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Monte Carlo calculations of energies in the erbium region

G. Puddu
Dipartimento di Fisica dell’Universita` di Milano, I-20133 Milano, Italy

~Received 27 March 2001; published 22 August 2001!

We investigate the validity of the method of computing ground-state energies, at a given angular momentum,
with Monte Carlo methods applied to the functional integral formulation containing pairing fields. Calculations
have been performed for several erbium isotopes and a few dysprosium isotopes. It is found that some residual
sign fluctuations, which seem to be associated with a small neutron number above theN582 shell closure, are
present, but that they do not affect the feasibility of the calculations. Such sign fluctuations disappear as the
neutron number is increased. Also, an efficient improved method for the computation of the functional integral
in the case of an odd number of particles is presented. The Monte Carlo method of Metropoliset al. @J. Chem.
Phys.21, 1087~1953!# is used in the evaluation of expectation values.
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I. INTRODUCTION

The problem of understanding the low-energy collect
behavior of heavy nuclei has always been a central prob
since the early days of nuclear physics. With a large num
of active nucleons and available many-body states, it is
beyond the capabilities of nuclear shell model diagonali
tion approaches. Functional integral methods@1#, imple-
mented with Monte Carlo integration techniques, seem to
so far a promising method to tackle the problem.

Recently, we presented a method to evaluate the par
number, angular momentum, and parity projected ma
body matrix elements of the form

B5^c,J,M ,p,N,Zue2bĤuc,J,M ,p,N,Z&, ~1!

using functional integrals containing pairing fields@2#. In the
above expression the trial state not orthogonal to the gro
state,uc,J,M ,p,N,Z&, has definite angular momentumJ,M,
good parityp, and neutron and proton number, respective
N andZ. This technique was applied to few cases, with
pairing plus quadrupole Hamiltonian and with the schema
pairing Hamiltonian@3#. It seems appropriate to investiga
systematically the applicability of these techniques to sev
nuclei. In this work we do so and discuss improvements
the method presented in Ref.@2# for the case of an odd num
ber of particles. Moreover, while in Ref.@2# the matrix ele-
ments in Eq.~1! were computed directly using the Gaussi
path method, here we evaluate the energies of the many-b
Hamiltonian as expectation values using the samp
method of Metropoliset al. @4#.

We consider several erbium isotopes and a few dysp
sium isotopes in the pairing plus quadrupole model. We
the restricted single-particle basis in theN582,N5126 neu-
tron major shell and in theZ550, Z582 proton major shell.
We consider several isotopes with neutron number rang
from few to about 20 above theN582 shell closure. In Refs
@2,3#, the sign fluctuations were suppressed by properly
justing the chemical potentials. A question remains whet
with this method, the sign fluctuations in the functional in
gral can be eliminated entirely. We found that residual s
fluctuations remain for neutron numbers in the vicinity of t
0556-2813/2001/64~3!/034318~8!/$20.00 64 0343
m
er
r
-

e

le
-

d

,
e
c

al
n

dy
g

o-
e

g

d-
r,
-
n

N582 closure, but they disappear as the neutron numbe
increased. It should be mentioned, although we shall
dwell on it, that these sign fluctuations are also present if
switch off the quadrupole force in the model Hamiltonia
and that with such a simplified model these fluctuations
completely absent in the vicinity of theN5126 shell closure,
below and above~in this latter case the single-particle spa
was increased!.

In the rare earth region, other systematic Monte Ca
calculations have been performed by White, Koonin, a
Dean@5#. In these calculations a different functional integr
~that preserves the number of particles! was applied to the
canonical ensemble unprojected partition function. It
straightforward to apply the projection methods of Ref.@2# to
the type of functional integrals used in Ref.@5# as done in
Ref. @6#. We found that these functional integrals are mo
useful in the case of an even number of particles, where
functional integral is free of sign oscillations in the case
zero angular momentum. However, in a trial case of an o
number of particles in the middle of neutron major she
using the pairing plus quadrupole model, sign oscillatio
remained. In the formulation we use, instead, sign fluct
tions disappear as we increase the particle number, as
shall see later.

