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Meson-exchangepN models in three-dimensional Bethe-Salpeter formulation
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The pion-nucleon scattering is investigated by using several three-dimensional reduction schemes of the
Bethe-Salpeter equation for a model Lagrangian involvingp, N, D, r, ands fields. It is found that all of the
resulting meson-exchange models can give similar good descriptions of thepN scattering data up to 400 MeV.
However they have significant differences in describing thepNN andpND form factors and thepN off-shell
t-matrix elements. We point out that these differences can be best distinguished by investigating the near
threshold pion production from nucleon-nucleon collisions and pion photoproduction on the nucleon. The
consequences of using these models to investigate various pion-nucleus reactions are also discussed.
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I. INTRODUCTION

Pion-nucleon interaction plays a fundamental role in
termining the nuclear dynamics involving pions. Desp
very extensive investigations in the past two decades, sev
outstanding problems remain to be solved. For example
accurate description of pion absorption by nuclei@1–5# is
still not available and hence the very extensive data for pi
nucleus reactions and pion productions from relativis
heavy-ion collisions have not been understood satisfacto
To make progress, it is necessary to improve our theore
description of thepN off-shell amplitude which is the basi
input to most of the existing nuclear calculations at interm
diate energies. The importance of thepN off-shell t matrix
in a dynamical description of pion photoproduction has a
been demonstrated@6–9# in recent years.

Quantum chromodynamics~QCD! is now commonly ac-
cepted as the fundamental theory of strong interaction. H
ever, due to the mathematical complexities, it is not yet p
sible to predictpN interactions directly from QCD. On the
other hand, models based on meson-exchange picture@10,11#
have been very successful in describing theNN scattering. It
is therefore reasonable to expect that thepN dynamics at
low and intermediate energies can also be described by
same approach. Most of the recent attempts@7,12–17# in this
direction were obtained by applying various thre
dimensional reductions of the Bethe-Salpeter equation
pN scattering, except in Refs.@18,19# where the four-
dimensional Bethe-Salpeter equation was solved.

As is well known @20#, the derivation of a three dimen
sional formulation from the Bethe-Salpeter equation is
unique. It is natural to ask whether the resulting off-sh
dynamics in the relevant kinematic regions depends stron
on the choice of the reduction scheme. This question c
cerning theNN models was investigated@21# quite exten-
sively in 1970s. No similar investigation for thepN interac-
tions has been made so far. In this paper we report
progress we have made on this question.

In Sec. II, we specify the approximations that are used
derive a class of three-dimensionalpN scattering equations
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from the Bethe-Salpeter formulation. In Sec. III, we defi
the dynamical content of the resulting meson-exchange m
els. The phenomenological aspects of the models are
scribed in Sec. IV. The results and discussions are prese
in Sec. V.

II. THREE-DIMENSIONAL REDUCTION OF BETHE-
SALPETER FORMULATION

To illustrate the derivations of three-dimensional equ
tions forpN scattering from the Bethe-Salpeter formulatio
it is sufficient to consider a simplepNN interaction La-
grangian density

L int~x!5c̄~x!G0c~x!f~x!, ~1!

wherec(x) andf(x) denote, respectively, the nucleon an
pion fields andG0 is a bare pNN vertex, such asG0
5 igg5 in the familiar pseudoscalar coupling. By using th
standard method@22#, it is straightforward to derive from Eq
~1! the Bethe-Salpeter equation forpN scattering and the
one-nucleon propagator. In momentum space, the resu
Bethe-Salpeter equation can be written as

T~k8,k;P!5B~k8,k;P!

1E d4k9B~k8,k9;P!G~k9;P!T~k9,k;P!,

~2!

wherek and P are, respectively, the relative and total m
menta defined by the nucleon momentump and pion mo-
mentumq

P5p1q,

k5hp~y!p2hN~y!q.

Here hN(y) and hp(y) can be any function of a chose
parametery with the condition
©2001 The American Physical Society09-1
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hp~y!1hN~y!51. ~3!

Obviously we have from the above definitions that

p5hN~y!P1k,

q5hp~y!P2k. ~4!

In analogy to the nonrelativistic form, it is common
choosehN5mN /(mp1mN) and hp5mp /(mp1mN). The
choice of theh8s is irrelevant to the derivation presente
below in this section provided that Eq.~3! is satisfied.

