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Equation of state and phase transitions in asymmetric nuclear matter
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~Received 2 April 2001; published 17 July 2001!

The structure of the three-dimension pressure-temperature-asymmetry surface of equilibrium of the asym-
metric nuclear matter is studied within the thermal Thomas-Fermi approximation. Special attention is paid to
the difference of the asymmetry parameter between the boiling sheet and that of the condensation sheet of the
surface of equilibrium. We derive the condition of existence of the regime of retrograde condensation at the
boiling of the asymmetric nuclear matter. We have performed calculations of the caloric curves in the case of
isobaric heating. We have shown the presence of the plateau region in caloric curves at the isobaric heating of
the asymmetric nuclear matter. The shape of the caloric curve depends on the pressure and is sensitive to the
value of the asymmetry parameter. We point out that the experimental value of the plateau temperatureT
'7 MeV corresponds to the pressureP51022 MeV/fm3 at the isobaric boiling.
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I. INTRODUCTION

At zero temperature,T50, a saturated nuclear matter
stable at vanishing pressureP50. As the temperature in
creases, the equilibrium state is derived through the isoth
~equation of state! P(r,T), wherer is the particle density. In
general, there are two different regimes of the equilibriu
state, see Ref.@1#, Chap. 9. If the evaporation time is larg
enough and the evaporated particles are carried away
the heated liquid, the equilibrium condition is given b
P(r,T)50, i.e., it has the same form as atT50. By increas-
ing the temperature one can reach the so-called phase
ration temperatureTs @2–4# above which the equilibrium
conditionP(r,T)50 is not satisfied anymore. This happe
if the minimum of the isothermP(r,T) is shifted on ther
axis and it is located atr5rminÞ0. The temperatureTs is
then the limiting one for the existence of a stable state of
liquid phase under the equilibrium conditionP(r,T)50. In
another regime, the heated liquid is surrounded by the s
rated vapor. The equilibrium condition requires then that
pressure,Pliq(r,T), and the chemical potential,m liq(r,T), of
the liquid phase should be equal to the corresponding o
Pvap(r,T) and mvap(r,T), for the saturated vapor, see Re
@1#, Chap. 8.~Here and below indices ‘‘liq’’ and ‘‘vap’’ de-
note the liquid and vapor phases, respectively.! In this re-
gime, as the temperature increases, the liquid becomes
stable with respect to the phase transition~boiling! and the
corresponding boiling temperature is the limiting one for t
heating of the nuclear liquid.

The limiting temperatures and the critical behavior of t
symmetric nuclear matter have been intensively investiga
using an effective interaction and finite temperature s
consistent mean-field theory@4–7#. The thermal properties
of asymmetric nuclear matter have been considered in R
@2–4,8–13#. In general, the two-component liquid and i
saturated vapor co-exist with different asymmetry param
X because of ther dependence of the symmetry energy. T
equilibrium state of the two phases of a two-component s
tem is described by the three-dimension surface of equ
rium in variablesP,T, andX, see Ref.@1#, Chaps. 8 and 9
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The evaluation of the (P,T,X) surfaces of equilibrium and
the analysis of the boiling regime for an asymmetric nucl
matter is a main goal of the present paper. We also study
properties of the caloric curve in the two regimes describ
above.

II. EQUATION OF STATE OF HOT NUCLEAR MATTER

We will follow the temperature dependent Thomas-Fer
approximation using the Skyrme-type force as the effect
nucleon-nucleon interaction. The energy density,E, and the
entropy density,S, are given by@14#

E5T(
q

Aq* J3/2~hq!1
1

2
t0@~11x0/2!r2

2~x011/2!~rn
21rp

2!#1
1

12
t3rs@~11x3/2!r2

2~x311/2!~rn
21rp

2!#, ~1!

