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The pion-nucleon scattering is investigated by using several three-dimensional reduction schemes of the
Bethe-Salpeter equation for a model Lagrangian involvindN, A, p, ando fields. It is found that all of the
resulting meson-exchange models can give similar good descriptions ef\tleeattering data up to 400 MeV.
However they have significant differences in describing#ftN and #NA form factors and therN off-shell
t-matrix elements. We point out that these differences can be best distinguished by investigating the near
threshold pion production from nucleon-nucleon collisions and pion photoproduction on the nucleon. The
consequences of using these models to investigate various pion-nucleus reactions are also discussed.
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[. INTRODUCTION from the Bethe-Salpeter formulation. In Sec. lll, we define
the dynamical content of the resulting meson-exchange mod-
Pion-nucleon interaction plays a fundamental role in de-<ls. The phenomenological aspects of the models are de-
termining the nuclear dynamics involving pions. DespiteSCfibed in Sec. IV. The results and discussions are presented
very extensive investigations in the past two decades, severil Sec. V.
outstanding problems remain to be solved. For example, an
accurate description of pion absorption by nudlei5] is Il. THREE-DIMENSIONAL REDUCTION OF BETHE-
still not available and hence the very extensive data for pion- SALPETER FORMULATION
nucleus reactions and pion productions from relativistic
heavy-ion collisions have not been understood satisfactorily. . X
To make progress, it is necessary to improve our theoretic 1o_ns fOWN scattering from the_Bethe—SaI_peter fo_rmulat|on,
o . S .1t is sufficient to consider a simplerNN interaction La-
description of therN off-shell amplitude which is the basic . .
. . . . grangian density
input to most of the existing nuclear calculations at interme-
diate energies. The importance of thé\ off-shell t matrix —
in a dynamical description of pion photoproduction has also Lint(X) = ()T oih(X) p(x), 1
been demonstratdé®—9] in recent years.

To illustrate the derivations of three-dimensional equa-

uantum chromodynamid€©CD) is now commonly ac- where #/(x) and ¢(x) denote, respectively, the nucleon and
Q y 082CD) y Wpion fields andI'y is a bare NN vertex, such ad’

cepted as the fundamental theory of strong interaction. Hows_ i the famili q I I B ing th
ever, due to the mathematical complexities, it is not yet pos-s_t;%gg rldn meethgfrEIZ]lairt Essgtliafshﬁ?o?\:vac%uﬁn Igg.rivey f;JoSrIQ?E €
sible to predictmN interactions directly from QCD. On the ' 9 d.

(1) the Bethe-Salpeter equation farN scattering and the
other hand, models based on meso!ﬂ—.exchange p[dt_OrEII one-nucleon propagator. In momentum space, the resulting
have been very successful in describing e scatterl_ng. It Bethe-Salpeter equation can be written as
is therefore reasonable to expect that thd dynamics at
low and intermediate energies can also be descr@bed_by the T(K' k:P)=B(K',k;P)
same approach. Most of the recent attenjpt$2—17 in this
direction were obtained by applying various three-
dimensional reductions of the Bethe-Salpeter equation for
7N scattering, except in Refd.18,19 where the four- 5
dimensional Bethe-Salpeter equation was solved. @

As is well known[20], the derivation of a three dimen-
sional formulation from the Bethe-Salpeter equation is no
unique. It is natural to ask whether the resulting off-shell
dynamics in the relevant kinematic regions depends stronglgﬁentumq
on the choice of the reduction scheme. This question con-
cerning theNN models was investigatel®1] quite exten-
sively in 1970s. No similar investigation for theN interac-
tions has been made so far. In this paper we report the k=n,(y)p—n7n(Y)Q.
progress we have made on this question.

