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Internal equilibration of a nucleus with metastable states: 26Al as an example
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~Received 15 July 2000; published 23 July 2001!

In many isotopes important to nucleosynthesis theory there exists a low-lying metastable state whose deex-
citation to the ground state is strongly inhibited by a large angular momentum difference. In a stellar plasma,
the equilibration of the ground and metastable states of such nuclei proceeds primarily via indirect transitions
that involve upper-lying levels. We present a mathematical technique to follow these multistep transitions.
Under the crucial assumption that the abundances of the upper-lying levels are in a steady-state abundance
distribution, our method abstracts away all the higher-lying excited states allowing the isotope in question to be
represented as a two-state system with transitions between these two states. The two states are properly not the
ground and metastable states themselves but rather two ensembles of states, one tied to the ground state and
one tied to the metastable state. We show how to compute effective rates into and out of these ensembles and
between them, as well as how to identify the dominant pathways. This allows such nuclei to be treated in a
simple, straightforward, and accurate fashion in nucleosynthesis networks. The specific example of26Al,
including its effective beta-decay lifetime, is considered in detail.

DOI: 10.1103/PhysRevC.64.025805 PACS number~s!: 26.20.1f, 02.10.Ab, 21.10.Tg, 26.30.1k
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I. INTRODUCTION

The rates for key nuclear reactions are crucial inputs
models of stellar evolution and nucleosynthesis. The lack
an accurate value for the rate of one or more nuclear re
tions frequently limits the conclusions that may be dra
from an astrophysical model. As a salient example, the
certainties that currently exist in the experimentally availa
12C(a,g)16O reaction rate constrain the accuracy of ste
models beyond the phase of helium burning~e.g., see Ref.
@1#!. Clearly, continued progress in stellar modeling and
cleosynthesis will require ongoing efforts in nuclear phys
laboratories.

While nuclear physics experiments underpin the succ
of astrophysics models by providing essential input, it h
not always been true that Earth-bound laboratories prov
precisely the information required by the models. For e
ample, only recently have experimentalists begun measu
reaction rates at the low energies relevant to the condition
the center of the sun@2#. A similar problem that will prove
even more challenging is the issue of the excited state
target nuclei.

Laboratory measurements of nuclear reaction rates
made on target nuclei in their ground states. In a ste
plasma, however, the target nuclei are distributed am
their excited states. This is a well-known problem, bu
proper accounting of this in stellar models has not prov
easy. Ultimately one would wish for direct experiments, b
this will be extremely difficult in Earth-bound laboratorie
For now one must seek to make the laboratory results
ground-state nuclei more appropriate for stellar models.
simplest approach is that of an ‘‘equal strength approxim
tion’’ @3#, in which the rate for some reaction on a nucleus
an excited state is assumed to be equal to that when
nucleus is in its ground state. More recently, there have b
efforts to account for the excited states more accurately
using experimental nuclear level data or by using Haus
Feshbach calculations and the assumption of a thermal p
0556-2813/2001/64~2!/025805~21!/$20.00 64 0258
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lation of excited states to give corrections to the ground-s
rates~e.g., see Ref.@4#!.

Generally, the internal equilibration of a nucleus occu
more rapidly than the competing processes of production
destruction of that nucleus. In such a case, an equilibr
population of excited states is a reasonable approximation
certain isotopes, however, a low-lying isomeric state is o
directly connected to the ground state by a transition of h
multipolarity. This strongly inhibits internal equilibration o
the nucleus, and consequently the distribution of such nu
among their excited states cannot be treated by Boltzm
statistics. In such a case, equilibration of the isomer and
ground state occurs only indirectly via upper-lying leve
and it is frequently necessary to treat the two states, or, m
properly, two ensembles of states, one tied to the gro
state and one tied to the long-lived isomer, as separate
cies in the nuclear reaction network.

Fortunately, the number of such isotopes is small. Ho
ever, among their number is26Al. The 51 ground state of
26Al has a million-year lifetime againstb1 decay, which
makes it of great interest for gamma-ray astronomy~e.g., see
Ref. @5#!, cosmochemistry~e.g., see Ref.@6#!, and the study
of presolar grains~e.g., see Ref.@7#!. The 01 first excited
state at 0.228 MeV, on the other hand, lives for only 9.2
This complicates the effective26Al decay rate in a stellar
plasma. The effective decay rate would be easy to comp
if the 51 and 01 states communicated efficiently, for the
one could assume they existed in an equilibrium therm
distribution. The large difference in spin between the tw
states inhibits their direct communication, however, and o
is usually forced to treat them as separate nuclear specie
reaction networks. This is not too difficult in practice—on
simply needs to follow the reactions that separately feed
destroy these two species. What is lacking, however, i
simple-to-use and accurate rate for the transitionbetweenthe
two species. Such a transition becomes important near
3109 K (T950.4) at which temperature internal equilibra
tion of 26Al competes with beta decay from the metasta
©2001 The American Physical Society05-1
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state. Our goal in this paper is to calculate the rate for
transition and to show how to use it in a reaction netwo
Other nuclei where such long-lived isomeric states pla
crucial role in nucleosynthesis theory include85Kr, 113Cd,
115Cd, and 115In and 180Ta. We will present detailed treat
ments of these nuclei in subsequent papers.

Ward and Fowler@8# have described and investigated th
problem in some detail. More recently, Coc, Porquet, a
Nowacki have computed the effective beta-decay lifetime
26Al in a stellar plasma@9# using new shell-model calcula
tions of the rates of certain internal transitions not kno
from experiment. In both of the above papers, the auth
presented results of internal equilibration from numeri
calculations. We revisit this problem in what we believe is
more straightforward manner. The key to our approach is
assumption that the nuclear levels in26Al lying higher in
energy than the ground and metastable states are in a s
state. With this largely accurate assumption of a steady s
we then exploit the combinatorial nature of the problem
compute the effective rate of equilibration of the ground a
metastable states by enumerating all possible pathways
upper-lying levels. Apart from the intellectual appeal of t
resulting interpretation, this method allows for a direct eva
ation of the importance of any nuclear level or transition
the overall equilibration rate. Moreover, the treatment
quite general and is applicable to any similar nucleus, if
more generally to the kinetics of analogous atomic and m
lecular systems exhibiting important nonequilibrium effe
in a plasma.

Our technique also permits direct calculation of the d
gree of connection of an upper-lying level to the ground
metastable state. This allows us~under the good assumptio
of a steady state among the upper-lying levels! to separate
the nuclear levels in26Al into two ensembles of states wit
each level participating inboth ensembles. In this way we
are then able to compute effective rates for transitions fr
either ensemble to other nuclear species or vice versa an
transitions between the two ensembles of states. These
ensembles, then, are properly the two separate species
evolves in the nuclear reaction network, and we have s
cessfully transformed the problem for the multilevel nucle
to that of an equivalent two-level system.

The outline of the paper is as follows. Section II treats
steady-state approximation and computes the effective t
sition rate between the isomer and ground state. Sectio
provides a combinatorial interpretation of the effective ra
Section IV applies the effective rate to the specific case
26Al, while Sec. V explores the kinetics of internal equilibr
tion in further detail. Section VI discusses our approach
treating a nucleus with a long-lived isomeric state as t
separate species in a reaction network, and Sec. VII pres
a brief summary.

II. THE STEADY-STATE APPROXIMATION

A simple example motivates our basic technique for tre
ing metastable-state nuclei, such as26Al. Consider the abun-
danceY of a single nuclear species with a constant rate
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productionP and a rate of destructionl per nucleus. The
abundance is governed by

dY

dt
52lY1P, ~2.1!

which has the solution

Y~ t !5Y~0!e2lt1S P

l D ~12e2lt!, ~2.2!

whereY(0) is the initial abundance. The long-time behavi
(t→`) is such that (dY/dt)→0. Equation~2.2! leads to the
following conclusions.

The timescale;(1/l) for achieving a steady state is de
termined by the destruction ratel;

~i! The steady-state abundance is given by (P/l), i.e., by
the ratio~production rate/destruction rate per nucleus!.

~ii ! Consider next the situation in a three-level syste
with level indices arranged in order of increasing energ
~this convention will be followed throughout!, with the
added provision that level 2 may not communicate direc
with the ground state~level 1!. This may occur, for example
if the spin difference between the two lower levels is ve
high, in which case the levels communicate only slowly via
very high order multipole.

The relevant equations governing the evolution of t
abundances in the three-level system are then

dY1

dt
52L1Y11l31Y3 , ~2.3!

dY2

dt
52L2Y21l32Y3 , ~2.4!

dY3

dt
52L3Y31l13Y11l23Y2 , ~2.5!

wherel i j represents the rate for the transitionsfrom level i to
level j and

Lk5(
j Þk

lk j ~2.6!

represents the total rate for the destruction of levelk.
L1 andL2 are exclusively determined from upward tra

sitions; therefore, at sufficiently low temperatures, they w
typically be many orders of magnitude smaller thanL3
~which involves downward transitions!. We thus postulate
that level 3 reaches a steady state on a short timescale
pared to the timescale on which the abundances of leve
and 2 change; hence, we may set (dY3 /dt)50 in Eq. ~2.5!.
Note that this assumption corresponds to treating transit
out of level 3 as instantaneous. Such an approximation
ables us to immediately solve forY3 in terms ofY1 andY2:

Y3~ t !5H l13Y11l23Y2

L3
J . ~2.7!
5-2
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INTERNAL EQUILIBRATION OF A NUCLEUS WITH . . . PHYSICAL REVIEW C64 025805
Substituting Eq.~2.7! into Eqs.~2.3! and ~2.4!, we obtain a
two-species network

dY1

dt
5AY11BY2 , ~2.8!

dY2

dt
5CY11DY2 , ~2.9!

where the coefficients may be obtained by inspection,

A5H 2l131S l13l31

L3
D J 52l13~12 f 31!, ~2.10!