Despite positivity of the functional integrals used in Re
@5# in the case ofJp501, the number of integration vari
ables is large~since it depends on the square of the num
of the single-particle states in the basis!, and if we were to
extend the single-particle basis to the full basis employed
Kumar and Baranger@7#, the number of integration variable
would make practical calculations much more expensive p
cisely because of the large number of integration variab
that have to be updated in the Monte Carlo calculation.
the other hand, the formulation that we discussed in R
@2,3# and that we use in this work does not change the
mensionality of the functional integral as we increase
size of the single-particle basis.

The outline of this paper is the following. In Sec. II w
briefly review the method of evaluation of the matrix el
ments of Eq.~1! ~Sec. II A! and discuss an improved metho
in the case of an odd number of particles, which grea
increases the speed of the calculation~Sec. II B!, and the
©2001 The American Physical Society18-1
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G. PUDDU PHYSICAL REVIEW C 64 034318
method currently used to determine the chemical poten
~Sec. II C!. In Sec. III we discuss the numerical calculatio
in the erbium region.

II. EVALUATION OF THE FUNCTIONAL INTEGRAL
EXPRESSION OF MATRIX ELEMENTS B

A. The functional integral

In order to shorten the equations, let us consider one k
of particle. The pairing1 quadrupole Hamiltonian is define
as

Ĥ5Ĥ02
k

2 (
a522

2

~21!aQ̂2a
~2!Q̂a

~2!2GP̂†P̂, ~2!

where Ĥ05( i 51
Ns Eiai

†ai is the single-particle Hamiltonian
for Ns single-particle levels. The second quantized opera
Q̂a

(2)5( i , j (qa
(2)) i j ai

†aj ~for a522, . . . ,2! are the spherica

components of the quadrupole operator, andP̂5( i .0aī ai is
the monopole pairing operator. Time reversal states are
fined asu i &5un jm& and u ī &5(21) j 11/2un j2m&. The pair-
ing operator is recast in the form

P̂†5
1

2
a†Pa†, ~3!

where P is an antisymmetric matrix in the single-partic
indices. Instead of using the spherical tensorsQ̂a

(2) , we find
it more convenient to work with their corresponding Car
sian components denoted asQ̂a ~a522, 21, 0, 1, 2! ~which
are their real and imaginary parts!. From Ref.@2#, the func-

tional integral expression fore2bĤ1aN̂ for any a is

e2bĤ1aN̂5e2bGV/2NE )
n51

Nt S dfxndfyn )
a522

2

dsanD
3expS 2 1

2 (
an

san
2 2 1

2 (
n

~fxn
2 1fyn

2 ! D Û,

~4!

whereÛ is the evolution operator

Û5ÛNt
ÛNt21¯Û1 , ~5!

Ûn5expS 2eF Ĥ082Aek(
a

sanQ̂a

2AeG/2~fnP̂1fn
!P̂†!G D ~6!

and fn5(fxn1 ifyn). In Eq. ~6!, Ĥ085Ĥ02m8N̂ and m8
5m2G/2 (m5a/b). N is the normalization constant

N5S 1

2p D 7Nt/2

.

We write the functional integral using this form for the int
gration variables because it is the most appropriate to
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form numerical calculations, regardless of the integrat
method. Second-quantized operators are denoted by ca
letters with a caret and their corresponding first-quantiz
operators by lowercase letters.

Inserting Eq.~4! in Eq. ~1!, one has, forA particles,

B5e2bGV/2NE )
n51

Nt S dfxndfyn )
a522

2

dsanD
3expS 2 1

2 (
an

san
2 2 1

2 (
n

~fxn
2 1fyn

2 ! De2aA

3^c,J,M ,p,AuÛuc,J,M ,p,A&. ~7!

Since only the scalar part ofÛ matters, we are allowed to
replace the matrix elements of Eq.~7! with

B5(
M

1

2J11
^cJ,M ,p,AuÛuc,J,M ,p,A&. ~8!

As in Ref.@2#, we take trial states of a very simple form. F
the case of an even number of particles and angular mom
tum and parityJp501, we take

uJp501&5Ĉu0&5ea†Xa†/2u0&[V̂u0&, ~9!

where u0& is the particle vacuum andX is an antisymmetric
matrix of the Clebsh-Gordan coefficients that couple the p
ticle operators to zero angular momentum:

a†Xa†5(
i

f i@aj i

† 3aj i

† #~0!. ~10!

