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Stochastic one-body transport and coupling to mean-field fluctuations
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A stochastic transport description for the single-particle density matrix is briefly discussed. It is shown that
the stochastic description contains, in addition to incoherent binary collisions, a coherent damping mechanism
due to coupling between mean-field fluctuations and single-particle motion, and an expression for the coherent
collision term is derived. In the limit of small fluctuations around equilibrium, the collective and single-particle
self-energies due to the coherent mechanism are deduced.
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I. INTRODUCTION

Dynamical descriptions based on reduced one-body tr
port theories, both semiclassical and quantal forms, h
been very useful for understanding many aspects of nuc
structure and dynamics@1–3#. The simplest form of the one
body description is provided by the time-dependent Hartr
Fock ~TDHF! theory, in which dynamics is treated in th
mean-field approximation by neglecting coupling to tw
body correlations@4#. Over last two decades, much work h
been done to improve the TDHF theory beyond the m
field approximation@5–10#. In, so called extended TDHF
theory, two-body correlations are incorporated into the eq
tion of motion by truncating the Bogoliubov-Born-Gree
Kirkwood-Yvon ~BBGKY! hierarchy at the second leve
within the Born approximation. The resultant collision ter
describes the coupling of the single-particle motion to
incoherent 2p-2h excitations. Such an incoherent dampi
mechanism is very important at relatively high energy hea
ion collisions to convert the collective energy of the relati
motion into incoherent excitations and thermalize the s
tem. However, at low energies including giant resonance
citations, the incoherent damping mechanism is not effec
due to long nucleon mean-free path. Therefore, for a pro
description of the damping mechanism at low energies,
coherence between thep-h pairs should be taken into ac
count @11,12#. For this reason, it is highly desirable to im
prove the TDHF theory by incorporating a coherent collisi
term into the equation of motion. One possibility for acco
plishing this goal is provided by the time-dependent den
matrix formalism, in which a truncation of the BBGKY hi
erarchy is carried out by keeping all the second order te
in the equation for two-body correlations@13,14#. The result-
ing coupled equations for the one-body density matrix a
for the two-body correlations take into account for the coh
ence effects in particle-particle, hole-hole and particle-h
channels. Here, we follow a different approach, in which
effects of correlations are incorporated into the equation
motion by a stochastic mechanism according to the gene
ized Langevin description of Mori.

According to the generalized Langevin description of r
evant variables developed by Mori@15#, the correlations due
to coupling with the degrees of freedom, which are not c
sidered explicitly, have two different but intimately relate
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effects:~i! dissipation of energy associated with the releva
variables leading to thermalization of the entire syste
which is described by friction or collision terms in the equ
tion of motion, and~ii ! dynamical fluctuations of the relevan
variables, which are described by the random force te
originating from the initial correlations. Consequently, tem
poral evolution of the reduced one-body density mat
should be governed by a stochastic transport equation, an
gous to the generalized Langevin equations for the redu
dynamical variables@15–17#. The associated ‘‘random
force’’ in the equation of motion should originate from th
initial correlations, with statistical properties specified in a
cordance with the fluctuation-dissipation relation. Such a s
chastic transport description has been developed for
phase-space density in the semiclassical framework, whic
usually referred to as the Boltzmann-Langevin approa
@18–21,23#. It is also possible to develop a stochastic tran
port theory for the one-body density matrix in a quan
framework.

The stochastic transport theories, both quantal and se
classical forms, provide a one-body framework to descr
dynamics of density fluctuations in a manner that is con
tent with the dissipation-fluctuation relation of nonequili
rium statistical mechanics. Furthermore, the coherent da
ing mechanism is naturally included in the stochas
transport description. The density fluctuations excited by
stochastic source in the equation of motion are propagate
the mean field, that gives rise to nonlinear fluctuations of
mean field with random amplitudes on the top of its avera
evolution. The coherent damping mechanism arises from
coupling of the single-particle motion with the mean-fie
fluctuations, and it provides an efficient mechanism for d
sipation and the equilibration of the system, in particular
low energies. In Sec. II, we briefly describe a stochastic o
body transport model in the quantal framework. In Sec.
we consider the ensemble average evolution of the sin
particle density matrix, and show that the coupling to me
field fluctuations appears as a coherent collision term. In S
IV, we investigate small amplitude vibrations around equil
rium and derive expressions for damping widths of the c
lective and single-particle excitations due to coherent dam
ing mechanism. Finally in Sec. V, summary and conclusio
are given. For a brief account of the main results, we re
the reader to@22#.
©2001 The American Physical Society09-1
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II. STOCHASTIC TRANSPORT EQUATION

Temporal evolution of the single-particle density mat
r̂(t) is determined by@5,6,9#

i
]

]t
r̂~ t !2@h~ r̂ !,r̂~ t !#5Tr2@v,ŝ12~ t !#, ~1!

where h( r̂) is the effective mean-field Hamiltonian andv
denotes the effective residual interactions. The quantity
the right-hand-side is usually referred to as the collis
term, which is determined by the correlated part of the tw
particle density matrix,

ŝ12~ t !5 r̂12~ t !2 r̂1~ t !r̃̂2~ t !, ~2!

where r̂1r̂2
˜ represents the antisymmetrized product of

single-particle density matrices. The two-body correlatio
ŝ12(t) are determined by the second equation of the BBG
hierarchy. At sufficiently low energies, the nucleon mea
free path is long, and consequently the BBGKY hierarc
can be truncated at the second level. Retaining only the l
est order terms in the residual interactions, the correlated
of the two-particle density matrix evolves according to

i
]

]t
ŝ12~ t !2@h~ r̂ !,ŝ12~ t !#5F̂12~ t !, ~3!

where the source term is

F̂12~ t !5@12 r̂1~ t !#@12 r̂2~ t !#v r̂1~ t !r̃̂2~ t !

