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Relativistic quantum mechanics and theS matrix
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In the standard development of scattering theory the Hamiltonian of the system plays a central role; however
when the Bakamijian-Thomas method is used to construct a relativistic model of a few-particle system, the
mass operator plays the essential role. Here a simple procedure for translating the Hamiltonian formulation of
scattering theory to a mass-operator formulation is given. A simple proof of the Poingar@ance of theS
operator that is obtained from a Bakamjian-Thomas model is also given.
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The central issue in relativistic quantum mechanics is thesls the Smatrix elements are usually obtained from fhe
construction of a set of unitary operators that represent thenatrix, which in turn is the solution of a Lippmann-
elements of the Poincagroup. This group is the set of all Schwinger equatiofi5]. The operators that go into the con-
inhomogeneous Lorentz transformatiorsk() that map the  struction of this equation are the free Hamiltontgand the
space-time variables of one inertial frame to those of anothefteractionH,=H —H,. This formalism can be carried over
inertial frame according to’=ax+b. Unitary operators to the relativistic domain; however with models constructed
U(a,b) that represent these transformations are used to magsing the Bakamijian-Thomas approach it is much more con-
the quantum mechanical state vectors of a system from ongenient to work with the mass operatht rather than the
inertial frame to another. The unitary operators that represerjamiltonianH. The development of scattering theory within
the proper group can be constructed by exponentiation frorthe framework of the Bakamjian-Thomas construction has
a set of ten generatof$i,P,J,K}. HereH is the Hamiltonian  peen considered previously by other auth@gr$—§. These
of the systempP is the three-momentum operatdr,is the  earlier developments are quite general; however they rely
angular momentum operator, ard is the boost operator. heavily on mathematical theorems. Here we show in a very
These generators satisfy a rather complicated set of commeiementary way how to transform the well-known equations
tation rules known as the Poincamgebra. It is quite of Hamiltonian-based scattering theory into equations that
straightforward to construct the generators for a fixed numinvolve the mass operator directly. Admittedly, the develop-
ber of noninteracting particles. In a seminal paper, Ditdc  ment here is not as general or as mathematically rigorous as
discussed three different schemes for incorporating interaahat given by other authoig,6—8), but it has the virtue of
tions into the noninteracting generators. These schemes apeing transparent.
known as the instant form, front form, and point form. Here  In order for a Bakamjian-Thomas construction to be sat-
we will focus on the instant form, since it is the most famil- jsfactory, theS-matrix elements must transform properly in
iar. In this form the HamiltoniartH and boost operatoK  going from one inertial frame to another. In particular, they
contain interactions, while the three-momentum oper&or must transform in such a way that the probability of a scat-
and the angular momentum operafoare noninteracting. A tering event is relativistically invariant. In quantum field
practical method for constructing the generators was devetheory whereSmatrix elements are usually calculated from
oped some time ago by Bakamjian and Thorffis In their ~ Feynman diagrams, this is not a major concern since the
approach a set of operators is introduced that satisfies a muclntribution of a single Feynman diagram is manifestly co-
simpler set of commutation rules than those of the Poincargariant. In contrast the Lippmann-Schwinger equations that
algebra. In the instant form these operators are a mass opefare solved to obtails-matrix elements from a Bakamijian-
tor M, the three-momentum operatBr a spin operatot’, Thomas mass operator are three dimensional and hence not
and the Newton-Wigner position opera®r[3,4]. The only  manifestly covariant. So in this case it is necessary to prove
nonzero commutators of the sgM,P,7,X} are [P™X,] that theS-matrix elements transform properly. This issue has
=—i6mnand[ g, Inl=iemnJn- In the Bakamjian-Thomas also been considered previous[#,6—9. Quite general
approach only the mass operatdrcontains an interaction; proofs for the invariance of thg operator have been given
the other operators are taken to be the same as those of thieat again rely heavily on mathematical theorems. Here we
noninteracting system. As a result of this, it is only necessarwill develop a less rigorous, but hopefully more transparent,
to ensure thaM commutes withP, 7, and X in order to  proof of the invariance of th& operator. There is probably
satisfy the commutation rules for the gé¥l,P,7,X}. The  no simpler way than the development given here to demon-
generators in turn are obtained from, P, 7, and X by  strate that a formulation of relativistic quantum mechanics
means of a set of nonlinear relations. that is not manifestly covariant can lead to a relativistically