Note thatT in Eq. ~2! is the ‘‘amputated’’ invariant am-
plitude and is related to thepN Smatrix by S}ūTu with u
denoting the nucleon spinor. The driving termB in Eq. ~2! is
the sum of all two-particle irreducible amplitudes, andG is
the product of the pion propagatorDp(q) and the nucleon
propagatorSN(p). In the low energy region, we neglect th
dressing of pion propagator and simply set

Dp~q!5
1

q22mp
2 1 i e

, ~5!

wheremp is the physical pion mass.
The nucleon propagator can be written as

SN~p!5
1

ip”2mN
0 2S̃N~p2!1 i e

, ~6!

where mN
0 is the bare nucleon mass and the nucleon s

energy operatorS̃N is defined by

S̃N~p2!5E d4kG0G~k;p!G̃~k;p!. ~7!

The dressed vertex functionG̃ on the right-hand side of Eq
~7! depends on thepN Bethe-Salpeter amplitude

G̃~k;P!5G01E d4k8G0G~k8;P!T~k8,k;P!. ~8!

It is only possible in practice to consider the leading te
of B of Eq. ~2!. For the Lagrangian Eq.~1! the leading term
consists of the direct and crossedN diagrams, as illustrated
in Figs. 1~a! and 1~b!

B~k,k8;P!5B(a)~k,k8;P!1B(b)~k,k8;P!, ~9!

where

B(a)~k,k8;P!5G0SN~P!G0 , ~10!

B(b)~k,k8;P!5G0SN~ P̄!G0 , ~11!

with P̄5@hN(y)2hp(y)#P1k1k8.
Equations~2!–~11! form a closed set of coupled equatio

for determining the dressed nucleon propagator of Eq.~6!
and thepN Bethe-Salpeter amplitude of Eq.~2!. It is impor-
tant to note here that this is a drastic simplification of t
original field theory problem defined by the Lagrangian E
03430
f-

.

~1!. However, it is still very difficult to solve this highly
nonlinear problem exactly. For practical applications, it
common to introduce further approximations.

The first step is to define the physical nucleon mass
imposing the condition that the dressed nucleon propag
should have the limit

SN~p!→ 1

ip”2mN1 i e
, ~12!

as p2→mN
2 with mN being the physical nucleon mass. Th

means that the self-energy in the nucleon propagator Eq~6!
is constrained by the condition

mN
0 1S̃N~mN

2 !5mN . ~13!

The next step is to assume that thep dependence of the
nucleon self-energy is weak and we can use the condi
Eq. ~13! to set mN

0 1S̃(p2);mN
0 1S̃(mN

2 )5mN . This ap-
proximation greatly simplifies the nonlinearity of the pro
lem, since the fullpN propagatorG in Eqs.~2!, ~7!, and~8!
then takes the following simple form:

G~k;P!5
1

ip”2mN1 i e

1

q22mp
2 1 i e

. ~14!

To be consistent, the driving terms Eqs.~10! and ~11! are
also evaluated by using the simple nucleon propagator of
form of Eq. ~12!.

The next commonly used approximation is to reduce
dimensionality of the above integral equations from four
three. In addition to simplifying the numerical task, this
also motivated by the consideration that the above covar

FIG. 1. The driving terms of our model.~a! Direct Born term,
~b! u-channel nucleon exchange,~c! t-channel s exchange,~d!
t-channelr exchange,~e! s-channelD excitation, and~f! u-channel
D exchange.
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TABLE I. The functionsa(s,s8) and f (s,s8) of Eq. ~15!, chosen for the four considered reductio
schemes, i.e., Blankenbecler and Sugar (BbS) @24#, Kadyshevsky~Kady! @25#, Thompson~Thomp! @26#, and
Cooper and Jennings (CJ) @27#.

BbS Kady Thomp CJ

a(s,s8) hN~s8!As8

s
hN~s8!As8

s
hN(s) hN(s)

f (s,s8) 1
As1As8

2As8

As1As8

2As

4Ass8«N~s8!«p~s8!

ss82~mN
2 2mp

2 !2
g
hr

he

th
ga
p

It

a
in

t i
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formulation is not consistent with most of the existin
nuclear calculations based on the three-dimensional Sc
edinger formulation.