2 r̂1~ t !r̃̂2~ t !v@12 r̂1~ t !#@12 r̂2~ t !#. ~4!

Solving this equation formally, we can express the devel
ment of correlations over a time interval from an initial tim
t0 to time t as

ŝ12~ t !52 i E
t0

t

dt8Ĝ~ t,t8!F̂12~ t8!Ĝ†~ t,t8!1ds12~ t !,

~5!

where

Ĝ~ t,t8!5T expF2 i E
t8

t

dsh@ r̂~s!#G ~6!

denotes the mean-field propagator. In this expression,
first term represents the correlations developed by the
sidual interactions during the time interval, and the seco
term describes the propagation of the initial correlatio
s12(t0) from the initial timet0 to time t,

ds12~ t !5Ĝ~ t,t0!s12~ t0!Ĝ†~ t,t0!. ~7!

The time interval cannot be taken arbitrary large, but sho
be taken sufficiently small to justify the neglect of the e
plicit coupling to three-body correlations in Eq.~3! during
the time interval. However, the dominant effect of the cor
02460
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lations is still accounted for by the initial correlation ter
s12(t0), which, in principle, contains all order correlation
that are accumulated up to the timet0. If we consider an
ensemble of identical systems that are prepared with slig
different initial conditions at the remote past, the exact tw
body correlationss12(t0) accumulated untilt0 exhibit nearly
random fluctuations. In the extended TDHF theory, the av
age evolution over such an ensemble is considered, and
ensemble average of the initial correlation term is assume
vanish,s12(t0)50 @24,25#. This assumption in the semiclas
sical context is known as the ‘‘molecular chaos assumptio
and it corresponds to the factorization of the two-parti
phase-space density before each binary collisions@26#. In the
stochastic transport description, the initial correlation term
retained, but it is treated as a random quantity specified b
Gaussian distribution: each matrix elements has a Gaus
distribution determined with zero mean and a second m
ment@19#. The second moment of the initial correlation ter
ds12(t) can be determined by following a similar treatme
presented in@19#. It is convenient to introduce a shorthan
notation for the fluctuating part of the two-body density m
trix, suppressing the indices

ds12~ t !5^FuA~ t !uF&2^FuA~ t !uF&05^FudA~ t !uF&.
~8!

In this expression,A(t)5ai
†(t)aj

†(t)ak(t)al(t) is the product
of the single-particle creation and annihilation operators
the Heisenberg representation,uF& represents a member o
the many-body states in the initial ensemble, a
^FuA(t)uF&0 denotes the averaged-uncorrelated part defi
by the second term in Eq.~2!. In order to calculate the en
semble averageds12(t)ds128 (t), first we introduce a closure
approximation by making the following replacement:

ds12~ t !ds128 ~ t !5^FudA~ t !uF&^FudA†~ t !uF&

'^FudA~ t !dA†~ t !uF&. ~9!

The correlation function given by Eq.~14! below is in the
second order in the effective interactions. Consequently
be consistent with the expression of the collision term
Eq. ~12!, we retain only the uncorrelated contribution
the ensemble average of^FudA(t)dA†(t)uF&. It is conve-
nient to employ the natural single-particle representat
that diagonalizes the average density matrix,r(t)
5(uf i(t)&ni(t)^f i(t)u, whereni(t) denotes the occupatio
numbers. As a result, in the natural representation, the s
metrized second moment of the initial correlation term
determined according to

^ i j uds12~ t !ukl& t^k8l 8uds12~ t !u i 8 j 8& t

5
1

2
Si j ; i 8 j 8Skl;k8 l 8Ni jkl

1 ~ t !, ~10!

where Si j ; i 8 j 85d i i 8d j j 82d i j 8d j i 8 , Skl;k8 l 85dkk8d l l 8
2dkl8d lk8, and
9-2
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Ni jkl
1 ~ t !5@12ni~ t !#@12nj~ t !#nk~ t !nl~ t !

1@12nk~ t !#@12nl~ t !#ni~ t !nj~ t !. ~11!

In the initial correlation term, the initial timet0 is not rel-
evant, at any timeds12(t) is a Gaussian random quanti
with the second moment specified by Eq.~10!.

Substituting the expression~5! for the two-particle corre-
lations into Eq.~1! yields a transport equation for the singl
particle density matrix

i
]

]t
r̂~ t !2@h~ r̂ !,r̂~ t !#

52 i E
t0

t

dt8Tr2@v,Ĝ~ t,t8!F̂12~ t8!Ĝ†~ t,t8!#1dK~ t !.

