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Interference effect in the scattering amplitudes for nucleon-induced two-step direct process
using the sudden approximation
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An implementation of the calculation for the two-step cross sections of the theory of Nishioka, Weiden-
müller, and Yoshida is described. Cross sections that excite a 2p-2h state are expressed in aJ scheme, and a
Yukawa interaction is assumed for the particle-hole pair creation. The Green’s function, which connects the
one-step matrix element to the two-step one, is represented inr space. An interference effect among the
amplitudes for the different intermediate states is examined by means of a spectroscopic amplitude. A strong
interference appears for a certain configuration, and this is interpreted by a boson approximation. Microscopi-
cally calculated two-step cross sections for208Pb(p,p8) reactions are averaged together with the true level
density, which is based on the random matrix theory, to give a two-step cross section to the continuum energy
region.
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I. INTRODUCTION

A quantum-mechanical approach to the preequilibri
nuclear reaction is one of the significant advances in theo
for the preequilibrium process. Several quantum-mechan
theories of the preequilibrium nuclear reaction have been
veloped in recent years@1#. There are three well-known sta
tistical multistep direct~MSD! theories, namely the theorie
of Feshbach, Kerman, and Koonin~FKK! @2#, Tamura, Uda-
gawa, and Lenske~TUL! @3#, and Nishioka, Weidenmu¨ller,
and Yoshida~NWY! @4#. Those theories adopt different st
tistical assumptions for the multistep reactions@5#, and a
validation of those statistical assumptions is still under d
cussion@6#.

The NWY theory@4# assumes that an additional particl
hole (p-h) pair creation by the incident particle is muc
faster than residual configuration mixing, which can be o
tained by an argument of the time scale of nuclear reactio
This assumption enables us to adopt the ‘‘sudden approx
tion.’’ In the calculation of the two-step process with th
sudden approximation, an intermediate state is alway
1p-1h state, and amplitudes for the different paths to rea
the same final state interfere with each other. A statist
energy average is applied to the final state only.

In contrast with NWY, the TUL theory@3# assumes tha
the residual configuration mixing occurs before the newp-h
pair creation. This assumption leads to the ‘‘adiabatic
proximation,’’ in which a statistical energy average is appli
to the intermediate state as well as the final one. Con
quently, there are no interference effects among the sca
ing amplitudes.

These two assumptions give different expressions for
two-step cross sections. Comparisons of the calculated c
sections are, however, difficult because the NWY theory
a somewhat complicated formulation, and there are a
examples of the NWY calculations@7,8#. Koning and Akker-
mans@7# carried out a comparison of MSD models includin
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FKK, TUL, and NWY. However, their implementation of th
NWY calculation was simplified, so an exact calculation h
not yet been done. On the other hand, TUL has been app
to analyze experimental data of nucleon-induced reaction
well as analyzing power data~Refs.@9,10#, for example!.

In this study, we perform calculations of the MSD two
step process with the NWY theory. To calculate a two-s
process according to the NWY theory exactly, one need
calculate distorted wave Born approximation~DWBA! ma-
trix elements for all configurations which obey energy, ang
lar momentum, and parity conservation. However, this
very difficult because there are a great many final 2p-2h
states in a continuum energy region. Instead of that, i
more convenient to introduce a density of the final state. T
two-step cross section is approximated by a product of a
aged cross sections which excite various 2p-2h states and
the density of the final state. A true level density@11,12#
based on a random matrix model should be used for pree
librium nuclear reaction calculations.

In Sec. II, we describe a formula of DWBA matrix ele
ments for the two-step process in aJ scheme. An interference
effect among the scattering amplitudes is investigated by
culating spectroscopic amplitudes. A brief formula for t
true level density in Ref.@12# is also given. Examples of the
calculated two-step cross sections are shown in Sec. III.