The procedure for reducing the dimensionality of t
above equations is to replace the propagatorG of Eq. ~14!,
by a propagatorĜ0 which contains ad-function constraint
on the time component of the momentum variable, i.e.,
relative energy. In the low energy region, this new propa
tor must be chosen such that the resulting scattering am
tude has a correctpN elastic cut from (mp1mN)2 to ` in
the complexs plane, as required by the unitarity condition.
is well known~for example, see Ref.@20#! that the choice of
such aĜ0 is rather arbitrary. In this work, we focus on
class of three dimensional equations which can be obta
by choosing the following form:

Ĝ0~k;P!5
1

~2p!3E ds8

s2s81 i e
f ~s,s8!@a~s,s8!P” 1k”1mN#

3d (1)
„@hN~s8!P81k#22mN

2
…

3d (1)
„@hp~s8!P82k#22mp

2
…. ~15!

In the above equation,s5P2 is the invariant mass of thepN
system, andP85A(s8/s)P defines the ‘‘offshellness’’ of the
intermediate states. The superscript (1) associated withd
functions means that only the positive energy part is kep
defining the nucleon propagator. The relative momentumk in
the d functions is defined by settingy5s in h8s, i.e., k
5hp(s)p2hN(s)q. To have a correctpN elastic cut, the
arbitrary functionsf (s,s8) anda(s,s8) must satisfy the con-
ditions

f ~s,s!51, ~16!

a~s,s!5hN~s!. ~17!

It is easy to verify that for (mp1mN)2<s<`, Eqs. ~15!–
~17! give the correct discontinuity of the propagatorĜ0
03430
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Disc@Ĝ0~k;P!#5
2 i

~2p!2
„hN~s!P” 1k”1mN…

3d (1)
„@hN~s!P1k#22mN

2
…

3d (1)
„@hp~s!P2k#22mp

2
…. ~18!

Several three-dimensional formulations developed in
literature can be derived from using Eqs.~15!–~17!. These
are given by Blankenbecler and Sugar (BbS) @24#, Kadys-
hevsky ~Kady! @25#, Thompson~Thomp! @26#, and Cooper
and Jennings (CJ) @27#. In Table I, we list their choices o
the functionsf (s,s8) and a(s,s8). All schemes sethN(s)
5«N(s)/„«N(s)1«p(s)… and hp(s)5«p(s)/„«N(s)
1«p(s)…, where«N(s)5(s1mN

2 2mp
2 )/2As and «p(s)5(s

2mN
2 1mp

2 )/2As are the center-of-mass~c.m.! energies of
nucleon and pion, respectively.

In the rest of the paper, we will present the formulation
the c.m. frame. In this frame, we haveP5(As,0W ) for the
total momentum,pW 5kW and qW 52kW . The integral overs8 in
Eq. ~15! can then be carried out to yield

Ĝ0~kW ;As!5
1

~2p!3

d„k02ĥ~skW ,kW !…

As2AskW1 i e

2AskW

As1AskW

3 f ~s,skW !
a~s,skW !g0As1k”1mN

2EN~kW !2Ep~kW !
, ~19!

whereEN(kW )5(kW21mN
2 )1/2 andEp(kW )5(kW21mp

2 )1/2 are the
nucleon and pion energies, and we have defined

AskW5EN~kW !1Ep~kW !,

ĥ~s,kW !5
1

2
@As1EN~kW !2Ep~kW !22hN~s!As#.

ReplacingG by Ĝ0 in Eq. ~2! and performing the integration
over the time componentk09 , we then obtain a three
dimensional scattering equation of the following form:
9-3
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t~kW8,kW ;As!5v~kW8,kW ;As!

1E dkW9v~kW8,kW9;As!g~kW9;As!t~kW9,kW ;As!,

~20!

where

t~k8W ,kW ;As!5E dk08dk0d~k082ĥ8!T~k8,k;As!d~k02ĥ !,

~21!

v~k8W ,kW ;As!5E dk08dk0d~k082ĥ8!B~k8,k;As!d~k02ĥ !,

~22!

g~kW ;As!5E dk0Ĝ0~k;As!, ~23!

with ĥ85ĥ(skW8 ,kW8) and ĥ5ĥ(skW ,kW ).
Substituting thea8s and f 8s listed in Table I into Eq.

