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Parameter symmetries of quantum many-body systems
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We analyze the occurrence of dynamically equivalent Hamiltonians in the parameter space of general
many-body interactions for quantum systems, particularly those that conserve the total number of particles. As
an illustration of the general framework, the appearance of parameter symmetries in the interacting boson
model 1 and their absence in the Ginocchio SO8 fermionic model are discussed.
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I. INTRODUCTION

It is generally accepted that symmetry belongs to the m
fundamental concepts in physics. In particular, the gene
zation of the standard invariance groups in terms of dyna
cal ~spectrum generating! groups and dynamical symmetrie
@1# seems to provide a rather general framework for desc
ing both classical and quantum physical systems@2#. The
role of dynamical symmetries in problems of quantum in
grability is reviewed by Zhang and Feng in Ref.@3#. One of
the well-known examples of the algebraic approach in n
relativistic quantum physics is the family of so-called inte
acting boson models~IBM !, introduced by Arima and Iach
ello @4# and extensively employed in phenomenologic
nuclear physics. The dynamical groups of these models
easily tractable and they neatly decompose into sepa
dynamical-symmetry chains, each having a clear geome
interpretation and an associated set of nuclei conforming
the various symmetry dictated predictions.

There is, however, a certain ambiguity in the definition
some of the IBM dynamical symmetries resulting from po
sible gauge transformations of boson operators in the s
metry limits @4,5#. This ambiguity applies even to the sim
plest version of the model, the IBM 1, where the choice
the boson gauge was for long considered as a mere con
tion. It was, however, recently recognized as a deeper
universal property of general algebraic systems@6#. Because
the twin symmetries resulting from the gauge transformat
can be located ‘‘between’’ standard symmetries in the par
eter space, i.e., seemingly in transitional regions, they w
referred to as ‘‘hidden’’@6#. The consequences of these hi
den symmetries for the problem of quantum chaos were
phasized in Ref.@7#.

In the work by Shirokovet al. @8# gauge transformation
of boson operators, and associated hidden symmetries,
studied from the more general perspective of what these
thors call ‘‘parameter symmetries.’’ It was shown that ea
IBM Hamiltonian has an isospectral partner located at a
ferent point in parameter space. Hidden symmetries em
as special cases of these parameter symmetries—they
when the parameter symmetry partner is constructed fo
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Hamiltonian possessing a dynamical symmetry. Sub
quently the idea was also utilized within the two-compone
proton-neutron interacting boson model, IBM 2@9#. It is
clear, however, that parameter symmetries can be explore
a much wider class of parameter-dependent systems.
therefore the aim of the present work to discuss the occ
rence of parameter symmetries in more general situation

We first analyze some generic features of parameter s
metries~Sec. II! and their realization in many-body system
which conserve the total number of particles~Sec. III!. Two
concrete examples are then considered in detail, namely
interacting boson model 1~Sec. IV! and the Ginocchio SO8
model ~Sec. V!. From the point of view of a link between
these models, an interesting comparison between the
analyses can be made.

II. PARAMETER SYMMETRIES OF GENERAL
HAMILTONIANS

Following Refs.@8,9#, we define the parameter symmet
P of a given HamiltonianH(l) depending on a set ofm real
parametersl[$l1 ,l2 , . . . ,lm% as a mapping of the param
eter space onto itself,

P:l°l85 f ~l!, ~1!

such thatH(l8) is related toH(l) by a similarity transfor-
mation,

H~l8!5Ul8lH~l!Ul8l
21 , ~2!

whereUl8l is a unitary operator. This is, of course, equiv
lent with the requirement that HamiltoniansH(l) and
H(l8) are isospectral:~i! from Eq. ~2! it follows that Ul8l

transforms theH(l) eigenvectorsuck(l)& into the H(l8)
eigenvectors with the same energyEk(l)5Ek(l8), and ~ii !
an equality of energies inH(l)5(kuck(l)&Ek(l)^ck(l)u
and H(l8)5(kuck(l8)&Ek(l8)^ck(l8)u ensures that Eq
~2! is fulfilled with Ul8l defined through uck(l8)&
5Ul8luck(l)&.

