234U. All four mass regions reveal a
rather uniform Nilsson single-particle energy distributi
without large energy gaps. The pairing gapD and rotational
parameterArot are calculated according to Eqs.~6! and~10!.
The vibrational energy quantum\vvib is taken as the energ
at which the first vibrational states appear in the experim
tal level schemes of the respective mass region@17#. The last
parameter needed is the level-gap parametere, which is ex-

FIG. 5. Test on the saddle-point approximation. The solid lin
are entropy and heat capacity obtained from our model for162Dy.
The dashed lines are calculated by making an inverse Laplace t
formation with the saddle-point approximation and then back ag
with a Laplace transformation; see text.
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pected to have a value in between the single-particle spa
esp and the BCS quasiparticle spacingeqp

5A(esp2l)21D22D, wherel is the Fermi level.
In this work, e is chosen as a free parameter, determin

from a fit to known experimental level densities. For ea
nucleus we adopt two level density anchor points, as
duced in Ref.@11#. The lower anchor point is based on th
counting of known discrete levels. This method is rather
curate, except for the odd-odd nuclei, where the numbe
levels might be several hundred per MeV, and thus diffic
to measure. The other anchor point is based on ave
neutron-resonance spacing data at the neutron-binding
ergy.

Figure 6 shows anchor points and level densities5 calcu-
lated using Eq.~15!. The parameters are listed in Table
wheree is adjusted to obtain the approximate slope ofr in
the log-plot. The agreement with the anchor points is go
and also the odd and odd-odd systems fall nicely into
systematics. For the161,162Dy isotopes, the experimenta
level densities from Ref.@4# are shown as well. The calcula
tions reveal good agreement with experiment as function
excitation energy.

5The experimental data are taken at a given excitation energieE,
while the calculations giver as a function of average excitatio
energy^E&.

s

ns-
in

FIG. 6. Calculated level densities of even-even~solid line!, odd
~dashed line!, and odd-odd~dashed-dotted line! nuclei around58Fe,
106Pd, 162Dy, and 234U as a function of average excitation energ
^E&. The open circles, squares, and triangles are experimental le
density anchor points@11# extracted at certain excitation energiesE.
The solid circles for161,162Dy are experimental data points from
Ref. @4#.
9-5
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M. GUTTORMSENet al. PHYSICAL REVIEW C 64 034319
With the established parameters, we may now calcu
the heat capacityCV from our model and compare with ex
periments. Due to the imperfection of the saddle-point
proximation, we taker(^E&) from the saddle-point approxi
mation ~which is tuned to experiments in Fig. 6!, and
generateCV from the correspondingZ function of Eq.~14!.
In the lower part of Fig. 7 the theoreticalCV curves are
shown for 161,162Dy. The experimentalCV curves, shown in
the upper part, are based on experimental level density
from Ref. @4#. Since the construction ofZ requires data to
much higher energies than experimentally knownE
;7 –8 MeV), the level density has to be extrapolated. He
we have used the parametrization of Egidyet al. @18#, in
accordance with our recent work@4#. The effective level den-
sity parameter (a;17.5 MeV21) has a major impact on th
CV curve for T.0.5 MeV. Figure 7 shows rather goo
agreement between experiment and model forT
,0.5–0.6 MeV. In particular the odd-even mass entro
difference is well reproduced. At higher temperatures
comparison is poor due to the arbitrary extrapolation of
experimental level densities.

In Fig. 8 the heat capacityCV from our model, using the
parameters of Table I, is displayed for the four mass regio
The curves look similar; the differences are mainly t
change in the scaling of theCV and T axes for the various
mass regions. The figure also includes the calculations
58,59Fe performed by Liu and Alhassid@9#. These data points
show some discrepancies with the work of Romboutset al.
@8#. However, both SMMC calculations obtain a critical tem
perature around 0.7 MeV, while we obtain a value around
MeV. Even when changing freely the number of particlese
andD in our model, we are not able to reproduce the SMM

FIG. 7. Comparison between semiexperimental~upper panel!
and theoretical~lower panel! heat capacity for 161,162Dy. The
semiexperimental values are taken from Ref.@4#.
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results. In particular, the feature thatCV becomes constan
@9#, or even drops@8# aboveT;0.7 MeV is surprising. This
effect might originate from shell gaps~which are not in-
cluded in our model! or too few particles and/or orbital
considered in the SMMC calculations. It would be intere
ing to test if the SMMC calculations are capable of rep
ducing the anchor points for Fe in Fig. 6. Doing so, o
should remember that our anchor points represent dens
of levels and not states, which are usually employed
SMMC calculations.

V. CONCLUSIONS

A simple model for hot nuclei has been outlined. T
main properties of the model are determined by the pairi
gap parameterD and the energy-gap parametere associated
with an infinite single-particle level scheme for protons a
neutrons. We have demonstrated how various thermodyna
cal quantities can be extracted.

The model properties have been discussed with emp
size on the S shape of the heat capacity. This shap
strongly related to the bunch of newly created levels fro
the pair-breaking process at;2D and ;4D of excitation
energy.

The model calculations are compared with experimen
data from theA;58, 106, 162, and 234 mass regions. Usi
the saddle-point approximation with only one free parame
the experimental level densities of even-even, odd, and o
odd systems are reproduced.

FIG. 8. Calculated heat capacities for even-even~solid lines!,
odd~dashed lines!, and odd-odd~dashed-dotted lines! nuclei around
58Fe, 106Pd, 162Dy, and 234U. In addition, the heat capacities from
SMMC simulations~scanned from Fig. 4 of Ref.@9#! are displayed
as open triangles (58Fe) and circles (59Fe).
9-6
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The critical temperature of the pair transition for161,162Dy
was calculated to beTc;0.5 MeV, in agreement with ex
periments. In the58,59Fe region we calculateTc;1.2 MeV,
which is significantly higher than the value of;0.7 MeV
obtained in shell model Monte Carlo simulations. Thu
further theoretical and experimental efforts are nee
F.
an

m

ys

J.

03431
,
d

to understand the thermodynamics of these hot i
isotopes.
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