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Monte Carlo calculations of energies in the erbium region
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We investigate the validity of the method of computing ground-state energies, at a given angular momentum,
with Monte Carlo methods applied to the functional integral formulation containing pairing fields. Calculations
have been performed for several erbium isotopes and a few dysprosium isotopes. It is found that some residual
sign fluctuations, which seem to be associated with a small neutron number ab®\e 82eshell closure, are
present, but that they do not affect the feasibility of the calculations. Such sign fluctuations disappear as the
neutron number is increased. Also, an efficient improved method for the computation of the functional integral
in the case of an odd number of patrticles is presented. The Monte Carlo method of Meteodl[s. Chem.
Phys.21, 1087(1953] is used in the evaluation of expectation values.
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[. INTRODUCTION N=282 closure, but they disappear as the neutron number is
increased. It should be mentioned, although we shall not
The problem of understanding the low-energy collectivedwell on it, that these sign fluctuations are also present if we
behavior of heavy nuclei has always been a central problemrswitch off the quadrupole force in the model Hamiltonian
since the early days of nuclear physics. With a large numbesind that with such a simplified model these fluctuations are
of active nucleons and available many-body states, it is fagompletely absent in the vicinity of tHé= 126 shell closure,
beyond the capabilities of nuclear shell model diagonalizahelow and abovéin this latter case the single-particle space
tion approaches. Functional integral methddd, imple-  was increased
mented with Monte Carlo integration techniques, seem to be |n the rare earth region, other systematic Monte Carlo
so far a promising method to tackle the problem. calculations have been performed by White, Koonin, and
Recently, we presented a method to evaluate the particlpean[5]. In these calculations a different functional integral
number, angular momentum, and parity projected manytthat preserves the number of partiglegas applied to the

body matrix elements of the form canonical ensemble unprojected partition function. It is
. straightforward to apply the projection methods of R2f.to
B={(y,d,M,m,N,Z|e " y,J,M,7,N,Z), (1)  the type of functional integrals used in R€5] as done in

Ref. [6]. We found that these functional integrals are most
using functional integrals containing pairing fiel®. In the  useful in the case of an even number of particles, where the
above expression the trial state not orthogonal to the grounflinctional integral is free of sign oscillations in the case of
state,[,J,M,m,N,Z), has definite angular momentuirM,  zero angular momentum. However, in a trial case of an odd
good paritysr, and neutron and proton number, respectively,number of particles in the middle of neutron major shell,
N andZ. This technique was applied to few cases, with theusing the pairing plus quadrupole model, sign oscillations
pairing plus quadrupole Hamiltonian and with the schematiacdemained. In the formulation we use, instead, sign fluctua-
pairing Hamiltonian[3]. It seems appropriate to investigate tions disappear as we increase the particle number, as we
systematically the applicability of these techniques to severadhall see later.
nuclei. In this work we do so and discuss improvements on Despite positivity of the functional integrals used in Ref.
the method presented in R¢2] for the case of an odd num- [5] in the case ofi”"=0", the number of integration vari-
ber of particles. Moreover, while in Reff2] the matrix ele-  ables is largésince it depends on the square of the number
ments in Eq(1) were computed directly using the Gaussianof the single-particle states in the basiand if we were to
path method, here we evaluate the energies of the many-bodtend the single-particle basis to the full basis employed by
Hamiltonian as expectation values using the samplingKumar and Barangdi7], the number of integration variables
method of Metropolist al. [4]. would make practical calculations much more expensive pre-

We consider several erbium isotopes and a few dysproeisely because of the large number of integration variables
sium isotopes in the pairing plus quadrupole model. We us¢hat have to be updated in the Monte Carlo calculation. On
the restricted single-particle basis in tNe=82,N=126 neu- the other hand, the formulation that we discussed in Refs.
tron major shell and in th&=50, Z=82 proton major shell. [2,3] and that we use in this work does not change the di-
We consider several isotopes with neutron number rangingnensionality of the functional integral as we increase the
from few to about 20 above tHé=82 shell closure. In Refs. size of the single-particle basis.