S5(
q

S 5

3
Aq* J3/2~hq!2hqrqD , ~2!

wherexi , t i , ands are the Skyrme force~SkM! parameters,
q is the isospin index (q5n for neutron andq5p for pro-
ton!, rq is the nucleon density, andr5rn1rp . The Fermi
integral Jn(hq)5*0

`dzzn/(11 exp(z2hq)) in Eqs. ~1! and
~2! depends on the fugacityhq . The value ofhq can be
found from the condition

rq5Aq* J1/2~hq!. ~3!

Here, Aq* 5(1/2p2)(2mq* T/\2)3/2 and mq* is the effective
nucleon mass derived by

\2

2mq*
5

\2

2m
1

1

4
@ t1~11x1/2!1t2~11x2/2!#r

1
1

4
@ t2~x211/2!2t1~x111/2!#rq . ~4!
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Using Eqs.~1! and ~2! one can derive the free energ
density F5E2TS. Finally, one obtains the pressureP
~equation of state! and the chemical potentialsmq . Namely,

P5r2S ]

]r

F
r D

T,X

,

mn5S ]F
]rn

D
T,rp

, mp5S ]F
]rp

D
T,rn

, ~5!

where the asymmetry parameterX is defined asX5(rn
2rp)/r. A numerical calculation of the pressureP with the
energy densityE from Eq. ~1! leads to the van der Waals
like isothermsP5P(T,X,r), describing both the liquid and
the vapor phases@6,8–10#. According to Gibbs’s phase rule
the equilibrium states of the two-phase~liquid 1 vapor! and
the two-component~neutrons1protons! system are located
on the three-dimensional surface in the (P,T,X) space. To
obtain the shape of the (P, T, X) surface of equilibrium one
should use the Gibbs equilibrium conditions@1#:

Pliq~T,X,r!5Pvap~T,X,r!,

mq
liq~T,X,r!5mq

vap~T,X,r!. ~6!

We will imply that the nuclear matter is a bound system
nucleons assuming that the following additional conditi
mq

liq,0 is also satisfied.

III. SURFACES OF EQUILIBRIUM

We have performed calculations of the surfaces of eq
librium in (P, T, X) space using the SkM force@14# with the
parameterst0522645 MeV fm3, t15385 MeV fm5, t25
2120 MeV fm5, t3515 595 MeV fm313s, x050.09, x1
5x25x350, ands51/6, adopted for the ground state
nuclei. We point out that the use of the Skyrme force fro
the ground-state calculations is a quite reasonable app
mation for our purposes. The effective interaction is modifi
only by a few percent in a wide temperature region from 0
20 MeV @15,16#. The numerical procedure we used sta
from certain values ofXliq, T, and looks forr liq, rvap, and
Xvap that satisfy the equilibrium conditions~6!.

The section of the equilibrium surface calculated by o
code is shown in Fig. 1. This figure represents the equi
rium states havingX.0, i.e., states of the neutron-ric
nuclear matter. We point out that there are two sheets of
surface of equilibrium. The upper sheet is the surface
boiling and the lower one is the surface of condensation.
interior space between the sheets is the phase separatio
gion where the two phases coexist. The crossing point
both sheets with a straight lineP5const andT5const, give
the equilibrium asymmetry parametersXliq andXvap for liq-
uid and vapor phases, respectively. In general the asymm
parametersXliq andXvap are different. The vapor asymmetr
Xvap exceeds the corresponding liquid oneXliq ~at Xliq.0).
This is a feature of the nuclear matter. The density dep
dence of the isospin symmetry energy@see Eq.~1!# provides
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the conditionumnu,umpu and the preferable emission of ne
trons.

The above mentioned sheets of the surface of equilibr
coincide along the azeotropic (P,T) line in X50 plane de-
noted by letterA in Fig. 1. The azeotropic line is cut off a
the critical temperatureTcr

(sym)514.61 MeV~point E) of the
symmetric nuclear matter derived by the condition@1#

S ]P

]r D
T,X50

5S ]2P

]r2 D
T,X50

50. ~7!

