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Internal equilibration of a nucleus with metastable states: ?°Al as an example
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In many isotopes important to nucleosynthesis theory there exists a low-lying metastable state whose deex-
citation to the ground state is strongly inhibited by a large angular momentum difference. In a stellar plasma,
the equilibration of the ground and metastable states of such nuclei proceeds primarily via indirect transitions
that involve upper-lying levels. We present a mathematical technique to follow these multistep transitions.
Under the crucial assumption that the abundances of the upper-lying levels are in a steady-state abundance
distribution, our method abstracts away all the higher-lying excited states allowing the isotope in question to be
represented as a two-state system with transitions between these two states. The two states are properly not the
ground and metastable states themselves but rather two ensembles of states, one tied to the ground state and
one tied to the metastable state. We show how to compute effective rates into and out of these ensembles and
between them, as well as how to identify the dominant pathways. This allows such nuclei to be treated in a
simple, straightforward, and accurate fashion in nucleosynthesis networks. The specific exarfitf¢ of
including its effective beta-decay lifetime, is considered in detail.
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[. INTRODUCTION lation of excited states to give corrections to the ground-state
rates(e.g., see Ref4]).

The rates for key nuclear reactions are crucial inputs for Generally, the internal equilibration of a nucleus occurs
models of stellar evolution and nucleosynthesis. The lack ofmore rapidly than the competing processes of production or
an accurate value for the rate of one or more nuclear readlestruction of that nucleus. In such a case, an equilibrium
tions frequently limits the conclusions that may be drawnpopulation of excited states is a reasonable approximation. In
from an astrophysical model. As a salient example, the uncertain isotopes, however, a low-lying isomeric state is only
certainties that currently exist in the experimentally availabledirectly connected to the ground state by a transition of high
2C(a, y)*®0 reaction rate constrain the accuracy of stellarmultipolarity. This strongly inhibits internal equilibration of
models beyond the phase of helium burnijgg., see Ref. the nucleus, and consequently the distribution of such nuclei
[1]). Clearly, continued progress in stellar modeling and nu-@mong their excited states cannot be treated by Boltzmann
cleosynthesis will require ongoing efforts in nuclear physicsstatistics. In such a case, equilibration of the isomer and the
laboratories. ground state occurs only indirectly via upper-lying levels,

While nuclear physics experiments underpin the succesgnd it is frequently necessary to treat the two states, or, more
of astrophysics models by providing essential input, it hagroperly, two ensembles of states, one tied to the ground
not always been true that Earth-bound laboratories providétate and one tied to the long-lived isomer, as separate spe-
precisely the information required by the models. For ex-Cies in the nuclear reaction network.
ample, only recently have experimentalists begun measuring Fortunately, the number of such isotopes is small. How-
reaction rates at the low energies relevant to the conditions &ver, among their number €°Al. The 5 ground state of
the center of the suf2]. A similar problem that will prove  2°Al has a million-year lifetime againsg® decay, which
even more challenging is the issue of the excited states imakes it of great interest for gamma-ray astrondenyg., see
target nuclei. Ref.[5]), cosmochemistrye.g., see Ref6]), and the study

Laboratory measurements of nuclear reaction rates aref presolar grainge.g., see Ref{7]). The 0" first excited
made on target nuclei in their ground states. In a stellagtate at 0.228 MeV, on the other hand, lives for only 9.2 s.
plasma, however, the target nuclei are distributed amonghis complicates the effectivé°Al decay rate in a stellar
their excited states. This is a well-known problem, but aplasma. The effective decay rate would be easy to compute,
proper accounting of this in stellar models has not proverif the 5° and 0" states communicated efficiently, for then
easy. Ultimately one would wish for direct experiments, butone could assume they existed in an equilibrium thermal
this will be extremely difficult in Earth-bound laboratories. distribution. The large difference in spin between the two
For now one must seek to make the laboratory results ostates inhibits their direct communication, however, and one
ground-state nuclei more appropriate for stellar models. Thés usually forced to treat them as separate nuclear species in
simplest approach is that of an “equal strength approximaseaction networks. This is not too difficult in practice—one
tion” [3], in which the rate for some reaction on a nucleus insimply needs to follow the reactions that separately feed and
an excited state is assumed to be equal to that when thdestroy these two species. What is lacking, however, is a
nucleus is in its ground state. More recently, there have beesimple-to-use and accurate rate for the transitietweerthe
efforts to account for the excited states more accurately bjwo species. Such a transition becomes important near 0.4
using experimental nuclear level data or by using Hauserx10° K (Tq=0.4) at which temperature internal equilibra-
Feshbach calculations and the assumption of a thermal poption of 2°Al competes with beta decay from the metastable
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state. Our goal in this paper is to calculate the rate for thiproductionP and a rate of destruction per nucleus. The
transition and to show how to use it in a reaction network.abundance is governed by
Other nuclei where such long-lived isomeric states play a a4y
; i i i 11
crucial role in nucleosynthesis theory includ&r, '%Cd, AY+P, 2.1)

11%¢d, and 9n and *¥°Ta. We will present detailed treat- dt
ments of these nuclei in subsequent papers. ) )

Ward and Fowlef8] have described and investigated this Which has the solution
problem in some detail. More recently, Coc, Porquet, and
Nowacki have computed the effective beta-decay lifetime of Y(t)=Y(0)e M+
Al in a stellar plasmd9] using new shell-model calcula-
tions of the rates of certain internal transitions not known

from experiment. In both of the above papers, the author . _
presented results of internal equilibration from numerical tﬁw.) is such that(iY/dt)—>0. Equation(2.2) leads to the
following conclusions.

calculations. We revisit this problem in what we believe is a : . .
more straightforward manner. The key to our approach is the The timescale~ (1) f_or achieving a steady state is de-
assumption that the nuclear levels #Al lying higher in termined by the destruction rate .
energy than the ground and metastable states are in a stea y(') T_he steady_—state abundanc_e is given BYN), i.e., by
state. With this largely accurate assumption of a steady stat e _rauo(prqductmn rate/ de;truqtlon_ rate per nucleus
we then exploit the combinatorial nature of the problem to _(") Con_s,ldgr next the situation in a_three-lgvel system
compute the effective rate of equilibration of the ground anow't.h level |nd!ces arranged in order of Increasing energies
metastable states by enumerating all possible pathways v‘éh's conve_ntllon will be followed througho)utlwnh the
upper-lying levels. Apart from the intellectual appeal of theac_ideOI provision that level 2 may not communicate directly
resulting interpretation, this method allows for a direct evalu-W'th the _grognd statdevel 1). This may occur, for exar_nple,

if the spin difference between the two lower levels is very

ation of the importance of any nuclear level or transition to_. =™ : : .
the overall equilibration rate. Moreover, the treatment isni9h: in which case the levels communicate only slowly via a
ery high order multipole.

quite general and is applicable to any similar nucleus, if not/ X . :

more generally to the kinetics of analogous atomic and mo- The relevant equations governing the evolution of the
lecular systems exhibiting important nonequilibrium effectsPundances in the three-level system are then

in a plasma.

; (1—e M), (2.2

hereY(0) is the initial abundance. The long-time behavior

Our techniqu_e also permits dir_ect calculation of the de- %: —A;Y1+N31Ys, (2.3
gree of connection of an upper-lying level to the ground or t
metastable state. This allows (sder the good assumption
of a steady state among the upper-lying leyéts separate dY; _
the nuclear levels irf°Al into two ensembles of states with Tt o At haYs, 24
each level participating itboth ensembles. In this way we
are then able to compute effective rates for transitions from dys
either ensemble to other nuclear species or vice versa and for at —A3Y3+N13Y1+No3Y5, (2.9

transitions between the two ensembles of states. These two
ensembles, then, are properly the two separate species Of¥fiere);; represents the rate for the transitidrean leveli to
evolves in the nuclear reaction network, and we have suQg,g| j and
cessfully transformed the problem for the multilevel nucleus
to that of an equivalent two-level system.
The outline of the paper is as follows. Section Il treats the A= Ny (2.6)
steady-state approximation and computes the effective tran- 17k
sition rate between the isomer and ground state. Section Ipepresents the total rate for the destruction of ldvel

provides a combinatorial interpretation of the effective rate. A, andA, are exclusively determined from upward tran-

%el;it'or;].:v éa\ppll\e/s th? Eﬁeﬁz'vi. ra‘t‘? to ;h_etspecllflc Qﬁse Ogitions; therefore, at sufficiently low temperatures, they will
AL whrie Sec. V explores the XInetics ot internal equilibra- typically be many orders of magnitude smaller than
tion n further detail. .Sect|on Vi .d|scu.sses our approach to(which involves downward transitionsWe thus postulate
treating a nuc.Ieug with a I.ong—llved Isomeric state as Q4 el 3 reaches a steady state on a short timescale com-
separate species in a reaction network, and Sec. VIl prese ared to the timescale on which the abundances of levels 1
a brief summary. and 2 change; hence, we may selr¢/dt)=0 in Eq.(2.5).
Note that this assumption corresponds to treating transitions
out of level 3 as instantaneous. Such an approximation en-