[2,3], the sign fluctuations were suppressed by properly ad- The outline of this paper is the following. In Sec. Il we

justing the chemical potentials. A question remains whethetbriefly review the method of evaluation of the matrix ele-

with this method, the sign fluctuations in the functional inte-ments of Eq(1) (Sec. Il A) and discuss an improved method

gral can be eliminated entirely. We found that residual sigrin the case of an odd number of particles, which greatly
fluctuations remain for neutron numbers in the vicinity of theincreases the speed of the calculati@ec. 1B, and the

0556-2813/2001/68)/0343188)/$20.00 64 034318-1 ©2001 The American Physical Society



G. PUDDU

PHYSICAL REVIEW C 64 034318

method currently used to determine the chemical potential®orm numerical calculations, regardless of the integration
(Sec. 11Q. In Sec. Il we discuss the numerical calculationsmethod. Second-quantized operators are denoted by capital

in the erbium region.

II. EVALUATION OF THE FUNCTIONAL INTEGRAL
EXPRESSION OF MATRIX ELEMENTS B

A. The functional integral

letters with a caret and their corresponding first-quantized
operators by lowercase letters.
Inserting Eq.(4) in Eqg. (1), one has, foA particles,
Ni

2
B=e o0\ 1 (d¢xnd¢ynH daan)
n=1 a=-2

In order to shorten the equations, let us consider one kind

of particle. The pairingt quadrupole Hamiltonian is defined

as
Kk 2
A=Ho-5 2 (-1QYUQP-GP'™P, (2
a 2

<o <13 ot (Hhadio e
X {(,3,M,m,Al0|¢,I,M,7,A). 7

Since only the scalar part &) matters, we are allowed to

~ N . . . ) . . .
where H0=2ileiaiTai is the single-particle Hamiltonian replace the matrix elements of E) with
for Ng single-particle levels. The second quantized operators

QP =% i(aP);;ala; (fora=-2,...,2 are the spherical
components of the quadrupole operator, 8=, jaia; is

1 A
B=% 53 (WM mAO[pIM,7A). ()

the monopole pairing operator. Time reversal states are dexg i Ref.[2], we take trial states of a very simple form. For

fined as|i)=|njm) and|i)=(—1)*Y3nj—m). The pair-

ing operator is recast in the form

., 1
PT=§ a'Pa’, )

the case of an even number of particles and angular momen-
tum and parityJ”=0", we take

97=0")=C|0)=e="="0)=V]0), (©)

where|0) is the particle vacuum an¥ is an antisymmetric

where P is an antisymmetric matrix in the single-particle mayrix of the Clebsh-Gordan coefficients that couple the par-

indices. Instead of using the spherical tens@8, we find
it more convenient to work with their corresponding Carte-
sian components denoted ég (a=—-2,—-1,0, 1, 2 (which
are their real and imaginary partsrom Ref.[2], the func-

tional integral expression fa 2" <N for any a is

R R N¢ 2
g~ BH+aN_ o= BGO2)s n];[l (d¢xnd¢yna£[2 dUan)

xexrl(—%an oin—%g (¢§n+¢§n>)0,

4
whereU is the evolution operator
l:JZONIUN;I”LAJL 5
0n=ex;{ — ¢l Ay~ ek 0anQa
a
— JeGI2( P+ ¢;ﬁ>T)D (6)

and ¢n:(¢xn+i¢yn)- In Eq. (6), F|(’):|:|o_,4»l«,f\\l and u’
=u—G/2 (n=alB). Nis the normalization constant

1\ 7Ny2
12

We write the functional integral using this form for the inte-
gration variables because it is the most appropriate to per-

ticle operators to zero angular momentum:
afxa'=> fi[a] xal1©. (10)
i I I

For simplicity we take alf;=1. For an odd particle number
we take

0%, jm)y=a/,[0"). (12)

We stress that the essential requirements for these trial states
are their angular momentum and parity content. Since we
shall perform the exact calculation of the full functional in-
tegral using Monte Carlo methods, the details and the accu-
racy of these trial functions do not determine the final result,
provided they are not orthogonal to the ground state; how-
ever, they might affect the temperatures at which the ground
state dominates the matrix elements of EL.