It is apparent that if P1[ f 1(l) and P2[ f 2(l)
are two parameter symmetries, thenP3[P1sP2 :l°l8
5 f 2„f 1(l)…[ f 3(l) is also a parameter symmetry. The p
rameter space of a system that exhibits the parameter s
metry thus decomposes into subsets where points of the s
©2001 The American Physical Society07-1
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subset correspond to Hamiltonians with essentially the s
dynamics. Each of these subsets, geometrically represe
by isolated points or a continuous manifold~for a smooth
dependence of the Hamiltonian on parameters!, forms an
equivalence class for which any single member fully rep
sents the whole class. For example, if the Hamilton
H(l0) is integrable, i.e., hasf constants of motion
$A1 ,A2 , . . . ,Af% in involution with f being the number of
quantum degrees of freedom@3#, all the HamiltoniansH(l)
within the same equivalence class asH(l0) are integrable as
well. The integrals of motion are simply given b
Ull0AiUll0

21 . This feature of parameter symmetries is cruc
for the study of quantum chaos because it implies that p
fectly regular dynamics can be ‘‘imported’’ into paramet
regions that might at first be expected to be chaotic@6,7#.
There immediately arises a plethora of questions relate
the size and topological structure of the equivalence cla
in the parameter space. The answers, of course, depen
the particular Hamiltonian under study.

For a fixed pairl andl8 relation ~2! implies a set ofn2

independent real equations—n being the dimension of the
Hilbert space—to determinen2 independent real paramete
of the unitary matrixUl8l . ~Note that we assume the Hami
tonian to be self-adjoint, but complex.! In general, the struc-
ture of the set of equations may very well produce no so
tion. To determine for a givenl the range ofl8 for which a
solution exists, it is convenient to consider the diagonaliz
form of Eq. ~2!, i.e., the isospectral condition. This yieldsn
equations form variablesl8. However, some of these equ
tions might be identical. This is certainly the case if the
exists some inherent degeneracy shared by all Hamilton
regardless of their parameter values. Yet, not all the mutu
different eigenvalues of the Hamiltonian can be conside
independent~as elaborated in the next section!. Therefore the

number of relevant equations is given by the numbern̄ of
independentenergies. If this is larger than the number
parameters,n̄.m, no parameter symmetries are genera
expected. Form5n̄, typically single ~discrete! solutionsP
should be found. Finally, a continuous variety of similar
transformations may exist in an ‘‘overparametrized’’ ca
m.n̄.

If m>n̄, the expected dimensionality of manifolds repr
senting the equivalence classes of a given Hamiltoniand
5m2n̄. For instance, for a two-dimensional~nondegener-
ate! Hamiltonian dependent on three real parameters$l i% i 51

3

the manifold containing the pointl0 is formed by the inter-
section of two surfacesEi(l)2Ei(l

0)50,i 51,2 in the
three-dimensional parameter space, which is ad51 object, a
curve Cl0 crossingl0. Note that the assumption was ma
again that both the surfaces mentioned are continuous; w
not trace here consequences of possible singularities in
parametric dependence ofH(l). In the case of a four-
parameter Hamiltonian in two dimensions, thel0-containing
manifold will be a surfaceSl0. For two-parameter two-
dimensional Hamiltonians, on the other hand, thed50
equivalence classes in the parameter space will typically c
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5$l0,l08,l09, . . . % ~note that if the set is finite, it must b
cyclic underP).

Assume now that there exists one or more mutually co
muting and parameter-independentconstants of motion
$A1 , . . .Aq% so that@H(l),Ai #50, i 51 . . .q for all l. It is
then, of course, natural to require that an arbitraryl°l8
transform of any of these integrals~which is a new integral
valid atl8) must coincide with the original. This implies tha
all similarity operatorsUl8l in Eq. ~2! are required to com-
mute with all theAi ’s. Both the Hamiltonian and unitary
matrices thus have the same block-diagonal form, each b
being associated with the subspace of the total Hilbert sp
characterized by a particular set of theAi quantum numbers
The above analysis can then be applied either to the Ha
tonian as a whole or to each block separately. Attention m
be paid to the fact that some of the submatrices may dep
on a reduced number of parameters. As a result, one
consider parameter symmetries in a particular subse
blocks only. Moreover, the whole set of Hamiltonians c
possess an underlying symmetry represented by a grouG.
In such a case, the unitary transformation should comm
not only with the Casimir operators, but also with all gene
tors ofG. For the rotational symmetry, e.g.,U must commute
with J2, Jz and also withJ1 andJ2 .

