PHYSICAL REVIEW C, VOLUME 64, 034307

Parameter symmetries of quantum many-body systems
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We analyze the occurrence of dynamically equivalent Hamiltonians in the parameter space of general
many-body interactions for quantum systems, particularly those that conserve the total number of particles. As
an illustration of the general framework, the appearance of parameter symmetries in the interacting boson
model 1 and their absence in the GinocchiogS&mionic model are discussed.
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I. INTRODUCTION Hamiltonian possessing a dynamical symmetry. Subse-
quently the idea was also utilized within the two-component

It is generally accepted that symmetry belongs to the mosproton-neutron interacting boson model, IBM[Q]. It is
fundamental concepts in physics. In particular, the generaliclear, however, that parameter symmetries can be explored in
zation of the standard invariance groups in terms of dynami@ much wider class of parameter-dependent systems. It is
cal (spectrum generatingyroups and dynamical symmetries therefore the aim of the present work to discuss the occur-
[1] seems to provide a rather general framework for describtence of parameter symmetries in more general situations.
ing both classical and quantum physical systd@k The We first analyze some generic features of parameter sym-
role of dynamical symmetries in problems of quantum inte-metries(Sec. I) and their realization in many-body systems
grability is reviewed by Zhang and Feng in RES]. One of ~ Which conserve the total number of particl&ec. I1). Two
the well-known examples of the algebraic approach in nonconcrete examples are then considered in detail, namely the
relativistic quantum physics is the family of so-called inter- interacting boson model @Sec. V) and the Ginocchio S
acting boson modeldBM), introduced by Arima and lach- model (Sec. V). From the point of view of a link between
ello [4] and extensively employed in phenomenologicalthese models, an interesting comparison between the two
nuclear physics. The dynamical groups of these models ar@nalyses can be made.
easily tractable and they neatly decompose into separate
dynamical-symmetry chains, each having a clear geometric II. PARAMETER SYMMETRIES OF GENERAL
interpretation and an associated set of nuclei conforming to HAMILTONIANS
the various symmetry dictated predictions. i ]

There is, however, a certain ambiguity in the definition of _ Following Refs.[8,9], we define the parameter symmetry
some of the IBM dynamical symmetries resulting from pos-P of @ given HamiltoniarH(\) depending on a set af real
sible gauge transformations of boson operators in the symarametera={\;,\,, ... A} as a mapping of the param-
metry limits [4,5]. This ambiguity applies even to the sim- eter space onto itself,
plest version of the model, the IBM 1, where the choice of ,
the boson gauge was for long considered as a mere conven- Pn—=>A=1(N), @
tion. It was, however, recently recognized as a deeper and " o
universal property of general algebraic systdfis Because ~Such thatH(A") is related toH(\) by a similarity transfor-
the twin symmetries resulting from the gauge transformatiofation,
can be located “between” standard symmetries in the param- 1
eter space, i.e., seemingly in transitional regions, they were HOV)=UxHMU, oy 2
referred to as “hidden’6]. The consequences of these hid-
den symmetries for the problem of quantum chaos were enWwhereU,, is a unitary operator. This is, of course, equiva-
phasized in Ref[7]. lent with the requirement that Hamiltoniand(\) and

In the work by Shirokowet al. [8] gauge transformations H(\') are isospectraki) from Eq. (2) it follows thatU,
of boson operators, and associated hidden symmetries, welt@nsforms theH(\) eigenvectorg#,(\)) into the H(\")
studied from the more general perspective of what these agigenvectors with the same energy(\) =E(\"), and(ii)
thors call “parameter symmetries.” It was shown that eachan equality of energies itl(\) =] (M) )Ex(N) (¢(N)]