Il. THE STEADY-STATE APPROXIMATION ables us to immediately solve faf; in terms ofY, andY:
A simple example motivates our basic technique for treat- N
ing metastable-state nuclei, such?al. Consider the abun- Y3(t):+w]_ 2.7
danceY of a single nuclear species with a constant rate of As
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Substituting Eq(2.7) into Egs.(2.3) and(2.4), we obtain a
two-species network

dv,
_:AY]_JF BY2,

at (2.9
dy,
WZCYl-FDYZ, (2.9

where the coefficients may be obtained by inspection,

Niahag

A:‘_M3+<A—)]:_7\13(1_f31), (2.10
3

Ao\
B=( Zj?’l):xzsfsl, (2.12
3
A
C:( ];i)\32):)\13f32’ (212
3

Noahap
o=,

)]:_)\23(1_f32), (213

wheref;; denotes the branching ratio or the probability that a

transition out of level will be to levelj,

fo 2.1
T (2.14
A,B,C, andD are not independent quantities sineg+ f5,
=1 implies thatA=—C andD = —B. Thus, we obtain two
effective rates for our two-level system,

dv,

T NS2Y1HASLTY,
dy,
W:xigfvl—xgifvz, (2.19
where
NS$3'=N1af 3o, (2.16
NS1'=Nosf 1. (2.1
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destruction rates out of levels 1 and 2 are calculated exclu-
sively from upward transitions to higher-lying states we have

(2.18

for levelsk>2. Hence, we may assume the higher-lying lev-
els attain steady states on short timescales compared to
(2/A ) or (1/A5), i.e., dY,/dt)=0 for levelsk>2. Note
however thatdY, /dt anddY,/dt arenot equal to zero be-
cause their timescales to reach a steady state are much
longer. The abundances in the full nuclear reaction network
are governed by equations of the form

Ak>A1 and Ak>A2

dy,
W:MkYﬁ NoYo+ NgYat o+ N 1Y 1= Ay Yy

TNk Ykr1t o T A,

(2.19

where I<k=n. For levelsk>2 we may set the left-hand
side of Eq.(2.19 to zero and obtainn(—2) equations of the
form

—Ag Y3 — )\k—l,kYE—SlJr ARYRS= Ny 1,kY§+Sl_ e
kYRS =N Y1 Ao Y, (2.20

where now 3<k=n and Y;° denotes the steady-state abun-
dance of levelk. This system of linear equations may be
immediately recast in matrix form as

A3 _)\43 _)\53 — . .. —_— . . —_— . .. _Ans
“Nag Ay —Agg —r —eer —eei —Am
_)\Bn _)\An _)\5n — . — ... — ... An
S
Y3 N13Y 1+ AoaYs
Y33 A1aY1+AosYs
x| = . , (2.21)
Y3S A Y1+AonYs

which enables a solution of the steady-state abundances by
first defining the following algebraic entities:

(i) The diagonal destruction matrix, with;; = &;; A; (for
3=<i,j=n). That is, A has the destruction rates of levels

Usually it is only the downward spontaneous decay rate8—n on its diagonal and zero everywhere else. The inverse
that are known from experiment or theoretical shell-modeldiagonal destruction matrixA ~! then has the elements
calculations. Nevertheless, from this information, it is pos-(A’l)ijz(ﬁij IA}) (for 3<i,j<n);
sible to use the Einstein relations to compute the induced (ii) The identity matrix of orderif{—2) denoted by;
upward and downward transition rates in a high-temperature (iii) The “transfer matrix” F given by Fj;=f;; (for 3

plasma. In this way, the effective rate§)’ and\$i" can be

<i,j=n). This is the transition probability matrix of the

completely specified. In this paper we neglect transitions insubsystem formed by excluding the ground and the meta-
duced by collisions with other ions in the plasma. In generalstable states. Its transpose will be denotedby
these contribute to the overall internal transition rates only at (iv) The steady-state abundance vector

the highest temperatures and densifi@d5]. Nevertheless,

their inclusion would be straightforward in our formalism.
We now generalize to an-level system with a ground

state(level 1) and a low-lying metastable staflevel 2) that

do not communicate via a direct transition. Since the total

Y3S
YSS:

SS
YI’]
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(v) The “production vectors”

= A fOUt

A3
out__ : _
Ng =| P |=A
Ngn fan
comprised of the rates from the ground=1) and meta-
stable statesq=2), respectively, “out” to all the upper-
lying levels; and
(vi) The “total production vector”
N13Y1t Na3Ys
P=AUY,+A"Y,= % :
N1nY1+N2nY2

which is the right-hand side of E@§2.21).
With these definitions, Eq2.21) becomes

(I-FHAYSS=P, (2.22

PHYSICAL REVIEW (&4 025805

faq

f'an : ,

(2.27

fnq

whereq=1 corresponds to the ground state aye?2 corre-
sponds to the metastable state. With this definition, we may
estimate\ " by rewriting Eq.(2.19 with k=1,

dy,
gt D NaYe®
=2

=—A Y+ (FM)TAYSS

~—AY +(F)TAATIFLP)

== AyY 1+ (F)TRR(A LY+ ALY ).
(2.28

Comparing Egs(2.15 and (2.28), we immediately have

which may be immediately solved for the steady-state abun-

dances,

N3 =AG1N = AR(FT) TR = AL (15") TRNfT].

(2.29

YSS=ATL(1-FT)~1p. (2.23
Now, FT is merely the transpose of the transition probability
matrix with all transitions to and from levels 1 and 2 re-
moved. This classifieET as aprincipal submatrixof a sto-
chastic matrix. The parent stochastic matrix iiseducible
since no proper subset of levels can form a closed system.

We can then use a theorem of Frobenius for a nonnegative Our expressions for the effective rates between levels 1
irreducible matrix that declares its maximal eigenvalueand 2 are approximations to the exact solution since we con-
modulus(spectral radiu$ to be strictly greater than that of siderFy rather tharF... However, we may approximate the
any principal submatrix10]. This implies that the spectral exact solution to arbitrary accuracy by choosing a suitably
radius of F' is strictly less than unity, since all stochastic large value forN. The fractional error involved in the series
matrices have a unit spectral rad{u4]. Then the Lagrange- truncation may be estimated using the easily computed ma-
Sylvester theorem for matricg41] implies that (—FT) is  trix © norm. For anymx m matrix F, thec norm is merely
nonsingular and that we may expand its inverse in a matrithe maximum row suprwhich for a substochastic matrixis

The second equation follows becausg' is a scalar quan-
tity. By exactly similar reasoning, one may find

NS = ASoN= AL (P99 TRAFL).

(2.30

series, guaranteed to be strictly less than unity:
(I=FN) I=14+FT+(FN2+(FN)3+...=F].
224 FI=lFl-max{ 3 7y <1 @3
Let us denote thé\th partial sum of this series bl and
note that However, the spectral radiys(F), which is the maximal

eigenvalue modulus d¥, cannot exceed its norfi 2]
FR=l+FT+(FN)2+ ... +(FM)N-1
0<p(F)<||F|=(1—min{f+ fo:3<ksn})<1,

=1+FT+(F3)T+. -+ (FN"HT=(Fy". (2.29 (232

Substituting this result into Eq2.23), we obtain the com-

pact approximation wheren is the total number of levels. This guarantees the

convergence of the power serieshnsince
YSS<YRE=ATIFLP (2.26
correct to ordeN in the maximum number of intermediate
levels participating in the indirect transitions between levels
2 and 1. andF is related to its Jordan canonical form by a similarity
To determine the effective transition rates between levelsransformatior{ 12]. We now estimate the fractional error in
1 and 2, we next define the vectﬂ(f as our approximation using the ratio

lim {p(F)\N=0, (2.33

N—o
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[Fo—Fnll IFN+ENTIHENT24 ) rect transitions. Let each nuclear energy level be represented
TFl = o by the node of a directed gragtligraph, weighted such that
the transition probabilityf;; is the cost of the arc connecting
[FN(I+F+F2+...)| nodesi andj. If the costs of successive arcs along a path are
= TE combined multiplicatively to yield the path cost, then Eq.
(2.29 is thetransfer matrixformula for the sum of the costs
[FNF. IFNIIF. of all possible paths between nodes 2 and 1, with the restric-
- [E.| = =M tion that the number of intermediate nodes should not exceed
N. (See Ref[13] and references therein for a detailed dis-
=[IFN], (2.34  cussion of the transfer matrix in graph theprin other

words, our technique is a combinatoretiumerationof all
finite “f strings” of the form Q‘Zilfilizf . .fiml), where
IF1Fall<lIFalllFal (.39  1sms=N. . . .

Suppose we wish to find the effective rate to order
for any twomXx m matricesF; andF, [12]. We may also use =3 for an=4 level system. First we need tha{2)Xx(n
this inequality to note thatFN|<|F|N. However, the row —2) matrix F, which reduces to order22,
sum of the substochastic matrfixis maximized for the row
k in the parent matrix corresponding to a minimum in the
sum (f, 4+ fo) of branching ratios to the ground and meta- F=< 0 f34) 3.1)
stable states. FoT4=<10.0, this is of the order 10’ to fig O '
10" %5, Thus while||F|N is certainly an upper bound on
{p(F)}N, in practice it is too conservative to be used as
convergence criterion. We have usg@"| to estimate the
fractional error. As will be seen in Sec. 1V, it turns out to be
an excellent guide.

where we have used the inequality .
2l3 "

aNext we compute the partial sum of transfer matrices

14 f34f 43 faa

Fu=F.= F+F2= 3.2
N 3= A3 1+f43f34 - 32

EFFECTIVE RATE

The expression enclosed by square brackets iEEQ9  The effective rate to third order in the series expansion may

is actually the effective branching ratie=(f§{f) due to indi-  then be obtained immediately from E@&.29,

o 1+f34f 43 fas fay
)\31,321\2 (f23f24) fas 1+f 455 ( ) (3.3

1:41

:AZ(f23f3l+f24f4l + f23f34f41 +f24f43f31 + f23f34f43f31 +f24f43f34f41) .

- ~ - \ v

all two-arc paths all three-arc paths all four-arc paths (3.9

. S
v~

effective branching ratio

Keeping in mind that the number of arcs in a path is onecorrect calculation oi\g{f would useF.,, Fy typically con-
more than the number of intermediates visited between theerges rapidly for finiteN because the magnitude of every
origin and the destination, we see from H.4) that Eq. element ofF is strictly less than unity.

