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Interference effect in the scattering amplitudes for nucleon-induced two-step direct process
using the sudden approximation
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An implementation of the calculation for the two-step cross sections of the theory of Nishioka, Weiden-
muller, and Yoshida is described. Cross sections that excite-aI2 state are expressed inJascheme, and a
Yukawa interaction is assumed for the particle-hole pair creation. The Green’s function, which connects the
one-step matrix element to the two-step one, is representedspace. An interference effect among the
amplitudes for the different intermediate states is examined by means of a spectroscopic amplitude. A strong
interference appears for a certain configuration, and this is interpreted by a boson approximation. Microscopi-
cally calculated two-step cross sections f8%Pb(p,p’) reactions are averaged together with the true level
density, which is based on the random matrix theory, to give a two-step cross section to the continuum energy
region.
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[. INTRODUCTION FKK, TUL, and NWY. However, their implementation of the
NWY calculation was simplified, so an exact calculation has

A guantum-mechanical approach to the preequilibriumnot yet been done. On the other hand, TUL has been applied
nuclear reaction is one of the significant advances in theorieto analyze experimental data of nucleon-induced reactions as
for the preequilibrium process. Several quantum-mechanicalell as analyzing power dai@efs.[9,10], for example.
theories of the preequilibrium nuclear reaction have been de- In this study, we perform calculations of the MSD two-
veloped in recent yeafd]. There are three well-known sta- step process with the NWY theory. To calculate a two-step
tistical multistep direc{MSD) theories, namely the theories process according to the NWY theory exactly, one needs to
of Feshbach, Kerman, and Koon(EKK) [2], Tamura, Uda- calculate distorted wave Born approximatit®WBA) ma-
gawa, and Lensk€éTUL) [3], and Nishioka, Weidennller,  trix elements for all configurations which obey energy, angu-
and Yoshida(NWY) [4]. Those theories adopt different sta- lar momentum, and parity conservation. However, this is
tistical assumptions for the multistep reactidiid, and a  very difficult because there are a great many finpl2h
validation of those statistical assumptions is still under disstates in a continuum energy region. Instead of that, it is
cussion[6]. more convenient to introduce a density of the final state. The

The NWY theory[4] assumes that an additional particle- two-step cross section is approximated by a product of aver-
hole (p-h) pair creation by the incident particle is much aged cross sections which excite varioys2h states and
faster than residual configuration mixing, which can be obthe density of the final state. A true level densijtyl,12]
tained by an argument of the time scale of nuclear reactiondased on a random matrix model should be used for preequi-
This assumption enables us to adopt the “sudden approximadibrium nuclear reaction calculations.
tion.” In the calculation of the two-step process with the In Sec. Il, we describe a formula of DWBA matrix ele-
sudden approximation, an intermediate state is always ments for the two-step process id acheme. An interference
1p-1h state, and amplitudes for the different paths to reacleffect among the scattering amplitudes is investigated by cal-
the same final state interfere with each other. A statisticatulating spectroscopic amplitudes. A brief formula for the
energy average is applied to the final state only. true level density in Ref.12] is also given. Examples of the

In contrast with NWY, the TUL theory3] assumes that calculated two-step cross sections are shown in Sec. lIl.
the residual configuration mixing occurs before the e
pair creation. This assumption leads to the “adiabatic ap-
proximation,” in which a statistical energy average is applied Il. MULTISTEP DIRECT REACTION
to the intermediate state as well as the final one. Conse- WITH THE SUDDEN APPROXIMATION
guently, there are no interference effects among the scatter-
ing amplitudes.

These two assumptions give different expressions for the To describe cross sections for a MSD two-step process
two-step cross sections. Comparisons of the calculated cro¥éth the sudden approximation, an intermediate state is al-
sections are, however, difficult because the NWY theory haways a Pp-1h state, and amplitudes for the different inter-
a somewhat complicated formulation, and there are a fewnediate states that lead to the same final state interfere with
examples of the NWY calculatiog,8]. Koning and Akker- each other. The cross section in Fig. A+a—C+c—B
mang[7] carried out a comparison of MSD models including +b, is given by

A. Microscopic description of the two-step process
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Sas la Ja 36y v, Jo is the intrinsic spin of the incident particlg, is the wave

number, andn is the magnetic quantum number. The target,
8¢y ey Je intermediate, and residual states arp-@h, 1p-1h, and