~23!, we find @14# that the propagator of the three
dimensional scattering equation~20! for each reduction
scheme is

~1! Cooper-Jennings propagator

g~kW ;As!5
1

~2p!3

1

As2AskW1 i e

2AskW

As1AskW

AsskW

sskW2~mN
2 2mp

2 !2

3@g0«N~s!2gW •kW1mN#.

~2! Blankenbecler-Sugar propagator

g~kW ;As!5
1

~2p!3

1

As2AskW1 i e

2AskW

As1AskW

1

4EN~kW !Ep~kW !

3@g0EN~kW !2gW •kW1mN#.
o

03430
~3! Thompson propagator

g~kW ;As!5
1

~2p!3

1

As2AskW1 i e
AskW

s

1

4EN~kW !Ep~kW !

3@g0«N~s!2gW •kW1mN#.

~4! Kadyshevsky propagator

g~kW ;As!5
1

~2p!3

1

As2AskW1 i e

1

4EN~kW !Ep~kW !

3@g0EN~kW !2gW •kW1mN#.

If we consistently replaceG by Ĝ0 in evaluating Eqs.~7!
and ~8!, we then also obtain a numerically much simpl
three-dimensional formSN for the nucleon self-energyS̃N

andG for the dressed vertex functionG̃. The resulting equa-
tions in the c.m. frame are

SN~As!5E dkWG0g~kW ;As!G~kW ;As!, ~24!

G~kW ;As!5G01E dkW8G0g~kW8;As!t~kW8,kW ;As!. ~25!

Accordingly, the nucleon pole condition Eq.~13! becomes

mN
0 1SN~mN!5mN . ~26!

This completes the derivations of the three-dimensional
mulations considered in this work.

III. MODEL LAGRANGIAN AND THE pN POTENTIALS

To define thepN potential by using Eq.~22!, we assume
that the driving termB(k8,k;As) is the sum of all tree dia-
grams calculated from the following interaction Lagrangia
LI5
f pNN

(0)

mp
N̄g5gmtW•]mpW N2gspp

(s) mps~pW •pW !2
gspp

(v)

2mp
s]mpW •]mpW 2gsNNN̄sN2grNNN̄

3H gmrW m1
kV

r

4mN
smn~]mrW n2]nrW m!J • 1

2
tWN2grpprW m

•~pW 3]mpW !

2
grpp

4mr
2 ~d21!~]mrW n2]nrW m!•~]mpW 3]npW !1H gpND

(0)

mp
D̄mFgmn2S Z1

1

2DgmgnGTW DNN•]npW 1H.c.J , ~27!
gs

nd
whereDm is the Rarita-Schwinger field operator for theD,

TW DN is the isospin transition operator between the nucle

and theD. The notations of Bjorken-Drell@28# are used in
Eq. ~27! to describe the field operators for the nucleonN, the

pion pW , the rho mesonrW , and a fictitious scalar mesons. For
n

spp coupling, a mixture of the scalar and vector couplin
is introduced to simulate the broad width of theS-wave cor-
related two-pion exchange mechanism@15,16#. As illustrated
in Fig. 1, the resulting driving term consists of the direct a
crossedN andD terms, and thet-channels- andr-exchange
terms.
9-4
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To write down the resulting matrix elements of thepN
potential, defined by Eq.~22!, we introduce the following
notations:q5@Ep(k),kW # is the four-momentum for the pion
andp5@EN(k),2kW # for the nucleon. The nucleon helicity i
denoted asl. We then have~isospin factors are suppresse
here!

v~kW8,kW ;As!5 (
a5a, . . . ,f

V(a)~p8,q8;p,q!. ~28!

Diagrams~a! and ~b! of Fig. 1 give

V(a)~p8,q8;p,q!5S f pNN
(0)

mp
D 2

g5q” 8
p”1q”1mN

0

~p1q!22mN
0 2

g5q” ,

~29!

V(b)~p8,q8;p,q!5S f pNN

mp
D 2

g5q”
p” 82q”1mN

~p82q!22mN
2

g5q” 8.

~30!

