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Relativistic quantum mechanics and theS matrix
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In the standard development of scattering theory the Hamiltonian of the system plays a central role; however
when the Bakamjian-Thomas method is used to construct a relativistic model of a few-particle system, the
mass operator plays the essential role. Here a simple procedure for translating the Hamiltonian formulation of
scattering theory to a mass-operator formulation is given. A simple proof of the Poincare´ invariance of theS
operator that is obtained from a Bakamjian-Thomas model is also given.
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The central issue in relativistic quantum mechanics is
construction of a set of unitary operators that represent
elements of the Poincare´ group. This group is the set of a
inhomogeneous Lorentz transformations (a,b) that map the
space-time variables of one inertial frame to those of ano
inertial frame according tox85ax1b. Unitary operators
U(a,b) that represent these transformations are used to
the quantum mechanical state vectors of a system from
inertial frame to another. The unitary operators that repres
the proper group can be constructed by exponentiation f
a set of ten generators$H,P,J,K%. HereH is the Hamiltonian
of the system,P is the three-momentum operator,J is the
angular momentum operator, andK is the boost operator
These generators satisfy a rather complicated set of com
tation rules known as the Poincare´ algebra. It is quite
straightforward to construct the generators for a fixed nu
ber of noninteracting particles. In a seminal paper, Dirac@1#
discussed three different schemes for incorporating inte
tions into the noninteracting generators. These schemes
known as the instant form, front form, and point form. He
we will focus on the instant form, since it is the most fam
iar. In this form the HamiltonianH and boost operatorK
contain interactions, while the three-momentum operatoP
and the angular momentum operatorJ are noninteracting. A
practical method for constructing the generators was de
oped some time ago by Bakamjian and Thomas@2#. In their
approach a set of operators is introduced that satisfies a m
simpler set of commutation rules than those of the Poinc´
algebra. In the instant form these operators are a mass o
tor M, the three-momentum operatorP, a spin operatorJ,
and the Newton-Wigner position operatorX @3,4#. The only
nonzero commutators of the set$M ,P,J,X% are @Pm,Xn#
52 idmn and@Jl ,Jm#5 i« lmnJn . In the Bakamjian-Thomas
approach only the mass operatorM contains an interaction
the other operators are taken to be the same as those o
noninteracting system. As a result of this, it is only necess
to ensure thatM commutes withP, J, and X in order to
satisfy the commutation rules for the set$M ,P,J,X%. The
generators in turn are obtained fromM, P, J, and X by
means of a set of nonlinear relations.

The Bakamjian-Thomas construction guarantees that
mass operatorM is Poincare´ invariant, which in turn implies
that its eigenvalues are invariants. Another important se
observables for a system that possesses scattering sta
given by the elements of theSmatrix. In nonrelativistic mod-
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els theS-matrix elements are usually obtained from theT
matrix, which in turn is the solution of a Lippmann
Schwinger equation@5#. The operators that go into the con
struction of this equation are the free HamiltonianH0 and the
interactionH15H2H0. This formalism can be carried ove
to the relativistic domain; however with models construct
using the Bakamjian-Thomas approach it is much more c
venient to work with the mass operatorM rather than the
HamiltonianH. The development of scattering theory with
the framework of the Bakamjian-Thomas construction h
been considered previously by other authors@4,6–8#. These
earlier developments are quite general; however they
heavily on mathematical theorems. Here we show in a v
elementary way how to transform the well-known equatio
of Hamiltonian-based scattering theory into equations t
involve the mass operator directly. Admittedly, the develo
ment here is not as general or as mathematically rigorou
that given by other authors@4,6–8#, but it has the virtue of
being transparent.

In order for a Bakamjian-Thomas construction to be s
isfactory, theS-matrix elements must transform properly
going from one inertial frame to another. In particular, th
must transform in such a way that the probability of a sc
tering event is relativistically invariant. In quantum fie
theory whereS-matrix elements are usually calculated fro
Feynman diagrams, this is not a major concern since
contribution of a single Feynman diagram is manifestly c
variant. In contrast the Lippmann-Schwinger equations t
are solved to obtainS-matrix elements from a Bakamjian
Thomas mass operator are three dimensional and hence
manifestly covariant. So in this case it is necessary to pr
that theS-matrix elements transform properly. This issue h
also been considered previously@4,6–9#. Quite general
proofs for the invariance of theS operator have been give
that again rely heavily on mathematical theorems. Here
will develop a less rigorous, but hopefully more transpare
proof of the invariance of theS operator. There is probably
no simpler way than the development given here to dem
strate that a formulation of relativistic quantum mechan
that is not manifestly covariant can lead to a relativistica
invariantS matrix. It is important to appreciate the fact th
manifest covariance is not a necessary requirement of a
isfactory relativistic quantum mechanics. It is only requir
that observables transform correctly in passing from one
ertial frame to another.
©2001 The American Physical Society01-1
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We assume a two-particle system and begin by introd
ing the basic operators. The interacting Hamiltonian,
noninteracting Hamiltonian, and the interaction Hamiltoni
are denoted byH, H0, andH1, respectively. They are define
in terms of the interacting mass operatorM, the noninteract-
ing mass operatorM0, and the three-momentum operatorP
by