The implications of these general considerations dep
very much on the details of a particular situation, as is de
onstrated in Secs. IV and V where we explore the existe
and nature of possible parameter symmetries for two w
known nuclear models, the interacting boson model~IBM !
@4# and the SO8 Ginocchio model@10#—also in its fermion
dynamical symmetry model~FDSM! incarnation@11#.

III. PARAMETER SYMMETRIES OF MANY-BODY
HAMILTONIANS

As was pointed out above, the general analysis of par
eter symmetries, based solely on the dimensionality of
problem, can often be inconclusive or even misleading,
cause without knowledge of the specific physics involved
the model it is hardly possible to determine the numbern̄ of
independent energies. Turning to more specific example
parameter symmetries in bosonic or fermionic many-bo
systems, we now consider a general Hamiltonian with on
two-, three-, . . . , K-body terms,

H~L!5L (0)1(
i j

L i j
(1)ai

†aj1(
i jkl

L i jkl
(2) ai

†aj
†akal

1 (
i jklmn

L i jklmn
(3) ai

†aj
†ak

†alaman1 . . . 1H.c. , ~3!

whereai
† ( i 51, . . . ,s) is the creation operator of a particl

in the i th state~this state can also specify the type of partic
like neutron or proton!. Interaction strengths L
[$L (0),$L i j

(1)%,$L i jkl
(2) %,$L i jklmn

(3) %, . . . % form the general se
of parameters of theK-body Hamiltonian~they can be com-
plex but the Hermicity reduces the number of independ
7-2
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PARAMETER SYMMETRIES OF QUANTUM MANY-BODY SYSTEMS PHYSICAL REVIEW C64 034307
real parameters—for instance, there are not 2s2 but only s2

independent real one-body strengthsL (1)).
The Hamiltonian~3! conserves the total number of pa

ticles, N5( iai
†ai , as should any acceptable similarity o

eratorU. We thus have

Uai
†U215(

j
a j

i aj
†1(

jkl
b jkl

i ajak
†al

†

1 (
jklmn

g jklmn
i ajakal

†am
† an

†1•••, ~4!

where $a j
i %,$b jkl

i %,$g jklmn
i %••• are some complex coeffi

cients satisfying constraints imposed by the unitarity. Eq
tion ~4! determines the most general particle-number c
serving similarity transformation in the many-body Fo
space. However, it does not constitute a parameter symm
of a K-body Hamiltonian if higher-order terms with coeffi
cients b jkl

i ,g jklmn
i

••• are included. This is so because t
higher-order terms increase the maximum orderK of inter-
actions in the Hamiltonian. Parameter symmetries of
Hamiltonian ~3! with K finite can thus be specified by th
simplified version

Uai
†U215(

j
a j

i aj
† ~5!

of Eq. ~4!, with the unitarity constraint(kak
i ak

j* 5d i j .
Namely, Eq.~5! clearly yields the followingL°L8 map-
ping:

L (0)85L (0),

L (1)
i j8 5(

kl
a i

ka j
l* Lkl

(1) ,

~6!

L (2)
i jkl8 5 (

mnpq
a i

ma j
nak

p* a l
q* Lmnpq

(2) ,

L (3)
i jklmn8 5•••.

If there are some additional global integrals of moti
besidesN, the right-hand side of Eq.~5! can only mix the
creation operatorsaj

† that carry the same values of the
integrals asai

† on the left-hand side, i.e.,a j
i 50 if i and j

label states that differ in one or more conserving quant
numbers. This most obviously applies to the angular mom
tum J2 and its projectionJz in the case of underlying rota
tional symmetry. Yet other conserved quantities~like charge,
etc.! may be relevant. Moreover, as all generators of the s
metry groupG must commute withU, some additional con-
straints emerge. In the case of rotational symmetry one
relations of the typea j

i 5a j 6

i 6 , where i 6 and j 6 represent

states obtained by applyingJ1 or J2 to i and j, respectively.
As follows from the previous discussion, the particl