In Sec. Il, we specify the approximations that are used tdHere ny(y) and 7.(y) can be any function of a chosen
derive a class of three-dimensionaN scattering equations parameter with the condition

+J d*k"B(k’,k";P)G(K";P)T(K" k;P),
%Nherek and P are, respectively, the relative and total mo-

menta defined by the nucleon momentynand pion mo-

P=p+q,
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7a(Y)+ 7n(y)=1. 3 LT
Obviously we have from the above definitions that - (2’) d =7 (Jl:f) R
p=nn(Y)P+Kk,
a=n.(y)P—k. 4
In analogy to the nonrelativistic form, it is common to R Theell -7
choose zy=my /(M +my) and .=m_/(m_+my). The H" HP
choice of then's is irrelevant to the derivation presented © @
below in this section provided that E(B) is satisfied.
Note thatT in Eq. (2) is the “amputated” invariant am-
plitude and is related to theN Smatrix by SecuTu with u
denoting the nucleon spinor. The driving teBrin Eq. (2) is
the sum of all two-particle irreducible amplitudes, a@ds N 7 ~~.. S
the product of the pion propagatér,.(q) and the nucleon \\ A ,/ ::’X‘i
propagatorSy(p). In the low energy region, we neglect the - -
dressing of pion propagator and simply set () ®
FIG. 1. The driving terms of our modela) Direct Born term,
D_(q)= 1 (5) (b) u-channel nucleon exchangé;) t-channels exchange,(d)
g q2— m727+ e t-channelp exchange(e) s-channelA excitation, andf) u-channel
A exchange.
wherem_. is the physical pion mass.
The nucleon propagator can be written as (1). However, it is still very difficult to solve this highly
nonlinear problem exactly. For practical applications, it is
S _ 1 6 common to introduce further approximations.
N(P)= ipﬁ—mﬁ,—i,\,(pz)ﬂe’ (6) The first step is to define the physical nucleon mass by

imposing the condition that the dressed nucleon propagator
wherem?, is the bare nucleon mass and the nucleon selfshould have the limit
energy operatoky is defined by

Sn(p)— (12

EN(DZ)=J d*kI oG (k;p)T'(k;p). () ip—my+ie

as p2—>mﬁ, with my being the physical nucleon mass. This
means that the self-energy in the nucleon propagatof@q.
is constrained by the condition

The dressed vertex functidh on the right-hand side of Eq.
(7) depends on therN Bethe-Salpeter amplitude

It is only possible in practice to consider the leading termtpe next step is to assume that thedependence of the
of B of Eqg. (2). For the Lagrangian Eq1) the leading term 1y cleon self-energy is weak and we can use the condition
consists of the direct and crossiddiagrams, as illustrated Eq. (13 to set mﬂ,+§(pz)~mﬁ+i(m,2\‘)=mN. This ap-

in Figs. X2 and Xb) proximation greatly simplifies the nonlinearity of the prob-
B(k,k";P)=B@(k,k";P)+B®(k,k";P), (9) lem, since the full=N propagatoiG in Egs.(2), (7), and(8)
then takes the following simple form:

where

BE(k,K';P)=ToSy(P) T, (10 G(k:P)= L
ip—my+ie g>—mi+ie
BO(K,k';P)=ToSy(P)I, (1D
_ To be consistent, the driving terms Eq40) and (11) are
with P=[ nn(y) — 7.(Y) IP+k+k'. also evaluated by using the simple nucleon propagator of the
Equationg2)—(11) form a closed set of coupled equations form of Eq. (12).
for determining the dressed nucleon propagator of &j. The next commonly used approximation is to reduce the

and thewN Bethe-Salpeter amplitude of E@). It is impor-  dimensionality of the above integral equations from four to
tant to note here that this is a drastic simplification of thethree. In addition to simplifying the numerical task, this is
original field theory problem defined by the Lagrangian Eqg.also motivated by the consideration that the above covariant
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TABLE 1. The functionsa(s,s’) and f(s,s’) of Eq. (15), chosen for the four considered reduction
schemes, i.e., Blankenbecler and Sudaib § [24], KadyshevskyKady) [25], ThompsonThomp [26], and
Cooper and Jenning<() [27].