B5S l23l31

L3
D5l23f 31, ~2.11!

C5S l13l32

L3
D5l13f 32, ~2.12!

D5H 2l231S l23l32

L3
D J 52l23~12 f 32!, ~2.13!

wheref i j denotes the branching ratio or the probability tha
transition out of leveli will be to level j,

f i j 5
l i j

L i
. ~2.14!

A,B,C, andD are not independent quantities sincef 311 f 32
51 implies thatA52C andD52B. Thus, we obtain two
effective rates for our two-level system,

dY1

dt
52l12

e f fY11l21
e f fY2 ,

dY2

dt
5l12

e f fY12l21
e f fY2 , ~2.15!

where

l12
e f f5l13f 32, ~2.16!

l21
e f f5l23f 31. ~2.17!

Usually it is only the downward spontaneous decay ra
that are known from experiment or theoretical shell-mo
calculations. Nevertheless, from this information, it is po
sible to use the Einstein relations to compute the indu
upward and downward transition rates in a high-tempera
plasma. In this way, the effective ratesl12

e f f andl21
e f f can be

completely specified. In this paper we neglect transitions
duced by collisions with other ions in the plasma. In gene
these contribute to the overall internal transition rates onl
the highest temperatures and densities@8,15#. Nevertheless,
their inclusion would be straightforward in our formalism.

We now generalize to ann-level system with a ground
state~level 1! and a low-lying metastable state~level 2! that
do not communicate via a direct transition. Since the to
02580
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destruction rates out of levels 1 and 2 are calculated ex
sively from upward transitions to higher-lying states we ha

Lk@L1 and Lk@L2 ~2.18!

for levelsk.2. Hence, we may assume the higher-lying le
els attain steady states on short timescales compare
(1/L1) or (1/L2), i.e., (dYk /dt)50 for levelsk.2. Note
however thatdY1 /dt anddY2 /dt arenot equal to zero be-
cause their timescales to reach a steady state are m
longer. The abundances in the full nuclear reaction netw
are governed byn equations of the form

dYk

dt
5l1kY11l2kY21l3kY31•••1lk21,kYk212LkYk

1lk11,kYk111•••1lnkYn , ~2.19!

where 1<k<n. For levelsk.2 we may set the left-hand
side of Eq.~2.19! to zero and obtain (n22) equations of the
form

2l3kY3
SS2•••2lk21,kYk21

SS 1LkYk
SS2lk11,kYk11

SS 2•••

2lnkYn
SS5l1kY11l2kY2 , ~2.20!

where now 3<k<n andYk
SS denotes the steady-state abu

dance of levelk. This system of linear equations may b
immediately recast in matrix form as

S L3 2l43 2l53 2••• 2••• 2••• 2ln3

2l34 L4 2l54 2••• 2••• 2••• 2ln4

A A A A A A A

2l3n 2l4n 2l5n 2••• 2••• 2••• Ln

D
3S Y3

SS

Y4
SS

A

Yn
SS

D 5S l13Y11l23Y2

l14Y11l24Y2

A

l1nY11l2nY2

D , ~2.21!

which enables a solution of the steady-state abundance
first defining the following algebraic entities:

~i! The diagonal destruction matrix, withL i j 5d i j L i ~for
3< i , j <n). That is, L has the destruction rates of leve
3 –n on its diagonal and zero everywhere else. The inve
diagonal destruction matrixL21 then has the element
(L21) i j 5(d i j /L i) ~for 3< i , j <n);

~ii ! The identity matrix of order (n22) denoted byI;
~iii ! The ‘‘transfer matrix’’ F given by Fi j 5 f i j ~for 3

< i , j <n). This is the transition probability matrix of the
subsystem formed by excluding the ground and the m
stable states. Its transpose will be denoted byFT;

~iv! The steady-state abundance vector

YSS5S Y3
SS

A

Yn
SS
D ;
5-3
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~v! The ‘‘production vectors’’

lq
out5S lq3

A

lqn

D 5LqS f q3

A

f qn

D [Lqf q
out

comprised of the rates from the ground (q51) and meta-
stable states (q52), respectively, ‘‘out’’ to all the upper-
lying levels; and

~vi! The ‘‘total production vector’’

P5l1
outY11l2

outY25S l13Y11l23Y2

A

l1nY11l2nY2

D ,

which is the right-hand side of Eq.~2.21!.
With these definitions, Eq.~2.21! becomes

~ I 2FT!LYSS5P, ~2.22!

which may be immediately solved for the steady-state ab
dances,

YSS5L21~ I 2FT!21P. ~2.23!

Now, FT is merely the transpose of the transition probabil
matrix with all transitions to and from levels 1 and 2 r
moved. This classifiesFT as aprincipal submatrixof a sto-
chastic matrix. The parent stochastic matrix isirreducible
since no proper subset of levels can form a closed sys
We can then use a theorem of Frobenius for a nonnega
irreducible matrix that declares its maximal eigenva
modulus~spectral radius! to be strictly greater than that o
any principal submatrix@10#. This implies that the spectra
radius of FT is strictly less than unity, since all stochast
matrices have a unit spectral radius@11#. Then the Lagrange
Sylvester theorem for matrices@11# implies that (I 2FT) is
nonsingular and that we may expand its inverse in a ma
series,

~ I 2FT!215I 1FT1~FT!21~FT!31•••5F`
T .

~2.24!

Let us denote theNth partial sum of this series byFN
T and

note that

FN
T5I 1FT1~FT!21•••1~FT!N21

5I 1FT1~F2!T1•••1~FN21!T5~FN!T. ~2.25!

Substituting this result into Eq.~2.23!, we obtain the com-
pact approximation

YSS'YN
SS[L21FN

T P ~2.26!

correct to orderN in the maximum number of intermediat
levels participating in the indirect transitions between lev
2 and 1.

To determine the effective transition rates between lev
1 and 2, we next define the vectorf q

in as
02580
n-
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f q
in[S f 3q

A

f nq

D , ~2.27!

whereq51 corresponds to the ground state andq52 corre-
sponds to the metastable state. With this definition, we m
estimatel21

e f f by rewriting Eq.~2.19! with k51,

dY1

dt
52L1Y11 (

k.2
lk1Yk

SS

52L1Y11~ f 1
in!TLYSS

'2L1Y11~ f 1
in!TL~L21FN

T P!

52L1Y11~ f 1
in!TFN

T~L1f 1
outY11L2f 2

outY2!.

~2.28!

Comparing Eqs.~2.15! and ~2.28!, we immediately have

l21
e f f'l21,N

e f f 5L2~ f 1
in!TFN

T f 2
out5L2@~ f 2

out!TFNf 1
in#.

~2.29!

The second equation follows becausel21
e f f is a scalar quan-

tity. By exactly similar reasoning, one may find

l12
e f f'l12,N

e f f 5L1$~ f 1
out!TFNf 2

in%. ~2.30!

Our expressions for the effective rates between level
and 2 are approximations to the exact solution since we c
siderFN rather thanF` . However, we may approximate th
exact solution to arbitrary accuracy by choosing a suita
large value forN. The fractional error involved in the serie
truncation may be estimated using the easily computed
trix ` norm. For anym3m matrix F, the` norm is merely
themaximum row sum, which for a substochastic matrixF is
guaranteed to be strictly less than unity:

iFi[iFi`5maxi S (
j

Fi j D ,1. ~2.31!

However, the spectral radiusr(F), which is the maximal
eigenvalue modulus ofF, cannot exceed its norm@12#

0,r~F !<iFi5~12min$ f k11 f k2 :3<k<n%!,1,
~2.32!

where n is the total number of levels. This guarantees t
convergence of the power series inF, since

lim
N→`

$r~F !%N50, ~2.33!

andF is related to its Jordan canonical form by a similar
transformation@12#. We now estimate the fractional error i
our approximation using the ratio
5-4
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iF`2FNi
iF`i 5

iFN1FN111FN121•••i
iF`i

5
iFN~ I 1F1F21••• !i

iF`i

5
iFNF`i

iF`i <
iFNiiF`i

iF`i

5iFNi , ~2.34!

where we have used the inequality

iF1F2i<iF1iiF2i ~2.35!

for any twom3m matricesF1 andF2 @12#. We may also use
this inequality to note thatiFNi<iFiN. However, the row
sum of the substochastic matrixF is maximized for the row
k in the parent matrix corresponding to a minimum in t
sum (f k11 f k2) of branching ratios to the ground and met
stable states. ForT9<10.0, this is of the order 10217 to
10215. Thus while iFiN is certainly an upper bound o
$r(F)%N, in practice it is too conservative to be used as
convergence criterion. We have usediFNi to estimate the
fractional error. As will be seen in Sec. IV, it turns out to b
an excellent guide.

III. A COMBINATORIAL INTERPRETATION OF THE
EFFECTIVE RATE

The expression enclosed by square brackets in Eq.~2.29!
is actually the effective branching ratio (5 f 21

e f f) due to indi-
n
th

it

g

to

ly

02580
a

rect transitions. Let each nuclear energy level be represe
by the node of a directed graph~digraph!, weighted such that
the transition probabilityf i j is the cost of the arc connectin
nodesi and j. If the costs of successive arcs along a path
combined multiplicatively to yield the path cost, then E
~2.29! is thetransfer matrixformula for the sum of the cost
of all possible paths between nodes 2 and 1, with the res
tion that the number of intermediate nodes should not exc
N. ~See Ref.@13# and references therein for a detailed d
cussion of the transfer matrix in graph theory.! In other
words, our technique is a combinatorialenumerationof all
finite ‘‘ f strings’’ of the form (f 2i 1

f i 1i 2
f i 2i 3

. . . f i m1), where

1<m<N.
Suppose we wish to find the effective rate to orderN

53 for a n54 level system. First we need the (n22)3(n
22) matrix F, which reduces to order 232,

F5S 0 f 34

f 43 0 D . ~3.1!