(2.29 automatically enumerates every possible pathway with Further insight may be obtained by defining the follow-
1, 2 or 3 intermediate nodes. The matRy, elegantly enu- Ng:

merates all the ways in which nodes 3 and 4 can be arranged (i) The N-arc “cascade probability vectors”

to give 1, 2, and 3 intermediates. Thef{")T connects the Iy
possible “intermediate circuits” to the metastable state to in _q Cin
“feed” them while at the other end)’ connects them to the an=| ¢ |=Fafq-
ground state, which is the final “recipient.” Though a strictly Ing
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Ultimately, all the short-lived upper-lying levels must decay Squsglzsquglsqugl S FS, L=(FTy".
to the ground ¢=1) or the metastableg=2) states. How-
ever, unlike the normal use of the word “cascade” where the
transitions are exclusively downward, we also allow interme-
diate “up” transitions. Given a maximum dfl intermediate
levels, I'y; is the effective probability that levet (k=3) Hence, we conclude that the similarity transformation also
will ultimately decay to the ground state, whilg, is the  holds forF,
probability of its ultimate decay to the metastable state. It
will be shown thatl"y; +I'\,=1, as expected:; SgFNS; =Syl +F+F24 ... +FN gt

(ii) The N-arc generalization ofgUt (q=1,2), which is

\ . 7
v~

m repetitions (3.9

=14+FT+(FNH2+.. .+ (FHN1=F].

Fgs (3.10
Fout: : EFTfout;
aN N'a From Eq.(3.10 we obtain
| I
T
(i) The “reverse ratio” Rjj=(\jj/\j;)=(Y;VY{9, SaFN=FnSq (3.1
whereY¢? is the equilibrium abundance of levkland de- or
tailed balance has been invoked;
(iv) The diagonal “reverse ratio matrixR, with elements S Fme F Sy fm (3.12

(Rg)ij= 6ijRqi, where 3<i,j<n; and
(v) The diagonal matrig,=(1/Ay) ARy, whereA isthe g
destruction matrix defined previously. The elementSpére '

(Sq)ij_:(Aqui5ij /Aq), where %I,j$n in AlflqR )\Iqqu
With these definitions, we have (Sefg)i= A Ny =fqi, (3.13
(AFA*l)i,:% A8 FiAy " - 35 e,
But, Sqfy =10 (3.1
Nk Rih RyfreiAg We substitute Eq(3.14) into Eq.(3.12 to obtain
Fi=fo=—k = K Tk (3.6
KTHRTATT A A
J J J SeFnfg =FNfo" (3.19
Substituting Eq(3.6) into Eq. (3.5, we have
or
(AFA™Y; =% 3ijRikfkjd=Rifii, 3.7 Srin=rgu, (3.16

which immediately allows us to show th&{FS;*=F", as  The results in Eqs(3.10), (3.14), and(3.16) further confirm
follows: the interpretation ofS; as a representation of the path-
reversal operator for all orders. Expressing E429 in our
1 new notation,
(SeFSyH Zk A Ry (AFA” 1) kA qRkq Sk

eff Az(fout)TFm

> Ry dij Rk i = A,(fiHTsIs v, (3.17

However,
kR Jk5|]fk]5k| fii. (3.8

Aq
T 1
Recall thatF is the transfer matrix. It gives the probabilities (52517 =4 A, A R2'A ArRiz= A, xR
for the upper-lying level abundances to rearrange themselves (3.18
via one arc. This “rearrangement” may be thought of as a
flow of abundance among the upper-lying levels. The opera'-e
tor FT, then, gives the flow in the opposite direction; there-

i i . A
fore, S; may be considered the representation of a path 3251 R21| (3.19
reversal operator.
BecauseF is transposed by a similarity transformation
underS,, so is any power oF, Substituting Eq(3.19 into Eq.(3.17) we find that
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the effective rate, while at high temperatures so many paths

NSy'= R21A—1Az(f'zn)TF§m are open to the system that the concept of a dominant path is
2 meaningless. The shortest path concept can easily be ex-
=Ry A (fiH)TToU tended to finding the percentage contributions of different
) paths to the total effective rate by using#n shortest path
=Ry A (5 TFy= Rzl)\%f- (3.20 algorithm.

We conclude this section with a summary of the algorith-
Hence it is true that X51/A$5) =(N21/N 1) =Ry for any  mic content of the foregoing discussion.
number of levelsr and any number of intermediates; thus Step OneConstruct the substochastic transfer mafriaf
ensuring that our effective rates will always result in thetransition probabilities at a particular temperature by exclud-
correct equilibrium abundance ratio for the ground and metamng transitions to and from both the ground and metastable

stable states, within thith order approximation. states. That is, the elements of the(2)x (n—2) matrixF
We may also obtain further insight into the steady-stateyre the branching ratio; given by Eq.(2.14 for the range
abundance vector by recasting K8.26 as 3<i,j=<n, wheren is the total number of levels in the sys-
tem.
SS_ A 1T out out
YN=ATRN(AL Y1+ ARY T Step Two Compute the partial surfy=1+F+F?+F?3
= A LAY, T ALY,T9M, 32y T +FN~1, truncating the series expansion whig,

which is a bound on the fractional error, reaches an accept-
from which we extract the very revealing scalar equation ~ably small value. _ o
Step Three Calculate the effective ratesi5)y
YSS_AlFlkY1+A2F2kY2 (3.22 = Ao(f3UY TR\ andhSoN= A1 (FS") TS, wherefQ™is
k — Ay . : defined in the discussion just preceding E422, andf' in
Eq.(2.27). Here,A; andA, are the total destruction rates, as
This result demonstrates that E®.21) is the multidimen-  defined by Eq(2.6), out of the ground and metastable states,
sional analog of Eq(2.7). Similarly, the multidimensional respectively. This procedure may be repeated for a discrete
effective rate derived in Eq2.29 may be expressed as set of temperatures and a smooth curve fitted to the resulting
. points to obtain analytic expressions for the effective rates as
eff_ y outy T in .
Ao =(N7) (I'y) functions of temperature.

I

=gz - Nop)| ], (3.23 IV. APPLICATION TO  26Al
| Y

We now apply the combinatorial enumeration technique
discussed in the previous two sections to the specific case of
2671, Figure 1 shows a log-log plot okS!" for the 2°Al
internal equilibration as a function of temperature. To com-
pute this rate, we used experimental data downloaded using
the “Isotope Explorer” program from the Evaluated Nuclear
Structure Data File website maintained by Brookhaven Na-
tional Laboratories. Rates between 67 nuclear levels of the
isotope were entered, with the highest level Bt
=6084 keV. Rate information for levels above this energy
was virtually nonexistent. At temperatures where other tran-
since R =Y¥YEY, Ro=Y5%YL", and the expression in sition rates compete with the internal equilibration, very few
braces is what the right-hand side of £§.22 would be at  photons in the stellar heat bath would have energies above 6
equilibrium, i.e.,Y;%. Thus, we have a simple proof of the MeV, so the neglect of higher-lying levels is not too impor-
fact that the probabilities to “cascade” from an upper-lying tant. We study this in some detail below.
level to the ground and metastable states individually must Theoretical single-particle rateeWeisskopf estimatgs
sum to unity. have been used for all spontaneous rates not known from

The language of path costs can be further exploited wheexperiment, with the exception of35°" and A35°™, for
we wish to identify the dominant pathway at a particularwhich we used the results of shell-model calculatigols-
temperature. All we need do is to assignl(f;) to the arc  tained from Refs[9,15]). The dashed line differs from the
weights of a digraph and then use Dijkstr&&ortest Path  solid line only in that\35°" was set to zero. At low tempera-
Algorithm [14] to find the shortest patkwith an additive tures, the drastic difference between the two curves illus-
combination of arc costdbetween nodes 2 and 1. The path trates how our lack of experimental data for a particular level
with the minimum sum of negative logarithms will be the may impact a calculation of the effective rate. However, the
same as the path with the maximal product ofthe As we  matrix series approach provides an excellent diagnostic for
shall see in our discussion GfAl in Sec. IV, at low tem-  such levels, since by zeroing out the row and column per-
peratures only a single path or “chain 68" contributes to  taining to a particular level we may ascertain its importance

which mirrors the scalar Eq2.17) perfectly as well.
Finally, we note that

1

AlrlkRkl+ AolaRee [ 1
-| v

1_‘kl—i_FkZ: Ak Ak

=1, (3.29

y (AT ) Y59+ (Azrzk)qu]
Ay
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101 5] . ——— . ——r Energy (keV), JT, level
[ 1 5000 ]
I 14705.37, 4*, Easg
10[ 1462238, 27, (35
107 - ]
[ 4000
10°F ]
< i >
5T 4 ]
10 - - 3} ]
[ S 2000 ]2069.47, 2%, (8)
107107 ] :
i ] 1000 11057.739, 1%, (4)
T S e ] :
0.1 1.0 10.0 1416.852, 3*, (3)
T, 0 1228, 0%, (2)

1o, 5% (1)

FIG. 1. The effective transition rateS!’ for 2°Al as a function
of temperature. The solid line gives the result of the full calculation.  FIG. 2. The dominant pathways @) T¢=0.2,(B) T¢g=0.6,(C)
The dashed line gives the rate when the direct transitions betweehy=1.3, (D) Tg=3.0, and(E) T¢=>5.0 in the internal equilibration
levels 2 and 3 are disabled. For reference, the dotted line gives thef 28Al. At low temperatures, the dominant pathways must take spin
B*-decay rate of the 0 metastable state. Fdiy<0.4, the meta- jumps larger than unity. At higher temperatures, large energy tran-
stable state has no chance of equilibrating with the ground stateitions are possible. This allows strongly favored spin jumps of

before 8 decaying. unity in the dominant pathway, thereby dramatically increasing the
) B ) effective equilibration rates. Levels are denoted by the format, en-
in the overall equilibration rate. ergy in keV, spin parity, andevel numbey on the right-hand side