To ensure proper particle number, the matrix eleménts
of Eq. (8) must be projected by a particle number operator. If
we call g, the particle-number projector fak particles

1 27 N
da e'@N=A) (12)

=27,

and we denote

B'(zp,zq)=rl+1% (I M, 7l e eeNOgiaaN| g 3 M, 7,
(13

where
z,=€'", z,=e'“q, (14
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then Eq.(8) becomes [2], we obtained an increase in the computational speed by
, about a factor of 7. To describe the method, let us give some
B= (ZW)—zf daydagB’(z, ’Zq)e—i(ap-#aq)A. (15) ggflnltlons and let us rewrite the evolution operator of &.

Since the evaluation oB’ in Eq. (15) requires a double U =Wy Wy, 1+ Wy, (16)
particle-number projection, some manipulations are neces-
sary in order to perform the calculation efficiently. This is the_ .
X with
goal of the next subsection.

_ ) N; 2
B. Evaluation of B’ and B Cc= ex;{ _%2 tr( eho—en’ — \/& 2 UanQa”a
The evaluation of Eq(13) makes use of the quasiparticle n=1 a=-2 .
formalism of Ref.[8] and follows the analysis done in Ref. (17)

[2]. The difference between the method illustrated here and ) ) ] ]

the method used in Ref2] is that the method we discuss Where d, is the single-particle quadrupole matrix and the
here is several times faster then that implemented in[Rgf. trace is over the single-particle indices. In E6) the modi-
for odd nuclei. In some of the calculations, discussed in Reffied propagator§V, are given by

. [~ (eho— e’ —ekoanaa) —\/eGl2¢,P a
W,=exp 3(a',a) _ +] 1. (18
VeG/2¢, P eho—eu’ — Jeko, G,/ ' @
Exponential operators of a quadratic form in the creation and annihilation operators, such as
A 1ot a
W=exps(a',a)R at (19
providedR;;= — R,,, andR;,= —R,;, form a group; more precisely
1 T a 1 T a 1 T a
expz(a )Ry 1| |expz(a’,a)Ry| o] |=expgz(a ,a)R| 1|, (20
with the matrixR determined by
efigRe=gR, (21
The matriced\,, associated withV,, are given by
W ,{( —(€ho—ep' —Jekoanaa) — €G24, P ” .
=ex .
" JeG2¢,P eho— e’ — Vekoa Ga

The matrix? in Eq. (18) is the same as that appearing in the The operatol, defined in Eq(9), is represented in the same
definition of the pairing operatdiEg. (3)]. Moreover, if we  way. The quantities to be evaluated, for the cases of even and
setz=e'?, the operatoe'®N is rewritten as odd numbers of particles, are, respectively,

ia 0 Be=(2y2q)NsC(O|VTP\(2p) WPy(2o)V[0), (24

e . a
el N=7Nsp =7Ns exp{%(a*,a) 0 o at
—ia o o A
23 By = (2,2)VsC(0|a V Py(z,) WP\ (2)Va][0), (25)
and therefore its representation matrix is with k being a single-particle index. Respectively, they are
the vacuum matrix elements and one-particle matrix ele-
ments of the modified propagator
o ]
0 1) W' =VTPy(z,) WPy(zo)V. (26)
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The vacuum expectation value of this propagator is given byroject to a given number of pairs. The double particle-

(O]W'|0)=[ de(W5,) 1%, (27)

whereWs, is the 2x2 submatrix of the matriV/ associ-
ated withW’. Similarly, the one-particle expectation value
of W' is given by

(0la W' af] 0y = (Wjy) o [ detWj,] 2 (28)

SinceW,, depends in a nontrivial way ar, andz,, optimal

number projection can be achieved by simply replacing the
integrals overz, andz, in Eq. (14) by the double sum

No 27
BE(A):(NF)T)Zu,mE:o B (|,m)exp(—| N1 (L.

