PHYSICAL REVIEW C, VOLUME 64, 024609

Stochastic one-body transport and coupling to mean-field fluctuations
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A stochastic transport description for the single-particle density matrix is briefly discussed. It is shown that
the stochastic description contains, in addition to incoherent binary collisions, a coherent damping mechanism
due to coupling between mean-field fluctuations and single-particle motion, and an expression for the coherent
collision term is derived. In the limit of small fluctuations around equilibrium, the collective and single-particle
self-energies due to the coherent mechanism are deduced.
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[. INTRODUCTION effects:(i) dissipation of energy associated with the relevant
variables leading to thermalization of the entire system,
Dynamical descriptions based on reduced one-body transvhich is described by friction or collision terms in the equa-
port theories, both semiclassical and quantal forms, havéon of motion, andii) dynamical fluctuations of the relevant
been very useful for understanding many aspects of nuclearariables, which are described by the random force term
structure and dynamid4d—3]. The simplest form of the one- originating from the initial correlations. Consequently, tem-
body description is provided by the time-dependent Hartreeporal evolution of the reduced one-body density matrix
Fock (TDHF) theory, in which dynamics is treated in the should be governed by a stochastic transport equation, analo-
mean-field approximation by neglecting coupling to two-gous to the generalized Langevin equations for the reduced
body correlation$4]. Over last two decades, much work has dynamical variables[15-17. The associated “random
been done to improve the TDHF theory beyond the meariorce” in the equation of motion should originate from the
field approximation[5—-10]. In, so called extended TDHF initial correlations, with statistical properties specified in ac-
theory, two-body correlations are incorporated into the equaeordance with the fluctuation-dissipation relation. Such a sto-
tion of motion by truncating the Bogoliubov-Born-Green- chastic transport description has been developed for the
Kirkwood-Yvon (BBGKY) hierarchy at the second level phase-space density in the semiclassical framework, which is
within the Born approximation. The resultant collision term usually referred to as the Boltzmann-Langevin approach
describes the coupling of the single-particle motion to thg18-21,23. It is also possible to develop a stochastic trans-
incoherent P-2h excitations. Such an incoherent damping port theory for the one-body density matrix in a quantal
mechanism is very important at relatively high energy heavyframework.
ion collisions to convert the collective energy of the relative  The stochastic transport theories, both quantal and semi-
motion into incoherent excitations and thermalize the syselassical forms, provide a one-body framework to describe
tem. However, at low energies including giant resonance exdynamics of density fluctuations in a manner that is consis-
citations, the incoherent damping mechanism is not effectivéent with the dissipation-fluctuation relation of nonequilib-
due to long nucleon mean-free path. Therefore, for a propeaiium statistical mechanics. Furthermore, the coherent damp-
description of the damping mechanism at low energies, thtng mechanism is naturally included in the stochastic
coherence between thgh pairs should be taken into ac- transport description. The density fluctuations excited by the
count[11,12. For this reason, it is highly desirable to im- stochastic source in the equation of motion are propagated by
prove the TDHF theory by incorporating a coherent collisionthe mean field, that gives rise to nonlinear fluctuations of the
term into the equation of motion. One possibility for accom-mean field with random amplitudes on the top of its average
plishing this goal is provided by the time-dependent densityevolution. The coherent damping mechanism arises from the
matrix formalism, in which a truncation of the BBGKY hi- coupling of the single-particle motion with the mean-field
erarchy is carried out by keeping all the second order termfluctuations, and it provides an efficient mechanism for dis-
in the equation for two-body correlatioh$3,14]. The result-  sipation and the equilibration of the system, in particular at
ing coupled equations for the one-body density matrix andow energies. In Sec. I, we briefly describe a stochastic one-
for the two-body correlations take into account for the coherbody transport model in the quantal framework. In Sec. IlI,
ence effects in particle-particle, hole-hole and particle-holeve consider the ensemble average evolution of the single-
channels. Here, we follow a different approach, in which theparticle density matrix, and show that the coupling to mean-
effects of correlations are incorporated into the equation ofield fluctuations appears as a coherent collision term. In Sec.
motion by a stochastic mechanism according to the generalV, we investigate small amplitude vibrations around equilib-
ized Langevin description of Mori. rium and derive expressions for damping widths of the col-
According to the generalized Langevin description of rel-lective and single-particle excitations due to coherent damp-
evant variables developed by M¢fi5], the correlations due ing mechanism. Finally in Sec. V, summary and conclusions
to coupling with the degrees of freedom, which are not con-are given. For a brief account of the main results, we refer
sidered explicitly, have two different but intimately related the reader t¢22].
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Il. STOCHASTIC TRANSPORT EQUATION lations is still accounted for by the initial correlation term
o15(tg), Which, in principle, contains all order correlations