The strongest single-particle transitions occur betweewf the energy-level diagram.
two nuclear levels when their spins differ by zero or unity

and when their parities are different, since the selection ruleg,e numper of terms that we must retain to attain an accuracy
permitE1l transitions to occur. However, at low temperaturesys one part in 18°. Figure 6 demonstrates the effect of con-
such transitions are hampered4?Al by the fact that in our  siering a finite number of nuclear energy states. It is clear
set of 67 levels, every energy level below 4.4 MeV has posiyhat a single intermediate nodeevel 3, which is a 3 at
tive parity. Thus the system is forced to make small spiny 416 Me\j suffices until we reachTo~0.3. Thereafter,
jumps with no change in parity. Figure 2 shows the dominangigher energy levels and multiple intermediate nodes become
paths at five different temperatures. Beldy~0.3 the ran-  necessary as rising temperatures make more complicated
sition through the levels 23—1 completely dominates the pathways energetically possible. Four energy levieisel 4
scenario. This represents 803" —57 progression in spins s a 1 state at 1.058 Me)/and two intermediate nodes
and parities. Affo=0.6 the dominant route is through levels gyffice until To~1.0. BeyondTg~ 1.0, the number of terms
2—4—3—1 where the spin-parity progression is 61"
—3*%—5%. With the opportunity to reach for higher energy
levels that may offer even smaller spin increments, we have
at Tg=1.3 the level route 2 4—8—3—1 with a spin-parity
chain 0" —1"—2"—-3%"—5"% This progression dominates
until Tg~3.0 when several 2 states at-4.5 MeV become
accessible, allowing parity changes. This is reflected in the
fourth pathway in Fig. 2. The fifth pathway in Fig. 2 through
the levels 2-4—35—-3—-36—1 is the dominant one &k,
=5.0:ithasa0—1"—2"—-3"—4%—5" progression with
all spin jumps equal to unity. At this temperature there are so
many optimal paths that the concept of one best route be-
comes meaningless. This is illustrated by Fig. 3 which shows
the steep drop in the contribution of the dominant path to the
total effective rate as a function of temperature. The five
most dominant pathways in the internal equilibratior?®4l
at Tg=5.0 are shown in Fig. 4. The most dominant pathway
starts furthest to the left. The second, third, fourth, and fifth FIG. 3. Fractional contribution of the dominant pathway to the
most dominant pathways start sequentially rightward of theotal ratex§!"in 2°Al. When this quantity is unity, a single pathway
most dominant and are minor variations of it. dominates the effective rate. Clearly different regimes apply at dif-
We now discuss issues of convergence. Figure 5 showerent temperatures. These are identified in the text in Sec. IV.

21 (total)

elf

—poth) / }\

eff
21 (dominant.

A
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Energy (kev), J7, level
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6000 1070 b
5676.07, 4-' (58) [ Number of Levels n
1 _ L —&— n=3
5395.53, 47, (47) 10'0L o no4
5006.66, 27, (41) [ — "jz ]
1953 7 (3 N e ;
— 10° —— n=15 —
B oL ]
4000 = [ ]
%\ 13402.65, 5+, (17) - WOO—_ E
2 L ]
5 1070 ]
c
! L ]
2000 -1 2068.88, 4%, (7) 10— 10k . ]
0.1 1.0 10.0
TQ
11057.739, 17, (4)
E T T T ]
1416.852, 3*, (3 I
228, 0%, (2) ) 10131 e 4
0 0, 5%, (1) g /,,— §
FIG. 4. The first five dominant pathways in the internal equili- 1012;_ /{‘:::;..‘--" _
bration of %Al at To=5.0. The most dominant pathway is the one ~ £ A E
that starts furthest to the left. The second, third, fourth, and fifth < 1 C .
. . . 5 10 -
mos; dominant pathways start sequentially rightward of the most< 10 o P
dominant. S a=36 ]
o ---- n=351 4
101 0 L n=67 -
in the expansion, which had stayed almost constant, begin
to show a very steep increase indicating the onset of very ool 1
1 1 1
complex pathways. However, at all temperatures the numbe 5 A o 5 10

of terms required is finite. AT¢=2.0, the number of terms T,

required in the matrix series iKl=74. At T¢=5.0, 1239

terms are required in the matrix Seriesy andra:t: 100, N FIG. 6. Variations in the effective flow rate from the metastable-
=22332. Even the last calculation imposes very mild de-State ensemble to the ground-state ensemble when a different num-
mands on computer time. The effectradtincluding enough ber of nuclear energy levels is used to_approximate the full network.
terms, however, is quite dramatic. As Fig. 5 shows, an inag¥he rates are accurate to one part inS1for the adopted level
equate number of transit points in the flow from the ground-SuPbset

state ensemble to the metastable-state ensemble can result in ) ) ) _
pathological behavior in the vicinity 6fq=3.0 where the system to an inadequate number of intermediate nodes then it
rate curves actually dip below values attained at lower temcannot take advantage of the pathways that have become
peratures. This happens because many higher-lying levefvailable. Indeed, since tifg's among the lower-lying lev-

open up at such high temperatures, but if we constrain thgls decreasewith rising temperature, the rate as a whole
suffers a decline due to premature series truncation.

Table | investigates the dependability [#"|| as a con-

1015: IR ] vergence criterion. Clearly, the general trend of increage in
E | R === with temperature is closely followed for the different accu-
100 | T e racies(one part in 18 10°,1¢,10%,1¢?, and 18). In fact, at
I 1 a fixed temperaturdl varies remarkably slowly even though
T =l M ] we investigate such a wide range of accuracies. Indeed, we
3 I I ] have observed that 90% accuracy is achieved in the rate cal-
35 1001_ E culation when an accuracy of one part in 10 is estimated by
; ] [EN|l, 99% accuracy for one part in 40and so on. This
C 1 interesting result may be obtained by comparison with rates
107k ] for N=1 000 000, at which the last term of the matrix series
i ] is zero for the purpose of practical computation. This indi-
10719k : ] cates that even thoudliFV| is a conservative estimate of the
0.1 1.0 10.0

T!

fractional error, it is a very good one. It behaves like a “least
upper bound,” loosely speaking, and is a powerful tool for

FIG. 5. Variations in the effective flow rate from the metastable-€nsuring not only the accuracy of our technique, but also its
state ensemble to the ground-state ensemble when a different nur@fficiency, since it curtails superfluous matrix arithmetic.
ber of terms is retained in the series expansion. The rates are accGuch is not the case fdiF|N, which for the reasons dis-
rate to one part in 16,

cussed in Sec. Il grossly overestimates the fractional error

025805-9



SANJIB S. GUPTA AND BRADLEY S. MEYER PHYSICAL REVIEW (&4 025805

TABLE |. The number of terms to be retained in the seriesn=3, n=4, n=5 and so on, rather than the dips and kinks
expansion for different accuracies. The convergence critesion due to premature series truncation in Fig. 5. The effective
=|[FN| bounds the fractional error caused by series truncation at thegtes smoothly approach the=67 curve, with major
Nth partial sum for the chosen temperatures. changes only ah=17 andn=236. These are levels that re-
define the limit energy of the system ay~3.0 and T,
~4.0, respectively, when rising temperature allows the sys-

Tg s=101% s=10"1° s=10"% s=10"% s=10"2 s=10"1

0.0100 12 10 9 7 6 6 tem to access higher energy states, if any are available. We
0.0125 12 10 9 7 6 6 conclude thah=67 does indeed institute a satisfactory limit
0.0150 12 10 9 7 6 6 point over the range of temperatures we consid@g (
00175 12 0 9 7 6 6 =100. , o
0.0200 12 10 9 7 6 6 At this point, we note that it would be possible in prin-
0.0250 12 10 9 7 6 6 ciplg to include higher—lyin'g states th_rough the use of a the—
0.0300 12 10 9 < 6 6 oretical nuclear I_evel density. _In practice, sgch alevel o_IenS|ty
would be a continuous function of excitation energy in the
0.0400 12 10 9 7 6 6 . . . -
0.0500 12 10 9 - 5 5 nucleus. Our t_echmque, howeve_r, discretizes .the energy grid,
so we would likely group levels into energy bins. We intend
0.0600 12 10 9 ! 6 6 to explore this approach in future work.
0.0700 12 10 9 ’ 6 6 Finally, since those rates not obtained from experiment
0.0800 12 10 9 7 6 6 were calculated using the Weisskopf single-particle esti-
0.0900 12 10 9 7 6 6 mates, we have most certainly incorrectly estimated some of
0.1000 12 10 9 7 6 6 the individual transition rates. This leads us to conduct a
0.1250 12 10 9 7 6 6 sensitivity analysis, since large dependencies of the effective
0.1500 12 10 9 7 6 6 rates on many individual transitions would cast doubt on the
0.1750 12 10 9 7 6 6 robustness of our results. Table Il shows the enhancement in
0.2000 12 10 9 7 6 6 the overall effective rate when an individual transition is en-
0.2500 13 10 9 7 6 6 hanced by a factor of 100. Transitions that cause enhance-
0.3000 13 11 9 7 6 6 ments by less than a factor of 1(le., 10% in the overall
0.4000 14 11 9 7 6 6 rate have not been included in Table Il. Similarly, Table IlI
0.5000 16 12 9 7 6 6 shows the factor by which the overall effective rate decreases
0.6000 17 12 9 7 6 6 when an individual transition is suppressed by a factor of
0.7000 18 13 10 7 6 6 100. The decrease factor is taken as the ratio of the overall
0.8000 20 14 10 7 6 g effective rate to the effective rate with a decrease in the
0.9000 22 15 1 8 7 ¢ individual transition rate. Transitions with decrease factors
1.0000 23 16 11 8 7 6 less than 1.11i.e., reductions that still leave more than 90%
1.2500 28 19 13 8 7 g Oof the original valug in the overall rate have been omitted
1.5000 34 23 15 9 8 6 fr_om Table III We can immediately see .that very few indi-
1.7500 46 30 20 12 9 7 vidual transitions have any appreciable impact on the effec-
’ tive rate, and that while perturbations in the destruction rates
2.0000 74 48 30 17 13 8 . .
2 5000 190 120 22 39 7 16 out of levels 3 and_ 4 can scale almost linearly in the_ rate at
low temperaturegsince they are the only levels participat-
3.0000 359 226 137 & 49 21 ing), such dramatic correlations are rare for the other levels.
4.0000 661 415 251 128 87 46, particular, we note from Table Il that the suppression
5.0000 1239 777 469 237 160 83

factors for the effective rate are very close to gexcept for
6.0000 2862 1791 1077 542 363 185 yrapsitions out of levels 3 and) 4nd thus our use of Weis-