The Bakamjian-Thomas construction guarantees that thivariantS matrix. It is important to appreciate the fact that
mass operatoM is Poincardnvariant, which in turn implies manifest covariance is not a necessary requirement of a sat-
that its eigenvalues are invariants. Another important set oisfactory relativistic quantum mechanics. It is only required
observables for a system that possesses scattering stateghat observables transform correctly in passing from one in-
given by the elements of tH@matrix. In nonrelativistic mod-  ertial frame to another.
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We assume a two-particle system and begin by introducAlong with the fact that® andV commute, these relations
ing the basic operators. The interacting Hamiltonian, theallow us to rewrite Eq(4b) as
noninteracting Hamiltonian, and the interaction Hamiltonian
are denoted by, Hy, andH 4, respectively. They are defined

in terms of the interacting mass operakdy the noninteract- |qu1m2>(t)= 1+ mV lpgmymy).
ing mass operatoi, and the three-momentum operafr (@*in ©)
by
H=(P?+M?2)Y2, Ho=(P+M2)¥2 H,=H—H,. (1) tor-ll—ar;ls result suggests that we define an alternaliopera-
Our noninteracting basis states are denoted ggm;m;,)
where p=p;+p2, 9=(P1)em., andm; and m, are thez _
components of the particles’ spins. These states are eigen- t(s)—V+VS_M2V. (10
states oHy, P, andMy, i.e.,
_ Just as with the standard Hamiltonian-based scattering for-
Holpamymz) =E(p,a)|pam;my), malism, we can easily derive the identities
P[pgm;m,) = plpamimy), 1 1 1 1
2V= 5t(s), V 2=t(s) >
Mo|pgm;m,) =W(q)|pgmymy), 2 s—M s—Mj s—M s—M?2
11
where the energ¥ and the c.m. energW are given by
E(p.a)=[p?+WA(a)]*%, W(a)=21(q)+e2(q), (3) t(s)=V+V t(s)=V+t(s) V. (12

2 2
s— s—
with ¢, and e, the single particle energies. We define in ° 0

(+) and out () states for the interacting system in the ysing Eq.(11) we can rewrite Eq(9) as
usual way[5], i.e.,

|pqmlm2>(i) |pqmlm2>(+):{l+
=0 pgmymy) (43

1
WA(q) +in—M3

XtWA(q) =i 77]} lpammy). (13

1
1+ W"'lhpqmlmz) (4b)

Since in the Bakamjian-Thomas constructin X, and.7

:[1+ ;T[E(p,q)iig]] lpgm,m,), commute withM andV [2,4], it follows from Eq. (10) that
E(p.g)*ie—Hy 40 our T operator satisfies the commutation relations
C

whereQ(*) are the Mdler wave operators and tieoperator [PUS)]=IXU)]=[TUS)]=0, (14

is given by which in turn implies that(s) has the representatidaQ]

1 ! ! ! !
T(z2)=H;+H;—H;. (5 (p’'q"'mimy|t(s)[pagm;m,)

z—H
_ _ _ =(2m)*2[E(p".q")E(p,q)]"*s*(p’ —p)
We now reexpress Eq4b) in terms of the interacting

mass operatol, the noninteracting mass operatdr, and Xtmm mm,(Q",0;S). (15
the mass-operator interacti®)which we assume are related
by The commutivity ofP andt(s) leads to the delta function in

Eqg. (15), while the commutivity ofX andt(s) implies that

MZ=MG+V. ©®  the fUNCtONt s mym,(4',0;S) does not depend op’ =p.
Using Egs.(1), (2), (3), and(6) we can show that If we compare Eqgs(4c) and (13) and use Eqgs(l), (3),
and(14), we find that the twadl operators are related by the
[H+E(p,q)]H|pam;m,)=V|pgm;m,), (7)  identity
[E(p,q)=ie—H][E(p,q)+H] T[E(p,q) *ie][pgmymy,)