Temporal evolution of the single-particle density matrix that are accumulated up to the timg If we consider an

p(t) is determined by5,6,9 ensemble of identical systems that are prepared with slightly
different initial conditions at the remote past, the exact two-
9 5) .o o body correlationsri5(tg) accumulated until, exhibit nearl
i=p()=[h(p),p(D]=Tr[v,02A1)], (N ody 12lto 0 y

random fluctuations. In the extended TDHF theory, the aver-
. . ) o age evolution over such an ensemble is considered, and the
whereh(p) is the effective mean-field Hamiltonian and  ensemble average of the initial correlation term is assumed to
denotes the effective residual interactions. The quantity OQanish,oy5(te) =0 [24,25. This assumption in the semiclas-
the right-hand-side is usually referred to as the collisiongjca context is known as the “molecular chaos assumption,”
term, which is determined by the correlated part of the two-q it corresponds to the factorization of the two-particle
particle density matrix, phase-space density before each binary collisi@gé In the
R R —— stochastic transport description, the initial correlation term is
a1(t) = p1at) = pa(t) p2(1), (2)  retained, but it is treated as a random quantity specified by a
_ Gaussian distribution: each matrix elements has a Gaussian
where p1p, represents the antisymmetrized product of thedistribution determined with zero mean and a second mo-
single-particle density matrices. The two-body correlationgMent[19]. The second moment of the initial correlation term
a1,(t) are determined by the second equation of the BBGKY‘SUl?(t) can be detgrmmed by foIIow!ng a similar treatment
hierarchy. At sufficiently low energies, the nucleon mean_presgnted in19]. It is cpnvenlent to introduce a shorthand
free path is long, and consequently the BBGKY hierarch)/mt""t'on for th_e fluctu_atlr_lg part of the two-body density ma-
can be truncated at the second level. Retaining only the low' X, Ssuppressing the indices
est order terms in the residual interactions, the correlated part

of the two-particle density matrix evolves according to 80 1(1) =(P[A()|®) = (P|A(D)[D)o=(P[ A1) | D).
tS)
Jd . A A .
i=r01t) ~[h(p), o1 J=F o), (3 In this expressionA(t) = a/ (t)a] (t)ax(t)a(t) is the product

of the single-particle creation and annihilation operators in

where the source term is the Heisenberg representatigi®) represents a member of
. the many-body states in the initial ensemble, and
Fio)=[1— p1()I[L—pa(t)Topa(t)pa(t) (®|A(t)|®), denotes the averaged-uncorrelated part defined

by the second term in Ed2). In order to calculate the en-
—p1(D)pa(DV[1—pr(1)I[1—po(t)].  (4)  semble averagéoy(t) So;,(t), first we introduce a closure
approximation by making the following replacement:
Solving this equation formally, we can express the develop-
ment pf correlations over a time interval from an initial time 8o 1(1) 8o (1) = (D[ SA(L)| D W D[ SAT(1)| D)
to to timet as

t ~(D|SA(t) BAT(1)| D). (9
~ _ ’ A [ AT ’
1Y) Iftodt CLEFA)GHLE) + do3lt), The correlation function given by Eq14) below is in the
(5  second order in the effective interactions. Consequently, to
be consistent with the expression of the collision term in
Eqg. (12), we retain only the uncorrelated contribution in
the ensemble average 6®|SA(t) SAT(t)|d). It is conve-

(6) nient to employ the natural single-particle representation
that diagonalizes the average density matrip(t)
denotes the mean-field propagator. In this expression, th32|¢i(t)>n‘(t)<¢‘(t)|'.Whereni(t) denotes the occupation
first term represents the correlations developed by the rer]ur:\_berj. As a réasult, n t?e p";‘;“ra." _rt('epiresentlattlpn, E[he sym-
sidual interactions during the time interval, and the seconorclinej[ rnze saecon dr'nomten ot the initial correfation term 1s
term describes the propagation of the initial correlations etermined according o

oq5(tg) from the initial timet, to timet,

where

é(t,t'):Texp[ —i J:,dsk[f)(s)]

A A (ij] 801 (O (K' T[S 1(D)]i"]" )
50’12(t):G(t,to)Ulz(to)GT(tyto)- (7)