~12!

Here, the first term on the left-hand side is a binary collis
term and the second term arises from the initial correlati

dK~ t !5Tr2@v,ds12~ t !# ~13!

and it describes the stochastic part of the collisions. In a
ogy with the generalized Langevin description of the redu
dynamical variables, Eq.~12! is regarded as a stochast
transport equation for the fluctuating density matrix in whi
the stochastic part of the collision termdK(t) acts as a ran-
dom noise@15–17#. According to the stochastic properties
the initial correlations, the random noise also has a Gaus
distribution with zero mean and a second moment de
mined by the correlation function

Ci j ;kl~ t,t8!5^ i udK~ t !u j &^kudK~ t8!u l &. ~14!

The collision term essentially involves two different chara
teristic times:~i! the relaxation timet rel of the occupation
numbers of the natural states, which corresponds to
mean-free time in the semiclassical limit, and~ii ! the corre-
lation timetcor of the matrix elements of the residual inte
actions, which corresponds to the duration time of bin
collisions in the semiclassical limit. Here, we consider t
weak-coupling regime specified bytcor!t rel @27#, which is
valid for a sufficiently dilute system when the binary col
sions are not so frequent. In this case, the decay time of
collision kernel in Eq.~12! is determined by the correlatio
time, and the memory effects associated with the variation
the occupation numbers over this time maybe neglected.
result, usingĜ(t,t8) r̂(t8)Ĝ†(t,t8)'r̂(t), we can make the
following substitution in the collision term:

Ĝ~ t,t8!F̂12~ t8!Ĝ†~ t,t8!5~12 r̂1!~12 r̂2!v~ t,t8!r̂1r̂2
˜

2 r̂1r̂2
˜ v~ t,t8!~12 r̂1!~12 r̂2!,

~15!

where v(t,t8)5Ĝ(t,t8)vĜ†(t,t8), and all density matrices
are evaluated at timet. The decay time of the correlatio
function of the stochastic collision term Eq.~14! is also de-
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termined by the correlation timetcor of the residual interac-
tions. Therefore, for time intervals that are short as compa
to the relaxation timeut2t8u!t rel the stochastic collision
term can be propagated by the mean field according to

dK~ t8!5Tr2@v,Ĝ~ t8,t !ds12~ t !Ĝ†~ t8,t !#. ~16!

Then, using the expression~10! for the equal time variance
of ds12(t), we can easily calculate the correlation functio
Ci j ;kl(t,t8) in terms of the matrix elements of the residu
interactions and the combinations of the occupation fact
Since, the result is rather lengthy, we do not give any exp
sion for the correlation function here, but illustrate the res
by considering the projected noise on a collective varia
Ql(t), which maybe time dependent. The projected noise
given by

Fl~ t !5Tr Ql~ t !dK~ t !5Tr@Ql~ t !,v#ds12~ t ! ~17!

and

Fl* ~ t8!5Tr Ql
†~ t8!dK†~ t8!5Tr Ĝ~ t,t8!

3@v,Ql
†~ t8!#Ĝ†~ t,t8!ds12~ t !, ~18!

where dK†(t8) is propagated according to the expressi
~16!. Then, the correlation function of the projected noi
becomes

Fl~ t !Fl* ~ t8!5
1

4 ( ^klu@Ql~ t !,v#u i j & t

3^klu@Ql~ t8!,v#u i j & t8
*

1

2
Ni jkl

1 ~ t !, ~19!

where the occupation factors maybe evaluated at timet since
they do not change appreciably over the time interval in
weak-coupling regime. Here, the two-body matrix eleme
^klu@Ql(t),v#u i j & t , and also in the rest of the paper, deno
the antisymmetrized matrix elements.

III. PARTICLE-PHONON COUPLING

In the stochastic transport description, higher order co
lations beyond the mean field are incorporated into the
namical evolution in an approximate manner by a stocha
mechanism. Dynamical evolution is characterized by c
structing an ensemble of solutions of the stochastic trans
Eq. ~12!. In this manner, the theory provides a basis for d
scribing the average evolution, as well as, dynamics of d
sity fluctuations. Furthermore, the stochastic evolution
volves, in addition to the incoherent damping mechani
due to 2p-2h excitations, a coherent mechanism arising fro
the coupling of the single-particle motion with randomly e
cited nonlinear mean-field fluctuations. When the amplitu
of the fluctuations is small, this mechanism appears a
coupling between the single-particle motion and the tim
dependent random-phase approximation~RPA! phonons
around the mean trajectory. In order to illustrate the origin
this coupling, we consider the average evolution of the d
9-3
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sity matrix, r(t)5 r̂(t), taken over the ensemble generat
by the stochastic transport Eq.~12!. We calculate the en
semble average of Eq.~12! by expressing the mean-field an
the density matrix ash( r̂)5h(r)1dĥ(t) and r̂(t)5r(t)
1dr̂(t), wheredĥ(t)5(]h/]r)dr̂(t) and dr̂(t) represent
the fluctuating parts of the mean-field and the density mat
respectively. Noting that, the ensemble average of the n
dK(t) vanishes, the evolution of the average density ma
is governed by the transport equation

i
]

]t
r~ t !2@h~r!,r~ t !#5Kc~r!1K~r!, ~20!

whereK(r) represents the incoherent collision term and
additional term arises from the correlations of the mean-fi
fluctuations and the density fluctuations

Kc~r!5@dĥ~ t !,dr̂~ t !# ~21!

and it is referred to as the coherent collision term. This c
lision term has been investigated in previous publications
quantal@28# and semiclassical frameworks@29# for spatially
uniform systems near equilibrium. Here, we carry out
quantal treatment of the collision term in nonequilibrium f
finite systems.