2p-2h states, respectively.

b E E b X The total transferred angular momentulnis a vector
sum of angular momentum transfers at each steandA’,
Ie given by
5 ’B A=A+N =lg=1a=]a=]o, 2
FIG. 1. Two-step process, coupling of angular momenta. .
A=l+s=lc—la=]a"]c, (3
(do) 2|B+l MaMp kb and
— = S
dQ wo step (214+1)(2s,+1) (27h°)° ky N =1+ =lg—lc=jc—]p, (4)
XZ 2 |T;\;n‘bma( 0)[2, (1) yvhereja , Jbs andjc are the spin of the incoming/outgoing/
g Ammym, intermediate particles, andand s are the orbital angular
momentum transfer and the spin transfer.
whereq is the quantum number that specifies the fingd2h The transition matrix elemeit; > () is given by[13—
state| o andl g are the spin of the target and residual state, 15]
|
TIMR0)= X t(6) ®)

Iclsnl’s"\!

t(e)= > ila7 eV MNEART TSRS N TR 2
lajalbiblcic

X <| cl Oo||a0><| bI ,0q|c0><|asaoma“ama><l bSh— mvmb“ bMp— m>

X<jbAmb_mama_mb+m|jama>w(ja)\jb)\,;ch)W(lA)\ |B)\,;|CA)

Ic Sc jc Ib Sp jb
Il s A " s N (Tp—m)!
X . [ NT s ®
Ia Sa Ja |C SC JC
1 (+)
Xk_kb Xipip (Ko o) Firsn (re) Gi 5 (Tp . Fa) fisn(ra) i, (Kar ) drodra, (6)
a

wheref stands fory2j+1, Xlaja(kara) andXijb(kbrb) are regular solution of the Schdinger equation, and. (r-) is

the distorted waves for the incoming/outgoing pamCles'theTless?(glretatteg 0]]: Fa a]f'd:&r' i Eq.(6
fi(1) s the form factor that represents the particle-holey (LA NS O R0 W PR MRS
state excitation, ancG,(:jZ(rb,ra) is the partial-wave ex-

! with the range of 1 fm. The form factdig, (r) can be cal-
panded Green's function that connects the one-step matrixjated ag17]

element to the two-step one. The Green’s function in the

r-space representatigt6] can be calculated as fi (1) = \/E\/Evof{l(—1)“jh’1’2i'p*'h“]hfpf)ﬁ*l
2u 14 (—1) et nt!
Gl ra)= = gz el I (ker=), (D) X pinl/2, 1,2“0)%%
whereX|CjC(kcr) is the distorted wave for the intermediate ) ) o
particle, H; ; (kcr) is the out-going wave, which is an ir- Xf Up(r)Ga(r",r)un(r’)dr’, (8)
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1
gn(r',n)= a\/—Kx+(1/2)(ar>)|>\+(1/2)(01r<) 9

wherel ;=1 for the first step andl;=15 for the second step;

lps Ihy Jp, @andjy are the quantum numbers of the single-

particle statesl(r) andK(r) are the modified Bessel func-
tions; a1 is the range parameteY, is the strength of ef-
fective interaction; and,s, is the factor defined in Ref17].
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A2_<IBMBl[[bhlapz])\’[bhza Jichigmg)
=P,CsCp{ 12 Jon o p (13)
AP

Az=(lgM Bl[[bhzapl])\’[bhlapz]lc]lBM 5

We assume the spin-/isospin-independent Yukawa interac-

tion; then,I=\, I'=\", anda, g, =1.

B. Spectroscopic amplitudes

For two-step(and higher processes, there are many ways
to excite a definite state, and the corresponding amplitudes

interfere with each other. For thg22h excitation, there are

in, In, Iy

—P,CCy{ p2 o 1p} (14)
le N g

As=(lgM Bl[[bhlapl])\’[bhzapz]IC]IBM 5

four different paths to arrive at the same final state, as shown . .
schematically in Fig. 2. To investigate the feature of interfer- Ihy Iny In