For simplicity we take allf i51. For an odd particle numbe
we take

u01, jm&5ajm
† u01&. ~11!

We stress that the essential requirements for these trial s
are their angular momentum and parity content. Since
shall perform the exact calculation of the full functional i
tegral using Monte Carlo methods, the details and the ac
racy of these trial functions do not determine the final res
provided they are not orthogonal to the ground state; ho
ever, they might affect the temperatures at which the gro
state dominates the matrix elements of Eq.~1!.

To ensure proper particle number, the matrix elementB
of Eq. ~8! must be projected by a particle number operator
we call `A the particle-number projector forA particles

`5
1

2p E
0

2p

da eia~N̂2A! ~12!

and we denote

B8~zp ,zq!5
1

2J11 (
M

^c,J,M ,pueiaPN̂ÛeiaqN̂uc,J,M ,p&,

~13!

where

zp5eiap, zq5eiaq, ~14!
8-2
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then Eq.~8! becomes

B5~2p!22E
0

2p

dapdaqB8~zp ,zq!e2 i ~ap1aq!A. ~15!

Since the evaluation ofB8 in Eq. ~15! requires a double
particle-number projection, some manipulations are nec
sary in order to perform the calculation efficiently. This is t
goal of the next subsection.

B. Evaluation of B8 and B

The evaluation of Eq.~13! makes use of the quasipartic
formalism of Ref.@8# and follows the analysis done in Re
@2#. The difference between the method illustrated here
the method used in Ref.@2# is that the method we discus
here is several times faster then that implemented in Ref@2#
for odd nuclei. In some of the calculations, discussed in R
he

03431
s-

d

f.

@2#, we obtained an increase in the computational speed
about a factor of 7. To describe the method, let us give so
definitions and let us rewrite the evolution operator of Eq.~5!
as

Û5CŴNt
ŴNt21¯Ŵ1 , ~16!

with

C5expF2 1
2 (

n51

Nt

trS eh02em82Aek (
a522

2

sanqaD G ,

~17!

where qa is the single-particle quadrupole matrix and t
trace is over the single-particle indices. In Eq.~6! the modi-
fied propagatorsŴn are given by
Ŵn5expF 1
2 ~a†,a!S 2~eh02em82Aeksanqa! 2AeG/2fn

!P
AeG/2fnP eh02em82Aeksanq̃a

D S a
a†D G . ~18!

Exponential operators of a quadratic form in the creation and annihilation operators, such as

Ŵ5expF 1
2 ~a†,a!RS a

a†D G , ~19!

providedR1152R̃22, andR1252R̃21, form a group; more precisely

expF 1
2 ~a†,a!R1S a

a†D GexpF 1
2 ~a†,a!R2S a

a†D G5expF 1
2 ~a†,a!RS a

a†D G , ~20!

with the matrixR determined by

eR1eR25eR. ~21!

The matricesWn associated withŴn are given by

Wn5expF S 2~eh02em82Aeksanqa! 2AeG/2fn
!P

AeG/2fnP eh02em82Aeksanq̃a
D G . ~22!
e
and

re
le-
The matrixP in Eq. ~18! is the same as that appearing in t
definition of the pairing operator@Eq. ~3!#. Moreover, if we

setz5eia, the operatoreiaN̂ is rewritten as

eiaN̂5zNsP̂N5zNs expF 1
2 ~a†,a!S ia 0

0 2 ia D S a
a†D G

~23!

and therefore its representation matrix is

S z 0

0 1/zD .
The operatorV̂, defined in Eq.~9!, is represented in the sam
way. The quantities to be evaluated, for the cases of even
odd numbers of particles, are, respectively,

Be85~zpzq!NsC^0uV̂†P̂N~zp!ŴP̂N~zq!V̂u0&, ~24!

Bo85~zpzq!NsC^0uakV̂
†P̂N~zp!ŴP̂N~zq!V̂ak

†u0&, ~25!

with k being a single-particle index. Respectively, they a
the vacuum matrix elements and one-particle matrix e
ments of the modified propagator

Ŵ85V̂†P̂N~zp!ŴP̂N~zq!V̂. ~26!
8-3
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The vacuum expectation value of this propagator is given

^0uŴ8u0&5@det~W228 !#1/2, ~27!

whereW228 is the 232 submatrix of the matrixW8 associ-

ated withŴ8. Similarly, the one-particle expectation valu
of Ŵ8 is given by

^0uakŴ8ak
†u0&5~W228 !kk

21@detW228 #1/2. ~28!