Next we compute the partial sum of transfer matrices

FN5F35I 1F1F25S 11 f 34f 43 f 34

f 43 11 f 43f 34D . ~3.2!

The effective rate to third order in the series expansion m
then be obtained immediately from Eq.~2.29!,
l21,3
e f f 5L2H ~ f 23f 24!S 11 f 34f 43 f 34

f 43 11 f 43f 34D S f 31

f 41
D J ~3.3!

~3.4!
ry

-

Keeping in mind that the number of arcs in a path is o
more than the number of intermediates visited between
origin and the destination, we see from Eq.~3.4! that Eq.
~2.29! automatically enumerates every possible pathway w
1, 2 or 3 intermediate nodes. The matrixFN elegantly enu-
merates all the ways in which nodes 3 and 4 can be arran
to give 1, 2, and 3 intermediates. Then (f 2

out)T connects the
possible ‘‘intermediate circuits’’ to the metastable state
‘‘feed’’ them while at the other endf 1

in connects them to the
ground state, which is the final ‘‘recipient.’’ Though a strict
e
e

h

ed

correct calculation ofl21
e f f would useF` , FN typically con-

verges rapidly for finiteN because the magnitude of eve
element ofF is strictly less than unity.

Further insight may be obtained by defining the follow
ing:

~i! The N-arc ‘‘cascade probability vectors’’

Gq,N
in 5S G3q

A

Gnq

D [FNf q
in .
5-5
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Ultimately, all the short-lived upper-lying levels must dec
to the ground (q51) or the metastable (q52) states. How-
ever, unlike the normal use of the word ‘‘cascade’’ where
transitions are exclusively downward, we also allow interm
diate ‘‘up’’ transitions. Given a maximum ofN intermediate
levels, Gk1 is the effective probability that levelk (k>3)
will ultimately decay to the ground state, whileGk2 is the
probability of its ultimate decay to the metastable state
will be shown thatGk11Gk251, as expected;

~ii ! The N-arc generalization off q
out (q51,2), which is

Gq,N
out5S Gq3

A

Gqn

D [FN
T f q

out ;

~iii ! The ‘‘reverse ratio’’ Ri j 5(l i j /l j i )5(Yj
eq/Yi

eq),
whereYk

eq is the equilibrium abundance of levelk and de-
tailed balance has been invoked;

~iv! The diagonal ‘‘reverse ratio matrix’’Rq with elements
(Rq) i j 5d i j Rqi , where 3< i , j <n; and

~v! The diagonal matrixSq[(1/Lq)LRq , whereL is the
destruction matrix defined previously. The elements ofSq are
(Sq) i j 5(L iRqid i j /Lq), where 3< i , j <n.

With these definitions, we have

~LFL21! i l 5(
j ,k

L jd i j F jkLk
21dkl . ~3.5!

But,

F jk5 f jk5
l jk

L j
5

Rjklk j

L j
5

Rjk f k jLk

L j
. ~3.6!

Substituting Eq.~3.6! into Eq. ~3.5!, we have

~LFL21! i l 5(
j ,k

d i j Rjk f k jdkl5Ril f li , ~3.7!

which immediately allows us to show thatSqFSq
215FT, as

follows:

~SqFSq
21! i l 5(

j ,k

1

Lq
Rq jd i j ~LFL21! jkLqRkqdkl

5(
j ,k

Rk jd i j Rjk f k jdkl

5(
j ,k

Rk jRjkd i j f k jdkl5 f l i . ~3.8!

Recall thatF is the transfer matrix. It gives the probabilitie
for the upper-lying level abundances to rearrange themse
via one arc. This ‘‘rearrangement’’ may be thought of as
flow of abundance among the upper-lying levels. The ope
tor FT, then, gives the flow in the opposite direction; the
fore, Sq may be considered the representation of a pa
reversal operator.

BecauseF is transposed by a similarity transformatio
underSq , so is any power ofF,
02580
e
-

It

es
a
a-
-
-

~3.9!

Hence, we conclude that the similarity transformation a
holds forFN ,

SqFNSq
215Sq~ I 1F1F21•••1FN21!Sq

21

5I 1FT1~FT!21•••1~FT!N215FN
T .

~3.10!

From Eq.~3.10! we obtain

SqFN5FN
TSq ~3.11!

or

SqFNf q
in5FN

TSqf q
in . ~3.12!

But,

~Sqf q
in! i5

L i f iqRqi

Lq
5

l iqRqi

lq
5 f qi , ~3.13!

i.e.,

Sqf q
in5 f q

out . ~3.14!

We substitute Eq.~3.14! into Eq. ~3.12! to obtain

SqFNf q
in5FN

T f q
out ~3.15!

or

SqGq
in5Gq

out . ~3.16!

The results in Eqs.~3.10!, ~3.14!, and~3.16! further confirm
the interpretation ofSq as a representation of the pat
reversal operator for all orders. Expressing Eq.~2.29! in our
new notation,

l21
e f f5L2~ f 2

out!TG1
in

5L2~ f 2
in!TS2

TS1
21G1

out. ~3.17!

However,

~S2
TS1

21! i j 5d i j

1

L2
L iR2i

1

L i
L1Ri15d i j

L1

L2
R21,

~3.18!

i.e.,

S2
TS1

215
L1

L2
R21I . ~3.19!

Substituting Eq.~3.19! into Eq. ~3.17! we find that
5-6
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l21
e f f5R21

L1

L2
L2~ f 2

in!TG1
out

5R21L1~ f 2
in!TG1

out

5R21L1~G1
out!Tf 2

in5R21l12
e f f . ~3.20!

Hence it is true that (l21
e f f/l12

e f f)5(l21/l12)5R21 for any
number of levelsn and any number of intermediatesm, thus
ensuring that our effective rates will always result in t
correct equilibrium abundance ratio for the ground and me
stable states, within theNth order approximation.

We may also obtain further insight into the steady-st
abundance vector by recasting Eq.~2.26! as

YN
SS5L21FN

T~L1Y1f 1
out1L2Y2f 2

out!

5L21$L1Y1G1
out1L2Y2G2

out%, ~3.21!

from which we extract the very revealing scalar equation

Yk
SS5

L1G1kY11L2G2kY2

Lk
. ~3.22!

This result demonstrates that Eq.~3.21! is the multidimen-
sional analog of Eq.~2.7!. Similarly, the multidimensiona
effective rate derived in Eq.~2.29! may be expressed as

l21
e f f5~l2

out!T~G1
in!

5~l23•••l2n!S G31

A

Gn1

D , ~3.23!

which mirrors the scalar Eq.~2.17! perfectly as well.
Finally, we note that

Gk11Gk25
L1G1kRk1

Lk
1

L2G2kRk2

Lk
5S 1

Yk
eqD

3H ~L1G1k!Y1
eq1~L2G2k!Y2

eq

Lk
J 51, ~3.24!

since Rk15Y1
eq/Yk

eq , Rk25Y2
eq/Yk

eq , and the expression in
braces is what the right-hand side of Eq.~3.22! would be at
equilibrium, i.e.,Yk

eq . Thus, we have a simple proof of th
fact that the probabilities to ‘‘cascade’’ from an upper-lyin
level to the ground and metastable states individually m
sum to unity.

The language of path costs can be further exploited w
we wish to identify the dominant pathway at a particu
temperature. All we need do is to assign (2 lnfij) to the arc
weights of a digraph and then use Dijkstra’sShortest Path
Algorithm @14# to find the shortest path~with an additive
combination of arc costs! between nodes 2 and 1. The pa
with the minimum sum of negative logarithms will be th
same as the path with the maximal product of thef i j . As we
shall see in our discussion of26Al in Sec. IV, at low tem-
peratures only a single path or ‘‘chain off ’s’’ contributes to
02580
-

e

st

n
r

the effective rate, while at high temperatures so many pa
are open to the system that the concept of a dominant pa
meaningless. The shortest path concept can easily be
tended to finding the percentage contributions of differ
paths to the total effective rate by using akth shortest path
algorithm.

We conclude this section with a summary of the algori
mic content of the foregoing discussion.

Step One. Construct the substochastic transfer matrixF of
transition probabilities at a particular temperature by excl
ing transitions to and from both the ground and metasta
states. That is, the elements of the (n22)3(n22) matrixF
are the branching ratiosf i j given by Eq.~2.14! for the range
3< i , j <n, wheren is the total number of levels in the sys
tem.

Step Two. Compute the partial sumFN5I 1F1F21F3

1•••1FN21, truncating the series expansion wheniFNi ,
which is a bound on the fractional error, reaches an acc
ably small value.

Step Three. Calculate the effective ratesl21,N
e f f

5L2( f 2
out)TFNf 1

in andl12,N
e f f 5L1( f 1

out)TFN
T f 2

in , wheref q
out is

defined in the discussion just preceding Eq.~2.22!, andf q
in in

Eq. ~2.27!. Here,L1 andL2 are the total destruction rates, a
defined by Eq.~2.6!, out of the ground and metastable stat
respectively. This procedure may be repeated for a disc
set of temperatures and a smooth curve fitted to the resu
points to obtain analytic expressions for the effective rates
functions of temperature.

IV. APPLICATION TO 26Al

We now apply the combinatorial enumeration techniq
discussed in the previous two sections to the specific cas
26Al. Figure 1 shows a log-log plot ofl21

e f f for the 26Al
internal equilibration as a function of temperature. To co
pute this rate, we used experimental data downloaded u
the ‘‘Isotope Explorer’’ program from the Evaluated Nucle
Structure Data File website maintained by Brookhaven N
tional Laboratories. Rates between 67 nuclear levels of
isotope were entered, with the highest level atEx
56084 keV. Rate information for levels above this ener
was virtually nonexistent. At temperatures where other tr
sition rates compete with the internal equilibration, very fe
photons in the stellar heat bath would have energies abo
MeV, so the neglect of higher-lying levels is not too impo
tant. We study this in some detail below.