number conserving many-body Hamiltonian in its most g
eral parametrization~3! always exhibits parameter symm
tries ~6!. Even if the form of Eq.~3! is further restricted by
03430
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imposing additional integrals of motion and symmetries,
similarity transformation can be constructed whenever
~5! allows, while respecting all the above-discussed c
straints, the construction of a nontrivial transformation of t
single-particle operators. This is so in spite of the fact t
the number of independent real parameters composed
the L ’s may be~and usually is! smaller than the number o
mutually different many-body energies. Obviously, not all
these energies are necessarily independent, as illustrate
the simplest example of a Hamiltonian with just singl
particle interactions for which all many-particle energies a
pear as simple combinations of the set of single-particle
ergies. In fact, the number of independent energies of a g
many-body Hamiltonian must—by definition—be small
than the number of parameters in themost generalparam-
etrization. If theL ’s in Eq. ~3! are made dependent on
smaller set of parameters$l%, the quest for parameter sym
metries in the reduced parameter space translates into
search of those transformationsl°l8 that accommodate the
mapping in Eq.~6!.

It should be pointed out that besides the standard sin
particle transformations in Eq.~5!, a formal exchange of cre
ation and annihilation operators~particles and holes! in the
Hamiltonian was also considered in Refs.@8,9# as a possible
transformation leading to parameter symmetries. Note
the inclusion of such inverted terms on the right-hand side
Eq. ~4! would preserve the particle-number conservation
the transformed Hamiltonian. However, the transformat
itself with these additional terms is clearly nonunitary~the
basis of theN51 subspace is mapped onto states that
have a nonzero overlap with the vacuum and thus are
orthonormal!. That is why we do not include such transfo
mations into our analysis, although they may be relevan
only N>2 subspaces are considered.

IV. THE INTERACTING BOSON MODEL 1

As a simple and well-studied example@8#, let us consider
first the IBM 1 @4#. It is formulated in terms of two kinds o
bosons,s andd, with angular momenta 0 and 2, respective
that interact via a Hamiltonian of the type~3! with only one-
and two-body terms. In addition, the Hamiltonian is assum
to be invariant under rotations and the time reversal. Its g
eral form is given by the following expression:

H~l!5k01k1C1~U5!1k2C2~U5!1k3C2~SO5!

1k4C2~SO3!1k5C2~SO6!1k6C2~SU3!, ~7!

wherel[$k0 , . . . ,k6% are real parameters, weights of C
simir operators corresponding to groups involved in cha
connecting the dynamical group U6 with the symmetry group
SO3 ~their explicit form can be found, e.g., in Ref.@9#!.

The dimensional analysis would indicate that parame
symmetries can hardly be found in subspaces with large t
boson number. Indeed, the number of different energ
~there is always the degeneracy associated with SO3 symme-
try! exceeds the number of parameters forN>3. However,
the above analysis related specifically to many-body Ham
tonians shows that the parameter symmetry exists in alN-
7-3
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subspaces. Let us consider the boson transformations ac
ing to Eq. ~5!. Clearly, becauseJ2 and Jz are parameter-
independent constants of motion, we can only consider tra
formationsUs†U215eifss† and Udm

† U215eifmdm
† , where

s† anddm
† create, respectively, ans boson and ad boson with

Jz projectionm522•••12, while fs and $fm% represent
arbitrary real phases. However, the fact thatU must commute
also with the remaining SO3 generators,J1 andJ2 , results
in the requirement that thed-boson phases are independe
of m, i.e., fm5fd . Furthermore, since the Hamiltonian~7!
is invariant under a global gauge transformation of all c
ation and annihilation operators, the only remaining para
eter is the relative phase betweens and d bosons,Df5fs
2fd . Without any loss of generality we can setfd50, thus
-
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Us†U215eifss† , Udm
† U215dm

† ~8!

~or, equivalently,fs50 andfdÞ0). The reality of coeffi-
cients in the Hamiltonian~the time-reversal invariance! al-
lows only some discrete values offs @4,5,8,9#, namelyfs
50,p for k6Þ0 andfs50,6p/2,p for k650.