SinceW228 depends in a nontrivial way onzp andzq , optimal
ways of evaluating both the determinant and the inverse
the above expressions have to be found in order to avoid
costly evaluation for allzp andzq . In Ref. @2#, we discussed
how this can be done for Eq.~27! ~even systems!, where we
reduced the evaluation of such determinants to the evalua
of determinants of a matrix that depends on only one of
variableszp or zq . Here we discuss how a similar techniqu
can be implemented for the case of an odd particle num
instead of evaluating the inverse and the determinant in
~28! for all values of the fugacitieszp andzq , as previously
done for numerical stability.

As done in Ref.@2#, the matrixW8 can be obtained from
the multiplication law of the matrices associated with t
factors in Eq.~26!. The result forW22 is

W228 5~zpzq!21@W221zq
2W21X2zp

2X~zq
2W11X1W12!#,

~29!

where the matrixX is given by Eq.~10!. In the Appendix we
show that this matrix can be rewritten as

W228 5~zpzq!21~11zp
2XGq!W22~11zq

2DX!, ~30!

where the matricesD andGq are antisymmetric and given b

D5W22
21W21, ~31!

Gq52@C1zq
2W̃22

21X~11zq
2DX!21W22

21#, ~32!

with C5W12W22
21. These expressions show that the calcu

tion of the determinant and of the inverse ofW228 can be
carried out efficiently because of the simple dependence
zq andzp of the factors in Eq.~30!. A single diagonalization
is sufficient to obtain the determinant and the inverse o
1zq

2DX, and the eigenvalues and eigenvectors ofGq depend
only on zq . Using these expressions, Eqs.~25! and ~26! be-
come

Be8~zp
2,zq

2!5CuW22u1/2u11zq
2DXu1/2u11zp

2XGqu1/2 ~33!

and

Bo85Czpzq@~11zq
2DX!21W22

21~11zp
2XGq!21#kk

3uW22u1/2u11zq
2DXu1/2u11zp

2XGqu1/2. ~34!

Some observations are in order about the structure of E
~33! and ~34!. Let us consider first Eq.~33!. In Eq. ~33! the
dependence on the variables is only quadratic, so rather
project to a given particle number, we can most sim
03431
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project to a given number of pairs. The double partic
number projection can be achieved by simply replacing
integrals overzp andzq in Eq. ~14! by the double sum

Be~A!5
1

~Np11!2 (
l ,m50

Np

B8~ l ,m!expS 2 i
2p

Np11
~11m!n D ,

~35!

wheren5A/2 is the number of pairs,Np is the maximum
number of pairs, andB8( l ,m) is B8(zp ,zq) evaluated atzq

2

5ei2p l/(Np11) and zq
25ei2pm/(Np11). The projection overA

particles of the sum overl can be carried out very simply
using the recursion relations of Ref.@9# @cf. Eqs.~41!–~44!
of Ref. @9#!. First, the matrixXGq is diagonalized for all
values ofzq

25ei2pm/(Np11). SinceXGq is the product of two
antisymmetric matrices, its spectrum has a double deg
eracy@2#, and this allows a simple evaluation of the squa
root of u11zp

2XGqu. Then, the coefficient of the powerzp
A in

B8 can be evaluated with the aforementioned recursion r
tions. We are then left with only one sum overzq

2. The square
root of u11zq

2DXu is simply P(11zq
2l), where thel’s are

the eigenvalues ofDX ~one per degenerate pair!.
The square root of detW22 ~the vacuum contribution!, as

well as its sign, can be evaluated by factorizing the ma
W22 into a product of vacuum matrices at a higher tempe
ture, as discussed in Ref.@2#, to which we refer. In the cal-
culation discussed here, we factorized the vacuum contr
tion with a product of vacuum terms at a temperature eq
to 4/b.