1 +
The time interval cannot be taken arbitrary large, but should 23Sk Niga (0, (10
be taken sufficiently small to justify the neglect of the ex-
plicit coupling to three-body correlations in E() during  where Sij.irjr = Giir 6jjr — Gij1 Gjir Ski:kr17 = ki O+
the time interval. However, the dominant effect of the corre-— &, 8, and
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Ni-}—kl(t):[l_ni(t)][l_nj(t)]nk(t)nl(t) tgrmined by the corrglatio_n time.,, of the residual interac-
tions. Therefore, for time intervals that are short as compared
F[1-n(OI[1=n(O)]ni(H)n;(t). (1)  to the relaxation timdt—t'|< 7, the stochastic collision

i . L ) term can be propagated by the mean field according to
In the initial correlation term, the initial timg, is not rel-

evant, at any timedo5(t) is a Gaussian random quantity SK(tY=Tr-l0.G(t' 1) so ()T (1" 16

with the second moment specified by Efj0). (t)=Trlv, G(t", 1 6o (HG (L, )]. (16
Substituting the expressid®) for the two-particle corre-  Then, using the expressigi0) for the equal time variance

lations into Eq.(1) yields a transport equation for the single- of 55,,(t), we can easily calculate the correlation function

particle density matrix Cij.a(t,t’) in terms of the matrix elements of the residual
J interactions and the combinations of the occupation factors.
i —p(t)—[h(p),p(t)] Since, the result is rather lengthy, we do not give any expres-
P P).p . . : :
sion for the correlation function here, but illustrate the result

¢ by considering the projected noise on a collective variable
= —if dt’ Tro[v,G(t,t ) E(t)GT(t,t") ]+ 8K(t).  Qx(t), which maybe time dependent. The projected noise is
to given by
(12)
FA(D=TrQx(1) oK) =T Q\(t),v]do1(t)  (17)
Here, the first term on the left-hand side is a binary collision
term and the second term arises from the initial correlation@nd

SK(t)=Tr[v,8014(1)] (13 FX(t)=TrQ!(t")sKT(t")=TrG(t,t")

and it describes the stochastic part of the collisions. In anal- X[v,Ql(t") G (t,t")doryo(1), (18
ogy with the generalized Langevin description of the reduced

dynamical variables, Eq(12) is regarded as a stochastic where SK'(t’) is propagated according to the expression
transport equation for the fluctuating density matrix in which(16). Then, the correlation function of the projected noise
the stochastic part of the collision teréiK (t) acts as a ran- becomes

dom noisg15-17. According to the stochastic properties of L

the initial correlations, the random noise also has a Gaussian  ——— 7 -

distribution with zero mean and a second moment deter- A (DFX(t)=7 2 (KIQu),v]lij )

mined by the correlation function

-
Ciatt) =(SKONK K. (14 QIR w1l ez Nia (D (29

The collision term essentially involves two different CharaC-Where the occupation factors maybe evaluated at tigiece
teristic times:(i) the relaxation timer¢ of the occupation they do not change appreciably over the time interval in the
numbers of the natural states, which corresponds to th@eak-coupling regime. Here, the two-body matrix elements

mean-free time in the semiclassical limit, a¢id th_e corre-  (kl|[Q,(t),v]]ij);, and also in the rest of the paper, denote
lation time 7, of the matrix elements of the residual inter- the antisymmetrized matrix elements.

actions, which corresponds to the duration time of binary
collisions in the semiclassical limit. Here, we consider the
weak-coupling regime specified by, < 7o) [27], which is

valid for a sufficiently dilute system when the binary colli-  In the stochastic transport description, higher order corre-
sions are not so frequent. In this case, the decay time of thiations beyond the mean field are incorporated into the dy-
collision kernel in Eq.(12) is determined by the correlation namical evolution in an approximate manner by a stochastic
time, and the memory effects associated with the variation omechanism. Dynamical evolution is characterized by con-
the occupation numbers over this time maybe neglected. As structing an ensemble of solutions of the stochastic transport
result, usingé(t,t’)ﬁ(t’)é*(t,t’)%,B(t), we can make the EQ.(12). In this manner, the theory provides a basis for de-
following substitution in the collision term: scribing the average evolution, as well as, dynamics of den-
sity fluctuations. Furthermore, the stochastic evolution in-
volves, in addition to the incoherent damping mechanism
due to 2-2h excitations, a coherent mechanism arising from

~ - , - « the coupling of the single-particle motion with randomly ex-
~P1p2v (L) (1=p1)(1=p2), cited nonlinear mean-field fluctuations. When the amplitude
(15 of the fluctuations is small, this mechanism appears as a

R R coupling between the single-particle motion and the time-

where v (t,t')=G(t,t')vG'(t,t"), and all density matrices dependent random-phase approximati6RPA) phonons

are evaluated at timé The decay time of the correlation around the mean trajectory. In order to illustrate the origin of
function of the stochastic collision term E@.4) is also de- this coupling, we consider the average evolution of the den-

Ill. PARTICLE-PHONON COUPLING

G(t,t)Ft)GT(4,) = (1= p1) (1= v (t,t)prpo
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sity matrix, p(t)=p(t), taken over the ensemble generated  §(GE LGN = (1 py(t))(1— po(1))G(t,t")
by the stochastic transport E¢L2). We calculate the en- {GFiG P1 P2

semble average of E¢12) by expressing the mean-field and X[v 5@“,)]@“ t')p(t) po(t) — H.c.
the density matrix a$i(p)=h(p)+ Sh(t) and p(t)=p(t) ' vornRE
+5p(t), where SA(t)=(ah/dp) 5p(t) and Sp(t) represent (249)

respectively. Noting that, the ensemble average of the nois here is another contribution arising from the second term in

6K(t) vanishes, the evolution of the average density matrix"'€ expres_3|0r(23). _Slnce, the dens_|ty _quctuat_lons are not
correlated in time with the 2-2h excitations, this contribu-

tion is expected to be small and neglected here.