7.0000 6140 3840 2306 1156 773 389 gkopf estimates is unlikely to lead to errors in the effective
8.0000 10989 6870 4124 2065 1378 692 rates greater than a few tens of percent.

9.0000 16671 10421 6255 3130 2089 1047
10.0000 22332 13959 8378 4192 2796 1401

V. THE APPROACH TO EQUILIBRIUM

The results of the previous sections permit not only a
and turns out to be utterly useless as a convergence criteriooalculation of the effective equilibration rate between the
since it asks for~10' to 10! terms over the temperature ground and metastable states but also insights into how that

range we consider. equilibration occurs. This issue is most easily explored using
Next, we consider the effect of including only a finite a quantity analogous to the fugacity of a phase.
numbern of discrete energy states. Varyimgis tantamount In any study of equilibration, one follows ensembles of

to redefining the effective infinite energy of the system, andifferent species in contact with each other. In a study of the
consequently the effective rate plateaus at a temperature thiaternal equilibration of an isotope, the different species are
depends om, as can be seen in Fig. 6. Thus we see a smoothts various isomers at different excitation energkes for

leveling off of the effective rate at different temperatures forlevel i. In keeping with usual practice in nucleosynthesis
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TABLE II. Factor by which the effective rate increases when the rate for the indicated spontaneous transition is enhanced by a factor of 100. @©migitioosethat show an
increase or decrease of 10% or greater for one of the indicated temperatures are presented. The transitioniftortel@tgls identified in the formi — f. The important levels are level
1 (ground state, 5), level 2 (metastable state, 0.228 MeV! ], level 3(0.417 MeV, 3°), level 4(1.058 MeV, 1"), level 7(2.069 47 MeV, 2), level 8(2.07164 MeV, 1), level 17
(3.042 MeV, 5", and level 364.705 MeV, 4").

Transition

(3—1)
(3— 2
(4— 2
(4— 3
(7—=1)
(8— 2
(8— 3
(8—4)
17— 1)
(36 — 1)

0.01 0.15 0.20
1.00 1.00 1.00
100.00 100.00 100.00
1.00 1.00 1.00
1.00 1.00 1.00
1.00 1.00 1.00
1.00 1.00 1.00
1.00 1.00 1.00
1.00 1.00 1.00
1.00 1.00 1.00
1.00 1.00 1.00

0.30

1.00
92.24
1.00
8.74
1.00
1.00
1.00
1.00
1.00
1.00

0.40

1.00
3.32
1.00
97.50
1.00
1.00
1.00
1.00
1.00
1.00

0.50

1.00
1.06
1.00
99.76
1.00
1.00
1.00
1.00
1.00
1.00

0.60

1.00
1.00
1.00
99.77
1.00
1.00
1.00
1.00
1.00
1.00

0.70

1.00
1.00
1.00
99.42
1.00
1.00
1.01
1.00
1.00
1.00

0.80

1.00
1.00
1.00
97.57
1.00
1.00
1.04
1.00
1.00
1.00

0.90

1.00
1.00
1.00
90.93
1.00
1.01
1.19
1.01
1.00
1.00

Tg
1.00

1.00
1.00
1.00
75.41
1.00
1.04
1.59
1.05
1.00
1.00

1.50 2.00 250 3.00 3.50 4.00 4.50

1.04 173 450 7.85 8.65 6.45 4.13
1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.01
6.48 143 1.05 1.01 1.00 1.00 1.00

1.00
1.16
3.39
1.21
1.00
1.00

1.07
1.10
1.73
1.12
1.00
1.00

1.72
1.03
1.17
1.04
1.00
1.01

3.15
1.01
1.06
1.01
1.01
1.10

5.28
1.01
1.03
1.01
1.08
1.48

8.01
1.00
1.01
1.00
1.31
2.27

10.54
1.00
1.00
1.00
1.80
3.35

5.00

2.72
1.00
1.01
1.00
11.79
1.01
1.00
1.00
2.52
4.44

6.00

1.57
1.00
1.03
1.00
10.06
1.01
1.00
1.00
3.98
5.77

7.00 8.00 9.00

123 111 1.06
1.00 1.00 1.00 111.00
106 1.10 1.14 4.17
1.00 1.00 1.00 §1.00
3.82 [3.13

7.02
1.02
1.00
1.00
4.62
5.79

4.99
1.04
1.00
1.00
4.50
5.23

1.06
1.00
1.00
4.13
4.64

TABLE lll. Factor by which the effective rate decreases when the rate for the indicated spontaneous transition is suppressed by a factor of D3@. t@migitions that show an
increase or decrease of 10% or greater for one of the indicated temperatures are presented. The transitioniftorielelgls identified in the fornmi— f. The important levels are level
1 (ground state, 5), level 2 (metastable state, 0.228 MeV! ], level 3(0.417 MeV, 3°), level 4(1.058 MeV, 1'), level 7(2.069 47 MeV, 2), level 8(2.07164 MeV, 1), level 17
(3.042 MeV, 5"), and level 36(4.705 MeV, 4").

Transition

(3—1)
(3—2)
(4—2)
(4—3)
(7— 1)
(8—3)
(8—4)
(17—1)
(36—1)

0.01 0.15
1.00 1.00
100.00 100.00
1.00 1.00
1.00 1.00
1.00 1.00
1.00 1.00
1.00 1.00
1.00 1.00
1.00 1.00

0.20

1.00
100.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

0.30

1.00
11.42
1.00
1.08
1.00
1.00
1.00
1.00
1.00

0.40

1.00
1.02
1.00
30.11
1.00
1.00
1.00
1.00
1.00

0.50

1.00
1.00
1.00
94.38
1.00
1.00
1.00
1.00
1.00

0.60

1.00
1.00
1.00
96.70
1.00
1.00
1.00
1.00
1.00

0.70

1.00
1.00
1.00
76.60
1.00
1.00
1.00
1.00
1.00

0.80

1.00
1.00
1.00
34.28
1.00
1.01
1.01
1.00
1.00

Ty

090 1.00 150 2.00 2.50 3.00 3.50 4.00 4.50 5.00 6.00 7.00 8.00 9.00

1.01
1.00
1.00
11.10
1.00
1.06
1.05
1.00
1.00

.04

QJ\IOI_LV&IEIIQOOEI IVNY3LNI

S 07
<.00

4.00
3.79
"4.21

10.00

1.03 3.68 6.08 252 146 1.17 1.08 104 1.02 1.01 100 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 21.00
1.00 1.02 1.06 105 1.05 1.06 1.07 108 1.10 1.14 117 118 1.17 £.15
421 107 101 1.00 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 A1.00

1.00
1.20
1.16
1.00
1.00

1.00
4.28
2.69
1.00
1.00

1.03
3.58
2.22
1.00
1.00

1.39
1.52
1.34
1.00
1.00

241
1.09
1.09
1.02
1.00

3.21
1.02
1.02
1.07
1.02

2.70
1.00
1.01
1.16
1.06

2.04
1.00
1.00
1.26
1.12

1.63
1.00
1.00
1.32
1.19

1.27
1.00
1.00
1.32
1.32

1.14
1.00
1.00
1.26
1.40

1.08
1.00
1.00
1.20
1.44

1.05
1.00
1.00
1.16
1.45

A.04

.00

m

<.00
13
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theory, we considel; to be the abundance in théh iso- [ Y1 [ Y2
meric state per nucleon in the system; therefore, the numbef ={EA ~*Y{A} 13" e +H{EATTYZA TS ved)
density n; of such isomers i$),=pN,Y;, wherep is the 1 2(5 5
mass density an , is Avogadro’s number. Furthermore, we :
may take the nuclei to be nonrelativistic and nondegeneratgow, the product EA ~1Y$9A,)=S; * because
in the stellar plasma. Therefore, the chemical potential asso-
ciated with energy levek; in the nucleus is YSA, 8 A6