BbS Kady Thomp CJ
a(s,s’) ) \/Es, 7n(S’) \/g () )
Js+ s’ Js+ 5" 458 en(s)e (')

f(S,S,) 1 Ssl_(mﬁ_mi)Z

24s" 24s

formulation is not consistent with most of the existing A —j
nuclear calculations based on the three-dimensional Schro- Disd Go(k; P)]= ——— (7n(s)P+k+my)
edinger formulation. 2w

The procedure for reducing the dimensionality of the
above equations is to replace the propag&awf Eq. (14),
by a propagatoéo which contains as-function constraint x 8 nw(s)P—k]z—mi). (18
on the time component of the momentum variable, i.e., the

relative energy. In the low energy region, this new propaga- . . . .
9y gy reg propag i Several three-dimensional formulations developed in the

tor must be chosen such that the resulting scattering ampll_ be derived f : h
tude has a correctN elastic cut from (n_+my)? to = in |teratyre can be derived from using Edd5)—(17). These
are given by Blankenbecler and Sug&hS [24], Kadys-

the complexs plane, as required by the unitarity condition. It
is well known (for example, see Ref20]) that the choice of hevsky(K_ad)o [25], Thompson(Thomp .[26]’ :_;md C_ooper
and Jennings@J) [27]. In Table I, we list their choices of

such aGy is rather arbitrary. In this work, we focus on a . , ,

class of tohree dimensional )équations which can be obtainetghe fun;:ﬂonsf(s,s ) and a(s,sd). Al sche_mes s/ebyN(s)

by choosing the following form: =en(S)/ (en(s) T24(S)) an2 277”(5)_8”(3) (en(s)
+e&,(S)), whereey(s)=(s+ mN—mW)IZ\/E ande (s)=(s

—mZ+m?2)/2s are the center-of-mas&.m) energies of

nucleon and pion, respectively.

X 8 ([ pn(s)P+k]2—m3)

Go(k;P)= ! f ds f(s,s')[a(s,s')P+K+my] In the rest of the paper, we will present the formulation in
(2m)3) s—s'+ie the c.m. frame. In this frame, we haw=(4/s,0) for the
X SN[ (s )P’ +KJ2—m2) total momentump=Kk andq= —Kk. The integral oves’ in

Eqg. (15 can then be carried out to yield
X 8 ([ 7,(s' )P’ ~k]?~m?). (15

1 8(ko— 7(si,K)  2vsg

(2m)® s—\sitie s+is;

NPRCICL YoVs+k+my
K 2EN(K)2E (K)

. o Go(k; ') =
In the above equatios= P~ is the invariant mass of theN
system, and®’ = \/(s'/s)P defines the “offshellness” of the
intermediate states. The superscrigt)(associated withs
functions means that only the positive energy part is kept in
defining the nucleon propagator. The relative momerkum
the & functions is defined by setting=s in %'s, i.e., k

= 7.,(s)p— 7n(s)q. To have a correctrN elastic cut, the whereEy(k) = (k*+m?)¥? andE (k) = (k?+m?2)*? are the
arbitrary functions (s,s") and«(s,s’) must satisfy the con- nucleon and pion energies, and we have defined
ditions

. (19

Vsi=En(K) +E(K),

f(s,5)=1, (16)
~ -1 - .
7(8.K) =5 [Vs+En(K) ~E4(K) = 27(s) Vs].
a(s,8)= 7n(S). 7
_ _ ) ReplacingG by GO in Eq. (2) and performing the integration
It is easy to verify that for ifi, +my)°<s=w, Egs.(15-  over the time componenkj, we then obtain a three-
(17) give the correct discontinuity of the propagat®g dimensional scattering equation of the following form:
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t(IZ’,IZ; \/§)=v(I2’,IZ; \/5)

+f dk"v (K’ K" \/s)g(K"; Vs)t(K",k; s),
(20)

where

t(k' k; J§>=f dkydked(ko— 7" ) T(K' k;v/s) 8(ko— 7).
(21)

v (K k; ¢§>=f dkjdked(ko— 7" )B(K' k;\'s) 8(ko— 7),
(22)

g(k;/s)= f dkoGo(k; vs), (23)

with 3’ = n(si: ,k') and 7= 7(si . K).

Substituting thea's and f’s listed in Table | into Eg.
(23), we find [14] that the propagator of the three-
dimensional scattering equatio(20) for each reduction

scheme is
(1) Cooper-Jennings propagator

L1 2& s
(2m)% s—sgtie s+ \sp ss—(mZ—m?2)?