Thes-exchange diagram Fig. 1~c! has a component from th
scalar coupling and a component from the vector couplin

V(c2s)~p8,q8;p,q!5gsNNgspp
(s) mp

1

~p2p8!22ms
2

,

~31!

V(c2v)~p8,q8;p,q!5
gsNNgspp

(v)

2mp

q8•q

~p2p8!22ms
2

, ~32!

while ther-exchange diagram of Fig. 1~d! gives

V(d)~p8,q8;p,q!52grNNgrpp

B1q”1B2q” 81B31B4

~p2p8!22mr
2

,

~33!

with

B15~11kV
r !S 11

d21

4mr
2 ~p2p8!•q8D ,

B252~11kV
r !

d21

4mr
2 ~p2p8!•q,

~34!

B352
kV

r

2mN
F11

d21

4mr
2 ~p2p8!•q8G ~p1p8!•q,

B45
kV

r

2mN

d21

4mr
2 @~p2p8!•q#@~p1p8!•q8#.

The contributions from theD excitations are depicted in th
diagrams of Figs. 1~e! and 1~f!
03430
V(e)~p8,q8;p,q!52S gpND
(0)

mp
D 2Fgmm82S Z1

1

2Dgm8gmG
3

2mD
0 qm8

8 Lmn~p1q,mD
0 !qn8

~p1q!22mD
0 2

3Fgn8n2S Z1
1

2Dgngn8G , ~35!

V( f )~p8,q8;p,q!52S gpND

mp
D 2Fgmm82S Z1

1

2Dgm8gmG
3

2mDqm8Lmn~p2q8,mD!qn8
8

~p2q8!22mD
2

3Fgn8n2S Z1
1

2Dgngn8G , ~36!

whereLmn is

Lmn~PD ,mD!5
P” D1mD

2mD
Fgmn2

1

3
gmgn2

2PDmPDn

3mD
2

1
PDmgn2PDngm

3mD
G . ~37!

The partial-wave decomposition of these potential ma
elements was discussed in detail in Ref.@14#.

IV. RENORMALIZATION IN THE P11 CHANNEL

Because of the appearance of one-particle intermed
state in of Fig. 1~a!, thepN scattering amplitude, defined b
Eq. ~20!, in P11 channel can be decomposed into a sum
pole and nonpole~background! terms. In the operator form
the P11 amplitude can be written as

t~E!5tbg~E!1
G†~E* !uN0&^N0uG~E!

E2mN
0 2SN~E!

, ~38!

whereuN0& is the bare one-nucleon state and

tbg~E!5vbg~E!1vbg~E!g~E!tbg~E!, ~39!

G~E!5G0@11g~E!tbg~E!#, ~40!

SN~E!5^N0uG0g~E!G†~E* !uN0&. ~41!

In the above equations,E5As1 i e andG0 denotes the bare
N0→pN vertex in Fig. 1~a!. tbg is due to the background
potentialvbg which is the sum of contributions~b!, ~c!, ~d!,
and~f! of Fig. 1.G is the dressedpNN vertex. We follow the
procedure of Afnan and collaborators@29# to constrain the fit
of P11 phase shifts by imposing the nucleon pole conditi
Eq. ~26!. This also leads to a condition which relates the b
coupling constantf pNN

(0) to the empiricalpNN coupling con-
stant.
9-5
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As E→mN , the self-energySN(E) can be expressed as

SN~E!5SN~mN!1~E2mN!S1~mN!1•••, ~42!

where

S1~mN!5
]SN~E!

]E U
E5mN

. ~43!

The above relations lead to a renormalization of thepNN
coupling constant. The renormalized coupling constantf pNN

is related to the bare coupling constantf pNN
(0) by

f pNN5 f pNN
(0) @11g~mN!tbg~mN!#Z2

1/2, ~44!

where the nucleon wave function renormalization constan
given by

Z2
21511S1~mN!. ~45!

The renormalized coupling constant is identified with t
empirical value

gpNN
2 /4p5~2mN /mp!2~ f pNN

2 /4p!514.3.

Equations forP33 channel can also be written in the form
Eqs.~39!–~43! with N replaced byD.