(35

where v=A/2 is the number of paird\, is the maximum
number of pairs, an®’(lI,m) is B'(z,,z,) evaluated azg
=¢'2mNp*1) and z3=e2"™(MNy 1), The projection ovel

ways of evaluating both the determinant and the inverse iparticles of the sum over can be carried out very simply
the above expressions have to be found in order to avoid thgsing the recursion relations of R¢f)] [cf. Egs.(41)—(44)

costly evaluation for alz, andz,. In Ref.[2], we discussed
how this can be done for E¢R7) (even systemswhere we

of Ref. [9]). First, the matrixXG, is diagonalized for all
values ofz;=¢'2™™Np*1)| SinceX G, is the product of two

reduced the evaluation of such determinants to the evaluatioghtisymmetric matrices, its spectrum has a double degen-
of determinants of a matrix that depends on only one of thexracy[2], and this allows a simple evaluation of the square

variablesz, or z,. Here we discuss how a similar technique
can be implemented for the case of an odd particle numbe

instead of evaluating the inverse and the determinant in EGjons. \We are then left with onl

(28) for all values of the fugacities, andz,, as previously
done for numerical stability.

As done in Ref[2], the matrixW’ can be obtained from
the multiplication law of the matrices associated with the
factors in Eq.(26). The result forW,, is

Wio=(2p2Zq) ~{ Waot ZiWorX — 22X (25 W13 X+ Wy,) ],
(29

where the matriX is given by Eq.(10). In the Appendix we
show that this matrix can be rewritten as

Wio= (2pzq) ~H(1+2Z5XGg)Woy(1+22DX),  (30)
where the matriceB andG, are antisymmetric and given by

D = W5 Wa,, (31)

Gq=—[C+ZiWy; X(1+Z2DX) " Wy, ], (32

with C=W12W2‘21. These expressions show that the calcula-

tion of the determinant and of the inverse \&f,, can be

carried out efficiently because of the simple dependence o

z, andz, of the factors in Eq(30). A single diagonalization

is sufficient to obtain the determinant and the inverse of 1

+z§DX, and the eigenvalues and eigenvector&gfdepend
only onz,. Using these expressions, E¢85) and(26) be-
come

Bi(25,28) = CIWy) " 1+ 23D X[ Y41+ 23X Gy |2 (33)
and
Bo=CzyZq[ (1+ZZDX) *Wp5 (1+25XGg) Mk

X |Wod Y41+ ZiDX| M3 1+ 22X Gg| V2. (34)

root of | 1+2z5XGg|. Then, the coefficient of the powef, in

B’ can be evaluated with the aforementioned recursion rela-
y one sum omér The square
root of |1+ 23D X| is simply II(1+23)\), where thex’s are

the eigenvalues dDX (one per degenerate pair

The square root of d&t,, (the vacuum contribution as
well as its sign, can be evaluated by factorizing the matrix
W, into a product of vacuum matrices at a higher tempera-
ture, as discussed in Rg®], to which we refer. In the cal-
culation discussed here, we factorized the vacuum contribu-
tion with a product of vacuum terms at a temperature equal
to 4/B.

Let us discuss now the structure of E84) relative to the
odd-number case. Because of the presence of the factor
2,24, B, contains only an odd number of particles. Since the
remaining dependence on the fugacities contains only an
even power, the remaining part Bf, has to be projected to
the number pairsA—1)/2. To understand the structure of
contributions to the particle-number project8g, consider,
in Eq. (34), a fixed value ofz;. Thez, dependence iB;(z,)
is determined by the matrix

(1+Z5XGg) ~H1+25XGy| M2,

i A are the eigenvalues &G, with eigenvectord/; and if
we call\ _, the degenerate partner ®f, one has

(1+Z5XGg); 1+ 22X Gy M2

I1

= > [ViVi ' +Vis V]
k>0 k'>0, k' £k

(1+2Z5Mp),

(36)

so the term in square brackets plays the role of a density
(although in a generalized sensand the product over the
eigenvalues gives the contribution of the remaining (
—1)/2 pairs.