(EANYSU,)=——— = L =(s; 1), (5.6

pNLY;/ 2772\ 32 oy, ARy T TH W
,ui(T,p,Yi)zmchrEiJrlen[ ( ) ]
i mkT

(5.1) where we have made use of the detailed balance argument
that (Y7YY{H=R;. By exactly similar arguments,
wherem is the mass of the nucleus in its ground staté&s  (EA "'Y$9A,)=S, . With these results, and E@5.2) for

the speed of lightk is Boltzmann’s constang; is the mul-  levels 1 and 2, we find
tiplicity of level i, and 2% is Planck’s constant. In writing
Eq. (5.1), we have assumeg,<mc?, which is certainly true D=S"T"p,+S; Ty, (5.7

in any stellar environment. ) o
In the case of equilibration of levels within an ensembleWhich on application of Eq(3.16 becomes

of identical nuclei, we imagine the ensemble to be in contact _ Lin in

with a large heat batlithe stellar plasmaat fixed volume. P=I7 1 +15 ¢y (5.8

We may then compute at fixed temperature and mass density

the change in the chemical potential, Equation(5.8) provides an interesting interpretation of the

fugacities of the upper-lying levels. In particular, the fugacity
_ of levelk is

eq YI Yi

Mi— M :fyieqdﬂi(T-P,Yi)sz'n e

- kT In ¢i y
(5.2

o=l 1+t 2. (5.9

Thus the fugacity of levek is a linear combination of the
where 19 is the chemical potential at equilibrium. At this fugacities of the ground and metastable states. The coeffi-
point, it is convenient to consider the fugacity, a measure otients are the probabilities for levklto eventually decay to
the tendency to escape from a chemical phase, since this lgvels 1 and 2, respectively. When full equilibrium obtains,
precisely the role ofp; in Eq. (5.2). We recognize thap; is  $1= o= ¢, and we recoverl’,,+I',=1, which rein-
not the strictly correct definition of the fugacity, which has forces our interpretation of thedés as probabilities. Thus,
units of pressure and is a measure of the deviation fronfor example, ifl'y,;=1 andI',,=0, the steady state would
ideality, not necessarily from chemical equilibrium; never-require the ground state and leketo be fully in equilibrium
theless, we appropriate the term because of its usefulness. Adth each other. In this case there would be no communica-
the system evolves towards equilibrium, abundance “flees'tion between levels 1 and 2 via levkl Such a case is un-
those levels for whiclp>1 and “escapes” into those levels physical because transitions between lekeand another
for which ¢<1. When two levels have the same fugacity, upper-lying level would preverit,, from ever being strictly
there is no thermodynamic advantage in fleeing from one otfero in a stellar plasma. The more general case isghdies
the levels to the other. Equilibrium obtains when all thebetweeng, and ¢,.
nuclear levels attain a fugacity of one. We now consider the time evolution of the abunda¥ge

Following the internal equilibration of a nucleus, then, in light of the fugacities. From Eq2.19, the differential
amounts largely to following the evolution of the fugacity of equation governing the time evolution ¥f; in our system
each energy level. To do this, we begin by defining the(under the assumption of a steady state in the upper-lying

fugacity vectord of upper-lying levels in the nucleus, levels may be written
dy N Y
¥3 R D U [ s k). (5.10
d=| : (5.9 dt k=2 NikY1
bn We now use the detailed balance argument that/\
. . _wvedveq .
As we have argued, the upper-lying levels are in a steady Y1/ Yk (0 write
state during most of the internal equilibration of the nucleus. dy &
While this is true, then, we may write il Mle( 1— _k) (5.11)
dt Kk>2 b1

d=EYSS (5.4)

This equation shows that the contribution lekeinakes to
where the elements of the matrix are Ej;= §;; /Y;9, 3  the change iy, is due both to the rate to go from level 1 to
<i,j<n. From the steady-state abundanc\ééS in Eq. kand to the driving factor given by (2 ¢/ ¢4). The greater
(3.22), we find the difference in the relative fugacities of levels 1 d&ndhe
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FIG. 7. Evolution of the fugacitieg for each level during the internal equilibration 8l at T,=0.2. The filled circles are the actual
fugacities from the network calculation while the open circles give the fugacities derived from the steady-state abundances. gikes’

the fugacity of the ground state while thex

gives the fugacity for the metastable stdt®th are derived from the network abundances

The upper-lying levels reach a steady state e@within 5.72< 10 ° ns), but equilibration does not occur untik@.0° s. This is far longer
than the~9 s decay time of the metastable state 2% cannot equilibrate aT¢=0.2. As discussed in Sec. V, once the upper-lying levels
reach a steady state, their fugacities lie between those of the ground and metastable states. A gi/srfugeaeity is more closely tied to
that of the ground or metastable state depending on its connections to théfg dal",,.

greater the driving factor. If levels 1 arkdare in strict equi-
librium, the driving factor for levek will be zero, leading to
no change irY;. On the other hand, E@5.9) shows that the
maximum driving factor for any level is (X ¢,/ ¢4).

Substitution of Eq.5.9) into Eq. (5.11) and use ofl"};
+I',=1 leads to

le ¢2)
5t —g,z xlkrkm( 1-5.]: (5.12
With N4 =A4fq we recognize Eq(5.12 as
le eff ¢2
- M| g Y (5.13

If ¢1>d¢,, then 1—¢p,/p,>0 and Y, will decrease with
time. However,Y; will increase with time if ¢, <<¢,. An
analogous derivation yields

dv,

dt——xg{f(l— ¢1)Y2. (5.14

%,

These results show that it is the fugacity difference between
levels 1 and 2 that drives the changesYaf and Y,. The

changes cease once the ground and metastable states have

equilibrated ¢,= ¢»).

Figure 7 shows the fugacities, for the nuclear levels at
four different times in the equilibration calculation fé?Al
at Ty=0.2. For the ground and metastable states the fugaci-
ties are those from the full network since they do not achieve

025805-13



SANJIB S. GUPTA AND BRADLEY S. MEYER PHYSICAL REVIEW (&4 025805

a steady state. Though the upper-lying levels do not begin iwith the 0" metastable state. This can be attributed to the
a steady state, it is clear they achieve this situation withidarge number of T and 2° states at energies greater than 4.4
5.72x 10 ° s. Because of the low temperature, the dominanteV, which are accessible at this high temperature. As pre-
transitions in2°Al are downward spontaneous decays. Theviously discussed, transition rates are very strong between
slowest of these is the decay of thé 3tate at 0.417 MeV, levels of different parity that differ in spin by one or zero.
which lives 1.25¢ 10 ° and thereby governs the timescale to Hence a large number of low-spin positive parity states can
reach the steady state. In the subsequent evolution, tt@dmmunicate with the 0 metastable state via the high-lying
upper-lying levels remain in an excellently maintained1™ or 2~ states, which act as “pegs” anchoring the positive
steady state, as can be seen in Fig. 7. Final equilibrium iparity states to the metastable state. The exceptions are the
reached near 8 10° s. This is certainly long compared to the high-spin 6" state at 3.51 MeV, which couples directly to the
~9 s beta-decay lifetime of the metastable state. Of coursé&™ ground state, and the *7 state at 3.92 MeV, which
this means the system would, in fact, never reach equilibriuncouples strongly to the aforementioned 6tate. Movies of
because any®Al nuclei in the metastable state would decay the internal equilibration of®Al are available for viewing in
before an equilibrium abundance could accumulate. the electron addendum to this pap&6].

As expected from Eq5.9), the fugacity of the metastable
state is always the least once the upper-lying levels go into a
steady state while the fugacity of the ground state is always
the greatest. This results from the fact that initia¥y=1
andY,=0 so the net flow is from the ground to the meta- We now discuss how to use the effective transition rates
stable state. The situation would be reversed had the initiddetween the ground and metastable states in a nuclear reac-
abundances bee¥i;=0 andY,=1. The fugacities of the tion network. The issue may be illustrated by computation of
upper-lying levels lie between those of the ground and metathe effective 2°Al beta-decay lifetime in a stellar plasma.
stable states. It is clear that certain levels are more closel¥his discussion ultimately returns to the question mentioned
associated with the ground state than with the metastabli@ the introduction, namely, how to treat excited states in
state. This require¥;>T,. For example, the 3 level at  target nuclei, especially when the nucleus is not fully equili-
0.417 MeV has only a 1% branching to thé Gnetastable brated internally.
state. This state links strongly to the ground state. By con- In a stellar plasma, thé®Al beta-decay rate is a linear
trast, the 1" level at 1.058 MeV has only a 1.¥10 3% combination of the beta-decay rates of the various excited
branching to the 5 ground state. It links strongly to the states, weighted by their fractional population in an ensemble
metastable state. Interestingly, B§=0.2 most levels seem of 2°Al nuclei. When the temperature is high enough for the
to be more strongly connected to the ground state than to th&Al nuclei to have equilibrated internally, the fractional
metastable state. As noted previously, the dominant transpopulations of the excited states are given by the usual Bolt-
tions at this temperature tend to be the downward cascadeanann factors, and the effective beta-decay rate is relatively
so these levels have fast transitions to the ground state or &iraightforward to compute. The difficulty arises when the
another level with a fast transition to the ground. nuclei do not rapidly equilibrate internally.