X[ yoen(S)— y-k+my].

g(k;Vs) =

(2) Blankenbecler-Sugar propagator

1 1 24s; 1
(2m)* s—sg+ie Vst \sg AEN(K)E (K)

X[ YoEn(K) — - K+my].

g(k;s)=

PHYSICAL REVIEW ®4 034309

(3) Thompson propagator
1 1
(27)3 \s—sg+ie

X[ yoen(S)— y-k+my].

Sk 1

ki) = EK
9(K;\s) S 4E\(K)E (K)

(4) Kadyshevsky propagator

1 1 1
(2m)° \Js— si+i€e 4EN(K)E (K)
X[ YoEn(K) — - K+my].

g(K;\/s)=

If we consistently replac& by GO in evaluating Eqs(7)
and (8), we then also obtain a numerically much simpler

three-dimensional fornk  for the nucleon self-energy \

andT for the dressed vertex functidh. The resulting equa-
tions in the c.m. frame are

Sn(Vs)= f dkog(K; V)T (K;\s), (24)

F(E;@:wf dk'Tog(K";Vo)t(K' ,K;\/s). (25

Accordingly, the nucleon pole condition E(L3) becomes

my+Sn(my)=my. (26)

This completes the derivations of the three-dimensional for-
mulations considered in this work.

Ill. MODEL LAGRANGIAN AND THE  «N POTENTIALS

To define therN potential by using Eq(22), we assume
that the driving termB(k’,k;+/s) is the sum of all tree dia-
grams calculated from the following interaction Lagrangian:

T R
e Mz NYs 7,7 *TN= Gz Mo ()~ 2(m7, o9, m—gennNoN—g,nNN
L PRSI L i
x| YuP +4mN o (3"p"—3"p") ~§TN—gmep (X 3d,m)

_ gp7T’7T
2
P

(8—1)(a"p"— 3" pH)- (9, mX 3,m)+

whereA , is the Rarita-Schwinger field operator for the

T’AN is the isospin transition operator between the nucleo

and theA. The notations of Bjorken-Dre[l28] are used in
Eq. (27) to describe the field operators for the nuclégrthe

pion , the rho mesmﬁ, and a fictitious scalar mesan For

gggx)m—
AN Yy’ (27)

Z+1
2

TonN-a, 7+ H.c.},

m

o coupling, a mixture of the scalar and vector couplings

rils introduced to simulate the broad width of tBevave cor-

related two-pion exchange mechanigt®,16. As illustrated
in Fig. 1, the resulting driving term consists of the direct and

crossedN andA terms, and thé-channelo- andp-exchange
terms.
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To write down the resulting matrix elements of thdN
potential, defined by Eq(22), we introduce the following

notations:q=[E,,(k),IZ] is the four-momentum for the pion

andp=[Ey(k),—k] for the nucleon. The nucleon helicity is
denoted as\. We then haveisospin factors are suppressed
here

oK ko= X VOpiaipa). (29
Diagrams(a) and (b) of Fig. 1 give
f Q2 p+¢+my
V(a) ,1 ,; ’ :( WNN) N 1
(p’.9";p.q) m_ Vs (p+q)2—mﬁ275
(29)
f 2 p’ — 4+ my
V(b) /, /; , :( WNN) r
(P AP, @)= - 75G(p,_q)2_mﬁvsd
(30)

The o-exchange diagram Fig(d) has a component from the
scalar coupling and a component from the vector coupling

T T LT R I —
T (p—p’)2-m
(3D
. gonndn, 4’0
VE(pnahipa) == (p—p )P (32)

while the p-exchange diagram of Fig(d) gives

B,d+B.,q’ +Bs+B,
(p—p')?—m’

V(d)(p',q,ipaQ): _gpNng7T7T

(33

with

K
1 \Y i

(p—p’)~q’),

o—1
2
p

Bo=—(1+«{) (p—p')-q,

(39

o—1

2
4mp

P
Ky

C2my

Bs 1+ (p—p")-q"|(p+p')-q,

kf 6—1

4= 5
2my 4m,2]

[(p—p")-all(p+p')-q'].