In order calculate the coherent collision term, we consi
that the fluctuations are small, and can be described by
linearized transport equation around the average evolu
r(t)

i
]

]t
dr̂2@dĥ,r#2@h~r!,dr̂#

52 i E
t0

t

dt8Tr2@v,d$ĜF̂12Ĝ
†%#1dK~ t !. ~22!

In the collision term, the quantityd$ĜF̂12Ĝ
†% involves two

different contributions arising from the fluctuations of th
mean-field propagatorĜ(t,t8) and from the fluctuations o
the density matrix inF̂12(t8). According to Appendix A, it
can be expressed as

d$ĜF̂12Ĝ
†%5GdF̂12G

†1@dF̂~ t !,GF12G
†#

2G@dF̂~ t8!,F12#G
†, ~23!

where the quantitydF̂(t) represents the density fluctuation
without the right-hand side in Eq.~22! according todr̂(t)
5@dF̂(t),r(t)#. We can approximate the collision term fu
ther by assuming that the density fluctuations can be
pressed in the same form with the collision term is includ
and deduce an effective equation fordF̂(t). Then, the fluc-
tuations arising fromF̂12 in the first term in Eq.~23! can be
combined with the fluctuations due to the mean-field pro
gator in the third term to give
02460
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d$ĜF̂12Ĝ
†%5~12r1~ t !!~12r2~ t !!G~ t,t8!

3@v,dF̂~ t8!#G†~ t,t8!r1~ t !r̃2~ t !2H.c.

~24!

There is another contribution arising from the second term
the expression~23!. Since, the density fluctuations are n
correlated in time with the 2p-2h excitations, this contribu-
tion is expected to be small and neglected here.

We analyze transport Eq.~22! in a time-dependent RPA
approach and expand the small amplitude density fluc
tions in terms of the time-dependent RPA functions

dr̂~ t !5( dzl~ t !rl
†~ t !1dzl* ~ t !rl~ t !, ~25!

whererl
†(t) andrl(t) denote the time-dependent RPA fun

tions, anddzl(t) and dzl* (t) are the stochastic amplitude
associated with these modes. The time-dependent RPA f
tions describe the correlatedp-h excitations around the av
erage trajectory, and their time evolutions are determined

i
]

]t
rl

†~ t !2@h~r!,rl
†~ t !#2@hl

†~ t !,r~ t !#52 ihrl
†~ t !

~26!

and its Hermitian conjugate, where the fluctuating part of
mean field is indicated byhl

†(t)5(]h/]r)rl
†(t) and a small

damping term is included in the equation of motion. T
initial conditions are supplied by the static RPA function
and their positive and negative frequency components
evolved according to Eq.~26! and its Hermitian conjugate
respectively. We, also, introduce the dual wave functio
Ql(t) andQl

†(t) associated with the RPA modes@30#

i
]

]t
Ql~ t !2@h~r!,Ql~ t !#1h̃l52 ihQl~ t ! ~27!

and its Hermitian conjugate, where h̃l5
2@Ql(t),r(t)#(]h/]r). As shown in Appendix B, if the
RPA functions and their dual functions form a biorthonorm
system at the initial instant, they remain orthonormal in tim
according to the definitions

Tr Ql~ t !rm
† ~ t !5dlm , and TrQl~ t !rm~ t !50. ~28!

When the occupation numbers of the natural states do
change in time, two types of wave functions are related
rl

†(t)5@Ql
†(t),r(t)# andrl(t)52@Ql(t),r(t)#. In the fol-

lowing, we use these relations that provide a good appro
mation in the collision term even when the occupation nu
bers are changing in time.

Projecting the transport Eq.~22! on the collective RPA
modes and noting that the collision term can be expan
usingdF̂(t)5(dzl(t)Ql

†(t)2dzl* (t)Ql(t), we can deduce
stochastic equations for the random amplitudes@31#
9-4
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i
d

dt
dzl~ t !5E

t0

t

dt8Sl~ t,t8!dzl~ t8!1Fl~ t !, ~29!

whereFl(t) is the projected noise andSl(t,t8) denotes the
collisional self-energy of the RPA mode

Sl~ t,t8!52
i

4 ( ^klu@Ql~ t !,v#u i j & t

3^klu@Ql~ t8!,v#u i j & t8
* Ni jkl

2 ~ t ! ~30!

with

Ni jkl
2 ~ t !5@12ni~ t !#@12nj~ t !#nk~ t !nl~ t !

2@12nk~ t !#@12nl~ t !#ni~ t !nj~ t !. ~31!