Both sheets of the surface of equilibrium also coincide alo
the critical line marked by letterC in Fig. 1. The critical line
of an asymmetric nuclear matter is derived by the conditi
see Ref.@1#, Chap. 9,

S ]mq

]X D
T,P

5S ]2mq

]X2 D
T,P

50. ~8!

We point out that the critical temperatureTcr derived by Eq.
~8! at XÞ0 is different from the one,Tcr

(sym), obtained from
Eq. ~7!. If one goes along the critical lineC, the critical
temperatureTcr decreases and the corresponding pressure
creases as the value ofX increases.

The lineB in Fig. 1 is the line withmn50. The crossing
point of the critical lineC with the lineB ~point D in Fig. 1!
provides the maximum possible asymmetry for the bou
(mq

liq,0) liquid phase. This point is located atX50.68, T
510.4 MeV, andP50.26 MeV/fm3 for the SkM interac-
tion. Note that the cold nuclear matter atT50 is bound at
X,0.31. Thus, the hot nuclear matter can exist~in the bound
state! at higher asymmetry than the cold one. This feature

FIG. 1. Surface of equilibrium in (P,T,X) space. The upper
sheet is the surface of boiling and the lower one is the surfac
condensation. The azeotropic line and the critical line are mar
by the lettersA andC, respectively. The drip linemn50 is marked
by the letterB. The pointD indicates the maximum possible asym
metry for the bound liquid phase atmn,0 and the pointE is the
critical point for the symmetric systemX50.
5-2
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EQUATION OF STATE AND PHASE TRANSITIONS IN . . . PHYSICAL REVIEW C64 024315
hot nuclear matter appears because of the increasing o
symmetry energy with temperature.

IV. BOILING AND CALORIC CURVES

Let us consider the isobaric (T,X) phase diagrams ob
tained as the cut of the equilibrium surface of Fig. 1 by pla
P5Pext5const. These diagrams are very useful for obta
ing an insight into the liquid-vapor phase transition in h
asymmetric nuclear matter. The shape of (T,X) diagram de-
pends on the value of the pressurePext. The (T,X) diagram
contains the critical pointTcr if the value of pressurePext

exceeds the critical~maximal allowed! pressurePcr
(sym) on the

azeotropic line in Fig. 1. For the SkM force used here,
value of the critical pressure obtained from Eq.~7! is
Pcr

(sym)50.2109 MeV/fm3. In the opposite casePext

,Pcr
(sym), the (T,X) diagram contains the point of equal co

centrationX50. In Figs. 2 and 3 we have plotted the (T,X)
diagrams at the pressuresPext50.15 MeV/fm3 and Pext
50.25 MeV/fm3, respectively. In each diagram we ha
two lines. The lower line~on the left! is the line of boiling
and the upper line~on the right! is the line of condensation
In Fig. 2, these lines meet at the point of equal concentra
(X50) and in Fig. 3, they meet at the critical pointTcr . The
space between the boiling and condensation lines co
sponds to the states of coexisting phases.

FIG. 2. A cut of the (P,T,X) surface of equilibrium by the plane
P50.15 MeV/fm3,Pcr

(sym) .

FIG. 3. The same as in Fig. 2 forP50.25 MeV/fm3.Pcr
(sym) .
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Let us consider the boiling of the asymmetric nucle
matter at the fixed external pressurePext,Pcr

(sym), see Fig. 2.
With the increase of temperatureT at a certain asymmetry
parameterX5XA

liq , the asymmetric nuclear matter begins
boil at temperatureTA on the line of boiling~point A in Fig.
2!. The boiling process is accompanied by the prefera
evaporation of neutrons because of the conditionumnu
,umpu. The liquid phase is then shifted to a more symmet
state and the boiling temperature increases due to the ev
ration of the less-bound particles. The final state of syst
depends on the regime of heating. In regime I we assu
that the liquid is evaporated in a free space and the vapo
taken away, the system moves along the surface of equ
rium to the point F, i.e., reaches the symmetric stateX
5XF