IBM Hamiltonian has an isospectral partner located at a difand H(\") == ¢ (X)) E(N") (¢ (N")| ensures that Eq.
ferent point in parameter space. Hidden symmetries emerg@) is fulfilled with U,,, defined through | (\'))
as special cases of these parameter symmetries—they arisaJ, | (\)).
when the parameter symmetry partner is constructed for a It is apparent that if P;=f;(\) and P,=f,(\)
are two parameter symmetries, th@h=P,OP,:\—\’
=f,(f;(\))=f3(\) is also a parameter symmetry. The pa-
*Electronic address: pavel.cejnar@mff.cuni.cz rameter space of a system that exhibits the parameter sym-
"Electronic address: hbg@sunvax.sun.ac.za metry thus decomposes into subsets where points of the same
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subset correspond to Hamiltonians with essentially the samgist of countable sets of isolated pointsP,o

dynamics. Each of these subsets, geometrically represented{\° \%",\%", ...} (note that if the set is finite, it must be
by isolated points or a continuous manifalfbr a smooth  cyclic underp).
dependence of the Hamiltonian on parametefsrms an Assume now that there exists one or more mutually com-

equivalence class for which any single member fully repremuting and parameter-independentonstants of motion
sents the whole class. For example, if the Hamiltonian{As, - - -Ag} SO thatfH(A),A;]=0,i=1...q for all \. Itis
H(\%) is integrable, i.e., hasf constants of motion then, of course, natural to require that an arbitrarp )\’
{A1,A,, ... At in involution with f being the number of transform of any of these integralhich is a new integral
quantum degrees of freeddig], all the HamiltoniansH (\) valid atA ") must coincide with the original. This implies that

within the same equivalence classHié\°) are integrable as &/l similarity operatordJ, ., in Eq. (2) are required to com-
well. The integrals of motion are simply given by mute with all theA;’s. Both the Hamiltonian and unitary

U. oA U"L This feature of parameter symmetries is Crucialme_ltrices thu_s have _the same block-diagonal form,'each block
MO )0 P y o being associated with the subspace of the total Hilbert space
for the study of quantum chaos because it implies that pefaparacterized by a particular set of thequantum numbers.
fectly regular dynamics can be “imported” into parameter The apove analysis can then be applied either to the Hamil-
regions that might at first be expected to be chafig].  tonjan as a whole or to each block separately. Attention must
There immediately arises a plethora of questions related tge paid to the fact that some of the submatrices may depend
the size and topological structure of the equivalence classesh a reduced number of parameters. As a result, one can
in the parameter space. The answers, of course, depend eonsider parameter symmetries in a particular subset of
the particular Hamiltonian under study. blocks only. Moreover, the whole set of Hamiltonians can
For a fixed pairn and\’ relation(2) implies a set of? possess an underlying symmetry represented by a gBup
independent real equations+being the dimension of the In such a case, the unitary transformation should commute
Hilbert space—to determine? independent real parameters not only with the Casimir operators, but also with all genera-
of the unitary matrixJ, ,, . (Note that we assume the Hamil- tors of G. For the rotational symmetry, e.¢J,must commute
tonian to be self-adjoint, but complésn general, the struc- With J%, J, and also withJ, andJ_ .
ture of the set of equations may very well produce no solu- The implications of these general considerations depend
tion. To determine for a givek the range of\’ for which a  Very much on the details of a particular situation, as is dem-
solution exists, it is convenient to consider the diagonalize®nstrated in Secs. IV and V where we explore the existence
form of Eq. (2), i.e., the isospectral condition. This yields and nature of possible parameter symmetrles for to well-
equations fom variables\’. However, some of these equa- known nuclear models, the interacting boson mag¢eM)

tions might be identical. This is certainly the case if there[4] and the S@ Ginocchio mode[10l—also in its fermion

exists some inherent degeneracy shared by all Hamiltoniandsynam'CaI symmetry mod¢FDSM) incarnation[11]

regardless of their parameter values. Yet, not all the mutually

different eigenvalues of the Hamiltonian can be considered Ill. PARAMETER SYMMETRIES OF MANY-BODY
independentas elaborated in the next sectiofherefore the HAMILTONIANS
number of relevant equations is given by the numiesf As was pointed out above, the general analysis of param-

independentenergies. If this is larger than the number of eter symmetries, based solely on the dimensionality of the
parametersp>m, no parameter symmetries are generallyproblem, can often be inconclusive or even misleading, be-
expected. Fom=n, typically single (discret¢ solutions> ~ cause without knowledge of the specific physics involved in
should be found. Finally, a continuous variety of similarity the model it is hardly possible to determine the number
transformations may exist in an “overparametrized” case,independent energies. Turning to more specific examples of
m>n. parameter symmetries in bosonic or fermionic many-body
systems, we now consider a general Hamiltonian with one-,