II. MULTISTEP DIRECT REACTION
WITH THE SUDDEN APPROXIMATION

A. Microscopic description of the two-step process

To describe cross sections for a MSD two-step proc
with the sudden approximation, an intermediate state is
ways a 1p-1h state, and amplitudes for the different inte
mediate states that lead to the same final state interfere
each other. The cross section in Fig. 1,A1a→C1c→B
1b, is given by
©2001 The American Physical Society03-1



,

et,

/

T. KAWANO AND S. YOSHIDA PHYSICAL REVIEW C 64 024603
S ds

dV D
two step

5
2I B11

~2I A11!~2sa11!

mamb

~2p\2!2

kb

ka

3(
q

(
Lmmbma

uTL
mmbma~u!u2, ~1!

whereq is the quantum number that specifies the final 2p-2h
state,I A andI B are the spin of the target and residual statesa

FIG. 1. Two-step process, coupling of angular momenta.
es
ole

at
th

te

-

02460
is the intrinsic spin of the incident particle,k is the wave
number, andm is the magnetic quantum number. The targ
intermediate, and residual states are 0p-0h, 1p-1h, and
2p-2h states, respectively.

The total transferred angular momentumL is a vector
sum of angular momentum transfers at each step,l andl8,
given by

L5l1l85IB2IA5 ja2 jb , ~2!

l5 l1s5IC2IA5 ja2 j c , ~3!

and

l85 l81s85IB2IC5 j c2 jb , ~4!

whereja , jb , andjc are the spin of the incoming/outgoing
intermediate particles, andl and s are the orbital angular
momentum transfer and the spin transfer.

The transition matrix elementTL
mmbma(u) is given by@13–

15#
TL
mmbma~u!5 (

I Clsl l 8s8l8
t~u! ~5!

t~u!5 (
l aj al bj bl cj c

i l a2 l b2 l 2 l 8~21!l1l82LL̂ Î Cl̂ ŝl̂ l̂ 8ŝ8l̂8 l̂ al̂ b
2 l̂ c ĵ b ĵ c

2

3^ l cl00u l a0&^ l bl 800u l c0&^ l asa0mau j ama&^ l bsb2m,mbu j bmb2m&

3^ j bLmb2m,ma2mb1mu j ama&W~ j a l j b l8; j c L!W~ I A l I B l8;I C L!

3H l c sc j c

l s l

l a sa j a
J H l b sb j b

l 8 s8 l8

l c sc j c
JA~ l b2m!!

~ l b1m!!
Pl b

m~u!

3
1

kakb
E E x l bj b

~kbr b! f l 8s8l8~r b!Gl cj c

(1)~r b ,r a! f lsl~r a!x l aj a
~kar a!drbdra , ~6!
rm
where ĵ stands forA2 j 11, x l aj a
(kar a) andx l bj b

(kbr b) are
the distorted waves for the incoming/outgoing particl
f lsl(r ) is the form factor that represents the particle-h
state excitation, andGl cj c

(1)(r b ,r a) is the partial-wave ex-

panded Green’s function that connects the one-step m
element to the two-step one. The Green’s function in
r-space representation@16# can be calculated as

Gl cj c

(1)~r b ,r a!52
2m

\2kc
x l cj c

~kcr ,!Hl cj c
~kcr .!, ~7!

wherex l cj c
(kcr ) is the distorted wave for the intermedia

particle, Hl cj c
(kcr ) is the out-going wave, which is an ir
,

rix
e

regular solution of the Schro¨dinger equation, andr , (r .) is
the lesser~greater! of r a and r b .

To calculate the form factorf lsl(r ) in Eq. ~6!, we assume
that the nucleon-nucleon interaction has the Yukawa fo
with the range of 1 fm. The form factorf lsl(r ) can be cal-
culated as@17#

f lsl~r !5A4pA2V0Î f
21~21!l2 j h21/2i l p2 l h1 l ĵ h ĵ pl̂ l̂21

3^ j pj h1/2,21/2ul0&
11~21! l p1 l h1 l

2
alsl

3E up~r 8!gl~r 8,r !uh~r 8!dr8, ~8!
3-2
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gl~r 8,r !5
1

aArr 8
Kl1(1/2)~ar .!I l1(1/2)~ar ,8 !, ~9!

whereI f5I C for the first step andI f5I B for the second step
l p , l h , j p , and j h are the quantum numbers of the sing
particle states;I (r ) andK(r ) are the modified Bessel func
tions; a21 is the range parameter;V0 is the strength of ef-
fective interaction; andalsl is the factor defined in Ref.@17#.
We assume the spin-/isospin-independent Yukawa inte
tion; then,l 5l, l 85l8, andal0l51.