H5~P21M2!1/2, H05~P21M0
2!1/2, H15H2H0 . ~1!

Our noninteracting basis states are denoted byupqm1m2&
where p5p11p2 , q5(p1)c.m., and m1 and m2 are thez
components of the particles’ spins. These states are ei
states ofH0 , P, andM0, i.e.,

H0upqm1m2&5E~p,q!upqm1m2&,

Pupqm1m2&5pupqm1m2&,

M0upqm1m2&5W~q!upqm1m2&, ~2!

where the energyE and the c.m. energyW are given by

E~p,q!5@p21W2~q!#1/2, W~q!5«1~q!1«2~q!, ~3!

with «1 and «2 the single particle energies. We define i
(1) and out (2) states for the interacting system in th
usual way@5#, i.e.,

upqm1m2&
(6)

5V (6)upqm1m2& ~4a!

5F11
1

E~p,q!6 i«2H
H1G upqm1m2& ~4b!

5H 11
1

E~p,q!6 i«2H0
T@E~p,q!6 i«#J upqm1m2&,

~4c!

whereV (6) are the Mo¨ller wave operators and theT operator
is given by

T~z!5H11H1

1

z2H
H1 . ~5!

We now reexpress Eq.~4b! in terms of the interacting
mass operatorM, the noninteracting mass operatorM0, and
the mass-operator interactionV, which we assume are relate
by

M25M0
21V. ~6!

Using Eqs.~1!, ~2!, ~3!, and~6! we can show that

@H1E~p,q!#H1upqm1m2&5Vupqm1m2&, ~7!

@E~p,q!6 i«2H#@E~p,q!1H#

5E2~p,q!2H26 i«@E~p,q!1H#

→p21W2~q!6 ih2P22M2. ~8!
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Along with the fact thatP and V commute, these relation
allow us to rewrite Eq.~4b! as

upqm1m2&
(6)5F11

1

W2~q!6 ih2M2
VG upqm1m2&.

~9!

This result suggests that we define an alternativeT opera-
tor by

t~s!5V1V
1

s2M2
V. ~10!

Just as with the standard Hamiltonian-based scattering
malism, we can easily derive the identities

1

s2M2
V5

1

s2M0
2

t~s!, V
1

s2M2
5t~s!

1

s2M0
2

,

~11!

t~s!5V1V
1

s2M0
2

t~s!5V1t~s!
1

s2M0
2

V. ~12!

Using Eq.~11! we can rewrite Eq.~9! as

upqm1m2&
(6)5H 11

1

W2~q!6 ih2M0
2

3t@W2~q!6 ih#J upqm1m2&. ~13!

Since in the Bakamjian-Thomas construction,P, X, andJ
commute withM and V @2,4#, it follows from Eq. ~10! that
our T operator satisfies the commutation relations

@P,t~s!#5@X,t~s!#5@J,t~s!#50, ~14!

which in turn implies thatt(s) has the representation@10#

^p8q8m18m28ut~s!upqm1m2&

5~2p!32@E~p8,q8!E~p,q!#1/2d3~p82p!

3tm
18m

28 ,m1m2
~q8,q;s!. ~15!

The commutivity ofP andt(s) leads to the delta function in
Eq. ~15!, while the commutivity ofX and t(s) implies that
the functiontm

18m
28 ,m1m2

(q8,q;s) does not depend onp85p.

If we compare Eqs.~4c! and ~13! and use Eqs.~1!, ~3!,
and~14!, we find that the twoT operators are related by th
identity

T@E~p,q!6 i«#upqm1m2&

5
1

E~p,q!1H0
t@W2~q!6 ih#upqm1m2&. ~16!
1-2
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This relation shows that matrix elements of the standarT
operator ~5! can be obtained by solving the Lippman
Schwinger equation~12! whose ingredients are the noninte
acting mass operatorM0 and the mass-operator interactio
V.