If m=n, the expected dimensionality of manifolds repre-two_' three-, . . ., K-body terms,

senting the equivalence classes of a given Hamiltoniah is
=m-—n. For instance, for a two-dimensionaiondegener-
ate Hamiltonian dependent on three real paramefr’ H(A)=A®+> AMalaj+ > AR alalaa

the manifold containing the point® is formed by the inter- 1 1k

section of two surfaceE;(\)—E;(\°)=0,i=1,2 in the

three-dimensional parameter space, whichds=dl object, a + > AR mealalalaana,+ ... +He., (3)
curve C,o crossing\®. Note that the assumption was made ijkimn

again that both the surfaces mentioned are continuous; we do

not trace here consequences of possible singularities in theherea (i=1, ... s) is the creation operator of a particle
parametric dependence ®f(\). In the case of a four- intheith state(this state can also specify the type of particle,
parameter Hamiltonian in two dimensions, ttecontaining  like neutron or protoh Interaction strengths A
manifold will be a surfaceS,o. For two-parameter two- ={A® (AP IADTIAG) ) ...} form the general set
dimensional Hamiltonians, on the other hand, ttheO0  of parameters of th&-body Hamiltonian(they can be com-

equivalence classes in the parameter space will typically corplex but the Hermicity reduces the number of independent
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real parameters—for instance, there are r&ft But onlys?  imposing additional integrals of motion and symmetries, the
independent real one-body strength"). similarity transformation can be constructed whenever Eq.
The Hamiltonian(3) conserves the total number of par- (5) allows, while respecting all the above-discussed con-
ticles, N=3,a'a;, as should any acceptable similarity op- straints, the construction of a nontrivial transformation of the
eratorU. We thus have single-particle operators. This is so in spite of the fact that
the number of independent real parameters composed from
_ i i the A’s may be(and usually i smaller than the number of
Ua'u 1:; “iaJTJr% 'Bik'aiala'T mutually different many-body energies. Obviously, not all of
these energies are necessarily independent, as illustrated by
n 2 Yo aaalalal+. @) the _simplest e>_<ample of a Hamiltonian v_vith just sjngle-
[ KIMAZ Sk ' particle interactions for which all many-particle energies ap-
pear as simple combinations of the set of single-particle en-
where {a!}, {8} {¥mnt -~ are some complex coeffi- ergies. In fact, the number of independent energies of a given
cients satisfying constraints imposed by the unitarity. Equamany-body Hamiltonian must—by definition—be smaller
tion (4) determines the most general particle-number conthan the number of parameters in th®st generaparam-
serving similarity transformation in the many-body Fock etrization. If theA’s in Eq. (3) are made dependent on a
space. However, it does not constitute a parameter symmetgmaller set of parametefa }, the quest for parameter sym-
of a K-body Hamiltonian if higher-order terms with coeffi- metries in the reduced parameter space translates into the
cients By, ¥jkimn- - - are included. This is so because the search of those transformations>\" that accommodate the
higher-order terms increase the maximum orieof inter- ~ Mapping in Eq.(6).
actions in the Hamiltonian. Parameter symmetries of the It should be pointed out that besides the standard single-

Hamiltonian (3) with K finite can thus be specified by the Pparticle transformations in E¢5), a formal exchange of cre-
simplified version ation and annihilation operatofparticles and holgsin the

Hamiltonian was also considered in Rdf8,9] as a possible
transformation leading to parameter symmetries. Note that