ence, we calculate the spectroscopic amplitudes. The final

- Jp, Jp, |
2p-2h state is specified by the resultant angular momenta of =P4CsCn p,l o TP (15
two-holesl, and two-particles . S PR I
The initial state is denoted #s|0), and the intermediate
and the final states are where
—(_ le+N =1
c:[bﬁlagl].cMC|o> (10) Pi=(=1)c B, (16)
and PZZ(_ 1)jp1+jp2_|pr (17)
VL (=108 0 J[1+(=1)"P6 p,] Pg=(—1)lptlp, "M *le7le 1y, (18
(14 6h,n)(1+8p ) P,=—1, (19)
X[[b ]l [ap1 pz]l Tiomgl0), (1) and
whereh;, p;, h,, andp, represent the single-particle states; Cs=TnlpN'Tc, (20
a' is the particle creation operator; ahd is the hole cre- | |
ation operator. The spectroscopic amplitudes corresponding Cn=yI1+ (=)', p J[1+(=1) P8y 1. (21)

to the four paths in Fig. 2 are given by

A1 =(1gMg| [[bhzapz])\’[bhlapl]lc]l Mg

in, In, Iy
=P,CsCp8 11 Jo2 lp (12)
lc N g
Al A2 A3 A4
D2 P2 P2 P2
oo hn ? ? n O h
T o
l ho ho l l ha ha l
h hi ha hy

FIG. 2. Four different paths to arrive at @2h state.(1) is the
basic configuration(2) shows an exchange of the two holé3)
shows an exchange of the two particles, édshows exchanges of
the two holes and two particles, respectively.

The transition matrix element for the two-step process is a
coherent sum of those paths with the corresponding spectro-
scopic amplitudes in Eq$12)—(15). When one ignores the
residual interaction, thef®2h excitation energy is indepen-
dent ofl, andl, once the four orbits are fixed; then a cross
section for a definitég is an incoherent sum over possilble
andl,. We assume that the target spin is zéyps0; then,
taking lc=\A andlg=A, the two-step cross section in Eq.
(1) becomes

(do) 2A+1 MaMp kb
q0 o _32\2 2
A0/ 0 ey 252t 1 (277)

4 2
> > At(0)

i=1 )\)\/

X2

Iplh mmymy

(22)

wheret;(8) is given by Eq.(6).

An example of the calculated two-step cross section is
shown in Fig. 3, which is an angular distribution of inelasti-
cally scattered protons ofP®b, for E;;=22 MeV, A=2,
the excited p-2h state is|1f;0hgA(25,,) ~1(1dg) 1) in
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FIG. 3. Microscopic two-step cross sections f8#b(p,p’) for FIG. 4. Microscopic two-step cross sections f8#b(p,p’) for
En=22 MeV, I,=1, 1,=2, andA=1. The Z-2h pairs are cre-

Ein=22 MeV, I,=1, 1,=2, andA=2. The 2-2h pairs are cre-
ated in theZ shell. The thin lines are the contributions of each pathated in theZ shell. The thin lines are the contributions of each path

in Fig. 2, the thick solid line is the coherent sum of the four ampli- in Fig. 2, the thick solid line is the coherent sum of the four ampli-
tudes, and the thick dot-dashed line is the incoherent sum. tudes, and the thick dot-dashed line is the incoherent sum.

tions for those processes become identical. This numerical

the Z shell, and the case fdi,=1 andl,=2. The optical
equality in the spectroscopic amplitudes just happened to this

potential used is the Walter-Guss potentjdB] and the

strength of the residual interactiofy is taken to be 30 MeV. case. _ _
The thin lines(1)—(4) are the cross sections for the different  If the intermediate stat€ is a one-boson state and the

intermediate states as schematically shown in Fig. 2. Thénal stateB is a two-boson state, the spectroscopic ampli-
dot-dashed line is the incoherent sum of those four croséides in the case qi; # p, andh;#h, become

sections, while the thick solid line stands for the coherent
sum of the four amplitudes. In this case, these two thick lines A=1, (24)
are in almost the same magnitude, and the interference
among the scattering amplitudes is small. It is noted that we A=A3=0, (25)
define the incoherent sum as

Ag=(—1)'ct "l (26)

We refer to this as a boson approximation. With this approxi-
mation, the complicated spectroscopic amplitudes in Egs.
(12—(15) become just=1 as in Egs.(24) and (26). This

so summations ovex and )\’ are still coherent. helps us to understand the interference effect.