liq50 at T5Tmax,Tcr
(sym) on the azeotropic line. The

boiling is finished then at fixedT5Tmax and X50. The
asymmetry of the vapor,Xvap, decreases with increasingT
and disappears atT5Tmax. This means, for instance, that th
yield of symmetric clusters at the condensation of the va
phase has to grow withT. In regime II we assume that th
vapor remains near the liquid~at fixed pressureP5Pext, this
means an evaporation into a closed but not a fixed volum!,
the system moves along the boiling line and reaches
point D in Fig. 2. The pointD corresponds to a fully evapo
rated liquid at asymmetryXC

vap of the vapor~point C on the
surface of condensation! that equals to the starting asymm
try XA

liq of the liquid phase. We point out that, in general, t
trajectory of motion of the liquid phase along the surface
equilibrium can be located beyond the planeP5const and
Fig. 2 should be considered as a formal illustration of t
behavior of the heating system for the regime II where b
pointsA andD are taken at different pressures. An analogo
analysis of the boiling of the asymmetric nuclear matter c
also be done in the case ofPext.Pcr

(sym), see Fig. 3. How-
ever, the presence of the critical point on the (T,X) phase
diagrams in Fig. 3 leads to a very specific effect of the r
rograde condensation, see also Refs.@1,12#. If one goes
along straight lineAB in Fig. 3 ~at closed volume!, the liquid
starts to boil at temperatureTA . An increase of the tempera
ture leads to an increase of the evaporation. However,
evaporation begins to decrease at certain temperaturT
,TB and the vapor disappears at temperatureTB,TC.

The (T,X) phase diagrams allow us to study the shape
the caloric curve for the case of isobaric heating. We w
consider the case of the evaporation in a closed~but not
fixed! volume at the fixed pressureP,Pcr

(sym), i.e., regime II
in Fig. 2. Let us introduce the volume fractionsl liq andlvap

of the liquid and vapor phases defined byl liq5Vliq/V and
lvap5Vvap/V, where Vliq and Vvap are the volumes of the
liquid and vapor phases, respectively, andV5Vliq1Vvap.
The excitation energy per particle,E* /A, is given by

E*

A
5

l liqE liq~r liq,Xliq,T!1lvapE vap~rvap,Xvap,T!

l liqr liq1lvaprvap

2S E liq~r liq,Xliq,T!

r liq D
T50

, ~9!
5-3
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KOLOMIETZ, SANZHUR, SHLOMO, AND FIRIN PHYSICAL REVIEW C64 024315
where E liq(r liq,Xliq,T) and E vap(rvap,Xvap,T) are, respec-
tively, the energy densities of the liquid and vapor phas
derived by Eq.~1! and taken at the corresponding values
the particle densityr and the asymmetry parameterX. Let us
consider a certain asymmetry parameterX5X0. To calculate
the excitation energyE* /A we note thatl liq51, lvap50,
and Xliq5X0 if T is below the boiling line andl liq50,
lvap51, andXvap5X0 if T is above the condensation line
the (T,X) phase diagram of Fig. 2. In the case of coexist
phases~space between lines of the boiling and the cond
sation in Fig. 2! the required values ofl liq, lvap, r liq, rvap,
Xliq, andXvap can be found using the following procedure. A
given X0, we go along the straight lineT5const in both
directions and get the cross points with the boiling and c
densation lines that provide the asymmetry parametersXliq

andXvap and the densitiesr liq andrvap for both phases. The
volume fractionsl liq and lvap are then determined by th
following equations:

X05
l liqr liqXliq1lvaprvapXvap

l liqr liq1lvaprvap
, l liq1lvap51. ~10!