-1 it
Uaju "= 2 @;8; (3 the inclusion of such inverted terms on the right-hand side of
Eqg. (4) would preserve the particle-number conservation of
of Eq. (4), with the unitarity constraintzka{(a{(*=5ij. the transformed Hamiltonian. However, the transformation
Namely, Eq.(5) clearly yields the followingA—A’ map-  itself with these additional terms is clearly nonunitdtie
ping: basis of theN=1 subspace is mapped onto states that all
have a nonzero overlap with the vacuum and thus are not
A©r=A0) orthonormal. That is why we do not include such transfor-
mations into our analysis, although they may be relevant if
, only N=2 subspaces are considered.
A(l)ij :% a:(a}*/\(k}),
(6) IV. THE INTERACTING BOSON MODEL 1
A(Z)i'jkI = E a{"a}‘a,‘(’* Ofﬁ*/\fﬁr)lpq: As a simple and well-studied examglg], let us consider
mnpq first the IBM 1[4]. It is formulated in terms of two kinds of

bosonss andd, with angular momenta 0 and 2, respectively,
A(B)i,jk|mn: R that interact via a Hamiltonian of the ty[98) with only one-
N ) ~and two-body terms. In addition, the Hamiltonian is assumed
If there are some additional global integrals of motiontg he invariant under rotations and the time reversal. Its gen-
besidesN, the right-hand side of Eq5) can only mix the  eral form is given by the following expression:
creation operatora;r that carry the same values of these
integrals asa/ on the left-hand side, i.eq{=0 if i andj H(N) =Ko +k;C1(Us) +koCo(Us) +ksCo(SOs)
label states that differ in one or more conserving quantum
numbers. This most obviously applies to the angular momen- +kyCo(SG3) +ksCo(SGs) +keCo(SUs),  (7)
2 . . . . .
tum J< and its projectiond, in the case of underlying rota- where={ko, . .. K¢} are real parameters, weights of Ca-

tional symmetry. Yet other conserved quantiiike charge, simir operators corresponding to groups involved in chains

etc) may be relevant. Moreover, as all generators of the symc':onnecting the dynamical grougs With the symmetry group

metry groupG must commute withJ, some additional con- SO, (their explicit form can be found, e.g., in Ref]).
straints emerge. In the case of rotational symmetry ane geiS The dimensional analysis would indicate that parameter

i I gl i i . . ;
relations of the typewj=«;”, wherei. andj. represent gymmetries can hardly be found in subspaces with large total

states obtained by applyinb, or J_ toi andj, respectively. boson number. Indeed, the number of different energies
As follows from the previous discussion, the particle- (there is always the degeneracy associated with S@me-
number conserving many-body Hamiltonian in its most genry) exceeds the number of parameters for 3. However,
eral parametrizatiori3) always exhibits parameter symme- the above analysis related specifically to many-body Hamil-
tries (6). Even if the form of Eq(3) is further restricted by tonians shows that the parameter symmetry exists ifNall
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subspaces. Let us consider the boson transformations accord- Ustut=e¢sst | udiu-1=d’ 8

ing to Eq. (5). Clearly, becausg? and J, are parameter- . .

independent constants of motion, we can only consider trans-

formationsUs'U~*=¢'?ss" and Ud| U~ *=€'?xd! , where  (or, equivalently,¢s=0 and $4#0). The reality of coeffi-

s’ anddL create, respectively, aboson and @ boson with  cients in the Hamiltoniarithe time-reversal invariangel-

J, projectionu=—2---+2, while ¢s and{¢,} represent lows only some discrete values @i [4,5,8,9, namely ¢
arbitrary real phases. However, the fact thahust commute  =0,7 for ke# 0 and¢s=0,= 7/2,7 for kg=0.

also with the remaining SQOgenerators), andJ_, results From our general analysis, we therefore arrive at a dis-
in the requirement that thé-boson phases are independentcrete set of similarity transformations of the Hamiltoni@n

of u, i.e., ¢,=¢q. Furthermore, since the Hamiltoniad)  that exactly coincide with the gauge transformations de-
is invariant under a global gauge transformation of all cre-scribed in earlier worl{4,5]. After some algebra with the
ation and annihilation operators, the only remaining paramCasimir operators in Eq7) [6—9], one derives the following
eter is the relative phase betwegmand d bosonsA¢=¢,  mapping corresponding to E¢B) with the above-given dis-

— ¢4 . Without any loss of generality we can sg§=0, thus  crete values oftpg:

(Ko Ky + 2Kg Ko+ 2Kg K — kg, Ky + 2K, Ks + 4kg, —Kg) i kg0,

(ko+10N|(5,k1+4(N+2)k5,k2—4k5,k3+2k5,k4,—k5,0) |f k6:0 (9)

(kg.Kki k5, k5, ky ke k) =

This is the parameter symmetry given by Shiroleial. [8]. operators is used. However, the transition rates for the asso-
It implies, in particular, that any Hamiltoniad(\) possess- ciated pointsh and\’ will clearly be equal if the transition
ing the SUY dynamical symmetry\ = (k,,0,0,0k,,0kg), has ~ Operators al’ are chosen to pe tHé'wx tra.nsforms_of th_e
an isospectral partnerH(A’) with \'=(ko2ke 2k, transition operators at. A detailed discussion of this point
— kg, ky+ 2kg,4kg, —kg), Which is therefore integrable in (making a |Ink.WIth the so-called consste@t—formah_snj
spite of having nonzero admixtures of all the ,U5Q;, and can be found in Ref[8].hSe$] alsho .REf[B] wherle It ISI
SU; dynamical symmetriefthe HamiltonianH(\") is said dlscu_s_sed and stressedt atthe c 0|_o(¢)b_énomeno o_glca

i ‘ . transition operators is not necessarily fixed by a given dy-
to have the so-calleBU; or SU; hidden dynamical symme- namical symmetry of the Hamiltonian.
try].  Similarly, the SQ _Hamiltonians ~ with A Our analysis leads us to disagree with the statement made
= (Ko,0,0K3,k4,ks,0) have theSQ; (or SQ) isospectral in Ref.[8] concerning an additional IBM-1 parameter sym-
partners at \'=[ko+ 10Nkg,4(N+2)ks, — 4ks, ks + 2Ks, metry that does not result from a transformation of the type
Ky, —ks,0], i.e., in the U—SQ, transitional region. (5). This parameter symmetry is allegedly constructed in
three steps(i) the expansion of the Hamiltonidf) in terms

In fact, Eq.(9) represents a single mapping of the param- - = _
eter space onto itself, a mapping discontinuoukgt 0. of the set of Casimir operators wheZg(SQ,) is replaced by

However, since the origin of this discontinuity is the exten-C2(SGs) (the groupSG; differs from the “standard” S@by
sion of the allowedp values aks= 0 (see abovg Eq.(9) is the gboye gauge transformat!on with, =+ m/2), ('.') the
more appropriately viewed as two separate continuous ma| ppllcqtlon Of. the transfor F“a“of‘” to the expansion ob-
pings, the first valid in the whole parameter space and yield-alnﬂln T[he first step., ani) the reverse decomposition .Of.
ing just the identity forkkg=0, the second applicable only in C(SQ) in the resulting expression into standard Casimir
thekg=0 subspace. The fact that the subset of Hamiltonian perators. In_dee(_j, when I|t_eraIIy following these steps, one
with no admixture of the SYCasimir operator is invariant inds a Hamiltonian that differs from the one obtained by

under the tiansformato) isimportant as all these Hamil- (C 2 FEROND, AR LENEIEE S Co e formation
tonians are known to be integraldl€2] and this property is P 9

thus not propagated into other regions of the paramete'F1 Eq. (9) doesnot represent a parameter symmetry for the

space. Hamiltonian decomposition in terms &f,(SG;). If it were
Under the transformatiof®), the full seven-dimensional so, one could repeatedly _apply the new transformatlon and
IBM-1 parameter space decomposes into pairs of points thépe one _from_ Eq.9) yielding a chain of new eq_uwalen';
constitute the dynamical equivalence classes of the modefiamiltonians in the parameter space. The dynamical equiva-
Two consecutive transformatior§) form the identity. Of ence classes would then be infinitalthough countable
course, less complex parametrizatiofssich as the one in SEtS- However, this is not the case and the map(#ingep-
Refs.[7,12)) typically contain at most one of the two isos- resentshe onlyparameter symmetry of the IBM 1.
pectral Hamiltonians present in the complete parameter
space. Let us stress that the spectral equivalence of Hamilto-
nians connected by E@9) does not imply the same transi-  To explore the microscopic origin of the interacting boson
tion rates if a fixed, parameter-independent set of transitiomnodel and its success as a phenomenological model, one has