B. Spectroscopic amplitudes

For two-step~and higher! processes, there are many wa
to excite a definite state, and the corresponding amplitu
interfere with each other. For the 2p-2h excitation, there are
four different paths to arrive at the same final state, as sh
schematically in Fig. 2. To investigate the feature of interf
ence, we calculate the spectroscopic amplitudes. The
2p-2h state is specified by the resultant angular moment
two-holesI h and two-particlesI p.

The initial state is denoted asA:u0&, and the intermediate
and the final states are

C:@bh1

† ap1

† # I CMC
u0& ~10!

and

B:
A@11~21! I hdh1h2

#@11~21! I pdp1p2
#

~11dh1h2
!~11dp1p2

!

3†@bh1

† bh2

† # I h
@ap1

† ap2

† # I p
‡I BMB

u0&, ~11!

whereh1 , p1 , h2, andp2 represent the single-particle state
ai

† is the particle creation operator; andbi
† is the hole cre-

ation operator. The spectroscopic amplitudes correspon
to the four paths in Fig. 2 are given by

A15^I BMBu†@bh2

† ap2

† #l8@bh1

† ap1

† # I C
‡I BMB

&

5P1CSCNH j h1
j h2 I h

j p1
j p2 I p

I C l8 I B
J , ~12!

FIG. 2. Four different paths to arrive at a 2p-2h state.~1! is the
basic configuration,~2! shows an exchange of the two holes,~3!
shows an exchange of the two particles, and~4! shows exchanges o
the two holes and two particles, respectively.
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A25^I BMBu†@bh1

† ap2

† #l8@bh2

† ap1

† # I C
‡I BMB

&

5P2CSCNH j h1
j h2 I h

j p2
j p1 I p

l8 I C I B
J , ~13!

A35^I BMBu†@bh2

† ap1

† #l8@bh1

† ap2

† # I C
‡I BMB

&

5P3CSCNH j h1
j h2 I h

j p2
j p1 I p

I C l8 I B
J , ~14!

A45^I BMBu†@bh1

† ap1

† #l8@bh2

† ap2

† # I C
‡I BMB

&

5P4CSCNH j h1
j h2 I h

j p1
j p2 I p

l8 I C I B
J , ~15!

where

P15~21! I C1l82I B, ~16!

P25~21! j p1
1 j p2

2I p, ~17!

P35~21! j p1
1 j p2

1l81I C2I B2I p, ~18!

P4521, ~19!

and

CS5 Î hÎ pl̂8 Î C , ~20!

CN5A@11~21! I hdh1h2
#@11~21! I pdp1p2

#. ~21!

The transition matrix element for the two-step process
coherent sum of those paths with the corresponding spec
scopic amplitudes in Eqs.~12!–~15!. When one ignores the
residual interaction, the 2p-2h excitation energy is indepen
dent of I h and I p once the four orbits are fixed; then a cro
section for a definiteI B is an incoherent sum over possibleI h
and I p . We assume that the target spin is zero,I A50; then,
taking I C5l and I B5L, the two-step cross section in Eq
~1! becomes

S ds

dV D
two step

5
2L11

2sa11

mamb

~2p\2!2

kb

ka

3(
I pI h

(
mmbma

U(
i 51

4

(
ll8

Ait i~u!U2

, ~22!

wheret i(u) is given by Eq.~6!.
An example of the calculated two-step cross section

shown in Fig. 3, which is an angular distribution of inelas
cally scattered protons on208Pb, for Ein522 MeV, L52,
the excited 2p-2h state isu1 f 7/20h9/2(2s1/2)

21(1d3/2)
21& in
3-3
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the Z shell, and the case forI h51 and I p52. The optical
potential used is the Walter-Guss potential@18# and the
strength of the residual interactionV0 is taken to be 30 MeV.
The thin lines~1!–~4! are the cross sections for the differe
intermediate states as schematically shown in Fig. 2.
dot-dashed line is the incoherent sum of those four cr
sections, while the thick solid line stands for the coher
sum of the four amplitudes. In this case, these two thick li
are in almost the same magnitude, and the interfere
among the scattering amplitudes is small. It is noted that
define the incoherent sum as

(
I pI h

(
mmbma

(
i 51

4 U(
ll8

Ait i~u!U2

, ~23!

so summations overl andl8 are still coherent.
Figure 4 shows the same calculation as in Fig. 3 but

L51. A strong interference appears in this case. The co
ent sum of the four amplitudes~solid line! becomes smalle
than the incoherent sum~dot-dashed line!.