The coupling between different RPA modes through the c
lision term is neglected in Eq.~29!. The expression of the
projected noise and its correlation function are given by E
~17!, ~18!, and~19!. According to Eq.~29!, the variances of
the random amplitudes are determined by

d

dt
udzlu252Gl~ t !udzlu212Dl~ t !, ~32!

where Gl(t)522 Im * tdt8Sl(t,t8) denotes the collisiona
damping width andDl(t)5Re* tdt8Fl(t)Fl* (t8) is the
diffusion coefficient associated with the mode. In the ca
of small fluctuations around equilibrium, the RPA modes b
come harmonic rl

†(t)5rl
†exp(2ivlt) and rl(t)

5rlexp(1ivlt). In this case, time integrals can be carri
out to give@32,33#

Gl5
1

4 ( u^klu@Ql ,v#u i j &u22pd~vl2e i2e j1ek1e l !Ni jkl
2

~33!

and the diffusion coefficient is related to the damping wid
in accordance with the quantal dissipation-fluctuation re
tion @34#

2Dl5Gl

1

2
coth

vl

2T
. ~34!

As a result, the thermal equilibrium value of the varian
becomesudzlueq

2 5Nl
011/2, whereNl

051/@exp(vl /T)21# is
the phonon occupation factor. Following this property,
define

udzl~ t !u25Nl~ t !1
1

2
~35!

and regardNl(t) as the time-dependent occupation factors
the RPA functions. We note that, besides the collisio
damping, there are other mechanisms involved in dampin
the mean-field fluctuations, that are not incorporated in
~29! for the random amplitudes. In particular, the low
frequency fluctuations are mainly damped by the one-b
dissipation mechanism. In order to account for the one-b
02460
l-

s.

e
-

-

f
l

of
.

y
y

dissipation mechanisms in an approximate manner, we m
evaluate the variances of the random amplitudes directly
terms of the density fluctuations

udzl~ t !u25Tr Ql
†dr̂~ t !•Tr Qldr̂~ t !. ~36!

The density matrix, in general, involves collective fluctu
tions induced by the correlatedp-h excitations and noncol-
lective fluctuations produced by the incoherentp-h excita-
tions, that are described by the collective and t
noncollective RPA functions, respectively. As shown in A
pendix C, the uncorrelated density fluctuations can be
pressed as

^ i udr̂~ t !u j &^ j udr̂~ t !u i &5
1

2
@ni~ t !@12nj~ t !#

1nj~ t !$12ni~ t !%#. ~37!

Employing this result for the uncorrelated density fluctu
tions, we can obtain an approximate expression for the p
non occupation factors

Nl~ t !1
1

2
5

1

2
Tr$Ql~ t !r~ t !Ql

†~ t !@12r~ t !#

1Ql~ t !@12r~ t !#Ql
†~ t !r~ t !%. ~38!

In using this expression, damping terms in the RPA Eqs.~26!
and~27! should be included with a finite value ofh describ-
ing the damping of thep-h states into more complex con
figurations.

We calculate the ensemble average in the coherent c
sion term~21! by expanding the mean-field fluctuations a
the density fluctuations in terms of the time-dependent R
functions

dĥ~ t !5( dzl~ t !hl
†~ t !1dzl* ~ t !hl~ t ! ~39!

anddr̂(t) as given by Eq.~25!. The collision term involves,
in addition to the diagonal termsdzldzl* , the off-diagonal
terms dzldzm* arising from the coupling between differen
RPA modes through the incoherent collision term and
stochastic part. This coupling is neglected in Eq.~29! for the
random amplitudes, which may not be very important b
tween collective RPA modes. However, as a result of
collisional coupling, the noncollective RPA modes a
strongly mixed up and loose their bosonic character@35#.
Therefore, the noncollective modes should be exclud
from the coherent collision term, since their effects c
be included into the incoherent collision term by renorm
izing the residual interactions@29#. The diagonal contribu-
tions of the collective modes to the coherent collision term
given by
9-5
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@dĥ~ t !,dr̂~ t !#coll5(
8 H S Nl1

1

2D @hl
† ,rQl~12r!#

2S Nl1
1

2D @hl
† ,~12r!Qlr#J 2H.c.,

~40!

where prime indicates the sum over the collective modes.
inspection, it can be seen that the first and second term
this expression correspond to absorption and excitation
RPA phonons. These rates should be proportional toNl and
Nl11, respectively, but the average valueNl1 1

2 appears in
both rates. There are other contributions inKc(r) arising
from the cross correlations between the collective and
noncollective modes. In schematic models, it is possible
show that these cross correlations give rise to an additio
contribution to the collision term, so that the excitation a
absorption rates become proportional toNl11 andNl , as it
should be. However, in the RPA analysis, it is difficult
extract such a contribution. For the time being, we repl
the excitation and absorption factors in Eq.~40! by Nl11
andNl , and express the coherent collision term as

Kc~r!5(
8

@hl
†~ t !,~Nl~ t !11!~12r~ t !!Ql~ t !r~ t !

2Nl~ t !r~ t !Ql~ t !~12r~ t !!#2H.c. ~41!