V. THE GINOCCHIO SO g MODEL
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to link sandd bosons to nucleon pairs. A promising perspec-efficientsAJ(fj)2j3j4J are either reafif j;+j,+j3+]4is even

tive was offered by the Ginocchio gQmodel [10], later imaginary(if j,+j,+js+]4 is odd.

generalized to the fermion dynamical symmetry mdddl, These results lead to a severe restriction of possible val-
and formulated in terms of and d bosons by Geyer and

. . ues of phases in Eq11l). Namely, from Eq.(14) we see
Hahne[.14]. I_n the Gmocchyo model, an even numpeN)Z that the conservation of purely real or imaginary character
of fermions is considered in a shell of single-particle states

. . S of the two-body strengths require$jl+¢j2—¢j3—¢j4
\iVIth total angular momentpdecomposed as=k+ 5, where =nj . mwithn o =0+1+2 ... foreachj;, j,,
K is the so-called pseudo-orbital angular momentbmis(a ;. " "This will certainly be so if individual phases; differ
positive integerand is termed the pseudospin. Under this by multiples of 7. As the global gauge is irrelevant and
restriction, the total angular momentuth=j,+j, of a  as only phase values modulor2suffice, we end up with
nucleon pair can only ba=0 or 2 if IZ1+|22 couples to zero transformations generated by various permutations of

in each pair. Thes& and D-fermion pairs are counterparts P"ases 0 andr. For instance, ifk=2, the four phases

of the IBM s andd bosons(see Ref[14]). L-ap, - i aat =11, -+ $a} can take any combina-
The Ginocchio Fermionic Hamiltonian involves the usualion Of values from the following set:

one- plus two-body interaction terms. The general form that

conserves the total angular momentum is
(¢1 ’ ¢2 ’ ¢3 ' ¢4) = (01010!77) ’ (010!7710)!(0!775010);(77;010101

H(A)=A(O)+2 Aj(l) E (_)m—Jaij"a‘_j_m (0,047,7),(0,7,0,7),(7,0,07). (15
i m

+ > A@ Note that the remaining combinations are just@ conju-
jrigfaiad  (2lle h i b d d h iva-
gates of the ones given above and produce therefore equiva
o o lent transformations. Each of the seven possibilities in Eq.
X 2 (— )'V"314[a;r1a;r2]§,.[ajsaj4]JM) , (15) generates a specific parameter symmetry that operates in
M the entire parameter space of the most general Hamiltonian

(10) (10). It should be noted, however, that for Hamiltonians with
A}zj)j i 0=0 for some particular combinations of angular
. J . . 1234
with [A; By J\=Zm, m, (i1 oMol IM)Aj 1 Bj m,. Here  momentai.e., in some parameter subspacesiditional pa-
the single-particle operatoa{m andEjm=(—)j+maj_m are rameter symmetries can be possible. Let us recall that a simi-

restricted toj=|k—2|,...,(k+2) and m=—j,...,+j. lar situation was met in the IBM foks=0, which in the
Hermicity of the Hamiltonian require& © and{A®)} to be ~ present language correspondsitio= 0.
real, while the interaction strengthid @} satisfy the condi- The Ginocchio Hamiltonian is not as general as the one in
tion A@® .. =A@* \We also set A . . Eq. (10). It turns out[10] that theS and D fermionic pair