P We analyze transport Eq22) in a time-dependent RPA

i —p(t)=[h(p),p()]=K.(p)+K(p), 20) approach and expand the small amplitude density fluctua-
ﬂtp( )= Lh(p).p(D]=K<lp)+K(p) (20 tions in terms of the time-dependent RPA functions

the fluctuating parts of the mean-field and the density matrix‘%

is governed by the transport equation

whereK(p) represents the incoherent collision term and the - T .
additional term arises from the correlations of the mean-field Sp(t)=2 82,(D)p) (1) + 82 ()py(1), (29
fluctuations and the density fluctuations

wherep;[(t) andp, (t) denote the time-dependent RPA func-
Ke(p)=[8h(t),dp(t)] (21)  tions, andéz,(t) and 6zF (t) are the stochastic amplitudes
associated with these modes. The time-dependent RPA func-
and it is referred to as the coherent collision term. This coltions describe the correlatquth excitations around the av-
lision term has been investigated in previous publications irerage trajectory, and their time evolutions are determined by
qguantal[28] and semiclassical framework&9] for spatially
uniform systems near equilibrium. Here, we carry out a  d + + oy
quantal treatment of the collision term in nonequilibrium for — 15¢Px(1) = [h(p),pA (D] =[x (), p(D) ]= =i 7px(1)
finite systems. (26)
In order calculate the coherent collision term, we consider
that the fluctuations are small, and can be described by thgnd its Hermitian conjugate, where the fluctuating part of the
linearized transport equation around the average evolutiogean field is indicated by;r\(t)=(&h/c9p)p;r\(t) and a small
p(t) damping term is included in the equation of motion. The
initial conditions are supplied by the static RPA functions,

. d So—T sh h 5 and their positive and negative frequency components are
i opdp—Loh.p]=[N(p),dp] evolved according to Eq26) and its Hermitian conjugate,
respectively. We, also, introduce the dual wave functions,
t AA A T . .
_ _if At Tro[v, SIGE 1,611+ 5K (1). 22) Q,\(t) andQ, (t) associated with the RPA modg30]
to

] -
= QUO =[h(p),QuD]+h=—i7Qx(1) (27

In the collision term, the quantity{GF,,G} involves two

different contributions arising from the fluctuations of the

mean-field propagatoB(t,t’) and from the fluctuations of and its Hermitian conjugate, where h,=

the density matrix inF5(t'). According to Appendix A, it —[Qx(t),p(t)1(dh/dp). As shown in Appendix B, if the

can be expressed as RPA functions and their dual functions form a biorthonormal
system at the initial instant, they remain orthonormal in time

SIGE LGN = GoF LG +[ 6D (1), GF LG according to the definitions
—G[6D(t'),F1,]GT, (23) TrQ\(DpL(D=5,,, and TrQ,(t)p,(1)=0. (28

oo . . When the occupation numbers of the natural states do not
where the quantityp®(t) represents the density fluctuations change in time, two types of wave functions are related by

without the right-hand side in EC{ZZ) according tOé;)(t) PI(t):[QI(t),P(t)] andp)\(t): —[Q)\(t),p(t)]. In the fol-

=[&®(t),p(t)]. We can approximate the collision term fur- jowing, we use these relations that provide a good approxi-

ther by assuming that the density fluctuations can be exmation in the collision term even when the occupation num-
pressed in the same form with the collision term is includedpers are changing in time.

and deduce an effective equation i&f)(t). Then, the fluc- Projecting the transport Eq22) on the collective RPA

tuations arising fronf 1, in the first term in Eq(23) can be modes Aand noting that the collision term can be expanded
combined with the fluctuations due to the mean-field propatsing 5<b(t)=252k(t)QI(t)— 8zy (1)Q\(t), we can deduce
gator in the third term to give stochastic equations for the random amplitugzy
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d t dissipation mechanisms in an approximate manner, we may
lm&)\(t):j dt’2,(t,t") 0z, (') +Fy\(1), (29  evaluate the variances of the random amplitudes directly in
fo terms of the density fluctuations
whereF, (t) is the projected noise anxi, (t,t’) denotes the
collisional self-energy of the RPA mode |52A(t)|2=TrQ;‘5;)(t) ) TrQﬁf)(t). (36)