From our general analysis, we therefore arrive at a d
crete set of similarity transformations of the Hamiltonian~7!
that exactly coincide with the gauge transformations
scribed in earlier work@4,5#. After some algebra with the
Casimir operators in Eq.~7! @6–9#, one derives the following
mapping corresponding to Eq.~8! with the above-given dis-
crete values offs :
~k08 ,k18 ,k28 ,k38 ,k48 ,k58 ,k68!5H ~k0 ,k112k6 ,k212k6 ,k326k6 ,k412k6 ,k514k6 ,2k6! if k6Þ0,

~k0110Nk5 ,k114~N12!k5 ,k224k5 ,k312k5 ,k4 ,2k5 ,0! if k650.
~9!
sso-
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This is the parameter symmetry given by Shirokovet al. @8#.
It implies, in particular, that any HamiltonianH(l) possess-
ing the SU3 dynamical symmetry,l5(k0,0,0,0,k4,0,k6), has
an isospectral partnerH(l8) with l85(k0,2k6,2k6 ,
26k6 ,k412k6,4k6 ,2k6), which is therefore integrable in
spite of having nonzero admixtures of all the U5 , SO6, and
SU3 dynamical symmetries@the HamiltonianH(l8) is said
to have the so-calledSU3 or SU3* hidden dynamical symme
try#. Similarly, the SO6 Hamiltonians with l

5(k0,0,0,k3 ,k4 ,k5,0) have theSO6 ~or SO6* ) isospectral
partners at l85@k0110Nk5,4(N12)k5 ,24k5 ,k312k5 ,
k4 ,2k5,0#, i.e., in the U5–SO6 transitional region.

In fact, Eq.~9! represents a single mapping of the para
eter space onto itself, a mapping discontinuous atk650.
However, since the origin of this discontinuity is the exte
sion of the allowedfs values atk650 ~see above!, Eq.~9! is
more appropriately viewed as two separate continuous m
pings, the first valid in the whole parameter space and yie
ing just the identity fork650, the second applicable only i
thek650 subspace. The fact that the subset of Hamiltoni
with no admixture of the SU3 Casimir operator is invarian
under the transformation~9! is important as all these Hamil
tonians are known to be integrable@12# and this property is
thus not propagated into other regions of the param
space.

Under the transformation~9!, the full seven-dimensiona
IBM-1 parameter space decomposes into pairs of points
constitute the dynamical equivalence classes of the mo
Two consecutive transformations~9! form the identity. Of
course, less complex parametrizations~such as the one in
Refs. @7,12#! typically contain at most one of the two iso
pectral Hamiltonians present in the complete param
space. Let us stress that the spectral equivalence of Ham
nians connected by Eq.~9! does not imply the same trans
tion rates if a fixed, parameter-independent set of transi
-

-

p-
-

s

er

at
el.

er
to-

n

operators is used. However, the transition rates for the a
ciated pointsl andl8 will clearly be equal if the transition
operators atl8 are chosen to be theUl8l transforms of the
transition operators atl. A detailed discussion of this poin
~making a link with the so-called consistent-Q formalism!
can be found in Ref.@8#. See also Ref.@13# where it is
discussed and stressed that the choice of~phenomenological!
transition operators is not necessarily fixed by a given
namical symmetry of the Hamiltonian.

Our analysis leads us to disagree with the statement m
in Ref. @8# concerning an additional IBM-1 parameter sym
metry that does not result from a transformation of the ty
~5!. This parameter symmetry is allegedly constructed
three steps:~i! the expansion of the Hamiltonian~7! in terms
of the set of Casimir operators whereC2(SO6) is replaced by
C2(SO6) ~the groupSO6 differs from the ‘‘standard’’ SO6 by
the above gauge transformation withfs56p/2), ~ii ! the
application of the transformation~9! to the expansion ob-
tained in the first step, and~iii ! the reverse decomposition o
C2(SO6) in the resulting expression into standard Casim
operators. Indeed, when literally following these steps, o
finds a Hamiltonian that differs from the one obtained
merely applying Eq.~9!. However, this Hamiltonian is no
isospectral with the original one because the transforma
in Eq. ~9! doesnot represent a parameter symmetry for t
Hamiltonian decomposition in terms ofC2(SO6). If it were
so, one could repeatedly apply the new transformation
the one from Eq.~9! yielding a chain of new equivalen
Hamiltonians in the parameter space. The dynamical equ
lence classes would then be infinite~although countable!
sets. However, this is not the case and the mapping~9! rep-
resentsthe onlyparameter symmetry of the IBM 1.