The contributions from thé excitations are depicted in the
diagrams of Figs. (&) and Xf)

PHYSICAL REVIEW C 64 034309

0) \2

gﬂ'NA

’
pp'
m 9

Yoyt

Z—l—l
2

V<e)(p’,q’:p,q)=—(
XZqu;,Aqu,m%)qyr

(p+a)2—m3?2

’ 1 r
X|g" = Z+ 5) Yy } (39
2
' ’ g‘rrNA ’ 1 ’
v®h(p'.q ;p,q)=—( - ) g —| ZH 5|y
2my 0,/ A, (p—a’.my)a.,
(p—q")2—m3
, 1 ,
xX|g" "= Z+5 Yy, (36)
whereA ,, is
PA+mA 1 ZPAp,PAv
AMV(PAymA)_W guv_g‘ylz,’),v_w
PA Yv_PAvy
e T 3m, £ (37)

The partial-wave decomposition of these potential matrix
elements was discussed in detail in Ré#].

IV. RENORMALIZATION IN THE = P;; CHANNEL

Because of the appearance of one-particle intermediate
state in of Fig. 1a), the wN scattering amplitude, defined by
Eqg. (20), in Py, channel can be decomposed into a sum of
pole and nonpolébackground terms. In the operator form,
the P,; amplitude can be written as

TT(E*)INo)(No|T'(E)

t(E)=t"YE)+ E 3B (38)
where|N,) is the bare one-nucleon state and
t°9(E) =0 9(E) + 0" E)g(E)t*%E), (39)
[(E)=To[1+g(E)t*YE)], (40)
SN(E)=(No|Tog(E)TT(E*)|Np). (42)

In the above equation& = \s+ie andI'y denotes the bare
No— 7N vertex in Fig. 1a). t°9 is due to the background
potentialv®9 which is the sum of contribution&), (c), (d),
and(f) of Fig. 1.T" is the dressearN N vertex. We follow the
procedure of Afnan and collaboratd9] to constrain the fit

of P4, phase shifts by imposing the nucleon pole condition
Eq. (26). This also leads to a condition which relates the bare
coupling constant(f,\),N to the empiricalwrNN coupling con-
stant.
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As E—my, the self-energy. \(E) can be expressed as B E T T —] 0 B T
16 x -
SNE)=2n(mMy) +(E-—my) 2 (my)+---, (42 13 - 4 5| N
10 E 3
where 8 - 3 [
C q1 10} —
d%N(E) 4B 3 P,
2p(my)= (43 2 3 I
JE _ OF ;
E=my —————+———] 0 —T—T
B - . 0 [

The above relations lead to a renormalization of #iiéN 5L -5 " .
coupling constant. The renormalized coupling consfagt, — -10F 10 Lo
is related to the bare coupling const:if,fg),N by D -15F - Py

D, 20F -15 - 1
Fan= FRNLL+9(My)tP9(my) 1252, (49 w 5E 20 | ]
-30 |- - L
where the nucleon wave function renormalization constant is o F —t———+—+—+— 150 p+—+—+ l
given by 60 [ X
_ 50 100 | 4
Z;'=1+3,(my). (45 40 F P,
30 [
The renormalized coupling constant is identified with the 20F 50 |- .
empirical value 18 - I
2 2,2 P B B B 0 Al HET T B B
gonn/4m = (2my/my) “(f7n/4m) = 14.3. 0 100 200 300 400 O 100 200 300 400
Equations forP 45 channel can also be written in the form of E., [MeV]

Egs.(39)—(43) with N replaced byA.
FIG. 2. Our model predictions fofrN phase shifts irs and P
V. THE PARAMETERS AND THE FITTING PROCEDURES waves obtained within Kadyshevsky reduction scheme and with the
use of am=2 form factor of Eq(46). The datasolid triangle are
To complete the model we need to introduce form factorgrom [30].
to regularize the potential matrix elements defined by Egs.
(28)—(38). In this work we follow Pearce and Jennind<] VI. RESULTS AND DISCUSSIONS
and associate each external leg of the potential matrix ele-

ments with a form factor of the form We first consider the models using rank 2 form factor

defined by Eq(46). The constructed models are calle@,
n B2, T2, andK2 for the Cooper-Jennings, Blankenbecler-
, (46) Sugar, Thompson, and Kadyshevsky reduction schemes, re-

spectively. For each model, we adjust the parameters de-
. scribed in the previous section to fit the data &N
wherep=(po,p) with po=(mg+ pg)*? defined by the on- scattering phase shiff80]. The results for th&2 model is
shell momentunpg of the incident energy. It is interesting to shown in Fig. 2. We see that the data can be described very
note that as—«, F(A,p) approaches to a Gaussian form. well. The results of other three models are very similar in all