[
() =- 2 > (KIQu(®)]li] ) The density matrix, in general, involves collective fluctua-
tions induced by the correlatguth excitations and noncol-
><<k||[Qk(t’),v]|ij>§Ni}k|(t) (30) lective fluctuations produced by the incohergnh excita-
tions, that are described by the collective and the
with noncollective RPA functions, respectively. As shown in Ap-

_ pendix C, the uncorrelated density fluctuations can be ex-
Nijkl(t):[l_ni(t)][l_nj(t)]nk(t)nl(t) pressed as

“[1-n®I1=n®)]ni(t)n;(t).  (3D)

= = 1
The coupling between different RPA modes through the col- (ilep1iXilep(]i) =5 [m(t[1=nj(t)]
lision term is neglected in Eq29). The expression of the
projected noise and its correlation function are given by Egs. +n(O{1-ni(H)}]. (37
(17), (18), and(19). According to Eq.(29), the variances of
the random amplitudes are determined by

Employing this result for the uncorrelated density fluctua-

d tions, we can obtain an approximate expression for the pho-
&| 62,|?=—T'\(1)]6z,|>+ 2D, (1), (320  non occupation factors

where T, (t)=—2 Im ['dt’3,(t,t") denotes the collisional 1 1 t

damping width andD, (t)=Re/'dt'F,(t)F*(t') is the Ny (D) + 5 = STHQLUW (D[~ p(D)]

diffusion coefficient associated with the mode. In the case .

of small fluctuations around equilibrium, the RPA modes be- +Q\O[L1-p()]Qx(Dp(t)}. (38

come harmonic p!(t)=plexp(imt) and py(t)
=prexp(tioyt). In this case, time integrals can be carried |n using this expression, damping terms in the RPA E28)
out to give[32,33 and(27) should be included with a finite value ef describ-
1 ing the damping of the-h states into more complex con-
ry=-—- Kl OliD 2278wy — €;— €+ €+ €)N figurations.
! E KKIEQu w1l )12 o, ~ & T We calculate the ensemble average in the coherent colli-
(33  sion term(21) by expanding the mean-field fluctuations and

and the diffusion coefficient is related to the damping widthzzﬁc?ii?gty fluctuations in terms of the time-dependent RPA

in accordance with the quantal dissipation-fluctuation rela-
tion [34]

1 o sh(=2 sz,(Oh{(D+oz (D) (39
ZDAZF)\ECOthﬁ. (34)

As a result, the thermal equilibrium value of the variance@nddp(t) as given by Eq(25). The collision term involves,
becomeq 52)\|§q: NO+1/2, whereN®= 1/[exp(w, /T)—1] is in addition to the diagonal terméz, 6z}, the off-diagonal
the phonon occupation factor. Following this property, weterms 6z, 6z;; arising from the coupling between different
define RPA modes through the incoherent collision term and its
stochastic part. This coupling is neglected in E29) for the
random amplitudes, which may not be very important be-
tween collective RPA modes. However, as a result of the
collisional coupling, the noncollective RPA modes are
and regardN, (t) as the time-dependent occupation factors ofstrongly mixed up and loose their bosonic chara¢&5].

the RPA functions. We note that, besides the collisionaTherefore, the noncollective modes should be excluded
damping, there are other mechanisms involved in damping difom the coherent collision term, since their effects can
the mean-field fluctuations, that are not incorporated in Egbe included into the incoherent collision term by renormal-
(29) for the random amplitudes. In particular, the low- izing the residual interactiong9]. The diagonal contribu-
frequency fluctuations are mainly damped by the one-bodyions of the collective modes to the coherent collision term is
dissipation mechanism. In order to account for the one-bodgiven by

P — 1
|62, (1)[?=Ny(t) + > (39

024609-5



SAKIR AYIK AND YASUHISA ABE PHYSICAL REVIEW C 64 024609

tions it is more appropriate to use the expressigs) for an
[hl PQ(1-p)] approximate description of these factors.

[8h(1),8p(t) leon= >

N 1
-

1

IV. VIBRATIONS AROUND EQUILIBRIUM

[hi ,(1_,))pr]] ~H.c, o _ o
In this section, we consider the nuclear collective vibra-
(400  tions around a finite temperature equilibrium and deduce ex-
pressions for the damping widths of collective vibrations and
where prime indicates the sum over the collective modes. Byingle-particle excitations. Near equilibrium, since the small
inspection, it can be seen that the first and second terms @mplitude density fluctuations are harmonic, the time-
this expression correspond to absorption and excitation afiependent RPA equations becof3€]
RPA phonons. These rates should be proportion&,t@nd
N, + 1, respectively, but the average vgNghL% appears in (+wy +i ﬂ)PI—[hmpl]—[hT .po]=0 (44)
both rates. There are other contributionsKg(p) arising
from the cross correlations between the collective and thgpq
noncollective modes. In schematic models, it is possible to
show that these cross correlations give rise to an additional _ ; _ _ _
contribution to the collision term, so that the excitation and (Zantimpn=lho.py] = .po]=0. 49
absorption rates become proportionaNp+ 1 andN, , as it
should be. However, in the RPA analysis, it is difficult to
extract such a contribution. For the time being, we replac
the excitation and absorption factors in E40) by N, +1
andN, , and express the coherent collision term as