The RPA functions can be determined in terms of the am
tude of the mean-field fluctuations by solving Eq.~27! and its
Hermitian conjugate

Ql~ t !52 i E
t0

t

dt8G~ t,t8!hl~ t8!G†~ t,t8!e2h(t2t8),

~42!

where the initial condition term is omitted by letting th
initial time t0 to be sufficiently early, so that the time interv
t2t0 is much longer than the decay time of the collisi
kernel, and similarly forQl

†(t). At low energies, since the
dissipation is dominated by the coherent collision term,
can neglect the incoherent mechanism due to binary c
sions. As a result, we obtain an extended TDHF descrip
for the evolution of the single-particle density matrix

i
]

]t
r~ t !2@h~r!,r~ t !#5Kc~r!, ~43!

where the collision term describes the coupling of the sing
particle motion with the coherent 2p-2h excitations. The
amplitude of the mean-field fluctuations in the coherent c
lision term are self-consistently determined by the tim
dependent RPA equations. In general, it is difficult to det
mine the time evolution of the occupation factorsNl(t) of
the RPA functions, since they depend on rather comp
damping mechanism of the mean-field fluctuations. Sin
the high frequency fluctuations are mainly damped by
collisional effects, the corresponding occupation factors
determined by Eq.~32!. However, for low frequency fluctua
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tions it is more appropriate to use the expression~38! for an
approximate description of these factors.

IV. VIBRATIONS AROUND EQUILIBRIUM

In this section, we consider the nuclear collective vib
tions around a finite temperature equilibrium and deduce
pressions for the damping widths of collective vibrations a
single-particle excitations. Near equilibrium, since the sm
amplitude density fluctuations are harmonic, the tim
dependent RPA equations become@36#

~1vl1 ih!rl
†2@h0 ,rl

†#2@hl
† ,r0#50 ~44!

and

~2vl1 ih!rl2@h0 ,rl#2@hl ,r0#50. ~45!

As a result, equilibrium mean-field fluctuations can be e
pressed in terms of the static RPA modes and the equilibr
occupation factorsNl

0 of these modes.
For describing the damping of the single-particle exci

tions, we replace the mean-field Hamiltonian in Eq.~43! by
its static value,h(r)→h0, and express the density matrix i
the Hartree-Fock representation according tor(t)
5(uf i&ni(t)^f i u. Then, from transport Eq.~43!, we can de-
duce a master equation for the occupation numbers

d

dt
ni~ t !52G i

.~ t !ni~ t !1G i
,~ t !@12ni~ t !#, ~46!

where the first and second terms represents loss and
terms, respectively. The loss term is determined by
imaginary part of the self-energyG i

.(t)522 ImS i
.(t) with

S i
.~ t !5( ~12nj~ t !!H u^ i uhl

†u j &u2

e i2e j2vl1 ih
~Nl

011!

1
u^ i uhlu j &u2

e i2e j1vl1 ih
Nl

0J , ~47!

where the first and second contributions describe the de
of the single-particle stateuf i& by excitation and absorption
of a phonon, respectively. The expressionG i

,(t)5

22 ImS i
,(t) in the gain term is obtained fromS i

.(t) by
making the substitutions,Nl

011→Nl
0 , Nl

0→Nl
011, and

@12nj (t)#→nj (t). Similar expressions for the single
particle self-energies have been derived in the literature
following different approaches@30,37#. In particular, we note
that the retarded single-particle self-energyS i

ret(t)5S i
.(t)

1S i
,(t),

S i
ret~ t !5( H u^ i uhl

†u j &u2

e i2e j2vl1 ih
@Nl

0112nj~ t !#

1
u^ i uhlu j &u2

e i2e j1vl1 ih
@Nl

01nj~ t !#J . ~48!
9-6
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has the same form as the one obtained by employing
Matsubara formalism in@39#.

In order to describe the collective vibrations, we linear
the transport Eq.~43! around a finite temperature equilibrium
state r0. The small amplitude vibrationsdr(t)5r(t)2r0
are determined by

i
]

]t
dr~ t !2@h0 ,dr~ t !#2@dh~ t !,r0#5dKc~ t !, ~49!

where the quantitydKc(t) represents the linearized form o
the coherent collision term~41!. We can obtain an expressio
for this collision term by following a treatment similar to th
one used in linearizing the collision term in Eq.~22!. There
are two contributions indKc(t), coming from the mean-field
vibrations throughd$G(t,t8)hlG†(t,t8)% and from the den-
sity vibrationsdr(t), which should be combined in a consi
tent manner. According to Appendix A and Eq.~23!, the con-
tributions through the mean-field propagator can
expressed as

d$G~ t,t8!hlG†~ t,t8!%5@dF~ t !,G0hlG0
†#

2G0@dF~ t8!,hl#G0
† , ~50!

where G05exp@2i(t2t8)h0#, and the quantitydF(t) de-
scribes the density vibrations without the collision term a
cording todr(t)5@dF(t),r0#. Assuming density vibrations
can be represented in the same form with the collision te
included, the first term in the expression~50! cancels out
with the contributions coming from the density vibration
As a result, the linearized collision term becomes

dKc~ t !5( @hl
† ,~Nl

011!~12r0!dQl~ t !r0

2Nl
0r0dQl~ t !~12r0!#2H.c., ~51!

where

dQl~ t !52 i E
t0

t

dt8G0~ t2t8!@hl ,dF~ t8!#G0
†~ t2t8!