Let us discuss now the structure of Eq.~34! relative to the
odd-number case. Because of the presence of the fa
zpzq , Bo8 contains only an odd number of particles. Since t
remaining dependence on the fugacities contains only
even power, the remaining part ofBo8 has to be projected to
the number pairs (A21)/2. To understand the structure o
contributions to the particle-number projectedBo , consider,
in Eq. ~34!, a fixed value ofzq

2. Thezp dependence inBo8(zp)
is determined by the matrix

~11zp
2XGq!21u11zp

2XGqu1/2.

If lk are the eigenvalues ofXGq with eigenvectorsVik and if
we call l2k the degenerate partner oflk , one has

~11zp
2XGq! i j

21u11zp
2XGqu1/2

5 (
k.0

@VikVk j
211Vi 2kV2k j

21 # )
k8.0, k8Þk

~11zp
2lk8!,

~36!

so the term in square brackets plays the role of a den
~although in a generalized sense!, and the product over the
eigenvalues gives the contribution of the remainingA
21)/2 pairs.

C. The determination of the chemical potentials

From the structure of the propagator appearing in Eq.~6!,
it is seen that the values of the integrand depend on
8-4
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selected values of the chemical potential. Here we disc
how such a determination is made in practice. As pointed
in previous works that use this functional integral formu
tion, the value of the chemical potential affects the amoun
sign fluctuations in a Monte Carlo calculation. In fact, a
though we work exclusively with canonical quantities~i.e.,
pertaining to a fixed value of the particle number!, the propa-
gator, appearing in the functional integral, contains sev
particle-number components~since it does not conserve pa
ticle number!, and the chemical potential fixes the avera
particle number. Differently stated, each evolution opera
Ûn in Eq. ~5!, acting on a state of exactlyA particles, will
generate components with several particle numbers. Th
spurious particle-number components are suppressed b
appropriate choice of the chemical potential only in an av
age sense. If we do not fix optimally the chemical potent
these spurious particle-number components would be
celled only upon integration, and this could cause sign fl
tuations. An obvious limitation of this method is that in som
cases the chemical potential might not suppress entirely
rious particle-number components. However, as discusse
the next section, they do so especially as we increase
number of particles.

In practice, we determine the chemical potential by mi
mizing the matrix elements, in the integrand of Eq.~9!, as a
function of the chemical potential, only at the mean fie
The mean field is the integration point at which the integra
reaches its maximum. This mean field is time dependent
the mean-field variables~both deformation and pairing vari
ables! turned out to be even in time, in the interval@0, b#
aroundb/2, in a few cases where the variation of the va
ables was left unconstrained. Because of this, we implem
this time-even feature as a constraint in the determinatio
the solution of the mean-field equations; this time-even c
straint considerably reduces the computational effort. T
mean-field equations are obtained by maximizing the eff
tive action

Seff52 1
2 (

an
san

2 2 1
2 (

n
~fxn

2 1fyn
2 !

1 ln@^c,J,M ,p,AuÛuc,J,M ,p,A&#, ~37!

as a function of the time-dependent variablessan , fxn , and
fyn . If we denote byxn any of these variables, the mea
field equations are

xn5]xn
ln^c,J,M ,p,AuÛuc,J,M ,p,A&], ~38!

with periodic boundary conditions in the interval@0, b#. Nu-
merically these equations are solved by inserting some in
starting values in the right-hand side of the above equa
and taking the left-hand side as new values. Typically, if
take the static mean-field solutions as starting values, c
vergence is quickly achieved. However, if the particle nu
ber is small, convergence can be slow. The mean-field e
tions are solved for several values of the chemical poten
until the minimum value of the effective action, as a functi
of the chemical potential, is found.
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Time-dependent mean-field equations of this type,
though in a different context have, also been discussed
Ref. @10#. Here, they appear because the static mean-fi
equations do not represent the maximum of the effec
action.

III. MONTE CARLO CALCULATIONS

Let us now discuss the numerical results. The mo
Hamiltonian is the pairing plus quadrupole Hamiltonian w
a restricted single-particle basis. The neutron states com
ing the basis are 0h9/2, 1f 7/2, 1f 5/2, 2p3/2, 2p1/2, and
0i13/2, and the proton states 0g7/2, 1d5/2, 1d3/2, 2s1/2,
and 1h11/2. The strength of the forces, the single-parti
energies, and the matrix elements of the quadrupole oper
are taken from Ref.@7#, except for the size of the basis
which is restricted here to one major shell. The quantit
that are evaluated are the energies, given by

^Ĥ&52]b ln^c,J,M ,p,N,Zue2bĤuc,J,M ,p,N,Z&.
~39!