The parameters which are allowed to vary in fitting thechannels except in the,, channel. This is illustrated in Fig.

empirical phase shifts are g{xng'?.), (Oonngl).), 3. The difficulty in getting the same fit to this channel is
(9,nNDp 7). @nd & for the t-channelo and p exchanges, mainly due to the nucleon renormalization conditions Egs.
mf)), g(;),\)m, Z for the A mechanisms, and the cutoff param- (26) and(44). This difficulty is well known in the literature.
etersA’s of the form factors of Eq(46). In the crossedN Our results for thek2, B2, andT2 are acceptable. We, how-
diagram, the physicatrNN coupling constant is used. For ever, are not able to improve the result {02 unless we
the crossed\ diagram, the situation is not so clear since theignore the fit to other channels.
determination of the “physical’rNA coupling constant de- The resulting parameters of the constructed four models
pends on the nonresonant contribution in Ehg channel. In ~ are listed in Table 1l. We first notice that the bareNN
principle, it can be determined by carrying out a renormal-coupling constantg{Qy=(2my/m,)f%)y is considerably
ization procedure similar to that used for the nucleon. How-smaller than the physical valug,yy in all models. This
ever, it is a much more difficult numerical task. The compli- large vertex renormalization is closely related to an about
cation is due to the fact that th& pole is complex. As in 150 MeV mass shift between the bare mmﬁ%) andmy, as
Refs.[7,12,13, such a renormalization for th& is not car-  seen in the first two rows of Table Il. The determined physi-
ried out in this work and we simply allow the coupling con- cal coupling constarg .y, for the crossed term, Fig. 1f),
stant used in the crosséddiagram to also vary in the fit to is also significantly larger than the bare coupling constant
the data. This coupling constant is denotedyag, - g9, . The large difference between the bare masg

nA4

FAp)=| ———————
( p) nA4+(p2—m2)2

034309-6



MESON-EXCHANGE 7N MODELS IN THE THREE-DIMENSIONA. . . .

PHYSICAL REVIEW C 64 034309

TABLE lll. The parameters of the constructed meson-exchange
models, defined by Eq$29)—(36), are compared. The models are
constructed by using the three-dimensional reduction schemes of
Thompson(T2,T10) and KadyshevskyK2,K10). T2 (T10) andK2
(K10) are models witm=2 (n=10) in defining the form factor of

gm Eq. (46).
Ze) Parameter T10 T2 K10 K2
My 939 939 939 939
m{®) 1065 1071 1073 1116
o 10 20 w0 a0 Mar 137 137 137 137
my 1232 1232 1232 1232
E ., [MeV] m{® 1407 1410 1420 1461
FIG. 3. Our model predictions foP;; phase shifts obtained Mo 654 654 654 654
within Kadyshevsky(K2), Blankenbecler-Suga(B2), Thompson m, 770 770 770 770
(T2), and Cooper-Jenning€?2) reduction schemes, all with am 5
=2 form factor. Data(solid triangle$ are from Ref[30]. gonn/4T 14.3 14.3 14.3 14.3
9 /dm 5.77 5.49 6.82 6.08
~1400 MeV and the resonance positiomy,=1232 MeV g g% /47  —049  —0.50 -0.39 -0.39
seems to be a common feature of the constructed models. g \\gl®) /47 -152 —1.40 —1.43 —1.40
The parameters associated with fhexchange are com- IpNND pr AT 3.05 2.87 2.68 2.90
parable to that of other meson-exchangd models. Ther kG 1.45 1.19 1.41 1.55
exchange turns out to be not important in the fit. If we set the 5 0.65 1.06 1.26 1.10
gZnaldm 0.29 0.29 0.33 0.34
TABLE Il. The parameters of the constructed meson-exchange (02 017 017 018 018
models, defined by Eq$29)—(36), are compared. The form factor gmnaldm ' ' ) '
equation(46) with n=2 is used. The models are constructed by z -013 -0.075 —-0.065 —0.029
using the three-dimensional reduction schemes of Cooper and Jen-
nings (C2), Blankenbecler and SugdB2), Thompson(T2), and Ay 1300 1321 1373 1239
Kadyshevsky(K2). A, 682 666 767 859
A 1522 1542 1507 1429
Parameter c2 B2 T2 K2 A, 653 681 400 648
my 939 939 939 939 A, 1431 1637 2272 1548
m{®) 1090 1072 1071 1116
m, 137 137 137 137
my 1232 1232 1232 1232 coupling constang,yng'".. of all models to zero, the result-
m{® 1415 1412 1410 1461 ing phase shifts are not changed much. This is consistent
m, 654 662 654 654. with Ref.[9] in which the fit was achieved without including
m, 770 770 770 770 a og-exchange mechanism.