Figure 4 shows the same calculation as in Fig. 3 but for The final ~state in Figs. 5 and 6 is
A=1. A strong interference appears in this case. The cohetf[ 1f72(2512) ~*1;,[0hgiA(1d32) 1, )i m,), Where 1, and
ent sum of the four amplitudgsolid line) becomes smaller 1, are the quantum numbers which specify the final two-
than the incoherent suiidot-dashed ling boson state. Since we assumied=0, thenl,=1c=\, |,
There are five different states specified lgyand I}, for =\’, andlg=A. From Egs.(24) and(26), an exchange of
the A=1 process, namelyl {,I,)=(1,1),(1,2), (2,1, (2,2, two bosons coherently contributes to the scattering ampli-
and (2,3). For A=2, there are seven states. The cross sectudes.
tions for those states are incoherently summed to give cross The calculated cross sections with the boson approxima-
sections for the final stalgy. Those are shown in Figs. 5 and tion are shown in Figs. 5 and 6 by the thick dot-dashed lines.
6. A cross section for the case df,(I,)=(2,1) is not shown In the case ofA=2 in Fig. 5, (1,l,)=(3,3) and(3,5 are
possible; then the cross sections for those states are incoher-

in Fig. 5, because the spectroscopic amplitudes Fgrl()
=(1,1) and(2,) of A=2 are the same and the cross sec-ently summed, and this can be compared with the cross sec-

2
> AL(O)] (23)

AN/

> 2 2>

Iplh mmymg i=1
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FIG. 5. Cross sections for all possiblg and |, numbers are FIG. 6. Cross sections for all possiblg and I, numbers are

shown by the thin lines, the thick solid line shows the sum of them shown by the thin lines, the thick solid line shows the sum of them,
and the dot-dashed line is obtained with the boson approximatiorand the dot-dashed line is obtained with the boson approximation.
The reaction is the same as in Fig. 3. The reaction is the same as in Fig. 4.

tion summed ovet, andl,. The spectroscopic amplitudes  As the interactionV is diagonal with respect td1, we
for this case arA;=A,=1, and the boson approximation consider the subspace with a definite valué&/ofThe matrix
gives a good estimate. In Fig. 6,,(1,)=(3,3) is allowed. elements of the residual interactiovisre assumed to form a
The strong interference effect appeared again because ®aussian orthogonal ensemty@OE) characterized by
A;=1 andA,=—1. Therefore, the feature of the interfer-
ence for these two cases can be interpreted by the boson _

S Viuny=0, (29
approximation. o

VmM’nVVm/Mr’nrvr :an( 5mmr 5nnr 5:“/—", 5VV7
+ Smn Snmy 6w Ot ) (30

C. True level density

The Hamiltonian of our nucleus is assumed to consist of
the single-particle Hamiltoniah and the residual interaction
V, H=h+V. The eigenfunction and eigenvalue of the total\yhere the bar indicates the ensemble average.afigh is
Hamiltonian satisfy i —E)|a)=0, wherea indicates the the second moment. Thikscheme second moments can be
quantum numbers. For the single-particle Hamiltonidn (' gptained by using the following relation:

— €m,)|Mu) =0, wherem represents the exciton number or

2n characterizing the class, apdrepresents the other quan-

tum numbers. We use thd representation t@g. The unper- E (Vo nv)fﬂ_z (Vo ny)2M+1
turbed state density(®)(E,M) is given by o w0

PEM)=2 S(E~ep,), 27) =2 (Vi m)fa=s= M INm(IN(D), (3D
N
whereM=3_,m,, andm, is the z component of the total Where
angular momentum of the single-particle orhit Parity is
not explicitly shown here. One can express Ey) in aJ 0)7
scheme with the following well-known relation: Nm(\])zj pm’ (E)dE. (32
pWUE)=pWNEM=0)-pSNEM=J+1). (28 The true level density is calculated as
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100 2 T T T
Pmu(E) =2 K(almu)PS(E-Ey) |
a E
10%
1| 1 107 r
== (M| g Ime) s U1
s 10° r .
= 0%k i
=——Im(m = i
< Iu’| m(E)| /‘l’> Q’E 104 F ) :
S 3 P
1I ! (33 102 { i
+ = i
T E"—é€m,—on(E) 10! r i
and the exciton state density is given by 100 bl b . — — :
0 10 20 30 40
L L E [MeV]
mE)=2 pmu(E)=—2 —Im it
Pm -~ Pmu U Et—e ol (E) FIG. 7. Unperturbed level densities 8Pb form=2-8.
mu m