We rewrite the functional integral expression for the mat
elements in Eq.~39! schematically as

^c,J,M ,p,N,Zue2bĤuc,J,M ,p,N,Z&5E dx eSeff~b,x!s,

~40!

whereseSeff(b,x) is the real part of the integrand of the fun
tional integral,x denotes the set of integration variables, a
s is the sign; then we have

^Ĥ&5
*dx eSeff~b,x!s@2]bSeff~b,x!#

*dx eSeff~b,x!s
. ~41!

This expression is rewritten as the ratio of expectation val

^Ĥ&5
^s@2]bSeff~b,x!#&

^s&
, ~42!

where the expectation values in the right-hand side are ev
ated with the probability densityeSeff, for example,

^s@2]bSeff~b,x!#&5
*dx eSeff~b,x!s@2]bSeff~b,x!#

*dx eSeff~b,x! .

Each expectation value in the right-hand side of Eq.~42! is
evaluated using the method of Metropoliset al. @4#. The sta-
tistical error of the ratio in Eq.~42! is evaluated using the
following expression for the variance of two random va
ablesr 1 and r 2 with variancese1 ande2 :

s~r 1 /r 2!

5U^r 1&

^r 2&
UAS e1

^r 1&
D 2

1S e2

^r 2&
D 2

22
^r 1r 2&2^r 1&^r 2&

^r 1&^r 2&
.

~43!
8-5
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In this expression, the variancese1 ande2 and the correlation
^r 1r 2&2^r 1&^r 2& refer to the Monte Carlo averages and n
to the corresponding quantities of set of the samples ge
ated during the Monte Carlo calculation. The variances
correlation of the averages are related to the correspon
quantities computed using the samples by the familiar fa
1/Ansample, where nsample is the number of uncorrelate
samples.

The calculation is performed as follows. First the chem
cal potentials, for both neutrons and protons, are determ
as discussed in Sec. II C; then sample points of the inte
tion domain are generated by updating all variables. A
update is performed by first updating all variables at a fix
time interval~for this model we have only five deformatio
variables, and four pairing variables in every time interv!
while keeping all other variables fixed, then by repeating
procedure at every time interval in sequence. The star
configuration is usually the solution of the mean-field eq
tions ~since it is determined anyway!; sometimes, however
we start the calculation from the typical values of the in
gration variables in neighboring systems. We took the
transition probability from one integration pointx to yÞx,

T~x→y!5N~x2y!min@1,exp~Seff~y!2Seff~x!#,

whereN(x2y) is a Gaussian distribution ofx2y.
After all variables have been updated, the value o

@2]bSeff(b,x)#s and of the signs are calculated. Strictly
speaking, all values generated in this way should be stat
cally independent and distributed according to the proba
ity densityeSeff(b,x). Since the initial integration point usuall
has a small probability of being generated during the Mo
Carlo calculation, a number of values generated initia
have to be discarded~this is the so-called ‘‘thermalization
step’’!.

The values of]bSeff(b,x) are generated sequentially, an
therefore they are strongly correlated. Therefore we cons
as is usually done for the statistical analysis, only one va
for everyndec value~this is the so-called decorrelation step!.
As a consequence, most of the data set is discarded an
are left with a small fraction of the initial data set.

The mean-field effective action, although being the larg
effective action, is not the most probable one. This impl
that the region close to the mean field~e.g., mean field with
small-amplitude perturbations! are not generated during th
Monte Carlo simulation. In order to determine the mo
probable value of the effective action, let us assume tha
can be expanded with a quadratic form in the vicinity of t
mean-fieldx0 , i.e.,

eSeff~b,x!5'eSeff~b,x0!2~xi2x0i !Mi j ~xj 2x0 j !/2,

whereM is the matrix of the second derivative of the effe
tive action as a function of the integration variablexi . Al-
most all the eigenvaluesmk of the matrixM are between 0
and 1~only the eigenvalue corresponding to the deformat
variableg is much larger than 1!. Using the eigenvectorsv
of this matrix,Mi j 5v ikmkv jk , we can perform a change i
the integration variables to new variablesuk , defined asxj
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2x0j5(kAmkv jkuk . The variablesuk have a Gaussian distri
bution exp(21

2(kuk
2). The regionuk'0 has a negligibly small

probability of being generated in the Monte Carlo simu
tion. The most probable effective action has(kuk

2 approxi-
mately equal to the dimensionality of the integral, as can
seen using polar coordinates.