V. THE GINOCCHIO SO 8 MODEL

To explore the microscopic origin of the interacting bos
model and its success as a phenomenological model, one
7-4
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to link s andd bosons to nucleon pairs. A promising perspe
tive was offered by the Ginocchio SO8 model @10#, later
generalized to the fermion dynamical symmetry model@11#,
and formulated in terms ofs and d bosons by Geyer and
Hahne@14#. In the Ginocchio model, an even number (2N)
of fermions is considered in a shell of single-particle sta

with total angular momentaj decomposed asjW5kW1 3
2
W , where

kW is the so-called pseudo-orbital angular momentum (k is a

positive integer! and 3
2
W is termed the pseudospin. Under th

restriction, the total angular momentumJW5 jW11 jW2 of a
nucleon pair can only beJ50 or 2 if kW11kW2 couples to zero
in each pair. TheseS- andD-fermion pairs are counterpart
of the IBM s andd bosons~see Ref.@14#!.

The Ginocchio Fermionic Hamiltonian involves the usu
one- plus two-body interaction terms. The general form t
conserves the total angular momentum is

H~L!5L (0)1(
j

L j
(1)S (

m
~2 !m2 jajm

† ã j 2mD
1 (

j 1 j 2 j 3 j 4J
L j 1 j 2 j 3 j 4J

(2)

3S (
M

~2 !M2 j 32 j 4@aj 1

† aj 2

† #M
J @ ã j 3

ã j 4
#2M

J D ,

~10!

with @Aj 1
Bj 2

#M
J 5(m1 ,m2

( j 1m1 j 2m2uJM)Aj 1m1
Bj 2m2

. Here

the single-particle operatorsajm
† and ã jm5(2) j 1maj 2m are

restricted to j 5uk2 3
2 u, . . . ,(k1 3

2 ) and m52 j , . . . ,1 j .
Hermicity of the Hamiltonian requiresL (0) and$L (1)% to be
real, while the interaction strengths$L (2)% satisfy the condi-
tion L j 1 j 2 j 3 j 4J

(2) 5L j 4 j 3 j 2 j 1J
(2)* . We also set L j 1 j 2 j 3 j 4J

(2)

5L j 2 j 1 j 4 j 3J
(2) , as naturally follows from symmetry propertie

of the two-body operators in Eq.~10!.
Before discussing parameter symmetries of the more

cific Ginocchio Hamiltonian, let us consider the ones of t
most general Hamiltonian~10!. From the previous section
we know that the relevant transformations must be of
following form:

Uajm
† U215eif jajm

† , ~11!

wheref j are arbitrary real phases. This clearly leads to

L (0)85L (0), ~12!

L j
(1)85L j

(1) , ~13!

L (2)8 j 1 j 2 j 3 j 4J5ei (f j 1
1f j 2

2f j 3
2f j 4

)L j 1 j 2 j 3 j 4J
(2) . ~14!

Suppose now that the Hamiltonian~10! is invariant under the
time reversal. The time-reversal operatorT is antiunitary and
we choose the convention withTajm

† T215(2) j 1maj 2m
† ,

TãjmT215(2) j 1mãj 2m . In addition to the Hermicity con-
straints, we then arrive at the further constraint that the
03430
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efficientsL j 1 j 2 j 3 j 4J
(2) are either real~if j 11 j 21 j 31 j 4 is even!

or imaginary~if j 11 j 21 j 31 j 4 is odd!.
These results lead to a severe restriction of possible

ues of phases in Eq.~11!. Namely, from Eq.~14! we see
that the conservation of purely real or imaginary charac
of the two-body strengths requiresf j 1

1f j 2
2f j 3

2f j 4

5nj 1 j 2 j 3 j 4
p with nj 1 j 2 j 3 j 4

50,61,62, . . . for each j 1 , j 2 ,

j 3 , j 4. This will certainly be so if individual phasesf j differ
by multiples of p. As the global gauge is irrelevant an
as only phase values modulo 2p suffice, we end up with
transformations generated by various permutations
phases 0 andp. For instance, ifk>2, the four phases
$fk23/2, . . . ,fk13/2%[$f1 , . . . ,f4% can take any combina
tion of values from the following set:

~f1 ,f2 ,f3 ,f4!5~0,0,0,p!,~0,0,p,0!,~0,p,0,0!,~p,0,0,0!,

~0,0,p,p!,~0,p,0,p!,~p,0,0,p!. ~15!