There are five different states specified byI p and I h for
the L51 process, namely (I h ,I p)5(1,1), ~1,2!, ~2,1!, ~2,2!,
and ~2,3!. For L52, there are seven states. The cross s
tions for those states are incoherently summed to give c
sections for the final stateI B . Those are shown in Figs. 5 an
6. A cross section for the case of (I h ,I p)5(2,1) is not shown
in Fig. 5, because the spectroscopic amplitudes for (I h ,I p)
5(1,1) and~2,1! of L52 are the same and the cross se

FIG. 3. Microscopic two-step cross sections for208Pb(p,p8) for
Ein522 MeV, I h51, I p52, andL52. The 2p-2h pairs are cre-
ated in theZ shell. The thin lines are the contributions of each pa
in Fig. 2, the thick solid line is the coherent sum of the four amp
tudes, and the thick dot-dashed line is the incoherent sum.
02460
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tions for those processes become identical. This numer
equality in the spectroscopic amplitudes just happened to
case.

If the intermediate stateC is a one-boson state and th
final stateB is a two-boson state, the spectroscopic amp
tudes in the case ofp1Þp2 andh1Þh2 become

A151, ~24!

A25A350, ~25!

A45~21! I C1l82I B. ~26!

We refer to this as a boson approximation. With this appro
mation, the complicated spectroscopic amplitudes in E
~12!–~15! become just61 as in Eqs.~24! and ~26!. This
helps us to understand the interference effect.

The final state in Figs. 5 and 6 i
u†@1 f 7/2(2s1/2)

21# I 1
@0h9/2(1d3/2)

21# I 2
‡I BMB

&, where I 1 and

I 2 are the quantum numbers which specify the final tw
boson state. Since we assumedI A50, then I 15I C5l, I 2
5l8, and I B5L. From Eqs.~24! and ~26!, an exchange of
two bosons coherently contributes to the scattering am
tudes.

The calculated cross sections with the boson approxi
tion are shown in Figs. 5 and 6 by the thick dot-dashed lin
In the case ofL52 in Fig. 5, (I 1 ,I 2)5(3,3) and~3,5! are
possible; then the cross sections for those states are inco
ently summed, and this can be compared with the cross

-

FIG. 4. Microscopic two-step cross sections for208Pb(p,p8) for
Ein522 MeV, I h51, I p52, andL51. The 2p-2h pairs are cre-
ated in theZ shell. The thin lines are the contributions of each pa
in Fig. 2, the thick solid line is the coherent sum of the four amp
tudes, and the thick dot-dashed line is the incoherent sum.
3-4
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tion summed overI p and I h . The spectroscopic amplitude
for this case areA15A451, and the boson approximatio
gives a good estimate. In Fig. 6, (I 1 ,I 2)5(3,3) is allowed.
The strong interference effect appeared again becaus
A151 andA4521. Therefore, the feature of the interfe
ence for these two cases can be interpreted by the b
approximation.

C. True level density

The Hamiltonian of our nucleus is assumed to consis
the single-particle Hamiltonianh and the residual interactio
V, H5h1V. The eigenfunction and eigenvalue of the to
Hamiltonian satisfy (H2Ea)ua&50, wherea indicates the
quantum numbers. For the single-particle Hamiltonianh
2emm)umm&50, wherem represents the exciton number
2n characterizing the class, andm represents the other quan
tum numbers. We use theM representation tom. The unper-
turbed state densityrm

(0)(E,M ) is given by

rm
(0)~E,M !5(

m
d~E2emm!, ~27!

whereM5(ama , and ma is the z component of the tota
angular momentum of the single-particle orbita. Parity is
not explicitly shown here. One can express Eq.~27! in a J
scheme with the following well-known relation:

rm
(0)J~E!5rm

(0)~E,M5J!2rm
(0)~E,M5J11!. ~28!

FIG. 5. Cross sections for all possibleI h and I p numbers are
shown by the thin lines, the thick solid line shows the sum of the
and the dot-dashed line is obtained with the boson approxima
The reaction is the same as in Fig. 3.
02460
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As the interactionV is diagonal with respect toM, we
consider the subspace with a definite value ofM. The matrix
elements of the residual interactionsV are assumed to form a
Gaussian orthogonal ensemble~GOE! characterized by

Vmm,nn50, ~29!