Some observations are in order about the structure of Egs.

(33) and(34). Let us consider first Eq33). In Eq. (33) the

C. The determination of the chemical potentials

dependence on the variables is only quadratic, so rather than From the structure of the propagator appearing in(BY.

project to a given particle number, we can most simply

it is seen that the values of the integrand depend on the
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selected values of the chemical potential. Here we discuss Time-dependent mean-field equations of this type, al-
how such a determination is made in practice. As pointed outhough in a different context have, also been discussed in
in previous works that use this functional integral formula- Ref. [10]. Here, they appear because the static mean-field
tion, the value of the chemical potential affects the amount oequations do not represent the maximum of the effective
sign fluctuations in a Monte Carlo calculation. In fact, al-action.

though we work exclusively with canonical quantitiés.,

pertaining to e}fixgd value of the particle numbehe_propa— lIl. MONTE CARLO CALCULATIONS

gator, appearing in the functional integral, contains several

particle-number componen(since it does not conserve par-  Let us now discuss the numerical results. The model
ticle numbe), and the chemical potential fixes the averageHamiltonian is the pairing plus quadrupole Hamiltonian with
particle number. Differently stated, each evolution operato@ restricted single-particle basis. The neutron states compris-
U, in Eq. (5), acting on a state of exactl particles, will g the basis are {0/2, 1f7/2, 1f5/2, 2p3/2, 2p1/2, and
generate components with several particle numbers. The&d13/2, and the proton stategy®/2, 1d5/2, 1d3/2, 2s1/2,
spurious particle-number components are suppressed by &d 1h11/2. The strength of the forces, the single-particle
appropriate choice of the chemical potential only in an averenergies, and the matrix elements of the quadrupole operator
age sense. If we do not fix optimally the chemical potential@’e taken from Ref[7], except for the size of the basis,
these spurious particle-number components would be caryhich is restricted here to one major shell. The quantities
celled only upon integration, and this could cause sign flucthat are evaluated are the energies, given by

tuations. An obvious limitation of this method is that in some R .

cases the chemical potential might not suppress entirely spu- (H)=—dgIn(4,J,M,m,N,Z[e” Ay, I, M, 7,N,Z).

rious particle-number components. However, as discussed in (39
the next section, they do so especially as we increase the
number of particles. We rewrite the functional integral expression for the matrix

In practice, we determine the chemical potential by mini-elements in Eq(39) schematically as
mizing the matrix elements, in the integrand of E®), as a
function of the chemical potential, only at the mean field.
The mean field is the integration point at which the integrand
reaches its maximum. This mean field is time dependent and (40
the mean-field variableoth deformation and pairing vari-
ableg turned out to be even in time, in the intenfdl, 8]  Wherese™t% is the real part of the integrand of the func-
aroundp/2, in a few cases where the variation of the vari-tional integral,x denotes the set of integration variables, and
ables was left unconstrained. Because of this, we implemer&is the sign; then we have
this time-even feature as a constraint in the determination of

($,3,M ,1T,N,Z|e’ﬁ':'|1,b,J,M,7T,N,Z>= f dx e%f(BX)g

the solution of the mean-field equations; this time-even con- o Jdx e P08 — 9S4 B,X)] 41)
straint considerably reduces the computational effort. The (H)= [dx e%(BX)g (
mean-field equations are obtained by maximizing the effec-
tive action This expression is rewritten as the ratio of expectation values
—_1 2 _1 2 42 R [ — 95Se( B, X)
Sefr=— 32 <~ Tan 2; (¢xn+ ¢yn) <H>:< [ B<;;f('8 ]>, (42

+In[(y, I, M, m A[U[¢,I M, 7, A)], (37) where the expectation values in the right-hand side are evalu-

as a function of the time-dependent variablgg, ¢,,, and ated with the probability densitg™, for example,

¢yn- If we denote byx, any of these variables, the mean-

field equations are ([ 35St BX)]) = Jdx e[ — 3 ,S( B,X) ]