Theoretical single-particle rates~Weisskopf estimates!
have been used for all spontaneous rates not known f
experiment, with the exception ofl32

spont and l42
spont, for

which we used the results of shell-model calculations~ob-
tained from Refs.@9,15#!. The dashed line differs from the
solid line only in thatl32

spont was set to zero. At low tempera
tures, the drastic difference between the two curves ill
trates how our lack of experimental data for a particular le
may impact a calculation of the effective rate. However,
matrix series approach provides an excellent diagnostic
such levels, since by zeroing out the row and column p
taining to a particular level we may ascertain its importan
5-7
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in the overall equilibration rate.
The strongest single-particle transitions occur betw

two nuclear levels when their spins differ by zero or un
and when their parities are different, since the selection ru
permitE1 transitions to occur. However, at low temperatu
such transitions are hampered in26Al by the fact that in our
set of 67 levels, every energy level below 4.4 MeV has po
tive parity. Thus the system is forced to make small s
jumps with no change in parity. Figure 2 shows the domin
paths at five different temperatures. BelowT9'0.3 the tran-
sition through the levels 22321 completely dominates th
scenario. This represents a 01231251 progression in spins
and parities. AtT950.6 the dominant route is through leve
2242321 where the spin-parity progression is 01211

231251. With the opportunity to reach for higher energ
levels that may offer even smaller spin increments, we h
at T951.3 the level route 224282321 with a spin-parity
chain 01211221231251. This progression dominate
until T9'3.0 when several 22 states at;4.5 MeV become
accessible, allowing parity changes. This is reflected in
fourth pathway in Fig. 2. The fifth pathway in Fig. 2 throug
the levels 2242352323621 is the dominant one atT9
55.0: it has a 01211222231241251 progression with
all spin jumps equal to unity. At this temperature there are
many optimal paths that the concept of one best route
comes meaningless. This is illustrated by Fig. 3 which sho
the steep drop in the contribution of the dominant path to
total effective rate as a function of temperature. The fi
most dominant pathways in the internal equilibration of26Al
at T955.0 are shown in Fig. 4. The most dominant pathw
starts furthest to the left. The second, third, fourth, and fi
most dominant pathways start sequentially rightward of
most dominant and are minor variations of it.

We now discuss issues of convergence. Figure 5 sh

FIG. 1. The effective transition ratel21
e f f for 26Al as a function

of temperature. The solid line gives the result of the full calculati
The dashed line gives the rate when the direct transitions betw
levels 2 and 3 are disabled. For reference, the dotted line gives
b1-decay rate of the 01 metastable state. ForT9&0.4, the meta-
stable state has no chance of equilibrating with the ground s
beforeb decaying.
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the number of terms that we must retain to attain an accur
of one part in 1016. Figure 6 demonstrates the effect of co
sidering a finite number of nuclear energy states. It is cl
that a single intermediate node~level 3, which is a 31 at
0.416 MeV! suffices until we reachT9'0.3. Thereafter,
higher energy levels and multiple intermediate nodes beco
necessary as rising temperatures make more complic
pathways energetically possible. Four energy levels~level 4
is a 11 state at 1.058 MeV! and two intermediate node
suffice untilT9'1.0. BeyondT9'1.0, the number of terms

.
en
he

te

FIG. 2. The dominant pathways at~A! T950.2,~B! T950.6,~C!
T951.3, ~D! T953.0, and~E! T955.0 in the internal equilibration
of 26Al. At low temperatures, the dominant pathways must take s
jumps larger than unity. At higher temperatures, large energy t
sitions are possible. This allows strongly favored spin jumps
unity in the dominant pathway, thereby dramatically increasing
effective equilibration rates. Levels are denoted by the format,
ergy in keV, spin parity, and~level number! on the right-hand side
of the energy-level diagram.

FIG. 3. Fractional contribution of the dominant pathway to t
total ratel21

e f f in 26Al. When this quantity is unity, a single pathwa
dominates the effective rate. Clearly different regimes apply at
ferent temperatures. These are identified in the text in Sec. IV.
5-8
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in the expansion, which had stayed almost constant, be
to show a very steep increase indicating the onset of v
complex pathways. However, at all temperatures the num
of terms required is finite. AtT952.0, the number of terms
required in the matrix series isN574. At T955.0, 1239
terms are required in the matrix series, and atT9510.0, N
522 332. Even the last calculation imposes very mild d
mands on computer time. The effect ofnot including enough
terms, however, is quite dramatic. As Fig. 5 shows, an in
equate number of transit points in the flow from the groun
state ensemble to the metastable-state ensemble can res
pathological behavior in the vicinity ofT953.0 where the
rate curves actually dip below values attained at lower te
peratures. This happens because many higher-lying le
open up at such high temperatures, but if we constrain

FIG. 4. The first five dominant pathways in the internal equ
bration of 26Al at T955.0. The most dominant pathway is the o
that starts furthest to the left. The second, third, fourth, and fi
most dominant pathways start sequentially rightward of the m
dominant.

FIG. 5. Variations in the effective flow rate from the metastab
state ensemble to the ground-state ensemble when a different
ber of terms is retained in the series expansion. The rates are
rate to one part in 1016.
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system to an inadequate number of intermediate nodes th
cannot take advantage of the pathways that have bec
available. Indeed, since thef i j ’s among the lower-lying lev-
els decreasewith rising temperature, the rate as a who
suffers a decline due to premature series truncation.

Table I investigates the dependability ofiFNi as a con-
vergence criterion. Clearly, the general trend of increase iN
with temperature is closely followed for the different acc
racies~one part in 1016,1010,106,103,102, and 101). In fact, at
a fixed temperatureN varies remarkably slowly even thoug
we investigate such a wide range of accuracies. Indeed
have observed that 90% accuracy is achieved in the rate
culation when an accuracy of one part in 10 is estimated
iFNi , 99% accuracy for one part in 102, and so on. This
interesting result may be obtained by comparison with ra
for N51 000 000, at which the last term of the matrix seri
is zero for the purpose of practical computation. This in
cates that even thoughiFNi is a conservative estimate of th
fractional error, it is a very good one. It behaves like a ‘‘lea
upper bound,’’ loosely speaking, and is a powerful tool f
ensuring not only the accuracy of our technique, but also
efficiency, since it curtails superfluous matrix arithmet
Such is not the case foriFiN, which for the reasons dis
cussed in Sec. II grossly overestimates the fractional e

h
st

-
m-
cu-

FIG. 6. Variations in the effective flow rate from the metastab
state ensemble to the ground-state ensemble when a different
ber of nuclear energy levels is used to approximate the full netw
The rates are accurate to one part in 1016 for the adopted level
subset.
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and turns out to be utterly useless as a convergence crite
since it asks for;1015 to 1017 terms over the temperatur
range we consider.

Next, we consider the effect of including only a fini
numbern of discrete energy states. Varyingn is tantamount
to redefining the effective infinite energy of the system, a
consequently the effective rate plateaus at a temperature
depends onn, as can be seen in Fig. 6. Thus we see a smo
leveling off of the effective rate at different temperatures

TABLE I. The number of terms to be retained in the ser
expansion for different accuracies. The convergence criterios
[iFNi bounds the fractional error caused by series truncation a
Nth partial sum for the chosen temperatures.

T9 s510216 s510210 s51026 s51023 s51022 s51021

0.0100 12 10 9 7 6 6
0.0125 12 10 9 7 6 6
0.0150 12 10 9 7 6 6
0.0175 12 10 9 7 6 6
0.0200 12 10 9 7 6 6
0.0250 12 10 9 7 6 6
0.0300 12 10 9 7 6 6
0.0400 12 10 9 7 6 6
0.0500 12 10 9 7 6 6
0.0600 12 10 9 7 6 6
0.0700 12 10 9 7 6 6
0.0800 12 10 9 7 6 6
0.0900 12 10 9 7 6 6
0.1000 12 10 9 7 6 6
0.1250 12 10 9 7 6 6
0.1500 12 10 9 7 6 6
0.1750 12 10 9 7 6 6
0.2000 12 10 9 7 6 6
0.2500 13 10 9 7 6 6
0.3000 13 11 9 7 6 6
0.4000 14 11 9 7 6 6
0.5000 16 12 9 7 6 6
0.6000 17 12 9 7 6 6
0.7000 18 13 10 7 6 6
0.8000 20 14 10 7 6 6
0.9000 22 15 11 8 7 6
1.0000 23 16 11 8 7 6
1.2500 28 19 13 8 7 6
1.5000 34 23 15 9 8 6
1.7500 46 30 20 12 9 7
2.0000 74 48 30 17 13 8
2.5000 190 120 74 39 27 16
3.0000 359 226 137 71 49 27
4.0000 661 415 251 128 87 46
5.0000 1239 777 469 237 160 83
6.0000 2862 1791 1077 542 363 185
7.0000 6140 3840 2306 1156 773 389
8.0000 10989 6870 4124 2065 1378 692
9.0000 16671 10421 6255 3130 2089 1047

10.0000 22332 13959 8378 4192 2796 140
02580
n,

d
hat
th
r

n53, n54, n55 and so on, rather than the dips and kin
due to premature series truncation in Fig. 5. The effect
rates smoothly approach then567 curve, with major
changes only atn517 andn536. These are levels that re
define the limit energy of the system atT9'3.0 and T9
'4.0, respectively, when rising temperature allows the s
tem to access higher energy states, if any are available.
conclude thatn567 does indeed institute a satisfactory lim
point over the range of temperatures we considerT9
<10.0).

At this point, we note that it would be possible in prin
ciple to include higher-lying states through the use of a t
oretical nuclear level density. In practice, such a level den
would be a continuous function of excitation energy in t
nucleus. Our technique, however, discretizes the energy g
so we would likely group levels into energy bins. We inte
to explore this approach in future work.