=E*(p,q) —H?*ie[E(p,q) +H] ,
=W *i myms,). 16
—p%+W2(q) £ip— PP~ M2, ®) E(p.a) - Ho 1 (@ 7lipamumy). (16
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This relation shows that matrix elements of the standard JO® =07, KOG =0F)K,. (24)
operator (5) can be obtained by solving the Lippmann-
Schwinger equatioi12) whose ingredients are the noninter- It follows trivially from these relations that
acting mass operatdvl, and the mass-operator interaction
V. (0-K+0-2)0F) =0 (0-Ky+ 6-J),
We now show that th& operator is invariant with respect
to the action of the unitary operatdtg(a,b) that transform b(H,P)Q()=Q)b(H,,P). (25)
our noninteracting basis states from one inertial frame to
another. This property of ensures that the probability of a Since the unitary operators that map state vectors from one

scattering event is the same in all inertial frames. inertial frame to another can be expressed in the form
We begin by establishinimtertwining relationsfor the set

of operators used in the Bakamjian-Thomas construction, U(a,b)=expib-P)exdi(w-K+6-J)], P=(H,P),

i.e, {M,P,J,X}, as well as for the generatof{$i,P,J,K}. (26)
From Egs.(4b), (1), and(2), and the fact thaP commutes
with bothH andH,, we can easily derive the relations we see that these operators satisfy the intertwining relation
HO) pam;my) = E(p,q) )| pam;my) U(a,b)0)=0Ug(a,b). @
=0 Holpgm;my), 17 The S operator is given by5]
PQ(i)|pqm1m2>=pQ(i)|pqm1m2>=Q(i)P|pqm1m2(>i8) S=0(TQ ), (28)
It then follows from Egs(1), (2), and(3) that which when combined with Eq27) leads to
M Q)| pgm;m,) =W(q) Q)| pgm;m,) S=U; '(a,b)SUy(a,b). (29)
=0IM|pam;my). (19  That this establishes the relativistic invariance of the

Smatrix elements is easy to see. If we associate the nonin-
teracting stategpgm;m,) and|p’q’ m;m;) with thex frame,
then the corresponding states in tkRé frame, wherex’
=ax+b, are given by Ug(a,b)|pgmm,) and
Uo(a,b)|p’q’mim,), respectively. Obviously

Since 7 and X commute withM andV we can move them
past the square bracket in E§), and then using the fact that
the noninteracting states provide representations/fand X
[10], we can write

T pgmymy) = 2 [T*(Q) Imym, mmy @ pAMiMy) [(p'a’mim;|Ug *(a,b)1S[U(a,b)[pam;m,)]
mim)
1f =(p'q'mim;|S|pgm;m,), (30)
=0 Jpgm;m,), (20)

so the scattering amplitudes associated with the two different
XQE) | pgmym,) =X* (p,q) Q)| pgm,m,) inertial frames are identical and the probability of the scat-
. tering event is relativistically invariant.
=QEX[pgmym,). (21) In the development given here it has been assumed that
the mass operator has the foff) in which the interaction is
added to the square of the noninteracting mass operator. It is
also common to construct the mass operator in the fiskm

Assuming the completeness of the basis stggs;m,), we
arrive at the intertwining relations

MO =M, POH=0E)p, =Myt+U _vvhereU is the interaction. This_ case can be easily
0 treated with the methods used here. It is found that(By.
J0H=0®7  xQH=0EX. 22) gets replaced with

The total angular momentum operatfband the boost opera-

1
mym,) =1+ —————U||pgm;m,),
tor K are given by{4,10] [Pgmim;) W(Q) £ig—M [pam;m,)

(31)
1 PxXJ
J=XXP+J, K=-5(XH+HX)——7. (23  which instead of Eq(10) suggests th& operator
We see that the angular momentum operatazommutes T(Z):UJFULU_ (32)

with Q); while K intertwines withQ(*). Summarizing, we z—M
have the intertwining relations for the generators, i.e.,
The relation between thi§ operator and the traditional one

HO®=Q®H,, PQH=0p, is given by
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T[E(p,q) =ie]|pgm;m,)

W(q)+M,

~Elp.q) T H TWA@=i7llpammy), (33

rather than Eq(16). The proof of the invariance of th&
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operator that arises from assumillg= M+ U is essentially
the same as the proof given above.

Here we have assumed single-channel scattering. The ex-
tension of the development given here to Bakamjian-Thomas
models for systems involving several one- and two-particle
channeld11] is quite straightforward. It essentially amounts
to assuming that the interactiow'sor U couple these various
channels.
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