(0) 3 1 particle state density was calculateddpy 6a/ 7%, wherea is
=—— (e)lm o) de. (34 .
—e— 0o (E) the level density parameter taken to be 15.36 M&y24].
It is found that the saddle-point vaIueﬁL(E) depend
In performing the ensemble average, we introduce theery weakly onJ™, soo,(E) (m=2 and 4 averaged over
Hubbard-Stratonovich transformation and express the geneg” are shown in Fig. 9. Each particle-hole state shifts and
ating function in a form of integral over the varialevhose  spreads due to residual interaction, amg represents the
saddle-point value appears in the level density formula. Thignergy shift(real parj and spreading widtlimaginary part

value is obtained by solving the following equation: Figure 9 shows thap-h states at low excitation energies
shift to lower energy and the energy shift is about
E M (J)E ; —1.5 MeV, while thep-h energy increases at high excita-
e E—e,,— d)(E) tion energies. At low excitation energies, phh states shift
mu n

to lower energy since Ref{,) <0, and this results in a sig-
(0)3 1 nificant enhancement of the state density near threshold en-
= 2 an(J)f (f)mdf- ergies. On the other hand, one cannot see clearly the effect of
. the residual interaction above that, because the exciton state
(35 densities become insensitive to the excitation energy.

The total exciton state density is defined as
Ill. TWO-STEP CROSS SECTIONS AND DISCUSSIONS

pm(E)=2 (23+1)p)(E), (36) To calculate a double-differential cross section to the con-
J tinuum energy region, one has to calculate E2) for all
wherep}(E) is given by Eq.(34). O
It is noted that the “true” level density obtained here o

(with approximation depends on the unperturbed energy of
the statemu ando,, and not its structure. 10°
The unperturbed level densipf?(E) is shown in Fig. 7, 107 |
which is obtained by summing ovéf with a factor of 2) i
+1 as in Eq.(36). The Woods-Saxon potential was used to
generate single-particle states. The binding energies of thgﬁ
states are the same as those employed in Reéfl. For 4
deeply bound states, we used the spherical Nilsson mode  19® |
with the parameters of Bengtsson and Ragnar§26h
The calculated partial level densities in Eg6) for 2°%Pb \
are shown by thick lines in Fig. 8 as functions of excitation 10 iy
energy. The Yukawa-type residual interaction with the range ~ 10° F———f——tu 2'0 e 3'0 R
of 1 fm and the strength of 30 MeV was assumed. State E [MeV]
densities calculated with a model of ke and Dobéq21]
are also shown in this figure by thin curves. This model is FIG. 8. Calculated partial level densities 8¥Pb for m=2-8.
based on the equidistant spacing mof2®,23, and it is  The thin lines are calculated with the equidistant spacing model of
often adopted in precompound calculations. The singleBétak and Dobédor m=2 and 4.

10° F

[1/MeV]

Pl

o
pry
o
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Re(o,,), Im(c,,) [MeV]

3 —————

Re(s,), M=2 ==eeeu-

20
E [MeV]

FIG. 9. Saddle-point values(E) of 2°%Pb form=2 and 4.
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whereeg is thep-h energy for the final statB. Such calcu-
lations are, however, very difficult because there exists a
large number of final states. Therefore, we approximate it by
a Gaussian energy-averaged cross sedi®,26 for arbi-
trary sampled p-2h states, and the averaged cross sections
are multiplied by the exciton state density as

d?c
dEdQ

where the densityp’(E,) is given by Eq.(34), which is
independent of thep-h energieseg for final states, and
(do/dQ), is the energy-averaged value af/d(})g.
Figure 10 shows various cross sectigtisn lineg for the
208h(p,p’) reaction,A=2 and 3,E;,=30 MeV, andE
=15 MeV. The strength oV/;=30 MeV was employed.