) Jaldlal " Jdlslale) llzlalal operators belong to the $@lgebra. The model Hamiltonian
= AfZiaig 88 naturally follows from symmetry properties is thus built exclusively from generators of this algebra, i.e.,

of the two-body operators in E¢10). _ possesses the $Qlynamical symmetry. The pair creation
Before discussing parameter symmetries of the more SP&perators are defined in the following way:
cific Ginocchio Hamiltonian, let us consider the ones of the

most general Hamiltoniafil0). From the previous sections

we know that the relevant transformations must be of the 1

following form: ST:E > \2j+1[alal1g, (16)
. j
Ua/ U t=€%a/, (11)
where ¢; are arbitrary real phases. This clearly leads to 1
Dli=—= > (=)™ 3(2);+1)(2],+1)
A0 = A0 (12) M JQ it
AD =AM (13 ji J2 2
] J XUa 5 [a] al 14 (g
, _ il e — b 2 2 2
A jlj2j3j4J_el(</>Jl+</>Jz i, ¢J4)A](1j)2j3j4J. (14

Suppose now that the Hamiltoniat0) is invariant under the  \yhere() is the maximum number of nucleon pairs in a fully
time reversal. The time-reversal operatos antiunitary and occupied shell, 2=3,(2j+1)=4(2k+1). The corre-
we choose the convention witlal, T~*=(—=)"Ma_,,  sponding pair annihilation operators are Hermitian conju-
TajmTflz(—)“ma,—,m. In addition to the Hermicity con- gates of Eqs(16) and (17). The remaining S@ generators
straints, we then arrive at the further constraint that the coare four multipole operators,
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Plu=22>, (=) Httke32/(2] +1)(2j,+1)

J1.J2

ji 2 1 i~
X1s s (@l (r=0123. (18

2 2
The Ginocchio S@Hamiltonian is expressed in terms of the
definitions(16)—(18),

H(\)=Eq+GoS'S+G,>, DDy
M

3
1
72 b2 (MPUPLy, (19
r=1 M

where A={E;,G,,G,,b;,b,,bs} are real control param-
eters. Expressed in the form of E(L0), the Hamiltonian
(19 yields the following strength coefficients:

AO=E,, (20)
i

2
3 k] b,, (21

NI -

3
AP= (2r+1)2 (2j’+1){
r=1 i’

2
j1lol3igd

1 . .
= 5J05j1j25j3j4m\/(2]l+ 1)(2j3+1)Gg

oo 1
—)iatiatl
+op(—)itiat S

X\(2j1+1)(2j2+1)(2]3+1)(2]4+1)

[jl 2 2“]3 ja 2
X
bl gk

+(=)14(2] 1+ 1)(2)2+ 1)(2f3+ 1)(2]4+1)

3 o S
Ji Js T||J2 Ja T
x21(2r+1)[g s k”§ k]

3
2 2 2

i1 2 J]
X3 b, . 22
[14 ja 1) " @2

G

Note that the one-body term&1) result from the normal
ordering of the last term in Eq19). It is also clear that the
assumption concernin§ and D pairs does not restrict the
two-body matrix element$22) to J=0,2 only. Apparently,
all the two-body termg22) fulfill the Hermicity condition
and, in addition, are real. Indeed, becausejthe|,,j3=],
symmetry implies that €)/1"l4=(—)J2"Is [Egs. (17) and
(18) are invariant undej;=j,], the right-hand side of Eq.
(22) is nonzero only for even values of the sypmt+j,+j,
+j,.
It is now simple to see that no parameter mappirg\’

can realize the gauge transformati@i?)—(14). First, Eqgs.
(12) and(20) yield E{=E,, while b; =b,(r=1,2,3) follows

PHYSICAL REVIEW (64 034307

from Egs.(13) and(21) as coefficients ab, in Eq. (21) are
positive. SinceA®@”; . .. =A@ . . also follows from
11l2l2 Jalal2l2

Egs.(14) and (15), we furthermore findG,=Gy. The only
remaining parameteG,, can clearly not fulfill the consistent
transformation(14) of all two-body strengths¢for instance, it
can only affect the terms with=2).