Finally, since those rates not obtained from experim
were calculated using the Weisskopf single-particle e
mates, we have most certainly incorrectly estimated som
the individual transition rates. This leads us to conduc
sensitivity analysis, since large dependencies of the effec
rates on many individual transitions would cast doubt on
robustness of our results. Table II shows the enhanceme
the overall effective rate when an individual transition is e
hanced by a factor of 100. Transitions that cause enha
ments by less than a factor of 1.1~i.e., 10%! in the overall
rate have not been included in Table II. Similarly, Table
shows the factor by which the overall effective rate decrea
when an individual transition is suppressed by a factor
100. The decrease factor is taken as the ratio of the ove
effective rate to the effective rate with a decrease in
individual transition rate. Transitions with decrease fact
less than 1.11~i.e., reductions that still leave more than 90
of the original value! in the overall rate have been omitte
from Table III. We can immediately see that very few ind
vidual transitions have any appreciable impact on the eff
tive rate, and that while perturbations in the destruction ra
out of levels 3 and 4 can scale almost linearly in the rate
low temperatures~since they are the only levels participa
ing!, such dramatic correlations are rare for the other lev
In particular, we note from Table III that the suppressi
factors for the effective rate are very close to one~except for
transitions out of levels 3 and 4! and thus our use of Weis
skopf estimates is unlikely to lead to errors in the effect
rates greater than a few tens of percent.

V. THE APPROACH TO EQUILIBRIUM

The results of the previous sections permit not only
calculation of the effective equilibration rate between t
ground and metastable states but also insights into how
equilibration occurs. This issue is most easily explored us
a quantity analogous to the fugacity of a phase.

In any study of equilibration, one follows ensembles
different species in contact with each other. In a study of
internal equilibration of an isotope, the different species
its various isomers at different excitation energiesEi for
level i. In keeping with usual practice in nucleosynthes

e
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en by a factor of 100. Only thosetransitions that show an
t the formi→ f . The important levels are level

ve V, 21), level 8 ~2.071 64 MeV, 11), level 17

0 .00 4.50 5.00 6.00 7.00 8.00 9.00 10.00

0 .45 4.13 2.72 1.57 1.23 1.11 1.06 1.04
.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0 .00 1.01 1.01 1.03 1.06 1.10 1.14 1.17

.7 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0 .01 10.54 11.79 10.06 7.02 4.99 3.82 3.13
0 .00 1.00 1.01 1.01 1.02 1.04 1.06 1.07
0 .01 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0 .00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0 .31 1.80 2.52 3.98 4.62 4.50 4.13 3.79
0 .27 3.35 4.44 5.77 5.79 5.23 4.64 4.21

e by a factor of 100. Only those transitions that show an
t the formi→ f . The important levels are level

ve V, 21), level 8 ~2.071 64 MeV, 11), level 17

.6 4.00 4.50 5.00 6.00 7.00 8.00 9.00 10.00

.0 1.08 1.04 1.02 1.01 1.00 1.00 1.00 1.00
1. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
.0 1.07 1.08 1.10 1.14 1.17 1.18 1.17 1.15
6. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
.0 2.70 2.04 1.63 1.27 1.14 1.08 1.05 1.04
.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
.0 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00
.0 1.16 1.26 1.32 1.32 1.26 1.20 1.16 1.13
.0 1.06 1.12 1.19 1.32 1.40 1.44 1.45 1.45
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TABLE II. Factor by which the effective rate increases wh
increase or decrease of 10% or greater for one of the indicated
1 ~ground state, 51), level 2 ~metastable state, 0.228 MeV, 01), le
~3.042 MeV, 51), and level 36~4.705 MeV, 41).

0.01 0.15 0.20 0.30 0.40 0.50 0.6

Transition

~ 3 → 1! 1.00 1.00 1.00 1.00 1.00 1.00 1.0
~ 3 → 2! 100.00 100.00 100.00 92.24 3.32 1.06 1
~ 4 → 2! 1.00 1.00 1.00 1.00 1.00 1.00 1.0
~ 4 → 3! 1.00 1.00 1.00 8.74 97.50 99.76 99
~ 7 → 1! 1.00 1.00 1.00 1.00 1.00 1.00 1.0
~ 8 → 2! 1.00 1.00 1.00 1.00 1.00 1.00 1.0
~ 8 → 3! 1.00 1.00 1.00 1.00 1.00 1.00 1.0
~ 8 → 4! 1.00 1.00 1.00 1.00 1.00 1.00 1.0
~17 → 1! 1.00 1.00 1.00 1.00 1.00 1.00 1.0
~36 → 1! 1.00 1.00 1.00 1.00 1.00 1.00 1.0

TABLE III. Factor by which the effective rate decreases wh
increase or decrease of 10% or greater for one of the indicated
1 ~ground state, 51), level 2 ~metastable state, 0.228 MeV, 01), le
~3.042 MeV, 51), and level 36~4.705 MeV, 41).

0.01 0.15 0.20 0.30 0.40 0.50 0
Transition

(3→1) 1.00 1.00 1.00 1.00 1.00 1.00 1
(3→2) 100.00 100.00 100.00 11.42 1.02 1.00
(4→2) 1.00 1.00 1.00 1.00 1.00 1.00 1
(4→3) 1.00 1.00 1.00 1.08 30.11 94.38 9
(7→ 1! 1.00 1.00 1.00 1.00 1.00 1.00 1
(8→3) 1.00 1.00 1.00 1.00 1.00 1.00 1
(8→4) 1.00 1.00 1.00 1.00 1.00 1.00 1
(17→1) 1.00 1.00 1.00 1.00 1.00 1.00 1
(36→1) 1.00 1.00 1.00 1.00 1.00 1.00 1
the rate for the indicated spontaneous transition is enhanced
emperatures are presented. The transition from leveli to level j is identified in
l 3 ~0.417 MeV, 31), level 4 ~1.058 MeV, 11), level 7 ~2.069 47 Me

T9

0.70 0.80 0.90 1.00 1.50 2.00 2.50 3.00 3.50 4

1.00 1.00 1.00 1.00 1.04 1.73 4.50 7.85 8.65 6
0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1
7 99.42 97.57 90.93 75.41 6.48 1.43 1.05 1.01 1.00

1.00 1.00 1.00 1.00 1.00 1.07 1.72 3.15 5.28 8
1.00 1.00 1.01 1.04 1.16 1.10 1.03 1.01 1.01 1
1.01 1.04 1.19 1.59 3.39 1.73 1.17 1.06 1.03 1
1.00 1.00 1.01 1.05 1.21 1.12 1.04 1.01 1.01 1
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.08 1
1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.10 1.48 2

n the rate for the indicated spontaneous transition is suppressed
emperatures are presented. The transition from leveli to level j is identified in
l 3 ~0.417 MeV, 31), level 4 ~1.058 MeV, 11), level 7 ~2.069 47 Me

T9

0 0.70 0.80 0.90 1.00 1.50 2.00 2.50 3.00 3.50

0 1.00 1.00 1.01 1.03 3.68 6.08 2.52 1.46 1.17
00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0 1.00 1.00 1.00 1.00 1.02 1.06 1.05 1.05 1.06
70 76.60 34.28 11.10 4.21 1.07 1.01 1.00 1.00 1.00
0 1.00 1.00 1.00 1.00 1.00 1.03 1.39 2.41 3.21
0 1.00 1.01 1.06 1.20 4.28 3.58 1.52 1.09 1.02
0 1.00 1.01 1.05 1.16 2.69 2.22 1.34 1.09 1.02
0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.02 1.07
0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.02
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theory, we considerYi to be the abundance in thei th iso-
meric state per nucleon in the system; therefore, the num
density ni of such isomers isni5rNAYi , where r is the
mass density andNA is Avogadro’s number. Furthermore, w
may take the nuclei to be nonrelativistic and nondegene
in the stellar plasma. Therefore, the chemical potential a
ciated with energy levelEi in the nucleus is

m i~T,r,Yi !5mc21Ei1kT lnH rNAYi

gi
S 2p\2

mkT D 3/2J ,

~5.1!

wherem is the mass of the nucleus in its ground state,c is
the speed of light,k is Boltzmann’s constant,gi is the mul-
tiplicity of level i, and 2p\ is Planck’s constant. In writing
Eq. ~5.1!, we have assumedEi!mc2, which is certainly true
in any stellar environment.

In the case of equilibration of levels within an ensemb
of identical nuclei, we imagine the ensemble to be in cont
with a large heat bath~the stellar plasma! at fixed volume.
We may then compute at fixed temperature and mass de
the change in the chemical potential,

m i2m i
eq5E

Yi
eq

Yi
dm i~T,r,Yi !5kT lnS Yi

Yi
eqD 5kT ln f i ,

~5.2!

wherem i
eq is the chemical potential at equilibrium. At thi

point, it is convenient to consider the fugacity, a measure
the tendency to escape from a chemical phase, since th
precisely the role off i in Eq. ~5.2!. We recognize thatf i is
not the strictly correct definition of the fugacity, which ha
units of pressure and is a measure of the deviation fr
ideality, not necessarily from chemical equilibrium; neve
theless, we appropriate the term because of its usefulnes
the system evolves towards equilibrium, abundance ‘‘fle
those levels for whichf.1 and ‘‘escapes’’ into those level
for which f,1. When two levels have the same fugaci
there is no thermodynamic advantage in fleeing from one
the levels to the other. Equilibrium obtains when all t
nuclear levels attain a fugacity of one.

Following the internal equilibration of a nucleus, the
amounts largely to following the evolution of the fugacity
each energy level. To do this, we begin by defining
fugacity vectorF of upper-lying levels in the nucleus,

F5S f3

A

fn

D . ~5.3!

As we have argued, the upper-lying levels are in a ste
state during most of the internal equilibration of the nucle
While this is true, then, we may write

F5EYSS, ~5.4!

where the elements of the matrixE are Ei j 5d i j /Yi
eq , 3

< i , j <n. From the steady-state abundancesYSS in Eq.
~3.21!, we find
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F5$EL21Y1
eqL1%G1

outS Y1

Y1
eqD 1$EL21Y2

eqL2%G2
outS Y2

Y2
eqD .