The time taken to reach equilibriunr{;) drops dramati- In calculations of the effective beta-decay rate, what one
cally in the vicinity of Tg~0.4. At T¢=0.5, for instance, typically does is to follow internal transitions among many
Teq= 0.6 s, 5 orders of magnitude smaller than what it was atevels in the®Al nucleus with an implicit reaction network
Tg=0.2. AtTg=1.0, 7¢q=2.82X 10"° s. Figure 8 shows the code. One also includes the beta-decay rates out of each
fugacities for each level af4=2.0 at four different times level. Then, beginning with a particular abundance distribu-
during theT4= 2.0 equilibration calculation, while Fig. 9 de- tion among the nuclear levels, one evolves the network. The
picts the same foifg=5.0. At these high temperatures, in- resulting effective beta-decay lifetime is then taken to be the
duced upward transitions become important. This has twdéime for the total °Al abundance to fall by a factore”
interesting effects. First, the timescales for the ground ang8,9].
metastable states to reach a steady state are no longer muchWhile the above procedure certainly gives useful informa-
greater than those for the other levels. This means that thton, there is an ambiguity arising from the initial abundance
upper-lying levels are not in a steady state during a signifipopulations if the transition rates between the ground and
cant fraction of the period of growth of the metastable popuimetastable states are small. For example, let us suppose the
lation. In this case, our steady-state treatment overestimatésnsition timescales between the two states are both shorter
the abundance of the upper-lying levels and, hence, overethan 1§ yr (the decay timescale of the ground sjakeit
timates the rate of transfer from the ground to the metastablenger than 9.2 gthe decay timescale of the metastable
state. This is why the two-state system with effective ratestatd. If the nuclear reactions that produéAl from other
evolves faster than the full network. The evolution is so fastsotopes preferentially populate the ground state, the nuclei
at these high temperatures, however, and the competing pra-ll (slowly) undergo a transition to the metastable state
cesses probably so much slower that the error in using rom which they will (rapidly) beta decay. The effective
two-state system is not likely to be of any significance. beta-decay lifetime will then essentially be the timescale to

The other interesting aspect of the high-temperature bepopulate the metastable state. On the other hand, if the
havior is that once the system reaches a steady ¢&iite nuclear reactions preferentially populate the metastable state,
~5x10 ' s), most states are fairly tightly in equilibrium the nuclei will largely beta decay before deexciting to the

VI. APPLICATION TO A NUCLEAR REACTION
NETWORK
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FIG. 8. The same as Fig. 7 except fy=2.0. A significant portion of the evolution in this case does not occur in a steady state. Indeed,
for this temperature, the timescales to reach a steady state and equilibrium are nearly equal. The reason for this is that, for this temperature,
the rates for upward transitions from levels 1 and 2 to the upper-lying levels are now comparable to the destruction rates of those upper-lying
levels.

ground state. In this case, the effective beta-decay lifetime Sak if k=1,2,
will be the beta-decay lifetime of the metastable state. There W= .

can be a large discrepancy in the effective beta-decay life- PRk 1T k>2,
times in these two scenarios.

One could remove this ambiguity in a nuclear reaction
network by including many levels if°Al as separate spe-
cies. This becomes computationally burdensome. We seek
here a means of treating the system as if it had only two
nuclear species. To begin, we must be clear about those t

3 all levelsk, 1<k=n. If we now takeY,,, to be the total
species. From Ed5.9), the definition of the fugacityp, and N o . tot ;
) : number of “°Al nuclei (at any excitation energywe find
the fact thatyy ¥ Yg%= R, whereRy is the “reverse ratio” ( y 9y

(6.2

whereq=1 refers to the ground state ager 2 to the meta-
stable state, to permit use of the more compact equation

Yi=wMY +wPY, (6.3

previously defined as\gy/Ayg), we may find, under the as-
sumption that the upper-lying levels are in a steady state, that Yiot= ( Zk wib Y+ ; w(kz)) Y,
Y= R Y1+ FaRo Y2, (6.9 =WyY1+WoYo=Y 1)+ Y. (6.9

for levelsk>2. We define the weight factors at temperatureln this equation,Y;y and Y, are the abundances of two
T as ensembles of states. Ensemideis comprised of the ground
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FIG. 9. The same as Fig. 7 except fo§=5.0. A significant portion of the evolution in this case does not occur in a steady state.
Surprisingly, however, more of the evolution is in a steady state thahyfe2.0 (see Fig. 8 This is due to the accessibility of the high-lying
2~ states to which many lower-lying states are strongly connected. This greatly enhances the destruction rates of these levels so that they are
faster than the upward transitions from levels 1 and 2. The accessibility of the high-lyiates also provides a strong connection between
most upper-lying levels to the'Ometastable state. This strongly enhanEgs overI',; for most upper-lying levels.

state and the portion of each upper-lying state connected to ground and metastable states are not in equilibrium. How-
via effective “cascades.” Ensembi@) is comprised of the ever, as the ground and metastable state abundances change,
metastable state and the portion of each upper-lying statée abundances of any two levels within each ensemble
connected to it via effective cascades. When treating®ae  change instantaneously to keep their ratity{%/Y{?)
nucleus as two separate species, it is in fact these two er= (W{?/w(?) a constant. Hence if we were following the
sembles of states that are the two species, not the ground agudolution of one ensemble only, it would seem as if the abun-
metastable statefl7]. The quantityW,(T) gives the en- dances of levels in that ensemble were maintaining essen-
hancement of the abundance of ensentlbjeover the abun- tially unchanging “modified Boltzmann ratios” as constants
dance of the ground state at temperatliraV,(T) will be  of the evolution. What changes, at constant temperature, is
nearly unity for low temperatures but will grow for higher the total number of nuclei in each of the two ensembles. Full
temperatures as more of the ensenffilepopulation resides internal equilibration occurs as these two numbers come into
in excited states. SimilarlyV,(T) gives the enhancement of their correct equilibrium ratio. It is also essential to note that
the abundance of ensemh(®) over the abundance of the the ratiOW,(Q)/Wf(Q) depends on the temperature; thus, the in-
metastable state at temperatiite ternal equilibria of the two ensembles will evolve in an en-
The crucial observation to be made here is that each of theironment with varying temperature.
two ensembles is in internal equilibrium, but the two en- It is now possible to compute the effectiv@Al beta-
sembles arenot in equilibrium with each other because the decay rate\eB”. This rate is given by
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eff wi®
NG Yior= 2 gV, (6.5 .
K W= for g=1
w(@
wherel 4, is the beta-decay rate out of nuclear lekeffrom
Eq. (6.3), we may write (ground-state ensembleand q=2 (metastable-state en-
sembleg;
(i) The n-dimensional abundance vector
AszYtot:(z )\B kW Y1+ 2 )\B kW )YZ Yl
Y2
(1)
PIRVRE . v=| Y5°|;
e [ X2 ;
S w® K
k K YES
(2) and
Ek: N g W (iii ) The B-decay rate vector
. S wlr
S w®@ K Ag1
k )\'3: .
2 N M
k
=] — | Wy(T)Y, With these definitions, Ed6.3) may be recast in matrix form
> w® as
" k
Y:W1Y1+W2Y2, (68)
Ek )\B,kw(kZ) and Eq.(6.7) as
+ Wo(T)Y
w2 ? ’ Neff— () 'Wq 6.9
m k B.q Wq . ( . )
S g wd S g Although our treatment has been of the effective beta-
Bk Bk decay rate, the same formulas would apply for any reaction
= ————— | Yotr| ——— | Y on 28Al. For example, consider( y) reactions orf°Al. The
> owl > w@ proton capture rate
K K
A
(P91
Yyt A2V, (6.6) N
(P ™
where Moy
leads to
A Tw
Ek: N Wi A?J,fy),q:(%]’ 6.10
aefl—| =~ 6.7 d
; Wl(f‘) wherel , ) « iS the rate of proton capture out of levelAll

that is required to compute th@(y) reaction rates on en-
sembles(1) and (2) are (a) the A, , « from experiment or
gives the effective beta-decay rate out of ensenileand  calculation,(b) the known energieg,, and(c) the weight
vindicates our choice of weight factor® for level k in  factorsw{? (q=1,2) at a particular temperature, which we
ensemble @), as it leads ton| being the appropriately have calculated and tabulated along with the “cascade”
weighted ensemble average. probabilitiesI",; andI'y, in the electronic addendum to this
The weight factors provide more than conceptual insighPaper[16]. The reverse reactions, here thg,|§) reactions,
into how each level influences the two ensembles; they alsare derived from simple detailed balance. In full nuclear sta-
give us a compact vector formula for the effective beta-decayistical equilibrium,
rate. We define the following vectors: \eft e 27 off -
(i) The n-dimensional weight vectors Ny at YOS =G0 ol Y (PADY. (6.1D)
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TABLE IV. Computed effective rates for the metastable- to ground-state transition and partition functions
for the ensembles.