3exp@2 i ~vl2 ih!~ t2t8!#. ~52!

We can analyze the density vibrations in the RPA framew
similar to the treatment used in the fluctuation analysis,
expand the density vibrations in terms of the static RPA fu
tions as

dr~ t !5( zm~ t !@Qm
† ,r0#2zm* ~ t !@Qm ,r0#, ~53!

wherezm(t) and zm* (t) are the deterministic amplitudes a
sociated with the modes. By projecting the transport Eq.~49!
on the RPA modes and substituting the expansiondQ(t)
5(zm(t)Qm

† 2zm* (t)Qm into the collision term, we find tha
the corresponding amplitudes are determined by
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dt
zm~ t !2vmzm~ t !5E

t0

t

dt8Sm~ t2t8!zm~ t8!. ~54!

Here,Sm(t2t8) denotes the self-energy of the mode due
the coherent coupling mechanism, and its Fourier transfo
is given by@38#

Sm~v!5(
u^ i u@Qm ,hl

†#u j &u2

v2vl2e j1e i1 ih
$~Nl

011!~12nj
0!ni

0

2Nl
0nj

0~12ni
0!%1(

u^ i u@Qm ,hl#u j &u2

v1vl2e j1e i1 ih

3$Nl
0~12nj

0!ni
02~Nl

011!nj
0~12ni

0!%. ~55!

The first term in the self-energy describes the damping of
collective vibrations by exciting a phonon and ap-h pair. At
a finite temperature, the reverse process with a we
Nl

0nj
0(12ni

0) is also possible, which decreases the dampi
There is another contribution to the self-energy represen
by the second term in this expression. It describes absorp
of a phonon accompanied byp-h excitations that is possible
only at finite temperatures. The self-energy of collecti
modes has been investigated by employing the Matsub
formalism in@39#. The expression~55! of the collective self-
energy has essentially the same form as that derived wi
the Matsubara formalism. The commutator structure in
~55! gives rise to two direct and two cross terms, whi
correspond to the propagator and the vertex correction te
in the Matsubara treatment, respectively. The expression
sented in@39# contains terms that do not involve the prop
gator v6vl2e j1e i1 ih. These terms may be neglecte
since they do not lead to the damping of collective mod
due to mixing with the particle-hole plus phonon states. F
thermore, it can be shown that in the pole approximati
i.e., v6vl2e j1e i50, remaining terms may be combine
together to give the same expression for the self-energ
the one given by Eq.~55!, except an intermediate summatio
is missing in the propagation correction terms in@39#. In
damping of high-frequency collective modes and damping
single-particle excitations at low energies, the dominant c
tributions to the self-energies arises from the low-frequen
density fluctuations that can be well approximated by surf
vibrations. In previous publications, using this approxim
tion, the formulas~48! and ~55! have been applied to de
scribe damping of the single-particle and giant resonance
citations@11,39#.

V. SUMMARY AND CONCLUSIONS

Development of one-body transport descriptions may le
to novel theoretical tools for understanding the nuclear
namics at low energies, as well as the complex reac
mechanism in heavy-ion collisions at intermediate energ
For this purpose, much work has been done to deduce
effective one-body transport description by incorporati
correlations in an approximate manner so that the appl
tions to the realistic situations may become possible. In
extended TDHF, the effect of two-body correlations are
9-7
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corporated into the equation of motion in the form of
incoherent binary collision term. Such an incoherent mec
nism is very important for damping of collective motion an
thermalization of the system at intermediate energies aro
Fermi energy. However, at low energy nuclear dynamics
cluding giant resonance excitations, the coherence in t
body correlations should be incorporated for a realistic
scription of the damping mechanism of the collecti
motion. In the stochastic theory, the transport description
further improved by incorporating higher order correlatio
in an approximate manner by a stochastic mechanism th
consistent with the fluctuation-dissipation theorem of no
equilibrium statistical mechanics. As a result, in the stoch
tic theory, it is possible to address the average evolution
well as the dynamics of density fluctuations, in a man
similar to the generalized Langevin description of the
duced variables. Furthermore, the stochastic dynamics
tains, in addition to incoherent binary collisions, a coher
damping mechanism resulting from the coupling between
mean-field fluctuations and the single-particle motion, wh
is not included in the extended TDHF theory. We illustra
this damping mechanism by investigating the average
namical evolution and derive an expression for the cohe
collision term. Considering small amplitude fluctuatio
around equilibrium, we deduce expressions for the s
energies of single-particle and collective excitations due
the coherent coupling mechanism. While the present res
are very encouraging, more work remains to be done fo
consistent description of the coherent and the incohe
damping mechanisms in connection with dynamics
nuclear collective motion.
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APPENDIX A

The quantity dĜ(t,t8)F̂12(t8)Ĝ
†(t,t8) in the collision

term in Eq. ~22!, treating the fluctuating partdĥ(t) as a
perturbation, is given by

dĜ~ t,t8!F̂12~ t8!Ĝ†~ t,t8!

5G~ t,t8!dF̂12~ t8!G†~ t,t8!