Note that the remaining combinations are just 0
p conju-
gates of the ones given above and produce therefore equ
lent transformations. Each of the seven possibilities in
~15! generates a specific parameter symmetry that operat
the entire parameter space of the most general Hamilto
~10!. It should be noted, however, that for Hamiltonians w
L j 1 j 2 j 3 j 4J

(2) 50 for some particular combinations of angul

momenta~i.e., in some parameter subspaces!, additional pa-
rameter symmetries can be possible. Let us recall that a s
lar situation was met in the IBM fork650, which in the
present language corresponds toL22202

(2) 50.
The Ginocchio Hamiltonian is not as general as the one

Eq. ~10!. It turns out @10# that theS and D fermionic pair
operators belong to the SO8 algebra. The model Hamiltonian
is thus built exclusively from generators of this algebra, i.
possesses the SO8 dynamical symmetry. The pair creatio
operators are defined in the following way:

S†5
1

A2V
(

j
A2 j 11@aj

†aj
†#0

0 , ~16!

DM
† 5

1

AV
(
j 1 , j 2

~2 ! j 11k13/2A~2 j 111!~2 j 211!

3H j 1 j 2 2

3
2

3
2 kJ @aj 1

† aj 2

† #M
2 , ~17!

whereV is the maximum number of nucleon pairs in a ful
occupied shell, 2V5( j (2 j 11)54(2k11). The corre-
sponding pair annihilation operators are Hermitian con
gates of Eqs.~16! and ~17!. The remaining SO8 generators
are four multipole operators,
7-5
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PM
r 52 (

j 1 , j 2

~2 !r 1 j 11k13/2A~2 j 111!~2 j 211!

3H j 1 j 2 r

3
2

3
2 kJ @aj 1

† ã j 2
#M

r ~r 50,1,2,3!. ~18!

The Ginocchio SO8 Hamiltonian is expressed in terms of th
definitions~16!–~18!,

H~l!5E01G0 S†S1G2(
M

DM
† DM

1
1

4 (
r 51

3

br(
M

~2 !MPM
r P2M

r , ~19!

where l[$E0 ,G0 ,G2 ,b1 ,b2 ,b3% are real control param
eters. Expressed in the form of Eq.~10!, the Hamiltonian
~19! yields the following strength coefficients:

L (0)5E0 , ~20!

L j
(1)5(

r 51

3

~2r 11!(
j 8

~2 j 811!H j j 8 r

3
2

3
2 kJ 2

br , ~21!

L j 1 j 2 j 3 j 4J
(2)

5dJ0d j 1 j 2
d j 3 j 4

1

2V
A~2 j 111!~2 j 311!G0

1dJ2~2 ! j 11 j 411
1

V

3A~2 j 111!~2 j 211!~2 j 311!~2 j 411!

3H j 1 j 2 2

3
2

3
2 kJ H j 3 j 4 2

3
2

3
2 kJ G2

1~2 ! j 11 j 4A~2 j 111!~2 j 211!~2 j 311!~2 j 411!

3(
r 51

3

~2r 11!H j 1 j 3 r

3
2

3
2 kJ H j 2 j 4 r

3
2

3
2 kJ

3H j 1 j 2 J

j 4 j 3 r J br . ~22!

Note that the one-body terms~21! result from the normal
ordering of the last term in Eq.~19!. It is also clear that the
assumption concerningS and D pairs does not restrict th
two-body matrix elements~22! to J50,2 only. Apparently,
all the two-body terms~22! fulfill the Hermicity condition
and, in addition, are real. Indeed, because thej 1
 j 2 , j 3
 j 4
symmetry implies that (2) j 11 j 45(2) j 21 j 3 @Eqs. ~17! and
~18! are invariant underj 1
 j 2#, the right-hand side of Eq
~22! is nonzero only for even values of the sumj 11 j 21 j 3
1 j 4.

It is now simple to see that no parameter mappingl°l8
can realize the gauge transformation~12!–~14!. First, Eqs.
~12! and~20! yield E085E0, while br85br(r 51,2,3) follows
03430
from Eqs.~13! and ~21! as coefficients atbr in Eq. ~21! are
positive. SinceL (2)8 j 1 j 1 j 2 j 205L j 1 j 1 j 2 j 20

(2) also follows from

Eqs. ~14! and ~15!, we furthermore findG085G0. The only
remaining parameter,G2, can clearly not fulfill the consisten
transformation~14! of all two-body strengths~for instance, it
can only affect the terms withJ52).