Vmm,nnVm8m8,n8n85Mmn~dmm8dnn8dmm8dnn8

1dmn8dnm8dmn8dnm8!, ~30!

where the bar indicates the ensemble average andMmn is
the second moment. TheJ-scheme second moments can
obtained by using the following relation:

(
mn

~Vmm,nn!M
2 2(

mn
~Vmm,nn!M11

2

5(
mn

~Vmm,nn!M5J
2 5Mmn~J!Nm~J!Nn~J!, ~31!

where

Nm~J!5E rm
(0)J~E!dE. ~32!

The true level density is calculated as

,
n.

FIG. 6. Cross sections for all possibleI h and I p numbers are
shown by the thin lines, the thick solid line shows the sum of the
and the dot-dashed line is obtained with the boson approximat
The reaction is the same as in Fig. 4.
3-5
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rmm
J ~E!5(

a
z^aumm& z2d~E2Ea!

52
1

p
Im^mmu

1

E12H
umm&

52
1

p
Im^mmu

1

E12h2sm
J ~E!

umm&

52
1

p
Im

1

E12emm2sm
J ~E!

, ~33!

and the exciton state density is given by

rm
J ~E!5(

m
rmm

J ~E!52(
m

1

p
Im

1

E12emm2sm
J ~E!

52
1

pE rm
(0)J~e!Im

1

E12e2sm
J ~E!

de. ~34!

In performing the ensemble average, we introduce
Hubbard-Stratonovich transformation and express the ge
ating function in a form of integral over the variables whose
saddle-point value appears in the level density formula. T
value is obtained by solving the following equation:

sm
J ~E!5(

n
Mmn~J!(

m

1

E2emm2sn
J~E!

5(
n

Mmn~J!E rn
(0)J~e!

1

E2e2sn
J~E!

de.

~35!

The total exciton state density is defined as

rm~E!5(
J

~2J11!rm
J ~E!, ~36!

whererm
J (E) is given by Eq.~34!.

It is noted that the ‘‘true’’ level density obtained he
~with approximation! depends on the unperturbed energy
the statemm andsm , and not its structure.

The unperturbed level densityrm
(0)(E) is shown in Fig. 7,

which is obtained by summing overJp with a factor of 2J
11 as in Eq.~36!. The Woods-Saxon potential was used
generate single-particle states. The binding energies of
states are the same as those employed in Ref.@19#. For
deeply bound states, we used the spherical Nilsson m
with the parameters of Bengtsson and Ragnarsson@20#.

The calculated partial level densities in Eq.~36! for 208Pb
are shown by thick lines in Fig. 8 as functions of excitati
energy. The Yukawa-type residual interaction with the ran
of 1 fm and the strength of 30 MeV was assumed. St
densities calculated with a model of Beˇták and Dobesˇ @21#
are also shown in this figure by thin curves. This mode
based on the equidistant spacing model@22,23#, and it is
often adopted in precompound calculations. The sing
02460
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particle state density was calculated byg56a/p2, wherea is
the level density parameter taken to be 15.36 MeV21 @24#.

It is found that the saddle-point valuessm
J (E) depend

very weakly onJp, so sm(E) (m52 and 4! averaged over
Jp are shown in Fig. 9. Each particle-hole state shifts a
spreads due to residual interaction, andsm represents the
energy shift~real part! and spreading width~imaginary part!.
Figure 9 shows thatp-h states at low excitation energie
shift to lower energy and the energy shift is abo
21.5 MeV, while thep-h energy increases at high excita
tion energies. At low excitation energies, allp-h states shift
to lower energy since Re(sm),0, and this results in a sig
nificant enhancement of the state density near threshold
ergies. On the other hand, one cannot see clearly the effe
the residual interaction above that, because the exciton s
densities become insensitive to the excitation energy.

III. TWO-STEP CROSS SECTIONS AND DISCUSSIONS

To calculate a double-differential cross section to the c
tinuum energy region, one has to calculate Eq.~22! for all

FIG. 7. Unperturbed level densities of208Pb for m52–8.