We now show that theSoperator is invariant with respec
to the action of the unitary operatorsU0(a,b) that transform
our noninteracting basis states from one inertial frame
another. This property ofS ensures that the probability of
scattering event is the same in all inertial frames.

We begin by establishingintertwining relationsfor the set
of operators used in the Bakamjian-Thomas construct
i.e., $M ,P,J,X%, as well as for the generators$H,P,J,K%.
From Eqs.~4b!, ~1!, and ~2!, and the fact thatP commutes
with both H andH1, we can easily derive the relations

HV (6)upqm1m2&5E~p,q!V (6)upqm1m2&

5V (6)H0upqm1m2&, ~17!

PV (6)upqm1m2&5pV (6)upqm1m2&5V (6)Pupqm1m2&.
~18!

It then follows from Eqs.~1!, ~2!, and~3! that

MV (6)upqm1m2&5W~q!V (6)upqm1m2&

5V (6)M0upqm1m2&. ~19!

SinceJ and X commute withM and V we can move them
past the square bracket in Eq.~9!, and then using the fact tha
the noninteracting states provide representations forJ andX
@10#, we can write

JV (6)upqm1m2&5 (
m18m28

@J* ~q!#m1m2 ,m
18m

28
V (6)upqm18m28&

5V (6)Jupqm1m2&, ~20!

XV (6)upqm1m2&5X* ~p,q!V (6)upqm1m2&

5V (6)Xupqm1m2&. ~21!

Assuming the completeness of the basis statesupqm1m2&, we
arrive at the intertwining relations

MV (6)5V (6)M0 , PV (6)5V (6)P,

JV (6)5V (6)J, XV (6)5V (6)X. ~22!

The total angular momentum operatorJ and the boost opera
tor K are given by@4,10#

J5X3P1J, K52
1

2
~XH1HX!2

P3J
M1H

. ~23!

We see that the angular momentum operatorJ commutes
with V (6); while K intertwines withV (6). Summarizing, we
have the intertwining relations for the generators, i.e.,

HV (6)5V (6)H0 , PV (6)5V (6)P,
02700
o

n,

JV (6)5V (6)J, KV (6)5V (6)K0 . ~24!

It follows trivially from these relations that

~v•K1u•J!V (6)5V (6)~v•K01u•J!,

b~H,P!V (6)5V (6)b~H0 ,P!. ~25!

Since the unitary operators that map state vectors from
inertial frame to another can be expressed in the form

U~a,b!5exp~ ib•P!exp@ i ~v•K1u•J!#, P5~H,P!,
~26!

we see that these operators satisfy the intertwining relati

U~a,b!V (6)5V (6)U0~a,b!. ~27!

The S operator is given by@5#

S5V (2)†V (1), ~28!

which when combined with Eq.~27! leads to

S5U0
21~a,b!SU0~a,b!. ~29!

That this establishes the relativistic invariance of t
S-matrix elements is easy to see. If we associate the no
teracting statesupqm1m2& andup8q8m18m28& with thex frame,
then the corresponding states in thex8 frame, wherex8
5ax1b, are given by U0(a,b)upqm1m2& and
U0(a,b)up8q8m18m28&, respectively. Obviously

@^p8q8m18m28uU0
21~a,b!#S@U0~a,b!upqm1m2&#

5^p8q8m18m28uSupqm1m2&, ~30!

so the scattering amplitudes associated with the two diffe
inertial frames are identical and the probability of the sc
tering event is relativistically invariant.

In the development given here it has been assumed
the mass operator has the form~6! in which the interaction is
added to the square of the noninteracting mass operator.
also common to construct the mass operator in the formM
5M01U whereU is the interaction. This case can be eas
treated with the methods used here. It is found that Eq.~9!
gets replaced with

upqm1m2&
(6)5F11

1

W~q!6 ih2M
UG upqm1m2&,

~31!

which instead of Eq.~10! suggests theT operator

t~z!5U1U
1

z2M
U. ~32!

The relation between thisT operator and the traditional on
is given by
1-3
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02700
operator that arises from assumingM5M01U is essentially
the same as the proof given above.

Here we have assumed single-channel scattering. The
tension of the development given here to Bakamjian-Thom
models for systems involving several one- and two-parti
channels@11# is quite straightforward. It essentially amoun
to assuming that the interactionsV or U couple these various
channels.
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T@E~p,q!6 i«#upqm1m2&

5
W~q!1M0

E~p,q!1H0
t@W2~q!6 ih#upqm1m2&, ~33!

rather than Eq.~16!. The proof of the invariance of theS
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