These results are interesting from the viewpoint of the
known correspondence between theg®adel and the IBM
1[14,15. Since these models utilize basically the same col-
lective degrees of freedom, which can in fact be formally
mapped onto each other, one may wonder why thg &0
rameter space fails to accommodate isospectral Hamilto-
nians, in contrast to the IBM-1 space. To answer this ques-
tion one has to look carefully at how the correspondence
between the models is derived, and at the precise status of
the correspondence. Among various fermion-boson mapping
techniqueq 16], the Dyson mapping is favored by the fact
that it transforms the two-body fermionic Hamiltonigh9)
into a two-body bosonic Hamiltonian, while retaining the
basic correspondence between a collective fermion pair and a
boson. However, a detailed comparison of the boson mapped
version of the Ginocchio moddbr FDSM) with the phe-
nomenological IBM 1, requires a subsequent Hermitization
of the bosonic Hamiltonian—see Refll5,17 and espe-
cially Ref. [18] in this regard. Without the introduction of
three- and more-body boson interactions, or of any approxi-
mations, the Hermitization seems to be possible only for a
certain subset of the SO parameter space[15].

This implies that the dynamical equivalence of thegSO
model and the IBM 1 in terms of the link
(Ep,Go,G,,bq,by,b3)— (Ko, . .. Kg) between parameters

in Egs. (19 and (7), respectively, can probably be estab-
lished for this limited S@ parameter subset only. We note
that some uncertainty in the last statement remains, since
there is, strictly speaking, no proof that a Hermitization pro-
cedure other than the one in RgL5] (and which also pre-
serves the two-body character of interactjocennot be con-
structed for the problematic parameter region.

On the other hand, by inspection of the mapping formulas
in Refs.[15,17] it becomes apparent that not every Hamil-
tonian (7) can be mapped from a Hamiltonian of the form
(19). In this sense, the Sparameter space is smaller than
the IBM-1 space, i.e., the O+ IBM-1 parameter mapping
is not onto the complete IBM-1 space, but only into a smaller
IBM-1 subspace. The absence of parameter symmetries in
the Ginocchio model then indicates that the image of thg SO
parameter space in the IBM-1 space contains no equivalence
classes, or in other words, that out of each pair of the equiva-
lent IBM-1 Hamiltoniansat most onehas a counterpart
within the SQ space. Note, however, that the bosonic gauge
transformations(8) can easily be realized by choosing an
appropriate phase convention in the Dyson mapping.

VI. CONCLUSIONS

We have discussed parameter symmetries of general
quantum many-body systems. Identifying such symmetries
on the basis of constraints which result from a comparison of
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the number of parameters with the number of independemameter symmetries should be a natural ingredient of the
eigenvalues of the Hamiltonian, is not practical because ofodel. In contrast, a similar analysis of the GinocchiogSO
the difficulty to determine the latter in general. It was shown,model disclosed that the parametrizatid®) is too restric-
however, that the restrictions imposed upon the similaritytive to allow for any parameter symmetries, although such
transformationsJ, namely the commutation &f with (@) all  symmetries exist in the more general parametrizatit).
parameter-independent integrals of motion @bdall gen-  These results of course do not contradict any aspect of the
erators of the symmetry group, are sometimes sufficient fofe|ationship between the $@nodel and an IBM-likes- and
this determination. d-boson counterpart based on boson-fermion mappings,
From the above considerations we identified and propose@here mapped Hamiltonians generally represent a restricted
for many-body Hamiltonians conserving the total number ofsypset of the most general fort¥).
particles the following proceduréi) consider single-particle | et us stress finally that the analysis would become much
transformations of the typ€5) conserving all the model in-  more complicated if we were to consider many-body Hamil-
tegrals of motion(ii) apply the commutation rules undé)  tonians with interactions of arbitrary order. Equatiéf)
to further restrict these transformationigi) exclude global \ould then have to be applied in its general form and no
gauge transformations that only lead to the trivial mappingobvious insight seems available to do so.
A—\ (such transformations belong to the Abelian symmetry
group.
This procedure applied to the interacting boson model 1
showed that the parameter symme®y, derived in Ref[8],
is the only parameter symmetry of this model. In fact, since This work was supported by the S.A. National Research
the Hamiltonian(7) is the most general rotationally invariant Foundation under Grants No. GUN 2047181 and GUN
one- plus two-body Hamiltonian wits andd-boson degrees 2044653 and partly by the Grant Agency of Czech Republic
of freedom, our general analysis already indicates that painder Grant No. 202/99/1718.
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