Differently stated, the probability of having a particula
valueS for the effective action is given byeSV(S)dS, where
V(S)dS5*dx d(S2Seff) is the volume of the integration do
main in which the action equalsS. It is not the absolute value
of S that matters, but rather, the producteSV(S). This is
readily verified in the Monte Carlo calculation, where th
effective actions, generated by the Metropolis algorith
show very large deviations from their mean-field value.

If we start the calculation near the mean field, all integ
tion points generated with the Metropolis method quick
depart from this initial point and never approach it aga
Typically we have to discard the first few thousand integ
tion points to avoid sensitivity to the initial start.

In the Metropolis algorithm, each integration point is u
dated in the neighborhood of the previous one. Since
have only nine variables at each time interval, we can p
form updates with a large step and still have a large acc
tance ratio~typically, at any time interval, acceptance rati
are as high as 50% and 70% with a step size of about 0.
0.5. Even with such large steps, considerable correlation
mains between one integration point and the next. Typica
we keep one point about every 10 or 20 steps. The size
these decorrelation steps are decided by keeping the en
autocorrelation function'0.4 or smaller. The numerical re
sults are summarized in Table I. Together with the nuclei,
Jp values, the energies, and the inverse temperatures
have been used, we also show the average sign^s&, the num-
ber of decorrelation stepsndec ~we took 2000 thermalization
steps!, and the residual number of samplesnsampleused in the
statistical analysis after thermalization and decorrelation.
consider a single long Markov chain.

Despite the large number of decorrelation steps, the
sidual autocorrelations in the samples remains high, wh
probably leads to underestimated statistical errors.

It is worth mentioning that the energies evaluated near
time-dependent mean field, during the calculation, are s
eral MeV ~typically 5–7 MeV! higher than the expectatio
values. All calculations have been performed with t
weights, defined by Eqs.~10! and ~11!, f i51 and with
b/Nt50.0625.

There are several features that emerge from the res
Together with the erbium isotopes we also show some
culations for153Dy and157Dy. Typically, the statistical errors
are rather small; they range from about 100 keV in the c
of large neutron number to few hundred keV for small ne
tron number. This is true for both even and odd nuclei, a
despite the small number of samples remaining after the t
malization and decorrelation steps~about 400 for the heavy
systems and 900 for the light dysprosium isotopes!. The
number of decorrelation steps depends on the number of
trons: is relatively small for light systems but large for th
heavy ones. The average sign is nearly 1 for heavy syste
8-6
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TABLE I. Monte Carlo results for the energiesE. ndec is the number of decorrelation steps.^s& is the
average sign.

Nucleus Jp b ndec nsample Autocorrelation ^s& E6dE ~MeV!

171Er 13
2

1 4.0 23 348 0.5 0.99 2125.58760.105
169Er 9

2
2 4.0 20 401 0.3 0.99 2120.6760.097

168Er 01 2.0 30 600 0.5 1.0 2118.96160.116
167Er 9

2
2 4.0 20 378 0.4 0.92 2114.43660.175

3.0 20 401 0.5 0.95 2114.51760.136
2.0 20 401 0.4 0.99 2114.74760.147

166Er 01 4.0 20 344 0.5 0.91 2112.80260.131
3.0 20 378 0.5 0.98 2112.95160.151
2.0 20 318 0.5 1.0 2112.77260.182

165Er 9
2

2 4.0 20 408 0.4 0.82 2108.47560.116
3.0 20 428 0.5 0.91 2108.36560.131
2.0 20 417 0.4 0.99 2107.83660.130

165Er 13
2

1 4.0 20 424 0.4 0.92 2108.65660.103
3.0 20 396 0.4 0.90 2108.06860.132
2.0 20 401 0.5 1.0 2107.82960.138

165Er 7
2

2 4.0 15 490 0.4 0.94 2108.20060.95
3.0 20 436 0.5 0.97 2108.46760.105
2.0 20 445 0.4 0.99 2107.44360.125