Ql o
3/ §

=2(2A+1>p$(Ex>( ) (39)
A

two step  ?

final states that satisfy the energy, spin, and parity conservagqre than a hundred states for eathvalue within the en-
tion in the process, and whose cross sections are multlpllegrgy of E.+2 MeV were sampled. This energy-averaging
by the true level density. This can be written as X

whereB is the final state, {o/d{})g is the two-step cross
section in Eq.(22) but divided by 2\+1, andm=4. The

d?c
dEdQ

two step

true level densit)p'nﬁj for B is given by

5= —
Pm(Ex)= ;m

1

B s do
=2 (2|B+1>pm<Ex>(dQ

T
Ex—es— o (EY

’
B

(38)

103 7

10* |

- -
o S,
~ &

do/dQ2 [mb/sr]

-
o
&

10°®

10-10

—————
Averaged, A=2

3 10°

1
-
S

]
iy
S

N

w

a; 3
d/dEDQ [mb/MeV si]

-
]
]

0-8

1 0-1 1 L N
0 30

60

a0 120
6c.m. [deg]

150

— 1
180

(37

width is comparable to the energy shift due to residual inter-
action. The thick dotted lines in Fig. 10 are the averaged
cross sections multiplied by the true level density. Such cal-
culations were carried out foh=0 to 9, and those cross
sections were summed to give a total two-step cross section.

The averaged cross sections for varioNsvalues are
shown in Fig. 11 by the thin lines. These cross sections,
except for A=0, show smooth, structureless, forward-
peaked angular distributions as usually observed experimen-
tally. For the case ofA =0, an oscillatory angular distribu-
tion still persists because the sampling number is insufficient,
and the number of possible transitions is not so large.

10‘3:,.......,..,.,I,.:.'oo
; Averaged, A=3 ------= 3
(b) ]
10 | 4107
10° F - 1102
6 L 1.57%
— 10" T 710° 2
-a S
E ]
g1’ 10¢ E
% G
3 5
N 3
10° 10% P
©

109

10710

10-11
0

e — 1
60 9 120 150 180

6c.m. [deg]

FIG. 10. Averaged microscopic two-step cross section€¥®tb(p,p’) for E;,;=30 MeV andE,,=15 MeV. TheA=2 and 3 cases are
shown in the left and right drawings, respectively. The thick dotted lines are the averaged values multiplied by the statendémsitight
axig) and the thin lines are examples of some typical microscopic cross setiorise left axis.
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FIG. 11. Double-differential cross sections of the two-step pro- 9
cess, 2%%Pb(p,p’) reaction atE;;=30 MeV andE, =15 MeV. 8c.m. [deg]
Contributions of the varioud values, and the sum of them.

We adopted the random-sampling method to average two- F/G. 12. 3D plot of tgﬁéf) one-step andb) two-step cross
step DWBA cross sections. The number of sampled configuSections for the reaction of*Pb(p,p’) atEi,;=30 MeV.
ration should be large enough to get convergence of the av-

eraged value. However, we could not reach the complete i )
convergence because the two-step calculations take a gr (?te, while the NWY model uses p2h state density. In

deal of computational time. We made several trials of the2ddition, state density formulas of the equidistant spacing

random-sampling technique, and estimated that the averag«'eﬁ'(],lodeI are often adopted in the FKK analyses, but those are

cross sections have uncertainties of about 5@4is value is _ different from our level density.
not 1o but a rough estimation of the range of ambighifjo The relative strength of the two-step process to the one-

avoid this relatively large ambiguity, a complete calculationSteP One is determined by the averaged DWBA cross section
should be made for all possibley22h configurations in the and the state density. The averaged one-step DWBA cross

M scheme. This may be possible for light nuclei such aéection is much larger than that for the two-step one; how-
ever, when those DWBA cross sections are multiplied by the

ptate densities, the two-step cross section becomes compa-

An experimentally observed cross section is a sum 0
rable to that for the one-step one. In the case Ef