As a result, equilibrium mean-field fluctuations can be ex-
ressed in terms of the static RPA modes and the equilibrium
‘gccupation factord\? of these modes.
For describing the damping of the single-particle excita-
tions, we replace the mean-field Hamiltonian in E4B) by
its static valueh(p)— hg, and express the density matrix in

K _ hi(t), (N (1) +1)(1— p(t ot the Hartree-Fock representation according to(t)
o(p)= 2 [h{(1).(Ny(O+ D(1=p(1)QUD)(D =3|¢i)n;(t){¢i|. Then, from transport Eq43), we can de-
— N, (1) p(HQ,(1)(1—p(t))]— H.c. (41) duce a master equation for the occupation humbers

The RPA functions can be determined in terms of the ampli-
tude of the mean-field fluctuations by solving E27) and its
Hermitian conjugate

d
ani(t)=—Ff(t)ni(tHFf(t)[l—ni(t)], (46)

. where the first and second terms represents loss and gain
Qk(t)z_if dt’G(t,t")h,(t")GT(t,t)e 7=t terms, respectively. The loss term is determined by the
to imaginary part of the self-enerdy. (t)=—2 Im3;"(t) with

(42)
where the initial condition term is omitted by letting the 37 0)=3 (1—n-(t)){ |<'|h1“>|2_ (NO+1)
initial time t, to be sufficiently early, so that the time interval ! ! €~ €—wtly A
t—ty is much longer than the decay time of the collision ) 12
kernel, and similarly forQ[(t). At low energies, since the + IUNin 0} (47)
dissipation is dominated by the coherent collision term, we €—€tw,tin M

can neglect the incoherent mechanism due to binary colli-
sions. As a result, we obtain an extended TDHF descriptioavhere the first and second contributions describe the decay

for the evolution of the single-particle density matrix of the single-particle statgp;) by excitation and absorption
of a phonon, respectively. The expressioh (t)=
d —2ImX () in the gain term is obtained fro® (t) by
i—p(t)—[h(p),p(t)]=K:(p), 43 Lo o '
PV~ Lh(e).p(W]=Kelp) “3 making the substitutionsN?+1—N?, NY—N%+1, and

- . . . [1—nj(t)]—n;(t). Similar expressions for the single-
where the collision term describes the coupling of the Slnglei:)article self-energies have been derived in the literature by

partiqle motion with thg coherenthZh _excitations. The following different approachds0,37. In particular, we note
amplitude of the mean-field fluctuations in the coherent colyy -+ 4 <" (etarded single-particle self-ene®f'(t) =3 (t)
lision term are self-consistently determined by the time—+2<(t) :

i )

dependent RPA equations. In general, it is difficult to deter-
mine the time evolution of the occupation factddg(t) of 2
the RPA functions, since they depend on rather complex zret(t):Z [(iThy[i)] [NC+1—n(1)]
damping mechanism of the mean-field fluctuations. Since, ! e—€—wting J
the high frequency fluctuations are mainly damped by the ) 12
collisional effects, the corresponding occupation factors are n [ULNIN [NO+n (t)] (48)
determined by Eq32). However, for low frequency fluctua- €— €t tin A '
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has the same form as the one obtained by employing the d t

Matsubara formalism ifi39]. iazﬂ(t)—wﬂzﬂ(tFJ dt’S ,(t—t")z,(t"). (54
In order to describe the collective vibrations, we linearize fo

the transport Eq43) around a finite temperature equilibrium

state po. The small amplitude vibrationgp(t) = p(t) —pg

are determined by

Here,X ,(t—t’) denotes the self-energy of the mode due to
the coherent coupling mechanism, and its Fourier transform
is given by[38]

12 5p(t) ~[ho, 3p(1)]~[ Sh(1), po]= K1), (49 S (@)= (i[Q,.h1II)I? HNO+ 1)(1—n®)n?
at w @)= o—w,—€tetin A 177
where the quantitysK .(t) represents the linearized form of OO S [G[Q,..hy11)I2
the coherent collision terrf#1). We can obtain an expression A (L=ni)j+ 2, — or—€tetin
for this collision term by following a treatment similar to the o o o o o o
one used in linearizing the collision term in E@2). There X{NN(L—=ny)ny = (Nx+1)nj(1—-np)}. (59

are two contributions idK(t), coming from the mean-field _ _ _ _
vibrations throughs{G(t,t')h,G(t,t’)} and from the den- The firstterm in the self-energy describes the damping of the
sity vibrations&p(t), which should be combined in a consis- collective vibrations by exciting a phonon angéh pair. At -
tent manner. According to Appendix A and E@3), the con- aoflrglte temperature, the reverse process with a weight
tributions through the mean-field propagator can beNyn;(1—ny) is also possible, which decreases the damping.