It is also interesting to note that the fit to the data seems to
g2nnAT 14.3 14.3 14.3 14.3 favor a softwNN form factor with A ;<700 MeV for the
g(0)2 . 3.82 6.28 5.49 6.08 modelsC2, B2, andT2. The valueA ,~860 MeV for the

7NN . .
om0, A — 049 —037 —050 ~0239 _modeI_K_Z is also not too hard compared with the range us_ed
() _ _ _ in defining nucleon-nucleon potential and consistent with
gonng) Aq 33.20 1.53 1.40 1.40 _ J
oamm previous finding$9,12].
IoNNDpraldT 2.54 2.87 2.87 2.90 A ; . . ]
s 1.00 1.00 119 Leg n essential ph.enomenology in constructing the meson
v exchange models is the use of form factors to regularize the
) o 1.02 1.05 1.06 1.10 potential. To develop theoretical interpretations of the deter-
ngZAM” 041 0.31 0.29 0.34 mined parameters listed in Table Il, it is important to inves-
g{Rutdm 0.14 0.17 0.17 0.18 tigate how the models depend on the parametrization of the
z -0.14 -0.036 —-0.075 —0.029 form factors. For this we also consider models with very
high rank form factors defined by E¢46) with n=10. As
Ay 1227 1383 1321 1239 discussed in Ref.12], this very high rank form is close to
A, 674 690 666 859 the Gaussian form. We find that a fit comparable to that
Ay 1026 1555 1542 1429 shown in Figs. 2 and 3 can also be obtained with this param-
A, 417 704 681 648 etrization of form factors. There are some significant, though
A 1521 1700 1637 1548 not very large, changes in the resulting parameters. This is

illustrated in Table Il in which the parameters from using
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= 0020 -T2 A :

W 0015 —=C2 -]

& - E . 3

E 0.010 7 N; ‘_‘ :!

0.005 . o f

0.000 P = 3

0 500 1000 1500 2000 2500 = ‘Y

i 3

k [MeV/c] < 1

FIG. 4. Our model predictions for the dresseN N vertex func- 1

tion I'(k,E), obtained with various reduction schemes andnan 1

=2 form factor. 3 E

] .. 3

9 F ‘. 3

n=2 (T2 andK2) andn=10 (T10 andK10) form factors are 10 r \'i‘::-.:.,.\.!

10 F =9

compared. 107 1

The constructed four models can be considered approxi- 10" | -

mately phase-shift equivalent. We therefore can examine 0% Fot o 0 vy oo o ]
how the resultingzN off-shell dynamics depends on the 0 200 400 600 800 1000 1200 1400 1600

chosen three-dimensional reduction. T off-shell ampli- K [MeV/q]
tudes are needed to study nuclear dynamics involving pions. evic
To be specific, let us first discuss how the constructed models g1 5. our model predictions for the half-off-sheHmatrix

can be used to investigate the near threshold pion productioflements inS,, and S, channels at pion lab energy 1 MeV above

from nucleon-nucleon collisions. The most important leadinghreshold, obtained with four different reduction schemes and an
mechanism of this reaction is that a pion is emitted by one of,=2 form factor.