To NS (s Wy (T) Wy(T) Gy(T) Gy(T)
0.0100 4.10308 10 % 1.000000 1.000000 11.00000 1.000000
0.0125 4.15468 10" 77 1.000000 1.000000 11.00000 1.000000
0.0150 1.94459 10 5 1.000000 1.000000 11.00000 1.000000
0.0175 2.1829% 10 %° 1.000000 1.000000 11.00000 1.000000
0.0200 1.3387310 8 1.000000 1.000000 11.00000 1.000000
0.0250 4.2600% 10~ 3° 1.000000 1.000000 11.00000 1.000000
0.0300 9.2162810 1.000000 1.000000 11.00000 1.000000
0.0400 7.64694 10 %5 1.000000 1.000000 11.00000 1.000000
0.0500 4.3136% 10 %0 1.000000 1.000000 11.00000 1.000000
0.0600 6.34482 1017 1.000000 1.000000 11.00000 1.000000
0.0700 1.1613% 10 4 1.000000 1.000000 11.00000 1.000000
0.0800 5.77948 10 13 1.000000 1.000000 11.00000 1.000000
0.0900 1.20708 10 ¢ 1.000000 1.000000 11.00000 1.000000
0.1000 1.37268 10 1° 1.000000 1.000000 11.00000 1.000000
0.1250 1.0917%x10°® 1.000000 1.000000 11.00000 1.000000
0.1500 2.0190%x 1077 1.000000 1.000000 11.00000 1.000000
0.1750 1.6224%10°© 1.000000 1.000000 11.00000 1.000000
0.2000 7.7434810°° 1.000000 1.000000 11.00000 1.000000
0.2500 6.9107210°° 1.000000 1.000000 11.00000 1.000000
0.3000 3.2243810°4 1.000000 1.000000 11.00000 1.000000
0.4000 7.8766910 2 1.000000 1.000000 11.00004 1.000000
0.5000 9.47248 10° 1.000040 1.000000 11.00044 1.000000
0.6000 2.34312 107 1.000200 1.000000 11.00221 1.000000
0.7000 2.32438 10° 1.000630 1.000010 11.00698 1.000010
0.8000 1.3181% 10* 1.001500 1.000030 11.01655 1.000030
0.9000 5.3547% 10* 1.002950 1.000130 11.03241 1.000130
1.0000 1.86272 10° 1.005040 1.000430 11.05547 1.000430
1.2500 3.7513% 1¢° 1.013220 1.005950 11.14545 1.005950
1.5000 4.79678 10 1.024410 1.062240 11.26849 1.062240
1.7500 2.972281C° 1.033290 1.353300 11.36617 1.353300
2.0000 9.44008 10° 1.032540 2.023560 11.35792 2.023560
2.5000 3.2655% 10° 1.019130 3.383490 11.21046 3.383490
3.0000 8.91508 10° 1.012520 4.200290 11.13769 4.200290
4.0000 6.03848 10'° 1.007600 5.364650 11.08361 5.364650
5.0000 2.99268 10'* 1.008740 6.408690 11.09616 6.408690
6.0000 1.09498 102 1.017320 7.504550 11.19057 7.504550
7.0000 3.0634% 10%? 1.037320 8.689610 11.41049 8.689610
8.0000 6.89208 102 1.071750 9.978150 11.78920 9.978150
9.0000 1.31578 10' 1.120540 11.40326 12.32598 11.40326
10.0000 2.22908 10% 1.181160 13.00940 12.99279 13.00940
This leads to =W,(T). From these results, all proper relations among reac-
tions will follow. Given the validity of the(largely appropri-
Y5U(*°Al) ate) assumption of a steady state among the upper-lying lev-
eff :)\eff W, q— (6 12 i p y ) g pp y g
Mypra=Mpn.aWa Yo 27si) | ' els, this treatment allows for a simple and accurate treatment

of the effect of excited states on target nuclei when an inef-
In this way, the usual detailed balance result for deriving thdicient communication between the ground state and the first
reverse reactions applies. The crucial points @ehat the  excited state inhibits internal equilibration of the nucleus.
two 2°Al species must have the masses of #3al ground We must finally turn to the question of the interaction of
(g=1) and metastableqE=2) states andb) that the parti- the two ensembles because now we are properly evolving
tion functions for the two species ar&;)(T)=(2J;  them, rather than the abundances of the ground and meta-
+FLW(T)=1IWy(T) and Gpy(T)=(2J,+1)W,(T) stable states. If we consider only changes due to internal
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FIG. 10. Evolution of the abundance of ensemi@eof states in?®Al as a function of time fofT4=0.2, 1.0, 2.0, and 5.0. In each panel,
the solid curve gives the ensemble abundance derived from the results in the full network calculation while the dashed curve gives the result
when the ensembles are evolved using the effective wHs=(\557W;) and\&jf=(A517W,). Below a temperatur@y=<2.0, using a
two-state system with effective transition rates gives a perfectly accurate representation of the full network. At higher temperatures, however,
the steady-state approximation we employ to compute the effective rates overestimates the abundances of the upper-lying levels. This causes
the effective two-state system to evolve more rapidly than in the actual network. Nevertheless, even for such cases, the internal equilibration
timescale is well reproduced, and the treatment of the levels in®Ak nucleus as two ensembles of states is well justified at all

temperatures.
Aeff )\eff
— 1Y — Y
Wl} (1) [W } (2)

dyy £ 1
* 2( ) 0, (6.13 == NIpY )t NG @) P NI ()~ Aoy Y (@)
>
(6.14

transitions, then
+

dt | dt dt

because the total number of nuclei remains fixed. The last
term in Eq.(6.13 is zero under our assumption of a steadyth
state; therefore,

where we have used E¢6.4) to replace the abundances of

e ground and metastable states with the populations of the
two ensembles. BecaudeY,/dt=dY;)/dt+dY,,/dt, we

can infer from Eq(6.14) that

= ALY NS Yo A Y MG Y, dt

)\eff )\eff
=T lw, Yot w, [ Y@ and
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FIG. 11. Evolution of the abundances of levels 4 at 1058 k&) 6 at 1851 keMB), 9 at 2072 keMC), and 13 at 2740 ke\D) in Al
atT4=0.2, 1.0, 2.0, and 5.0. The solid curve gives the actual network abundances while the dashed curve gives the steady-state abundances
At low temperature, much of the evolution of network abundances occurs in a steady state; therefore, the approximation used in our
calculation of the effective rate is excellent. At higher temperatures, the upper-lying levels achieve a steady state only shortly before they
reach their equilibrium values. This means that throughout much of the evolution, the steady-state approximation overestimates the abun-
dances of the upper-lying levels with the consequence that the effective transition rates from efbemi® and vice versa are likewise
overestimated for a large part of the evolution.

dt

Aol eff o , tabulated in Table 1V along with the effective rates between
W] 1)~ {W] Y(2)=)\?12)Y(1)—)\521)Y(2). the ground and metastable states. We also present on the web
1 2 (6.1 AFORTRANSubroutine that computes!’, N§57, W, andw,
' (see the electronic addendyri6]). This subroutine renders
These equations are the modified form of Eal@ that the calculation of ensemb(é.) and (2) pOpUlationS straight-
properly account for the abundances of the ensembles rathipfward at any temperature. ,
than those of levels 1 and 2. In equilibrium, bat;)/dt Figure 10 shows that the evolution of the ensemi@e

—0 andd Y, /dt—0, thereby giving populatiq_n using gﬁective ratgglashed ling gives the cor-
rect equilibration timescale when compared to the ensemble

((ezq) Wo(T) NS wWiy(T) Y& Gy T) o yur population in the_ full _network _calculatior{so_lid Iine).
Jea T W ™ o W ™ JeaT G ™ e m2/¢h Though th.e evolution using effectn{e rates begins to @verge
Y1) 1) Ay NP b1 1 from that in a full network calculation &¢~1.0, the time
(6.17  taken to reach equilibrium is still correct evenTat=5.0. In
making this comparison we have us¥g,=W,(T)Y, for

The ratio of the equilibrium abundances of ensemilBs . X
and (2) is therefore the ratio of the equilibrium abundanc:esthe ensembld2) population resulting from the steady-state

of the ground and metastable states, respectively, correcteatfs’um|Ot'°n and

for the relative enhancements of the two ensembles. The val- w®Y,
ues ofW,(T), W,(T), and the partition functions of the two Y?ze)tz Yo+ (1)k—(2) Yy (6.18
ensemblesG,(T), G,(T) at different temperature3 are k=2 [\ WY +w Y,

025805-20
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for the ensemble population in the full network calculation. The equations derived in this section allow for a complete
HereY, andY, refer to level abundances as returned by thereduction of an?%Al system to two separate speciésvo
full network and the definition of([‘z'e)t apportions the actual ensembles of statesThis treatment is perfectly accurate if
network abundance of the upper-lying levels into a part bethe assumption of a steady state among the upper-lying lev-
longing to ensemblé2). This seems to be the fairest way of els holds. This will always be the case as long as the time
computing the abundance of ensemi®e when the upper- scales for deexcitation of the upper-lying levels dominate the
lying levels are not necessarily in a steady state. Keeping itimescales for destruction of those levels by light particle
mind that both axes in the plot are logarithmic, we can se€apture or weak decay or the timescales for production from
that Y5 and Y{5} actually coincide for a significant part of the ground or metastable state.
the evolution even at high temperatures.

An important observation that results from Fig. 10 is that VIl. SUMMARY
the effective rate is actuallfasterthan the rate for the full
network. One might think that a truncation of the matrix
series would underestimate the effective rate, but that is n
the case. To explain this behavior, we must investigate n

We have computed the effective rate of internal equilibra-
t{on of a nucleus with a long-lived isomeric state. The under-
gft%ing assumption of our work is that the upper-lying levels in

only the time evolution of the ground and the metastable € nucleus attain a steady state much faster than do the

states, but also of the upper-lying levels. We may find theground or metastablt_a state. Al low temperatures, t_his s a
stea d)}—state abundance of an upper-lying level from Eqperfectly valid approximation, and the resulting effective rate

(3.22. In Fig. 11 we compare the steady-state abundance%enera”y provides an excellent description of the equilibra-

. . ion of the nucleus.
(dashed linesof levels 4, 6, 9, and 13, which are all'1 We have also computed the degree of connection of any
states located at 1057.74 keV, 1850.62 keV, 2071.64 keV, ving level(i d h d
and 2740.03 keV, respectively, to their actual network evo~ PPErYING leve (in a steady stajeto the ground or meta-
lution (soli.d lines élt different ter,n eratures. We notice that at stable state. This allowed us to separate the nuclear levels of
P : an isotope with a long-lived metastable state into two en-

'°"_V temperatures the levels atain steady_ states rat.hesrembles of states. We then showed how to compute rates for
quickly, and hence the steady-state assumption that assig

SS R tRnsition into, out of, and between these two ensembles.
them they,from the beginning is a good one. prever, atThese ensembles, then, are the proper “species” to evolve in
higher temperatures the steady-state approximation overestia nuclear reaction network. and we have completely re-
mates the population of the upper-lying levels for a signifi-y, o the nuclide to a two-state system. We have illustrated
cant fraction of the total time required to reach equilibrium. 5 technique with the specific example of the interesting
Since the approximation overestimates the production of thf‘sotope 26a1, but we will consider other important isotopes
higher-lying intermediate levels, it automatically overesti-in future wc;rk.

mates the effective rate to go from the metastable to the

ground state via transitions involving those higher levels. ACKNOWLEDGMENTS
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