FIG. 8. Calculated partial level densities of208Pb for m52–8.
The thin lines are calculated with the equidistant spacing mode
Běták and Dobesˇ for m52 and 4.
3-6
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final states that satisfy the energy, spin, and parity conse
tion in the process, and whose cross sections are multip
by the true level density. This can be written as

S d2s

dEdV D
two step

5(
B

~2I B11!rm
I B~Ex!S ds

dV D
B

, ~37!

whereB is the final state, (ds/dV)B is the two-step cross
section in Eq.~22! but divided by 2L11, andm54. The
true level densityrm

I B for B is given by

rm
I B~Ex!52

1

p
Im

1

Ex2eB2sm
I B~Ex!

, ~38!

FIG. 9. Saddle-point valuessm(E) of 208Pb for m52 and 4.
02460
a-
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whereeB is thep-h energy for the final stateB. Such calcu-
lations are, however, very difficult because there exist
large number of final states. Therefore, we approximate it
a Gaussian energy-averaged cross section@25,26# for arbi-
trary sampled 2p-2h states, and the averaged cross secti
are multiplied by the exciton state density as

S d2s

dEdV D
two step

5(
L

~2L11!rm
L~Ex!S ds

dV D
L

, ~39!

where the densityrm
L(Ex) is given by Eq.~34!, which is

independent of thep-h energieseB for final states, and
(ds/dV)L is the energy-averaged value of (ds/dV)B .

Figure 10 shows various cross sections~thin lines! for the
208Pb(p,p8) reaction,L52 and 3,Ein530 MeV, andEout
515 MeV. The strength ofV0530 MeV was employed.
More than a hundred states for eachL value within the en-
ergy of Ex62 MeV were sampled. This energy-averagin
width is comparable to the energy shift due to residual int
action. The thick dotted lines in Fig. 10 are the averag
cross sections multiplied by the true level density. Such c
culations were carried out forL50 to 9, and those cros
sections were summed to give a total two-step cross sec

The averaged cross sections for variousL values are
shown in Fig. 11 by the thin lines. These cross sectio
except for L50, show smooth, structureless, forwar
peaked angular distributions as usually observed experim
tally. For the case ofL50, an oscillatory angular distribu
tion still persists because the sampling number is insufficie
and the number of possible transitions is not so large.
FIG. 10. Averaged microscopic two-step cross sections for208Pb(p,p8) for Ein530 MeV andEout515 MeV. TheL52 and 3 cases are
shown in the left and right drawings, respectively. The thick dotted lines are the averaged values multiplied by the state density~on the right
axis! and the thin lines are examples of some typical microscopic cross sections~on the left axis!.
3-7
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We adopted the random-sampling method to average t
step DWBA cross sections. The number of sampled confi
ration should be large enough to get convergence of the
eraged value. However, we could not reach the comp
convergence because the two-step calculations take a
deal of computational time. We made several trials of
random-sampling technique, and estimated that the aver
cross sections have uncertainties of about 50%~this value is
not 1s but a rough estimation of the range of ambiguity!. To
avoid this relatively large ambiguity, a complete calculati
should be made for all possible 2p-2h configurations in the
M scheme. This may be possible for light nuclei such
40Ca.

An experimentally observed cross section is a sum
those cross sections~dashed line! together with the one-ste
cross section~dot-dashed line!, which is shown by the thick
solid line in Fig. 11. Contributions of higher steps can
neglected at this energy. The one-step cross section was
culated in a manner similar to the FKK calculations@25–27#
except for a treatment of the level density, because
Ericson-Williams-type state densities@21–23# are often used
for FKK-MSD calculations@7,25–27#.

In the case of Fig. 11, the two-step cross section beco
larger than the one-step one, which seems to be peculi
one compares it with published FKK analyses~see Refs.
@25,26#, for example!. There are significant differences b
tween FKK and our calculations. First, the FKK model e
ploys an on-energy-shell approximation to calculate
Green’s function, but we solve it exactly as in Eq.~7!. Sec-
ondly, the FKK calculations contain a density of the 1p-1h

FIG. 11. Double-differential cross sections of the two-step p
cess, 208Pb(p,p8) reaction atEin530 MeV and Eout515 MeV.
Contributions of the variousL values, and the sum of them.
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state, while the NWY model uses a 2p-2h state density. In
addition, state density formulas of the equidistant spac
model are often adopted in the FKK analyses, but those
different from our level density.