[dx &P

Xo=dy (¢, I M, m A0l I M, mA)], (39 _ _ _ _ _
n Each expectation value in the right-hand side of EQ) is

evaluated using the method of Metropddisal. [4]. The sta-

merically these equations are solved by inserting some initi |st|ca! error of th? ratio in Eq(42) is evaluated using the_
ollowing expression for the variance of two random vari-

starting values in the right-hand side of the above equatioablesr andr with variancese. and c.-
and taking the left-hand side as new values. Typically, if we 1 2 With van 1 €2
take the static mean-field solutions as starting values, con-

with periodic boundary conditions in the inter&, 8]. Nu-

vergence is quickly achieved. However, if the particle num- a(ryfrz)

ber is small, convergence can be slow. The mean-field equa- (ry) \/ €1 |2 [ € |2 _(raro)—(rory)

tions are solved for several values of the chemical potential =|— (—) + (—) 22—
until the minimum value of the effective action, as a function (ra) (ra) (ra) (ra)(ra)

of the chemical potential, is found. (43
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In this expression, the variancesande, and the correlation —xoj:Ek\/ﬁkvjkuk. The variables, have a Gaussian distri-
(rara)—(ry)(rp) refer to the Monte Carlo averages and nothution expt-3,u2). The regiornu,~0 has a negligibly small
to the corresponding quantities of set of the samples genepyopability of being generated in the Monte Carlo simula-
ated during the Monte Carlo calculation. The variances ang¢ion The most probable effective action hﬁﬁuﬁ approxi-

correlation of the averages are related to the corresponding o)y equal to the dimensionality of the integral, as can be
guantities computed using the samples by the familiar factogeen using polar coordinates

\Nsampie Where Nsampie is the number of uncorrelated Differently stated, the probability of having a particular

samples. ; SR
The calculation is performed as follows. First the chemi-va(u;)edssf:rftgf ;(f;e_ctéve) ?s(:ttlr?g\l/f)lilr\;eenoﬁ]\é(i?tg s;a\f{\ilgﬁrgo_
cal potentials, for both neutrons and protons, are determine}é 7 ) eff . 9
Jnain in which the action equa$ It is not the absolute value

as discussed in Sec. Il C; then sample points of the integr L
tion domain are generated by updating all variables. A full®f S that matters, but rather, the produetv(S). This is

update is performed by first updating all variables at a fixed€adily verified in the Monte Carlo calculation, where the
time interval(for this model we have only five deformation €fféctive actions, generated by the Metropolis algorithm,
variables, and four pairing variables in every time interval Show very large deviations from their mean-field value.
while keeping all other variables ﬁxed, then by repeating the If we start the calculation near the mean field, all integra—
procedure at every time interval in sequence. The startin§on points generated with the Metropolis method quickly
configuration is usually the solution of the mean-field equa-depart from this initial point and never approach it again.
tions (since it is determined anywgysometimes, however, Typically we have to discard the first few thousand integra-
we start the calculation from the typical values of the inte-tion points to avoid sensitivity to the initial start.

gration variables in neighboring systems. We took the as In the Metropolis algorithm, each integration point is up-

transition probability from one integration poirtto y#Xx, dated in the neighborhood of the previous one. Since we

have only nine variables at each time interval, we can per-

T(x—y)=N(x—y)min[ 1,eXp Ser(y) — Serr(X) ], form updates with a large step and still have a large accep-
tance ratio(typically, at any time interval, acceptance ratios

whereN(x—y) is a Gaussian distribution of-y. are as high as 50% and 70% with a step size of about 0.25—

After all variables have been updated, the value of 0.5, Even with such large steps, considerable correlation re-
[ —95Se(BX)]s and of the signs are calculated. Strictly mains between one integration point and the next. Typically
speaking, all values generated in this way should be statistive keep one point about every 10 or 20 steps. The sizes of
cally independent and distributed according to the probabilthese decorrelation steps are decided by keeping the energy
ity densityeSe(®X. Since the initial integration point usually autocorrelation function=0.4 or smaller. The numerical re-
has a small probability of being generated during the Montesults are summarized in Table I. Together with the nuclei, the
Carlo calculation, a number of values generated initiallyJ™ values, the energies, and the inverse temperatures that
have to be discarde(this is the so-called “thermalization have been used, we also show the average(sigthe num-
step”). ber of decorrelation stepsye. (We took 2000 thermalization