~5.5!

Now, the product (EL21Y1
eqL1)5S1

21 because

~EL21Y1
eqL1! i j 5

Y1
eqL1d i j

Yi
eqL i

5
L1d i j

L iR1i
5~S1

21! i j , ~5.6!

where we have made use of the detailed balance argum
that (Yi

eq/Y1
eq)5R1i . By exactly similar arguments

(EL21Y2
eqL2)5S2

21. With these results, and Eq.~5.2! for
levels 1 and 2, we find

F5S1
21G1

outf11S2
21G2

outf2 , ~5.7!

which on application of Eq.~3.16! becomes

F5G1
inf11G2

inf2 . ~5.8!

Equation~5.8! provides an interesting interpretation of th
fugacities of the upper-lying levels. In particular, the fugac
of level k is

fk5Gk1f11Gk2f2 . ~5.9!

Thus the fugacity of levelk is a linear combination of the
fugacities of the ground and metastable states. The co
cients are the probabilities for levelk to eventually decay to
levels 1 and 2, respectively. When full equilibrium obtain
f15f25fk , and we recoverGk11Gk251, which rein-
forces our interpretation of theseG ’s as probabilities. Thus
for example, ifGk151 andGk250, the steady state would
require the ground state and levelk to be fully in equilibrium
with each other. In this case there would be no commun
tion between levels 1 and 2 via levelk. Such a case is un
physical because transitions between levelk and another
upper-lying level would preventGk2 from ever being strictly
zero in a stellar plasma. The more general case is thatfk lies
betweenf1 andf2.

We now consider the time evolution of the abundanceY1
in light of the fugacities. From Eq.~2.19!, the differential
equation governing the time evolution ofY1 in our system
~under the assumption of a steady state in the upper-ly
levels! may be written

dY1

dt
52 (

k.2
l1kY1S 12

lk1Yk

l1kY1
D . ~5.10!

We now use the detailed balance argument thatlk1 /l1k

5Y1
eq/Yk

eq to write

dY1

dt
52 (

k.2
l1kY1S 12

fk

f1
D . ~5.11!

This equation shows that the contribution levelk makes to
the change inY1 is due both to the rate to go from level 1 t
k and to the driving factor given by (12fk /f1). The greater
the difference in the relative fugacities of levels 1 andk, the
5-12
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FIG. 7. Evolution of the fugacitiesf for each level during the internal equilibration of26Al at T950.2. The filled circles are the actua
fugacities from the network calculation while the open circles give the fugacities derived from the steady-state abundances. The ‘‘1 ’ ’ gives
the fugacity of the ground state while the ‘‘3 ’’ gives the fugacity for the metastable state~both are derived from the network abundance!.
The upper-lying levels reach a steady state early~within 5.7231029 ns), but equilibration does not occur until 63105 s. This is far longer
than the;9 s decay time of the metastable state, so26Al cannot equilibrate atT950.2. As discussed in Sec. V, once the upper-lying lev
reach a steady state, their fugacities lie between those of the ground and metastable states. A given levelk’s fugacity is more closely tied to
that of the ground or metastable state depending on its connections to them viaGk1 or Gk2.
een

have
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greater the driving factor. If levels 1 andk are in strict equi-
librium, the driving factor for levelk will be zero, leading to
no change inY1. On the other hand, Eq.~5.9! shows that the
maximum driving factor for any level is (12f2 /f1).

Substitution of Eq.~5.9! into Eq. ~5.11! and use ofGk1
1Gk251 leads to

dY1

dt
52 (

k.2
l1kGk2Y1S 12

f2

f1
D . ~5.12!

With l1k5L1f 1k we recognize Eq.~5.12! as

dY1

dt
52l12

e f fS 12
f2

f1
DY1 . ~5.13!
02580
If f1.f2, then 12f2 /f1.0 and Y1 will decrease with
time. However,Y1 will increase with time iff1,f2. An
analogous derivation yields

dY2

dt
52l21

e f fS 12
f1

f2
DY2 . ~5.14!

These results show that it is the fugacity difference betw
levels 1 and 2 that drives the changes ofY1 and Y2. The
changes cease once the ground and metastable states
equilibrated (f15f2).

Figure 7 shows the fugacitiesfk for the nuclear levels a
four different times in the equilibration calculation for26Al
at T950.2. For the ground and metastable states the fug
ties are those from the full network since they do not achie
5-13
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a steady state. Though the upper-lying levels do not begi
a steady state, it is clear they achieve this situation wit
5.7231029 s. Because of the low temperature, the domin
transitions in 26Al are downward spontaneous decays. T
slowest of these is the decay of the 31 state at 0.417 MeV,
which lives 1.2531029 and thereby governs the timescale
reach the steady state. In the subsequent evolution,
upper-lying levels remain in an excellently maintain
steady state, as can be seen in Fig. 7. Final equilibrium
reached near 63105 s. This is certainly long compared to th
;9 s beta-decay lifetime of the metastable state. Of cou
this means the system would, in fact, never reach equilibr
because any26Al nuclei in the metastable state would dec
before an equilibrium abundance could accumulate.

As expected from Eq.~5.9!, the fugacity of the metastabl
state is always the least once the upper-lying levels go in
steady state while the fugacity of the ground state is alw
the greatest. This results from the fact that initiallyY151
and Y250 so the net flow is from the ground to the met
stable state. The situation would be reversed had the in
abundances beenY150 and Y251. The fugacities of the
upper-lying levels lie between those of the ground and m
stable states. It is clear that certain levels are more clo
associated with the ground state than with the metast
state. This requiresGk1@Gk2. For example, the 31 level at
0.417 MeV has only a 1% branching to the 01 metastable
state. This state links strongly to the ground state. By c
trast, the 11 level at 1.058 MeV has only a 1.7931023%
branching to the 51 ground state. It links strongly to th
metastable state. Interestingly, atT950.2 most levels seem
to be more strongly connected to the ground state than to
metastable state. As noted previously, the dominant tra
tions at this temperature tend to be the downward casca
so these levels have fast transitions to the ground state
another level with a fast transition to the ground.

The time taken to reach equilibrium (teq) drops dramati-
cally in the vicinity of T9;0.4. At T950.5, for instance,
teq50.6 s, 5 orders of magnitude smaller than what it was
T950.2. At T951.0, teq52.8231025 s. Figure 8 shows the
fugacities for each level atT952.0 at four different times
during theT952.0 equilibration calculation, while Fig. 9 de
picts the same forT955.0. At these high temperatures, in
duced upward transitions become important. This has
interesting effects. First, the timescales for the ground
metastable states to reach a steady state are no longer
greater than those for the other levels. This means that
upper-lying levels are not in a steady state during a sign
cant fraction of the period of growth of the metastable po
lation. In this case, our steady-state treatment overestim
the abundance of the upper-lying levels and, hence, ove
timates the rate of transfer from the ground to the metast
state. This is why the two-state system with effective ra
evolves faster than the full network. The evolution is so f
at these high temperatures, however, and the competing
cesses probably so much slower that the error in usin
two-state system is not likely to be of any significance.

The other interesting aspect of the high-temperature
havior is that once the system reaches a steady stat~at
;5310212 s), most states are fairly tightly in equilibrium
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with the 01 metastable state. This can be attributed to
large number of 12 and 22 states at energies greater than 4
MeV, which are accessible at this high temperature. As p
viously discussed, transition rates are very strong betw
levels of different parity that differ in spin by one or zer
Hence a large number of low-spin positive parity states
communicate with the 01 metastable state via the high-lyin
12 or 22 states, which act as ‘‘pegs’’ anchoring the positi
parity states to the metastable state. The exceptions are
high-spin 61 state at 3.51 MeV, which couples directly to th
51 ground state, and the 71 state at 3.92 MeV, which
couples strongly to the aforementioned 61 state. Movies of
the internal equilibration of26Al are available for viewing in
the electron addendum to this paper@16#.

VI. APPLICATION TO A NUCLEAR REACTION
NETWORK

We now discuss how to use the effective transition ra
between the ground and metastable states in a nuclear
tion network. The issue may be illustrated by computation
the effective 26Al beta-decay lifetime in a stellar plasma
This discussion ultimately returns to the question mention
in the introduction, namely, how to treat excited states
target nuclei, especially when the nucleus is not fully equ
brated internally.

In a stellar plasma, the26Al beta-decay rate is a linea
combination of the beta-decay rates of the various exc
states, weighted by their fractional population in an ensem
of 26Al nuclei. When the temperature is high enough for t
26Al nuclei to have equilibrated internally, the fraction
populations of the excited states are given by the usual B
zmann factors, and the effective beta-decay rate is relativ
straightforward to compute. The difficulty arises when t
nuclei do not rapidly equilibrate internally.

In calculations of the effective beta-decay rate, what o
typically does is to follow internal transitions among ma
levels in the26Al nucleus with an implicit reaction network
code. One also includes the beta-decay rates out of e
level. Then, beginning with a particular abundance distrib
tion among the nuclear levels, one evolves the network.
resulting effective beta-decay lifetime is then taken to be
time for the total 26Al abundance to fall by a factor ‘‘e’’
@8,9#.