The relative strength of the two-step process to the o
step one is determined by the averaged DWBA cross sec
and the state density. The averaged one-step DWBA c
section is much larger than that for the two-step one; ho
ever, when those DWBA cross sections are multiplied by
state densities, the two-step cross section becomes co
rable to that for the one-step one. In the case ofEp
530 MeV, the two-step contribution takes a maximum
Ep8515 MeV. This will be shown later.

The ratio of the two-step cross sections to the one-s
ones also depends onV0, as the absolute value of the two
step cross section is proportional toV0

4 while that for the
one-step one isV0

2. As the employedV0530 MeV is a ten-
tative value, to determine the absolute two-step magnit
one needs to fit the calculated cross sections to experime
Since we assumed a simple Yukawa interaction to calcu
the second moments in Eq.~35!, the level densityrm(E) also
depends on theV0 value. At the low excitation energie
where the partial level density rises rapidly with the exci
tion energy, a change in the saddle-point valuesm by V0
causes a large change in the level densities. However,
level density is quite insensitive toV0 at high excitation en-

-

FIG. 12. 3D plot of the~a! one-step and~b! two-step cross
sections for the reaction of208Pb(p,p8) at Ein530 MeV.
3-8
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INTERFERENCE EFFECT IN THE SCATTERING . . . PHYSICAL REVIEW C64 024603
ergies, because the partial level densities are almost cons
as seen in Figs. 7 and 8, so that the effect of the energy
by sm cannot be seen obviously. Therefore, one may be a
to determine theV0 value by fitting the absolute cross se
tions to the experimental data regardless of the level den
calculation.

It is interesting to investigate an interference effect on
averaged two-step DWBA cross section. One can see in
4 that the effect appears in a certain 2p-2h configuration, but
such interference is expected to disappear when one ca
lates an averaged cross section for a large number of
figurations. We compared two cases.~a! All two-step cross
sections were calculated with Eq.~22!, and~b! Eq. ~23! was
used. These two cases yielded the same angular distribu
but the absolute value was different. The difference is, ho
ever, about the same magnitude as the uncertainty of
calculations. Therefore, it is difficult to mention the effect
interference in the final result at this moment, and furth
study is needed.

The calculations described above were carried out
various outgoing proton energies to construct a doub
differential cross section, and the result is shown in Fi
12~a! and 12~b!. The reaction is208Pb(p,p8) with an incident
proton energy of 30 MeV. The one-step cross sections
generally larger than the two-step ones except forEp8
515 MeV, as is shown in Fig. 11. BelowEp8515 MeV, the
one-step and two-step cross sections show a similar tend
because of the Coulomb barrier. The one-step compo
dominates at the higher outgoing energies, so that the an
energy-integrated cross section for the two-step compo
is about 20% of that for the one-step one in this calculati

In this study, we have not compared our calculations w
the experimental data, because the procedure adopted h
limited to doubly closed-shell nuclei. Such comparison is
difficult because our method can be extended to open-s
nuclei if a pairing correlation is introduced, and one c
determine the strength of interaction,V0. This should be
done in future works.
.
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IV. CONCLUSION

We described how two-step cross sections with the s
den approximation were calculated. The two-step proc
with the theory of Nishioka, Weidenmu¨ller, and Yoshida is
calculated as a microscopic two-step DWBA cross sect
which is averaged over the residual state. So the phys
interpretation of the sudden approximation is quite straig
forward.

Cross sections which excite a 2p-2h state were expresse
in a J scheme, and the Yukawa-type interaction was assum
for the particle-hole pair creation. The Green’s function a
pearing in the two-step calculation was represented ir
space. An interference effect among the amplitudes for
different intermediate states was examined. A strong inter
ence appeared for a certain configuration, and this was in
preted by the boson approximation.

The partial level densities for fixedJp and exciton num-
ber were calculated with the model of Sato, Takahashi,
Yoshida@12#. The obtained ‘‘true level densities’’ were use
for the calculation of208Pb(p,p8) reaction cross sections. A
random-sampling method was adopted for a cross-sec
average, and the averaged two-step cross sections were
tiplied by the true level density to give a final doubl
differential cross section.

Our two-step calculations still contain relatively large u
certainties at this moment because of a problem in the cr
section averaging. However, it was shown that the two-s
cross sections were almost in the same magnitude as
one-step ones belowEp8515 MeV, when an incident proton
energy was 30 MeV. Above the emission energy of 15 Me
the one-step component dominates the two-step contribu
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