These results are interesting from the viewpoint of t
known correspondence between the SO8 model and the IBM
1 @14,15#. Since these models utilize basically the same c
lective degrees of freedom, which can in fact be forma
mapped onto each other, one may wonder why the SO8 pa-
rameter space fails to accommodate isospectral Ham
nians, in contrast to the IBM-1 space. To answer this qu
tion one has to look carefully at how the corresponden
between the models is derived, and at the precise statu
the correspondence. Among various fermion-boson mapp
techniques@16#, the Dyson mapping is favored by the fa
that it transforms the two-body fermionic Hamiltonian~19!
into a two-body bosonic Hamiltonian, while retaining th
basic correspondence between a collective fermion pair a
boson. However, a detailed comparison of the boson map
version of the Ginocchio model~or FDSM! with the phe-
nomenological IBM 1, requires a subsequent Hermitizat
of the bosonic Hamiltonian—see Refs.@15,17# and espe-
cially Ref. @18# in this regard. Without the introduction o
three- and more-body boson interactions, or of any appro
mations, the Hermitization seems to be possible only fo
certain subset of the SO8 parameter space@15#.
This implies that the dynamical equivalence of the S8
model and the IBM 1 in terms of the link
(E0 ,G0 ,G2 ,b1 ,b2 ,b3)°(k0 , . . . ,k6) between parameter
in Eqs. ~19! and ~7!, respectively, can probably be esta
lished for this limited SO8 parameter subset only. We no
that some uncertainty in the last statement remains, s
there is, strictly speaking, no proof that a Hermitization p
cedure other than the one in Ref.@15# ~and which also pre-
serves the two-body character of interactions! cannot be con-
structed for the problematic parameter region.

On the other hand, by inspection of the mapping formu
in Refs. @15,17# it becomes apparent that not every Ham
tonian ~7! can be mapped from a Hamiltonian of the for
~19!. In this sense, the SO8 parameter space is smaller tha
the IBM-1 space, i.e., the SO8→ IBM-1 parameter mapping
is not onto the complete IBM-1 space, but only into a sma
IBM-1 subspace. The absence of parameter symmetrie
the Ginocchio model then indicates that the image of the S8
parameter space in the IBM-1 space contains no equivale
classes, or in other words, that out of each pair of the equ
lent IBM-1 Hamiltoniansat most onehas a counterpar
within the SO8 space. Note, however, that the bosonic gau
transformations~8! can easily be realized by choosing a
appropriate phase convention in the Dyson mapping.

VI. CONCLUSIONS

We have discussed parameter symmetries of gen
quantum many-body systems. Identifying such symmet
on the basis of constraints which result from a comparison
7-6
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the number of parameters with the number of independ
eigenvalues of the Hamiltonian, is not practical because
the difficulty to determine the latter in general. It was show
however, that the restrictions imposed upon the simila
transformationsU, namely the commutation ofU with ~a! all
parameter-independent integrals of motion and~b! all gen-
erators of the symmetry group, are sometimes sufficient
this determination.

From the above considerations we identified and propo
for many-body Hamiltonians conserving the total number
particles the following procedure:~i! consider single-particle
transformations of the type~5! conserving all the model in
tegrals of motion;~ii ! apply the commutation rules under~b!
to further restrict these transformations;~iii ! exclude global
gauge transformations that only lead to the trivial mapp
l°l ~such transformations belong to the Abelian symme
group!.

This procedure applied to the interacting boson mode
showed that the parameter symmetry~9!, derived in Ref.@8#,
is the only parameter symmetry of this model. In fact, sin
the Hamiltonian~7! is the most general rotationally invarian
one- plus two-body Hamiltonian withs- andd-boson degrees
of freedom, our general analysis already indicates that
tt.

03430
nt
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d
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1

e

a-

rameter symmetries should be a natural ingredient of
model. In contrast, a similar analysis of the Ginocchio S8

model disclosed that the parametrization~19! is too restric-
tive to allow for any parameter symmetries, although su
symmetries exist in the more general parametrization~10!.
These results of course do not contradict any aspect of
relationship between the SO8 model and an IBM-likes- and
d-boson counterpart based on boson-fermion mappin
where mapped Hamiltonians generally represent a restri
subset of the most general form~7!.

Let us stress finally that the analysis would become m
more complicated if we were to consider many-body Ham
tonians with interactions of arbitrary order. Equation~4!
would then have to be applied in its general form and
obvious insight seems available to do so.
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