The values ofd;Sc(5,X) are generated sequentially, and stepg, and the residual number of samptegy,yeused in the
therefore they are strongly correlated. Therefore we considestatistical analysis after thermalization and decorrelation. We
as is usually done for the statistical analysis, only one valugonsider a single long Markov chain.
for everynge. value (this is the so-called decorrelation step Despite the large number of decorrelation steps, the re-
As a consequence, most of the data set is discarded and Wgiual autocorrelations in the samples remains high, which
are left with a small fraction of the initial data set. probably leads to underestimated statistical errors.

The mean-field effective action, although being the largest |t is worth mentioning that the energies evaluated near the
effective action, is not the most probable one. This impliesime-dependent mean field, during the calculation, are sev-
that the region close to the mean figklg., mean field with eral MeV (typically 5—7 Me\) higher than the expectation
small-amplitude perturbationsre not generated during the values. All calculations have been performed with the
Monte Carlo simulation. In order to determine the mostweights, defined by Eqs(10) and (11), f;=1 and with
probable value of the effective action, let us assume that iB/N,=0.0625.
can be expanded with a quadratic form in the vicinity of the  There are several features that emerge from the results.
mean-fieldx,, i.e., Together with the erbium isotopes we also show some cal-
culations for'>Dy and'*'Dy. Typically, the statistical errors
are rather small; they range from about 100 keV in the case
of large neutron number to few hundred keV for small neu-
whereM is the matrix of the second derivative of the effec- tron number. This is true for both even and odd nuclei, and
tive action as a function of the integration variabde Al- despite the small number of samples remaining after the ther-
most all the eigenvalues), of the matrixM are between 0 malization and decorrelation stefebout 400 for the heavy
and 1(only the eigenvalue corresponding to the deformationsystems and 900 for the light dysprosium isotopé&he
variabley is much larger than )1 Using the eigenvectors  number of decorrelation steps depends on the number of neu-
of this matrix, Mj; =v;imj, we can perform a change in trons: is relatively small for light systems but large for the
the integration variables to new variableg, defined ax; heavy ones. The average sign is nearly 1 for heavy systems,

@Sett(B:X) = ~ @Seft(B:X0) = (Xi =X0i)Mij (X] =X0})/2.
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TABLE |. Monte Carlo results for the energi€s nye is the number of decorrelation stegs) is the
average sign.

Nucleus J7 B Ngec Nsample Autocorrelation (9 E=+ 6E (MeV)
gy 13+ 4.0 23 348 0.5 0.99 —125.5870.105
169y 2- 4.0 20 401 0.3 0.99  —120.67-0.097
168y o* 2.0 30 600 0.5 1.0 —118.9610.116
187y 2- 4.0 20 378 0.4 0.92 —114.436:0.175

3.0 20 401 0.5 0.95 —114.517-0.136
2.0 20 401 0.4 0.99 —114.747-0.147
166y 0" 4.0 20 344 0.5 091 —112.802-0.131
3.0 20 378 0.5 0.98 —112.951-0.151
2.0 20 318 0.5 1.0 —112.772-0.182
165y 9- 4.0 20 408 0.4 0.82  —108.475-0.116
3.0 20 428 0.5 0.91 —108.365-0.131
2.0 20 417 0.4 0.99 —107.836-0.130
165y 3+ 4.0 20 424 0.4 0.92 —108.656:0.103
3.0 20 396 0.4 0.90 —108.068-0.132
2.0 20 401 0.5 1.0 —107.829-0.138
165y - 4.0 15 490 0.4 0.94  —108.200-0.95
3.0 20 436 0.5 0.97 —108.467-0.105
2.0 20 445 0.4 0.99 —107.443-0.125
164y o* 2.0 20 402 0.5 0.98 —106.352-0.141
162y o* 2.0 20 401 0.4 0.95  —98.309-0.140
160y o* 2.0 12 667 0.4 0.72  —90.434-0.138
158y o* 2.0 12 667 0.4 0.75  —81.780-0.136
156y 0* 2.0 12 1010 0.3 0.60  —72.994+0.127
154y o+ 2.0 12 784 0.4 0.43  —63.726-0.217
15Dy i 4.0 10 1257 0.3 0.23  —82.393-0.313
5Dy - 4.0 10 901 0.3 0.29  —64.877:0.330
3.0 10 801 0.3 0.31  —64.6360.250