While the above procedure certainly gives useful inform
tion, there is an ambiguity arising from the initial abundan
populations if the transition rates between the ground
metastable states are small. For example, let us suppos
transition timescales between the two states are both sh
than 106 yr ~the decay timescale of the ground state! but
longer than 9.2 s~the decay timescale of the metastab
state!. If the nuclear reactions that produce26Al from other
isotopes preferentially populate the ground state, the nu
will ~slowly! undergo a transition to the metastable st
from which they will ~rapidly! beta decay. The effective
beta-decay lifetime will then essentially be the timescale
populate the metastable state. On the other hand, if
nuclear reactions preferentially populate the metastable s
the nuclei will largely beta decay before deexciting to t
5-14
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FIG. 8. The same as Fig. 7 except forT952.0. A significant portion of the evolution in this case does not occur in a steady state. In
for this temperature, the timescales to reach a steady state and equilibrium are nearly equal. The reason for this is that, for this te
the rates for upward transitions from levels 1 and 2 to the upper-lying levels are now comparable to the destruction rates of those u
levels.
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ground state. In this case, the effective beta-decay lifet
will be the beta-decay lifetime of the metastable state. Th
can be a large discrepancy in the effective beta-decay
times in these two scenarios.

One could remove this ambiguity in a nuclear react
network by including many levels in26Al as separate spe
cies. This becomes computationally burdensome. We s
here a means of treating the system as if it had only
nuclear species. To begin, we must be clear about those
species. From Eq.~5.9!, the definition of the fugacityfk and
the fact thatYk

eq/Yq
eq5Rqk , whereRqk is the ‘‘reverse ratio’’

previously defined as (lqk /lkq), we may find, under the as
sumption that the upper-lying levels are in a steady state,

Yk5Gk1R1kY11Gk2R2kY2 , ~6.1!

for levelsk.2. We define the weight factors at temperatu
T as
02580
e
re
e-

ek
o
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at

wk
(q)5H dqk if k51,2,

GkqRqk if k.2 ,
~6.2!

whereq51 refers to the ground state andq52 to the meta-
stable state, to permit use of the more compact equation

Yk5wk
(1)Y11wk

(2)Y2 ~6.3!

for all levelsk, 1<k<n. If we now takeYtot to be the total
number of 26Al nuclei ~at any excitation energy!, we find

Ytot5S (
k

wk
(1)DY11S (

k
wk

(2)DY2

5W1Y11W2Y2[Y(1)1Y(2) . ~6.4!

In this equation,Y(1) and Y(2) are the abundances of tw
ensembles of states. Ensemble~1! is comprised of the ground
5-15
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FIG. 9. The same as Fig. 7 except forT955.0. A significant portion of the evolution in this case does not occur in a steady s
Surprisingly, however, more of the evolution is in a steady state than forT952.0 ~see Fig. 8!. This is due to the accessibility of the high-lyin
22 states to which many lower-lying states are strongly connected. This greatly enhances the destruction rates of these levels so th
faster than the upward transitions from levels 1 and 2. The accessibility of the high-lying 22 states also provides a strong connection betw
most upper-lying levels to the 01 metastable state. This strongly enhancesGk2 over Gk1 for most upper-lying levels.
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state and the portion of each upper-lying state connected
via effective ‘‘cascades.’’ Ensemble~2! is comprised of the
metastable state and the portion of each upper-lying s
connected to it via effective cascades. When treating the26Al
nucleus as two separate species, it is in fact these two
sembles of states that are the two species, not the ground
metastable states@17#. The quantityW1(T) gives the en-
hancement of the abundance of ensemble~1! over the abun-
dance of the ground state at temperatureT. W1(T) will be
nearly unity for low temperatures but will grow for highe
temperatures as more of the ensemble~1! population resides
in excited states. Similarly,W2(T) gives the enhancement o
the abundance of ensemble~2! over the abundance of th
metastable state at temperatureT.

The crucial observation to be made here is that each of
two ensembles is in internal equilibrium, but the two e
sembles arenot in equilibrium with each other because th
02580
it

te

n-
nd

e
-

ground and metastable states are not in equilibrium. Ho
ever, as the ground and metastable state abundances ch
the abundances of any two levels within each ensem
change instantaneously to keep their ratio (Yj

(q)/Yk
(q))

5(wj
(q)/wk

(q)) a constant. Hence if we were following th
evolution of one ensemble only, it would seem as if the ab
dances of levels in that ensemble were maintaining es
tially unchanging ‘‘modified Boltzmann ratios’’ as constan
of the evolution. What changes, at constant temperature
the total number of nuclei in each of the two ensembles. F
internal equilibration occurs as these two numbers come
their correct equilibrium ratio. It is also essential to note th
the ratiowj

(q)/wk
(q) depends on the temperature; thus, the

ternal equilibria of the two ensembles will evolve in an e
vironment with varying temperature.

It is now possible to compute the effective26Al beta-
decay ratelb

e f f . This rate is given by
5-16
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lb
e f fYtot5(

k
lb,kYk , ~6.5!

wherelb,k is the beta-decay rate out of nuclear levelk. From
Eq. ~6.3!, we may write

lb
e f fYtot5S (

k
lb,kwk

(1)DY11S (
k

lb,kwk
(2)DY2

5S (
k

lb,kwk
(1)

(
k

wk
(1) D S (

k
wk

(1)DY1

1S (
k

lb,kwk
(2)

(
k

wk
(2) D S (

k
wk

(2)DY2

5S (
k

lb,kwk
(1)

(
k

wk
(1) D W1~T!Y1

1S (
k

lb,kwk
(2)

(
k

wk
(2) D W2~T!Y2

5S (
k

lb,kwk
(1)

(
k

wk
(1) D Y(1)1S (

k
lb,kwk

(2)

(
k

wk
(2) D Y(2)

[lb,1
e f fY(1)1lb,2

e f fY(2) , ~6.6!

where

lb,q
e f f5S (

k
lb,kwk

(q)

(
k

wk
(q) D ~6.7!

gives the effective beta-decay rate out of ensemble~q! and
vindicates our choice of weight factorwk

(q) for level k in
ensemble (q), as it leads tolb,q

e f f being the appropriately
weighted ensemble average.

The weight factors provide more than conceptual insi
into how each level influences the two ensembles; they
give us a compact vector formula for the effective beta-de
rate. We define the following vectors:

~i! The n-dimensional weight vectors
02580
t
o
y

wq5S w1
(q)

A

wn
(q)
D for q51

~ground-state ensemble! and q52 ~metastable-state en
semble!;

~ii ! The n-dimensional abundance vector

Y5S Y1

Y2

Y3
SS

A

Yn
SS

D ;

and
~iii ! The b-decay rate vector

lb5S lb,1

A

lb,n

D .

With these definitions, Eq.~6.3! may be recast in matrix form
as

Y5w1Y11w2Y2 , ~6.8!

and Eq.~6.7! as

lb,q
e f f5F ~lb!Twq

Wq
G . ~6.9!

Although our treatment has been of the effective be
decay rate, the same formulas would apply for any reac
on 26Al. For example, consider (p,g) reactions on26Al. The
proton capture rate

l (p,g)5S l (p,g),1

A

l (p,g),n

D
leads to

l (p,g),q
e f f 5H ~l (p,g)!

Twq

Wq
J , ~6.10!

wherel (p,g),k is the rate of proton capture out of levelk. All
that is required to compute the (p,g) reaction rates on en
sembles~1! and ~2! are ~a! the l (p,g),k from experiment or
calculation,~b! the known energiesEk , and ~c! the weight
factorswk

(q) (q51,2) at a particular temperature, which w
have calculated and tabulated along with the ‘‘casca
probabilitiesGk1 andGk2 in the electronic addendum to thi
paper@16#. The reverse reactions, here the (g,p) reactions,
are derived from simple detailed balance. In full nuclear s
tistical equilibrium,

l (g,p),q
e f f $Yeq~27Si!%5l (p,g),q

e f f $Y(q)
eq ~26Al !%. ~6.11!
5-17
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TABLE IV. Computed effective rates for the metastable- to ground-state transition and partition fun
for the ensembles.

T9 l21
e f f (s21) W1(T) W2(T) G1(T) G2(T)

0.0100 4.10300310296 1.000000 1.000000 11.00000 1.000000
0.0125 4.15468310277 1.000000 1.000000 11.00000 1.000000
0.0150 1.94459310264 1.000000 1.000000 11.00000 1.000000
0.0175 2.18291310255 1.000000 1.000000 11.00000 1.000000
0.0200 1.33873310248 1.000000 1.000000 11.00000 1.000000
0.0250 4.26001310239 1.000000 1.000000 11.00000 1.000000
0.0300 9.21628310233 1.000000 1.000000 11.00000 1.000000
0.0400 7.64694310225 1.000000 1.000000 11.00000 1.000000
0.0500 4.31367310220 1.000000 1.000000 11.00000 1.000000
0.0600 6.34482310217 1.000000 1.000000 11.00000 1.000000
0.0700 1.16137310214 1.000000 1.000000 11.00000 1.000000
0.0800 5.77943310213 1.000000 1.000000 11.00000 1.000000
0.0900 1.20700310211 1.000000 1.000000 11.00000 1.000000
0.1000 1.37266310210 1.000000 1.000000 11.00000 1.000000
0.1250 1.0917131028 1.000000 1.000000 11.00000 1.000000
0.1500 2.0190131027 1.000000 1.000000 11.00000 1.000000
0.1750 1.6224131026 1.000000 1.000000 11.00000 1.000000
0.2000 7.7434031026 1.000000 1.000000 11.00000 1.000000
0.2500 6.9107231025 1.000000 1.000000 11.00000 1.000000
0.3000 3.2243031024 1.000000 1.000000 11.00000 1.000000
0.4000 7.8766931022 1.000000 1.000000 11.00004 1.000000
0.5000 9.472463100 1.000040 1.000000 11.00044 1.000000
0.6000 2.343123102 1.000200 1.000000 11.00221 1.000000
0.7000 2.324383103 1.000630 1.000010 11.00698 1.000010
0.8000 1.318143104 1.001500 1.000030 11.01655 1.000030
0.9000 5.354713104 1.002950 1.000130 11.03241 1.000130
1.0000 1.862723105 1.005040 1.000430 11.05547 1.000430
1.2500 3.751373106 1.013220 1.005950 11.14545 1.005950
1.5000 4.796703107 1.024410 1.062240 11.26849 1.062240
1.7500 2.972203108 1.033290 1.353300 11.36617 1.353300
2.0000 9.440063108 1.032540 2.023560 11.35792 2.023560
2.5000 3.265513109 1.019130 3.383490 11.21046 3.383490
3.0000 8.915093109 1.012520 4.200290 11.13769 4.200290
4.0000 6.0384031010 1.007600 5.364650 11.08361 5.364650
5.0000 2.9926831011 1.008740 6.408690 11.09616 6.408690
6.0000 1.0949331012 1.017320 7.504550 11.19057 7.504550
7.0000 3.0634231012 1.037320 8.689610 11.41049 8.689610
8.0000 6.8920631012 1.071750 9.978150 11.78920 9.978150
9.0000 1.3157631013 1.120540 11.40326 12.32598 11.40326

10.0000 2.2290631013 1.181160 13.00940 12.99279 13.00940
th

ac-

lev-
ent
ef-
first

of
ing
eta-

rnal
This leads to

l (g,p),q
e f f 5l (p,g),q

e f f WqH Yq
eq~26Al !