2 i E
t8

t

ds@G~ t,s!dĥ~s!G†~ t,s!,

3G~ t,t8!F12~ t8!G†~ t,t8!#, ~A1!

whereG(t,t8) denotes the average value of the propaga
The evolution of the density fluctuations over short time
tervals, by neglecting the right-hand side in Eq.~22!, can be
expressed as
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dr̂~ t !5G~ t,t8!dr̂~ t8!G†~ t,t8!

2 i E
t8

t

ds@G~ t,s!dĥ~s!G†~ t,s!,r~ t !#, ~A2!

where the approximationG(t,s)r(s)G†(t,s)'r(t) is em-
ployed. This result can be expressed in the formdr̂(t)
5@dF̂(t),r(t)# with

dF̂~ t !5G~ t,t8!dF̂~ t8!G†~ t,t8!

2 i E
t8

t

dsG~ t,s!dĥ~s!G†~ t,s!. ~A3!

Combining this result with the expression~A1! leads to Eq.
~23!.

APPENDIX B

The time-dependent RPA functions and their dual fun
tions maybe orthonormalized according to

Nlm5Tr Ql~ t !rm
† ~ t !. ~B1!

The rate of change of this quantity can be expressed as

d

dt
Nlm5Tr$Q̇lrm

† 1Qlṙm
† %. ~B2!

Using the time-dependent RPA Eqs.~24! and ~25!, we find

i
d

dt
Nlm5Tr$@h,Ql#rm

† 2h̃lrm
† 1Ql@h,rm

† #1Ql@hm
† ,r#%,

~B3!

wherehl
†5(]h/]r)rm

† and h̃l52@Ql ,r#(]h/]r). Expand-
ing the commutators, it is easy to see that all the terms on
right-hand side cancel out to givedNlm /dt50.

APPENDIX C

In order to calculate the uncorrelated density fluctu
tions, we neglect the terms in transport Eq.~22! invol-
ving the mean-field fluctuationsdh(t) and consider density
fluctuations in the TDHF representation,dr̂(t)
5(uf i(t)&^ i udr̂(t)u j &^f j (t)u. According to Eq. ~22!, the
stochastic evolution of the density matrix is described by

i
]

]t
^ i udr̂~ t !u j &5@S i~ t !2S j* ~ t !#^ i udr̂~ t !u j &1^ i udK~ t !u j &,

~C1!

whereS i(t)5S i
.(t)1S i

,(t) represents the collisional self
energy of the single-particle states with

S i
.~ t !52 i E t

dt8( ^ i j uvukl& t^kluvu i j & t8

3@12nk~ t !#@12nl~ t !#nj~ t ! ~C2!

and
9-8
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S i
,~ t !52 i E t

dt8( ^ i j uvukl& t^kluvu i j & t8nk~ t !nl~ t !

3@12nj~ t !#. ~C3!

In obtaining this result, we neglect the terms in the lineariz
collision term that arise from the density fluctuations in t
intermediate states and assume the average density mat
diagonal in the TDHF representation. Following Eq.~C1!,
the variance of elements of the density matrixL i j (t)

5u^ i udr̂(t)u j &u2 is determined by

]

]t
L i j ~ t !52@G i~ t !1G j~ t !#L i j ~ t !1Di j ~ t !, ~C4!

where G i(t)5G i
.(t)1G i

,(t), with G i
.(t)522 ImS i

.(t)
andG i

,(t)522 ImS i
,(t), describes the collisional dampin

factor of the single-particle states. The quantityDi j (t) is
given in terms of the correlation functionCi j ; j i (t,t8) of the
stochastic collision term by

Di j ~ t !52E t

dt8@Ci j ; j i ~ t,t8!1Cji ; i j ~ t,t8!#, ~C5!

where a factor exp@2*t8
t ds„S i(s)2S j* (s)…# in the integrand

is neglected by assuming that the correlation function
sharply peaked aroundt't8 ~Markovian approximation!.
k

er,
,

ys

@
od
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n

@
@

@
@

02460
d

x is

s

Using Eqs.~10! and~16! and retaining only the uncorrelate
parts in the correlation function, it can be expressed as

Di j ~ t !5
1

2
@$12nj~ t !%G i

,~ t !1nj~ t !G i
.~ t !

1$12ni~ t !%G j
,~ t !1ni~ t !G j

.~ t !#. ~C6!

The transport Eq.~20! gives rise to a master equation for th
average occupation numbersni(t) of the single-particle
states

d

dt
ni~ t !52ni~ t !G i

.~ t !1@12ni~ t !#G i
,~ t !, ~C7!

where we retain only the incoherent collision termK(r).
Using this result, we can derive an equation for the quan
L̃ i j (t)5@ni(t)$12nj (t)%1nj (t)$12ni(t)%#/2, and find that
it satisfies the same equation as for the varianceL i j (t) of the
stochastic density matrix

]

]t
L̃ i j ~ t !52@G i~ t !1G j~ t !#L̃ i j ~ t !1Di j ~ t !. ~C8!

As a result, these quantities should be equalL i j (t)5L̃ i j (t),
and consequently, the uncorrelated density fluctuations
be expressed in terms of the average occupation num
according to Eq.~37!.
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