164Er 01 2.0 20 402 0.5 0.98 2106.35260.141
162Er 01 2.0 20 401 0.4 0.95 298.30960.140
160Er 01 2.0 12 667 0.4 0.72 290.43460.138
158Er 01 2.0 12 667 0.4 0.75 281.78060.136
156Er 01 2.0 12 1010 0.3 0.60 272.99460.127
154Er 01 2.0 12 784 0.4 0.43 263.72660.217
157Dy 7

2
2 4.0 10 1257 0.3 0.23 282.39360.313

153Dy 7
2

2 4.0 10 901 0.3 0.29 264.87760.330
3.0 10 801 0.3 0.31 264.63660.250
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but sign statistics tend to worsen as the neutron numbe
decreased. Despite this, errors are reasonable. Numeri
the three terms appearing inside the square-root expres
of Eq. ~43! nearly cancel each other out.

In order to understand qualitatively the reason why
statistical errors are so small in the case of strong sign o
lations ~we obtained average signs as small as 0.2!, let us
note that, apart from the sign, the quantitya[2]bSeff(b,x)
is nearly constant, especially at low temperature. Let us c
sider for the sake of argument the sign as an integer ran
variable approximately uncorrelated toa. Then one has~here
s denotes the variance!

^Ĥ&5^a&, s~^Ĥ&!5s~a!/^s&. ~44!

Therefore, if the derivative of the effective action is nea
constant in the important region of the integration doma
the error of the ratio is small and the sign does not affect
expectation values ofĤ. This is true if the sign and the
derivative of the effective action are decorrelated. Sin
some correlations are present, some deviations from the
proximate expressions presented above should be expe
The deviations of̂ Ĥ& from the approximate expression o
Eq. ~44! induced by the correlation betweena and s are
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typically few to several hundreds of keV for the light sy
tems and only in the case of154Er is the deviation 1 MeV.
The approximate error formula is rather accurate. Apart fr
these small deviations occurring for light systems, the ene
expectation values are not strongly affected by the sign.
statistical error instead is inversely proportional to the av
age sign, but the fluctuations ofa are small and this results in
a tolerable statistical error of the energy.

The energy2]bSeff(b,x) decreases as we depart from t
mean-field region, and since we never sample this reg
with appreciable probability, we sample a region in the in
gration volume in which the above-noted quantity assum
values substantially lower than the mean-field value by s
eral MeV. Also, the difference between the effective acti
evaluated at the mean field and the typical effective action
the samples is rather large, as previously explained; fob
52, for example, this difference fluctuates around 100–1
Although the relative probability of the integration poin
versus the mean-field probability is rather small, they hav
much larger volume.

To summarize the findings of this work, we have show
that sign fluctuations decrease as we increase the par
number. Moreover, despite sign fluctuations in light system
the samples generated by the Monte Carlo method give s
8-7
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statistical errors, since apart from the sign^s& the energy is
nearly a constant. In this respect, it is conceivable that a
other functional integrals having sign fluctuations could
evaluated using Monte Carlo techniques. Finally, we h
discussed an improved method for the evaluation of the fu
tional integral in the case of odd systems.

APPENDIX

Here we prove Eq.~30!, which we found numerically sta
bler than Eq.~29!. The matricesW satisfy the identity~cf.
Ref. @8#!

W215S 0 1

1 0D W̃S 0 1

1 0D . ~A1!

If we set

C5W12W22
21, D5W22

21W21, ~A2!

expanding Eq.~A1!, we obtain

C̃52C, D̃52D, ~A3!

and
E.

03431
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W115W̃22
211W12D. ~A4!

If we set

Mq52X~zq
2W11X1W12!,

Nq5zq
2W21X1W22, ~A5!

we have, from Eq.~29!,

W228 5~zpzq!21@11zp
2MqNq

21#Nq . ~A6!

The matrixNq can be written as

Nq5W228 ~11zq
2DX!. ~A7!

Combining Eqs.~A5! and ~A4!, we have

Mq52X@zq
2W̃22

21X1W12~11zq
2DX!#, ~A8!

and using Eq.~A7!

MqNq
2152X@C1zq

2W̃22
21X~11zq

2DX!21W22
21#, ~A9!

from which Eq.~30! follows directly.
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