Yeq~27Si!
J . ~6.12!

In this way, the usual detailed balance result for deriving
reverse reactions applies. The crucial points are~a! that the
two 26Al species must have the masses of the26Al ground
(q51) and metastable (q52) states and~b! that the parti-
tion functions for the two species areG(1)(T)5(2J1
11)W1(T)511W1(T) and G(2)(T)5(2J211)W2(T)
02580
e

5W2(T). From these results, all proper relations among re
tions will follow. Given the validity of the~largely appropri-
ate! assumption of a steady state among the upper-lying
els, this treatment allows for a simple and accurate treatm
of the effect of excited states on target nuclei when an in
ficient communication between the ground state and the
excited state inhibits internal equilibration of the nucleus.

We must finally turn to the question of the interaction
the two ensembles because now we are properly evolv
them, rather than the abundances of the ground and m
stable states. If we consider only changes due to inte
5-18
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INTERNAL EQUILIBRATION OF A NUCLEUS WITH . . . PHYSICAL REVIEW C64 025805
FIG. 10. Evolution of the abundance of ensemble~2! of states in26Al as a function of time forT950.2, 1.0, 2.0, and 5.0. In each pane
the solid curve gives the ensemble abundance derived from the results in the full network calculation while the dashed curve gives
when the ensembles are evolved using the effective ratesl (12)

e f f 5(l12
e f f/W1) and l (21)

e f f 5(l21
e f f/W2). Below a temperatureT9&2.0, using a

two-state system with effective transition rates gives a perfectly accurate representation of the full network. At higher temperatures,
the steady-state approximation we employ to compute the effective rates overestimates the abundances of the upper-lying levels. T
the effective two-state system to evolve more rapidly than in the actual network. Nevertheless, even for such cases, the internal eq
timescale is well reproduced, and the treatment of the levels in the26Al nucleus as two ensembles of states is well justified at
temperatures.
la
dy of

the
transitions, then

dYtot

dt
5FdY1

dt
1

dY2

dt G1 (
k.2

S dYk

dt D50, ~6.13!

because the total number of nuclei remains fixed. The
term in Eq.~6.13! is zero under our assumption of a stea
state; therefore,

dYtot

dt
5S dY1

dt
1

dY2

dt D
52l12

e f fY11l21
e f fY21l12

e f fY12l21
e f fY2

52H l12
e f f

W1
J Y(1)1H l21

e f f

W2
J Y(2)
02580
st

1H l12
e f f

W1
J Y(1)2H l21

e f f

W2
J Y(2)

[2l (12)
e f f Y(1)1l (21)

e f f Y(2)1l (12)
e f f Y(1)2l (21)

e f f Y(2) ,

~6.14!

where we have used Eq.~6.4! to replace the abundances
the ground and metastable states with the populations of
two ensembles. BecausedYtot /dt5dY(1) /dt1dY(2) /dt, we
can infer from Eq.~6.14! that

dY(1)

dt
52H l12

e f f

W1
J Y(1)1H l21

e f f

W2
J Y(2)52l (12)

e f f Y(1)1l (21)
e f f Y(2)

~6.15!

and
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SANJIB S. GUPTA AND BRADLEY S. MEYER PHYSICAL REVIEW C64 025805
FIG. 11. Evolution of the abundances of levels 4 at 1058 keV~A!, 6 at 1851 keV~B!, 9 at 2072 keV~C!, and 13 at 2740 keV~D! in 26Al
at T950.2, 1.0, 2.0, and 5.0. The solid curve gives the actual network abundances while the dashed curve gives the steady-state a
At low temperature, much of the evolution of network abundances occurs in a steady state; therefore, the approximation us
calculation of the effective rate is excellent. At higher temperatures, the upper-lying levels achieve a steady state only shortly be
reach their equilibrium values. This means that throughout much of the evolution, the steady-state approximation overestimates
dances of the upper-lying levels with the consequence that the effective transition rates from ensemble~1! to ~2! and vice versa are likewise
overestimated for a large part of the evolution.
th

e
ct
v
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en
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ble
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te
dY(2)

dt
5H l12

e f f

W1
J Y(1)2H l21

e f f

W2
J Y(2)5l (12)

e f f Y(1)2l (21)
e f f Y(2) .

~6.16!

These equations are the modified form of Eq.~2.15! that
properly account for the abundances of the ensembles ra
than those of levels 1 and 2. In equilibrium, bothdY(1) /dt
→0 anddY(2) /dt→0, thereby giving

Y(2)
eq

Y(1)
eq

5
W2~T!

W1~T!

l12
e f f

l21
e f f

5
W2~T!

W1~T!

Y2
eq

Y1
eq

5
G(2)~T!

G(1)~T!
e2E2 /kT.

~6.17!

The ratio of the equilibrium abundances of ensembles~1!
and ~2! is therefore the ratio of the equilibrium abundanc
of the ground and metastable states, respectively, corre
for the relative enhancements of the two ensembles. The
ues ofW1(T), W2(T), and the partition functions of the tw
ensemblesG1(T), G2(T) at different temperaturesT are
02580
er

s
ed
al-

tabulated in Table IV along with the effective rates betwe
the ground and metastable states. We also present on the
a FORTRANsubroutine that computesl21

e f f , l12
e f f , W1, andW2

~see the electronic addendum@16#!. This subroutine renders
the calculation of ensemble~1! and ~2! populations straight-
forward at any temperature.

Figure 10 shows that the evolution of the ensemble~2!
population using effective rates~dashed line! gives the cor-
rect equilibration timescale when compared to the ensem
population in the full network calculation~solid line!.
Though the evolution using effective rates begins to dive
from that in a full network calculation atT9'1.0, the time
taken to reach equilibrium is still correct even atT955.0. In
making this comparison we have usedY(2)5W2(T)Y2 for
the ensemble~2! population resulting from the steady-sta
assumption and

Y(2)
net5Y21 (

k.2
H S wk

(2)Y2

wk
(1)Y11wk

(2)Y2
D YkJ ~6.18!
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The equations derived in this section allow for a compl
reduction of an26Al system to two separate species~two
ensembles of states!. This treatment is perfectly accurate
the assumption of a steady state among the upper-lying
els holds. This will always be the case as long as the t
scales for deexcitation of the upper-lying levels dominate
timescales for destruction of those levels by light parti
capture or weak decay or the timescales for production fr
the ground or metastable state.

VII. SUMMARY

We have computed the effective rate of internal equilib
tion of a nucleus with a long-lived isomeric state. The und
lying assumption of our work is that the upper-lying levels
the nucleus attain a steady state much faster than do
ground or metastable state. At low temperatures, this i
perfectly valid approximation, and the resulting effective ra
generally provides an excellent description of the equilib
tion of the nucleus.

We have also computed the degree of connection of
upper-lying level~in a steady state! to the ground or meta-
stable state. This allowed us to separate the nuclear leve
an isotope with a long-lived metastable state into two
sembles of states. We then showed how to compute rate
transition into, out of, and between these two ensemb
These ensembles, then, are the proper ‘‘species’’ to evolv
the nuclear reaction network, and we have completely
duced the nuclide to a two-state system. We have illustra
our technique with the specific example of the interest
isotope 26Al, but we will consider other important isotope
in future work.
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for the ensemble population in the full network calculatio
HereY2 andYk refer to level abundances as returned by t
full network and the definition ofY(2)

net apportions the actua
network abundance of the upper-lying levels into a part b
longing to ensemble~2!. This seems to be the fairest way o
computing the abundance of ensemble~2! when the upper-
lying levels are not necessarily in a steady state. Keeping
mind that both axes in the plot are logarithmic, we can s
that Y(2)

SS andY(2)
net actually coincide for a significant part o

the evolution even at high temperatures.
An important observation that results from Fig. 10 is th

the effective rate is actuallyfaster than the rate for the full
network. One might think that a truncation of the matr
series would underestimate the effective rate, but that is
the case. To explain this behavior, we must investigate
only the time evolution of the ground and the metasta
states, but also of the upper-lying levels. We may find t
steady-state abundance of an upper-lying level from E
~3.22!. In Fig. 11 we compare the steady-state abundan
~dashed lines! of levels 4, 6, 9, and 13, which are all 11

states located at 1057.74 keV, 1850.62 keV, 2071.64 k
and 2740.03 keV, respectively, to their actual network ev
lution ~solid lines! at different temperatures. We notice that
low temperatures the levels attain steady states ra
quickly, and hence the steady-state assumption that ass
them theYk

SS from the beginning is a good one. However,
higher temperatures the steady-state approximation over
mates the population of the upper-lying levels for a sign
cant fraction of the total time required to reach equilibrium
Since the approximation overestimates the production of
higher-lying intermediate levels, it automatically overes
mates the effective rate to go from the metastable to
ground state via transitions involving those higher leve
However, as Fig. 10 amply demonstrates, the only effec
on how equilibrium is reached: the time taken to reach it
unaffected.
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