V. THE PARAMETERS AND THE FITTING PROCEDURES

To complete the model we need to introduce form fact
to regularize the potential matrix elements defined by E
~28!–~38!. In this work we follow Pearce and Jennings@12#
and associate each external leg of the potential matrix
ments with a form factor of the form

F~L,p!5F nL4

nL41~p22m2!2G n

, ~46!

wherep5(p0 ,pW ) with p05(mN
2 1pE

2)1/2 defined by the on-
shell momentumpE of the incident energy. It is interesting t
note that asn→`, F(L,p) approaches to a Gaussian form

The parameters which are allowed to vary in fitting t
empirical phase shifts are (gsNNgspp

(s) ), (gsNNgspp
(v) ),

(grNNgrpp), and d for the t-channels and r exchanges,
mD

(0) , gpND
(0) , Z for theD mechanisms, and the cutoff param

etersL ’s of the form factors of Eq.~46!. In the crossedN
diagram, the physicalpNN coupling constant is used. Fo
the crossedD diagram, the situation is not so clear since t
determination of the ‘‘physical’’pND coupling constant de
pends on the nonresonant contribution in theP33 channel. In
principle, it can be determined by carrying out a renorm
ization procedure similar to that used for the nucleon. Ho
ever, it is a much more difficult numerical task. The comp
cation is due to the fact that theD pole is complex. As in
Refs.@7,12,13#, such a renormalization for theD is not car-
ried out in this work and we simply allow the coupling co
stant used in the crossedD diagram to also vary in the fit to
the data. This coupling constant is denoted asgpND .
03430
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VI. RESULTS AND DISCUSSIONS

We first consider the models using rankn52 form factor
defined by Eq.~46!. The constructed models are calledC2,
B2, T2, and K2 for the Cooper-Jennings, Blankenbecle
Sugar, Thompson, and Kadyshevsky reduction schemes
spectively. For each model, we adjust the parameters
scribed in the previous section to fit the data ofpN
scattering phase shifts@30#. The results for theK2 model is
shown in Fig. 2. We see that the data can be described
well. The results of other three models are very similar in
channels except in theP11 channel. This is illustrated in Fig
3. The difficulty in getting the same fit to this channel
mainly due to the nucleon renormalization conditions E
~26! and~44!. This difficulty is well known in the literature.
Our results for theK2, B2, andT2 are acceptable. We, how
ever, are not able to improve the result forC2 unless we
ignore the fit to other channels.

The resulting parameters of the constructed four mod
are listed in Table II. We first notice that the barepNN
coupling constantgpNN

(0) 5(2mN /mp) f pNN
(0) is considerably

smaller than the physical valuegpNN in all models. This
large vertex renormalization is closely related to an ab
150 MeV mass shift between the bare massmN

(0) andmN , as
seen in the first two rows of Table II. The determined phy
cal coupling constantgpND for the crossedD term, Fig. 1~f!,
is also significantly larger than the bare coupling const
gpND

(0) . The large difference between the bare massmD
(0)

FIG. 2. Our model predictions forpN phase shifts inS andP
waves obtained within Kadyshevsky reduction scheme and with
use of ann52 form factor of Eq.~46!. The data~solid triangles! are
from @30#.
9-6



ls
-

th

-
tent
g

s to

ed
ith

on-
the

ter-
s-
the
ry

hat
m-
gh
s is
g

ng
r
by
J

nge
re
s of

MESON-EXCHANGEpN MODELS IN THE THREE-DIMENSIONAL . . . PHYSICAL REVIEW C 64 034309
;1400 MeV and the resonance positionmD51232 MeV
seems to be a common feature of the constructed mode

The parameters associated with ther exchange are com
parable to that of other meson-exchangepN models. Thes
exchange turns out to be not important in the fit. If we set

FIG. 3. Our model predictions forP11 phase shifts obtained
within Kadyshevsky~K2!, Blankenbecler-Sugar~B2!, Thompson
~T2!, and Cooper-Jennings~C2! reduction schemes, all with ann
52 form factor. Data~solid triangles! are from Ref.@30#.

TABLE II. The parameters of the constructed meson-excha
models, defined by Eqs.~29!–~36!, are compared. The form facto
equation~46! with n52 is used. The models are constructed
using the three-dimensional reduction schemes of Cooper and
nings ~C2!, Blankenbecler and Sugar~B2!, Thompson~T2!, and
Kadyshevsky~K2!.