the nucleons and then scattered from the second nucleon.
The matrix element of this rescattering mechanism can bghell N sinale-charae exchanae scattering. Thev can also
predicted by using the dressetNN form factor and the be disti 'gh d b 9 i t'g ) b g- i y hich i
half-off-shell t matrix. The predictedrNN form factors for . € distinguisnead by Investigaling pion absorption which 1s
the near threshold kinematids=my, are compared in Fig. induced by the dressedN— A vertex, Fig. 6, followed by a

4. In Fig. 5, we compare the half-off-shélmatrix elements NA—NN transition.

I e oS relevar,, andS,,channels a pion e crergy 119 h€€% pened ou KRS at s mpossile o
1 MeV above threshold. We see that there are rather signifi: . : Xp
bles since the off-shell effect in &matrix element for one

cant differences between the considered reduction schem 3 rangian mav originate from a contact term of an equiva-
at k=500 MeV/c which is close to the momentum of the grang y ong q

. . lent Lagrangian. This has been demonstrated for the cases
exchanged pion at the production threshold. Consequently, . . .
) . o that the solution of the considered Lagrangian can be evalu-
study of near threshold pion production frddN collisions

could distinguish the considered four different reductionatEd from perturbative Feynman amplitudée and one-

schemes.

We next discuss the reactions at theexcitation region. 0.040 ——F——T—— T
In Figs. 6 and 7, we show the predicted dressad— A a 0.035 - P_formfactor: E=1232 MeV ]
form factorl" .y, , defined analogously tB .\ of Eq. (40), S 0.030 ® e
and the half-off-shellt matrix at theA resonance energy. 2 Lok ----B2 4
These quantities are the input to the investigations ofAhe = 0.020 L -=-T2 h
excitation in pion photoproductidi®,8,9]. The results shown 5 0'015 ! —--C2 ]
in Figs. 6 and 7 suggest that the considered reduction ~3 [ ]
schemes can also be distinguished by investigating the pion "= 0010 y
photoproduction reactions. This however requires a consis- 0.005 .
tent derivation of the photoproduction formulation for each 0.000 . U
reduction scheme, and is beyond the scope of this work. 0 500 1000 1500 2000 2500

The differences shown in Figs. 6 and 7 can also have
important consequences in determining pion-nucleus reac-
tions in theA region. For instance, the constructed four mod-  FIG. 6. Our model predictions for the dressedNA vertex

els will give rather different predictions of pion double- ', at E=1232 MeV, obtained with various reduction schemes
charge reactions which are dominated by two sequential offand ann=2 form factor.

k [MeVic]
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10° gy 10° e proximate solutions within the Lippmann-Schwinger formal-
10° 1 10°k 3 ism. The off-shell dependence discussed in this paper should
107 b 107 b be considered in this context and is not related to what was

3 4 discussed in Ref23] where one assumes that we know the
“correct” Lagrangian and the “perturbative” calculation is
valid. The off-shell dependence we have found here is simi-
lar to what is encountered in constructing meson-exchange
nucleon-nucleon potentials. With the same one-boson-
exchange mechanism, several versions of nucleon-nucleon
potentials can be constructed to give very similar high pre-
cision fits to theNN phase shift data. But they have different
off-shell behaviors, originating from their differences in
choosing the form of the starting lagrangian and the short-
range parametrizations. These off-shell differences have been
found to have important implications in nuclear calculations,
such as the binding energies of few-nucleon systems and the
effective NN interactions of the nuclear shell model.

In summary, we have shown that theé\ scattering data
up to 400 MeV can be equally well described by four reduc-
tion schemes of Bethe-Salpeter equation. The resulting
meson-exchange models yield rather different off-shell dy-
namics. With the high quality data obtained in recent years,
they can be best distinguished by investigating pion produc-
L by . tions from NN collisions and pion photoproductions. Their
0 400 800 1200 160010 0 400 800 1200 1600 differences in describing pion-nucleus reactions are also ex-

pected to be significant. Our effort in these directions will be
k [MeVic] k [MeV/c] published elsewhere.

lt(k,k_E)| [MeV’]

FIG. 7. Same as Fig. 2 but B=1232 MeV and for alSandP ACKNOWLEDGMENTS
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