those cross sectionfdashed lingtogether with the one-step e .
cross sectioridot-dashed line which is shown by the thick :,30 MeV, the two-step contribution takes a maximum at
solid line in Fig. 11. Contributions of higher steps can beEp=15 MeV. This will be shown later.
neglected at this energy. The one-step cross section was cal- 1he ratio of the two-step cross sections to the one-step
culated in a manner similar to the FKK calculatij@s—27]  Ones also depends afy, as the absolute value of the two-
except for a treatment of the level density, because th&tep cross section is proportional ¥ while that for the
Ericson-Williams-type state densitig21—23 are often used one-step one i¥3. As the employed/,=30 MeV is a ten-
for FKK-MSD calculationg7,25-217. tative value, to determine the absolute two-step magnitude
In the case of Fig. 11, the two-step cross section becomegne needs to fit the calculated cross sections to experiments.
larger than the one-step one, which seems to be peculiar $ince we assumed a simple Yukawa interaction to calculate
one compares it with published FKK analysesee Refs. the second moments in E@5), the level density,(E) also
[25,26], for example. There are significant differences be- depends on the/, value. At the low excitation energies
tween FKK and our calculations. First, the FKK model em-where the partial level density rises rapidly with the excita-
ploys an on-energy-shell approximation to calculate thdion energy, a change in the saddle-point vatyg by Vq
Green’s function, but we solve it exactly as in E@). Sec- causes a large change in the level densities. However, the
ondly, the FKK calculations contain a density of thp-1h level density is quite insensitive ¥, at high excitation en-
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ergies, because the partial level densities are almost constant, IV. CONCLUSION

as seen in Figs. 7 and 8, SO that the effect of the energy shift We described how two-step cross sections with the sud-
by o, cannot be seen obviously. Therefore, one may be ablgen approximation were calculated. The two-step process
to determine the/, value by fitting the absolute cross sec- with the theory of Nishioka, Weidenitier, and Yoshida is
tions to the experimental data regardless of the level densitya|culated as a microscopic two-step DWBA cross section
calculation. which is averaged over the residual state. So the physical
It is interesting to investigate an interference effect on thenterpretation of the sudden approximation is quite straight-
averaged two-step DWBA cross section. One can see in Figorward.
4 that the effect appears in a certaip-2h configuration, but Cross sections which excite @2h state were expressed
such interference is expected to disappear when one calcin aJ scheme, and the Yukawa-type interaction was assumed
lates an averaged cross section for a large number of coffer the particle-hole pair creation. The Green’s function ap-
figurations. We compared two caséa) All two-step cross ~pearing in the two-step calculation was represented in
sections were calculated with E@2), and(b) Eq. (23) was  space. An interference effect among the amplitudes for the
used. These two cases yielded the same angular distributiéhfferent intermediate states was examined. A strong interfer-
but the absolute value was different. The difference is, howence appeared for a certain configuration, and this was inter-
ever, about the same magnitude as the uncertainty of o"éted by the boson approximation.

calculations. Therefore, it is difficult to mention the effect of  1he Pa”i?' 'fve' de',"f]i“ﬁs for gxfﬂ”; and eXCitkO"r‘] ”Uh'T" .
interference in the final result at this moment, and furthe€" Were calculated with the model of Sato, Takahashi, an

study is needed. Yoshida[12]. The obtained “true level densities” were used

The calculations described above were carried out foFOr the calculation of*™Pb(p,p") reaction cross sections. A

various outgoing proton energies to construct a double[andom—samplmg method was adopted for a cross-section

; . . . .~~~ ~average, and the averaged two-step cross sections were mul-
differential cross section, and the result is shown in Figs g g P

S ) o ipli i i final double-
12(a) and 12b). The reaction i€%Pb(p,p’) with an incident gﬁlfleegntt)iil t?ristsruseeclt?gﬁll density to give a final double

proton energy of 30 MeV. The one-step cross sections are o ywo-step calculations still contain relatively large un-
generally larger than the two-step ones except Ejf  certainties at this moment because of a problem in the cross-
=15 MeV, as is shown in Fig. 11. Belo&,=15 MeV, the  section averaging. However, it was shown that the two-step
one-step and two-step cross sections show a similar tendencyoss sections were almost in the same magnitude as the
because of the Coulomb barrier. The one-step componeme-step ones beloEI;,=15 MeV, when an incident proton
dominates at the higher outgoing energies, so that the anglenergy was 30 MeV. Above the emission energy of 15 MeV,
energy-integrated cross section for the two-step componeithe one-step component dominates the two-step contribution.
is about 20% of that for the one-step one in this calculation.
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the experimental data, because the procedure adopted here isone of the authordT.K.) is grateful to Professor M.
limited to doubly closed-shell nuclei. Such comparison is notkawai and Professor Y. Watanabe at Kyushu University for
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