but sign statistics tend to worsen as the neutron number igpically few to several hundreds of keV for the light sys-
decreased. Despite this, errors are reasonable. Numericallgms and only in the case 8¥“Er is the deviation 1 MeV.
the three terms appearing inside the square-root expressidthe approximate error formula is rather accurate. Apart from
of Eq. (43) nearly cancel each other out. these small deviations occurring for light systems, the energy
In order to understand qualitatively the reason why theexpectation values are not strongly affected by the sign. The
statistical errors are so small in the case of strong sign osciktatistical error instead is inversely proportional to the aver-
lations (we obtained average signs as small a9,0et us  4ge sign, but the fluctuations afare small and this results in
note that, apart from the sign, the quan@ty —dsSe(8X) 4 tolerable statistical error of the energy.
is nearly constant, especially at low temperature. Let us con- o energy- ,Ser(8X) decreases as we depart from the
S'd?r for the sake of argument the sign as an integer randorr“ﬁean—field region, and since we never sample this region
variable approximately uncorrelateddaoThen one haghere with appreciable probability, we sample a region in the inte-

o denotes the variange gration volume in which the above-noted quantity assumes
Ay A values substantially lower than the mean-field value by sev-
(H)y=(a), o((H)=a(a)/(s). (44 eral MeV. Also, the difference between the effective action

. _— . L evaluated at the mean field and the typical effective action of
Therefore, if the derivative of the effective action is nearIy.[he samples is rather large, as previously explained;or

constant in the im.po_rtant region of thg integration domain’=2, for example, this difference fluctuates around 100-140.
the error of the ratio is small and the sign does not affect thPAIthough the relative probability of the integration points

expectation values oH. This is true if the sign and the yersus the mean-field probability is rather small, they have a
derivative of the effective action are decorrelated. Sincenych larger volume.

some correlations are present, some deviations from the ap- To summarize the findings of this work, we have shown
proximate expressions presented above should be expecteflat sign fluctuations decrease as we increase the particle
The deviations of H) from the approximate expression of number. Moreover, despite sign fluctuations in light systems,
Eq. (44) induced by the correlation betweenand s are  the samples generated by the Monte Carlo method give small
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statistical errors, since apart from _thg Sikgn thg energy is Wy, = W2—21 +Wy,D. (A4)
nearly a constant. In this respect, it is conceivable that also
other functional integrals having sign fluctuations could bejf we set
evaluated using Monte Carlo techniques. Finally, we have
discussed an improved method for the evaluation of the func- My=— X(Z§W11X+W12),
tional integral in the case of odd systems.
Ng=ZaWor X+ Woy, (A5)
APPENDIX

we have, from Eq(29),
Here we prove Eq30), which we found numerically sta-

bler than Eq.(29). The matricesW satisfy the identity(cf. Wi,= (252) " 1+Z5M NG HINg. (AB)
Ref.[8])
The matrixN, can be written as
- 0O 1\_/0 1 ,
W™ = 10 W 1 o (A1) Ng=Ws,(1+2Z;DX). (A7)
If we set Combining Egs(A5) and(A4), we have
C=Wy W5l D=Wy Wy, (A2) Mq=—X[ZZWo,' X+ W,(1+2;DX)],  (A8)
expanding Eq(A1), we obtain and using Eq(A7)
t=-c, D=-D, (A3) MgNg '= = X[C+ZaW5; ' X(1+Z3DX) "*W,,'], (A9)
and from which Eq.(30) follows directly.
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