Parameter C2 B2 T2 K2

mN 939 939 939 939
mN

(0) 1090 1072 1071 1116
mp 137 137 137 137
mD 1232 1232 1232 1232.
mD

(0) 1415 1412 1410 1461
ms 654 662 654 654.
mr 770 770 770 770

gpNN
2 /4p 14.3 14.3 14.3 14.3

gpNN
(0)2 /4p 3.82 6.28 5.49 6.08

gsNNgspp
(s) /4p 20.49 20.37 20.50 20.39

gsNNgspp
(v) /4p 33.20 21.53 21.40 21.40

grNNgrpp/4p 2.54 2.87 2.87 2.90
kV

r 1.00 1.00 1.19 1.55
d 1.02 1.05 1.06 1.10

gpND
2 /4p 0.41 0.31 0.29 0.34

gpND
(0)2 /4p 0.14 0.17 0.17 0.18

Z 20.14 20.036 20.075 20.029

LN 1227 1383 1321 1239
Lp 674 690 666 859
LD 1026 1555 1542 1429
Ls 417 704 681 648
Lr 1521 1700 1637 1548
03430
.

e

coupling constantgsNNgspp
(v) of all models to zero, the result

ing phase shifts are not changed much. This is consis
with Ref. @9# in which the fit was achieved without includin
a s-exchange mechanism.

It is also interesting to note that the fit to the data seem
favor a softpNN form factor with Lp<700 MeV for the
modelsC2, B2, andT2. The valueLp;860 MeV for the
modelK2 is also not too hard compared with the range us
in defining nucleon-nucleon potential and consistent w
previous findings@9,12#.

An essential phenomenology in constructing the mes
exchange models is the use of form factors to regularize
potential. To develop theoretical interpretations of the de
mined parameters listed in Table II, it is important to inve
tigate how the models depend on the parametrization of
form factors. For this we also consider models with ve
high rank form factors defined by Eq.~46! with n510. As
discussed in Ref.@12#, this very high rank form is close to
the Gaussian form. We find that a fit comparable to t
shown in Figs. 2 and 3 can also be obtained with this para
etrization of form factors. There are some significant, thou
not very large, changes in the resulting parameters. Thi
illustrated in Table III in which the parameters from usin

e

en-

TABLE III. The parameters of the constructed meson-excha
models, defined by Eqs.~29!–~36!, are compared. The models a
constructed by using the three-dimensional reduction scheme
Thompson~T2,T10! and Kadyshevsky~K2,K10!. T2 ~T10! andK2
~K10! are models withn52 (n510) in defining the form factor of
Eq. ~46!.

Parameter T10 T2 K10 K2

mN 939 939 939 939
mN

(0) 1065 1071 1073 1116
mp 137 137 137 137
mD 1232 1232 1232 1232
mD

(0) 1407 1410 1420 1461
ms 654 654 654 654
mr 770 770 770 770

gpNN
2 /4p 14.3 14.3 14.3 14.3

gpNN
(0)2 /4p 5.77 5.49 6.82 6.08

gsNNgspp
(s) /4p 20.49 20.50 20.39 20.39

gsNNgspp
(v) /4p 21.52 21.40 21.43 21.40

grNNgrpp/4p 3.05 2.87 2.68 2.90
kV

r 1.45 1.19 1.41 1.55
d 0.65 1.06 1.26 1.10

gpND
2 /4p 0.29 0.29 0.33 0.34

gpND
(0)2 /4p 0.17 0.17 0.18 0.18

Z 20.13 20.075 20.065 20.029

LN 1300 1321 1373 1239
Lp 682 666 767 859
LD 1522 1542 1507 1429
Ls 653 681 400 648
Lr 1431 1637 2272 1548
9-7
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n52 ~T2 andK2! andn510 ~T10 andK10! form factors are
compared.