expressed as There is another contribution to the self-energy represented
by the second term in this expression. It describes absorption
6{G(t,t’)thT(t,t’)}=[5<D(t),GohAG$] of a phonon accompanied lp¢h excitations that is possible

only at finite temperatures. The self-energy of collective
—Go[6®(t"),h,]1G), (50 modes has been investigated by employing the Matsubara
formalism in[39]. The expressiofb5) of the collective self-
where Gy=exd —i(t—t")hy], and the quantityd®(t) de- energy has essentially the same form as that derived within
scribes the density vibrations without the collision term ac-the Matsubara formalism. The commutator structure in Eq.
cording todp(t) =[ 8P (t),p,]. Assuming density vibrations (55 gives rise to two direct and two cross terms, which
can be represented in the same form with the collision terngorrespond to the propagator and the vertex correction terms
included, the first term in the expressi9B0) cancels out inthe Matsubara treatment, respectively. The expression pre-
with the contributions coming from the density vibrations. sented in[39] contains terms that do not involve the propa-
As a result, the linearized collision term becomes gator w* w, — €+ €;+i7. These terms may be neglected,
since they do not lead to the damping of collective modes
due to mixing with the particle-hole plus phonon states. Fur-

SKe(1)=2 [l (NY+1)(1—po) 8Q,\(t)po thermore, it can be shown that in the pole approximation,
i.e., w= w\— €+ €=0, remaining terms may be combined
—ngoaQ)\(t)(l—po)]—H.C., (51)  together to give the same expression for the self-energy as
the one given by E(q55), except an intermediate summation
where is missing in the propagation correction terms[88]. In

damping of high-frequency collective modes and damping of

t single-particle excitations at low energies, the dominant con-

8Q,(tH)=— iJ dt’'Gy(t—t")[ hy ,6CI>(t’)]G$(t—t’) tributions to the self-energies arises from the low-frequency
to density fluctuations that can be well approximated by surface

xexf —i(w,—in)(t—t)]. (52)  Vibrations. In previous publications, using this approxima-

tion, the formulas(48) and (55) have been applied to de-

We can analyze the density vibrations in the RPA frameworkSC!1P€ damping of the single-particle and giant resonance ex-
similar to the treatment used in the fluctuation analysis, angtations[11,39.

expand the density vibrations in terms of the static RPA func-

tions as V. SUMMARY AND CONCLUSIONS

Development of one-body transport descriptions may lead
Sp(tH)=2, Zﬂ(t)[QL,Po]—ZfL(t)[Qﬂ,Po], (53)  to novel theoretical tools for understanding the nuclear dy-
namics at low energies, as well as the complex reaction
mechanism in heavy-ion collisions at intermediate energies.
wherez,(t) and ZZ(I‘) are the deterministic amplitudes as- For this purpose, much work has been done to deduce an
sociated with the modes. By projecting the transport(88)  effective one-body transport description by incorporating
on the RPA modes and substituting the expansé@(t)  correlations in an approximate manner so that the applica-
=Ezﬂ(t)QL—zZ(t)QM into the collision term, we find that tions to the realistic situations may become possible. In the
the corresponding amplitudes are determined by extended TDHF, the effect of two-body correlations are in-
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corporated into the equation of motion in the form of an 8ﬁ(t)=G(t,t’)6ﬁ(t’)GT(t,t’)

incoherent binary collision term. Such an incoherent mecha-

nism is very important for damping of collective motion and [t A N

thermalization of the system at intermediate energies around - ft,ds[G(t,s) sh(s)G(t,s),p(1)], (A2)
Fermi energy. However, at low energy nuclear dynamics in-

cluding giant resonance excitations, the coherence in twowhere the approximatioKB(t,s)p(s)GT(t,s)%p(t) is em-
body correlations should be incorporated for a realistic deployed. This result can be expressed in the foaﬁg(t)
scription of the damping mechanism of the coIIective:[a(i)(t) p(t)] with

motion. In the stochastic theory, the transport description is ’

further improved by incorporating higher order correlations sd()=G(t,t")sd(t)GT(t,t")

in an approximate manner by a stochastic mechanism that is

consistent with the fluctuation-dissipation theorem of non- [t A N

equilibrium statistical mechanics. As a result, in the stochas- —! ft,dSG(t'S) Sh(s)G'(L,5). (A3)
tic theory, it is possible to address the average evolution as

well as the dynamics of density fluctuations, in a manneiCombining this result with the expressi¢Al) leads to Eq.
similar to the generalized Langevin description of the re-(23).

duced variables. Furthermore, the stochastic dynamics con-

tains, in addition to incoherent binary collisions, a coherent APPENDIX B

damping mechanism resulting from the coupling between the i _ _
mean-field fluctuations and the single-particle motion, which_ "€ time-dependent RPA functions and their dual func-
is not included in the extended TDHF theory. We illustratetioNS maybe orthonormalized according to

this damping mechanism by investigating the average dy- _ +

namical gvo?ution and derivg an exp?essign for the coghere¥1t Naw=Tr Qu(0)p,(1). (B1)
collision term. Considering small amplitude fluctuations The rate of change of this quantity can be expressed as
around equilibrium, we deduce expressions for the self-

energies of single-particle and collective excitations due to .t 3

the coherent coupling mechanism. While the present results an:Tr{QM’M’LQxPﬂ}- (B2)
are very encouraging, more work remains to be done for a

consistent description of the coherent and the incoherenising the time-dependent RPA Eq24) and(25), we find
damping mechanisms in connection with dynamics of

nuclear collective motion. _d ~
3t NAM:Tr{[h:Qx]P,TL_ h)\p;rﬁ- Qx[thL] + Qx[hL 1},
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In order to calculate the uncorrelated density fluctua-
APPENDIX A tions, we neglect the terms in transport E§2) invol-

The quantity 5é(t,t’)|312(t’)éT(t,t’) in the collision VN9 the mean-field fluctuation8h(t) and consider density

term in Eq. (22, treating the fluctuating pardh(t) as a fluctuatlons' n .the TDHF rgpresentat|on,5p(t)
perturbation, is given by :2|d’i(t_)><||5P(t_)|1><¢j(t)|- AC(_:OI’dII’lg _'[0_ EQ-(Zz_)a the
stochastic evolution of the density matrix is described by

SG(tt)F (G (t,t)) g . .
o (18P0 =[2i(0) = SF (O 8p(0)]) +(i K ()] ]),
=G(t,t")oF (t")GT(t,t")

(Cy
t ~
—if dg G(t,s)sh(s)G'(t,s), where3;(t) =37 (t)+ 37 (t) represents the collisional self-
v energy of the single-particle states with
X G(t,t")F(t")GT(t,t")], (A1) :
37 =i [ 'S (ilolkiKloliiye
whereG(t,t") denotes the average value of the propagator.
The evolution of the density fluctuations over short time in- X[1=n(OI[1—n(t)In(1) (C2)
tervals, by neglecting the right-hand side in E2Q), can be
expressed as and

024609-8



STOCHASTIC ONE-BODY TRANSPORT AND COUPLING . .. PHYSICAL REVIEW 64 024609

_ [t N N Using Egs.(10) and(16) and retaining only the uncorrelated
(Y= —lf dt’ > (ij [v[KD(klfv]ij ) ni(t)ni(t) parts in the correlation function, it can be expressed as

X[1-n;(t)]. 1
[1=ni(D)] ©3 Dy ()= SL{L=m (DI (0 +ny (DT} (1)
In obtaining this result, we neglect the terms in the linearized
collision term that arise from the density fluctuations in the H1-nOITT (O +n(HT7 (D] (C

intermediate states and assume the average density matrix_is . . .
diagonal in the TDHF representation. Following EG.1), The transport E¢(20) gives rise to a master equation for the

the variance of elements of the density matuk;(t) average occupation numberg(t) of the single-particle

= tat
~1(i|8p()})|2 is determined by siales

d
=TT +[1-nOITEM),  (C
%Aij(t)z—[Fi(t)+Fj(t)]Aij(t)+Dij(t), ca G O="m(OITO+[1-nOIT (), (€D

where we retain only the incoherent collision tekq{p).
where T;(t)=T7 (t)+T(t), with T7(t)=—2ImZ(t) Using this result, we can derive an equation for the guantity
andl’;~(t)=—2 Im2~(t), describes the collisional damping T\ij(t) =[ni(t){1—n;(t)}+n;(t){1—n;(t)}1/2, and find that
factor of the single-particle states. The quantly(t) is it satisfies the same equation as for the variahgét) of the
given in terms of the correlation functid®;; ;i (t,t") of the  stochastic density matrix
stochastic collision term by

0~ ~
t EAij(t):_[Fi(t)+rj(t)]Aij(t)+Dij(t)- (C9
Dij(t):_f dt'[Cij.i(tt) +Cjij(tt)],  (CH
. _ _ As a result, these quantities should be eq’hg(t)zﬂij(t),
where a factor exp- [, ds(X(s) —2} (s))] in the integrand  and consequently, the uncorrelated density fluctuations can
is neglected by assuming that the correlation function ise expressed in terms of the average occupation numbers
sharply peaked arountl=t’ (Markovian approximation according to Eq(37).
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