The constructed four models can be considered appr
mately phase-shift equivalent. We therefore can exam
how the resultingpN off-shell dynamics depends on th
chosen three-dimensional reduction. ThepN off-shell ampli-
tudes are needed to study nuclear dynamics involving pio
To be specific, let us first discuss how the constructed mo
can be used to investigate the near threshold pion produc
from nucleon-nucleon collisions. The most important lead
mechanism of this reaction is that a pion is emitted by one
the nucleons and then scattered from the second nucl
The matrix element of this rescattering mechanism can
predicted by using the dressedpNN form factor and the
half-off-shell t matrix. The predictedpNN form factors for
the near threshold kinematics,E5mN , are compared in Fig
4. In Fig. 5, we compare the half-off-shellt-matrix elements
in the most relevantS11 andS31 channels at pion lab energ
1 MeV above threshold. We see that there are rather sig
cant differences between the considered reduction sche
at k>500 MeV/c which is close to the momentum of th
exchanged pion at the production threshold. Consequent
study of near threshold pion production fromNN collisions
could distinguish the considered four different reducti
schemes.

We next discuss the reactions at theD excitation region.
In Figs. 6 and 7, we show the predicted dressedpN→D
form factorGpND , defined analogously toGpNN of Eq. ~40!,
and the half-off-shellt matrix at theD resonance energy
These quantities are the input to the investigations of thD
excitation in pion photoproduction@6,8,9#. The results shown
in Figs. 6 and 7 suggest that the considered reduc
schemes can also be distinguished by investigating the
photoproduction reactions. This however requires a con
tent derivation of the photoproduction formulation for ea
reduction scheme, and is beyond the scope of this work

The differences shown in Figs. 6 and 7 can also h
important consequences in determining pion-nucleus re
tions in theD region. For instance, the constructed four mo
els will give rather different predictions of pion double
charge reactions which are dominated by two sequential

FIG. 4. Our model predictions for the dressedpNN vertex func-
tion G(k,E), obtained with various reduction schemes and ann
52 form factor.
03430
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shell pN single-charge exchange scattering. They can a
be distinguished by investigating pion absorption which
induced by the dressedpN→D vertex, Fig. 6, followed by a
ND→NN transition.

It has been pointed out in Ref.@23# that it is impossible to
extract the off-shell effects from the experimental obse
ables since the off-shell effect in anS-matrix element for one
Lagrangian may originate from a contact term of an equi
lent Lagrangian. This has been demonstrated for the c
that the solution of the considered Lagrangian can be ev
ated from perturbative Feynman amplitudes~tree and one-

FIG. 5. Our model predictions for the half-off-shellt-matrix
elements inS11 andS31 channels at pion lab energy 1 MeV abov
threshold, obtained with four different reduction schemes and
n52 form factor.

FIG. 6. Our model predictions for the dressedpND vertex
GpND at E51232 MeV, obtained with various reduction schem
and ann52 form factor.
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loop terms!. ThepN case we have considered here is mu
more complicated. The problem arises in part from our
ability to derive an effective hadronic Lagrangian fro
QCD. The difficulty is further exacerbated by the fact th
we do not know, at least at the present time, how to const
a potential for a full Bethe-Salpeter equation for any giv
Lagrangian since it would contain an infinite number
Feynman diagrams. We thus are forced to explore the

FIG. 7. Same as Fig. 2 but atE51232 MeV and for allSandP
waves.
E.

s.
tt.
C.

K.

03430
h
-

t
ct

f
p-

proximate solutions within the Lippmann-Schwinger forma
ism. The off-shell dependence discussed in this paper sh
be considered in this context and is not related to what w
discussed in Ref.@23# where one assumes that we know t
‘‘correct’’ Lagrangian and the ‘‘perturbative’’ calculation i
valid. The off-shell dependence we have found here is si
lar to what is encountered in constructing meson-excha
nucleon-nucleon potentials. With the same one-bos
exchange mechanism, several versions of nucleon-nuc
potentials can be constructed to give very similar high p
cision fits to theNN phase shift data. But they have differe
off-shell behaviors, originating from their differences
choosing the form of the starting lagrangian and the sh
range parametrizations. These off-shell differences have b
found to have important implications in nuclear calculation
such as the binding energies of few-nucleon systems and
effectiveNN interactions of the nuclear shell model.

In summary, we have shown that thepN scattering data
up to 400 MeV can be equally well described by four redu
tion schemes of Bethe-Salpeter equation. The resul
meson-exchange models yield rather different off-shell
namics. With the high quality data obtained in recent yea
they can be best distinguished by investigating pion prod
tions from NN collisions and pion photoproductions. The
differences in describing pion-nucleus reactions are also
pected to be significant. Our effort in these directions will
published elsewhere.
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