Caloric curves determined by Eq.~9! for X50.2 and pres-
sures P51023 MeV/fm3, 1022 MeV/fm3, and
1021 MeV/fm3 are presented in Fig. 4. The solid line at lo
values of the excitation energyE* /A corresponds to the
heating of the degenerate Fermi liquid withE* /A;T2. The
solid line at high excitation energyE* /A describes the clas
sical Boltzmann’s gas withE* /A5(3/2)T. The region of
two phase coexistence is displayed by the dashed line.
caloric curve is a continuous function ofE* /A and has a
break in its derivative at two points connecting the two-ph
region with the corresponding single-phase regions. As s
from Fig. 4, the plateau region corresponds to the two-ph
region. A small increase of the dashed line withT is due to
the motion along the boiling path AD in Fig. 2. The value
the plateau temperature increases with the increase of p
sure. Experimental observations show a nearly flat cal
curve with a temperature of about 7 MeV@17#. If one could
assume the process of isobaric heating for the descriptio
the experimental data, the order of magnitude of the pres

FIG. 4. Caloric curves for the isobaric heating of the asymme
nuclear matter in regime II for different pressureP shown near the
curves at fixed asymmetry parameterX50.2.
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should be 1022 MeV/fm3 for this process. To obtain mor
accurate estimation an analysis of the contribution of b
the surface and the Coulomb forces into the equilibrium c
dition ~6! is needed@13,18#.

The asymmetry dependence of the shape of the cal
curve is displayed in Fig. 5 by plotting two curves atX
50.1 and 0.3. The figure shows that the plateau tempera
is slightly sensitive to the asymmetry parameter. At lo
asymmetry the two-phase region of the caloric curve is fla
and it is shifted to the higher values ofE* /A as compared to
the case of high asymmetry.

Figure 6 shows results of the calculation of the calo
curve assuming the regime I, i.e., the case when vapo
taken away from the liquid during the boiling. The calcul
tion was carried out for the values of pressure 1023, 1022,
and 1021 MeV/fm3. The solid lines correspond to the hea
ing of the liquid fromT50 to T5TA with asymmetry pa-
rameterX50.2. The regions where saturated vapor is pres
~but taken away! are displayed by dashed lines. It is se

c FIG. 5. The same as in Fig. 4 for the fixed pressureP
50.01 MeV/fm3 and different values of the asymmetry parame
X shown near the curves.

FIG. 6. Caloric curves for the isobaric heating in the case wh
vapor is being taken away from liquid~regime I!. Calculations pre-
sented for values of pressure 1023 MeV/fm3 ~a!, 1022 MeV/fm3

~b!, and 1021 MeV/fm3 ~c!.
5-4
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EQUATION OF STATE AND PHASE TRANSITIONS IN . . . PHYSICAL REVIEW C64 024315
from Fig. 6 that the value of the external pressure does
change the shape of the caloric curve calculated for regim
Only the interval ofE* /A is sensitive to the value of th
pressure.

V. SUMMARY

Starting from the temperature dependent Thomas-Fe
approximation with the effective SkM force, we have eva
ated the three-dimensional (P,T,X) surface of equilibrium
of the asymmetric nuclear matter. The (P,T,X) surface of
equilibrium contains two sheets that correspond to the b
ing and the condensation. Both sheets coincide along
azeotropic line and along the line of the critical press
marked byC in Fig. 1. In general, the vapor asymmetryXvap

on the surface of condensation exceeds significantly the
responding liquid asymmetryXliq ~at Xliq.0) lying on the
surface of boiling. This is due to the fact that the isosp
symmetry energy causes a preferable emission of neutr
The surface of equilibrium is restricted by the drip line~line
B in Fig. 1! where one hasmn50. The (P,T,X)surface of
equilibrium in Fig. 1 shows also that the hot nuclear mat
exists~in a bound state! at higher asymmetry than the co
one due to the increase of the symmetry energy with te
perature.

Our analysis of the isobaric (T,X) phase diagrams~see
Figs. 2 and 3! shows that the process of isobaric boiling
the asymmetric nuclear matter depends on the value of
fixed pressurePext. In the case of enough low pressu
Pext,Pcr

(sym)50.2109 MeV/fm3 the (T,X) diagram contains
the point of equal concentrationX50 and the process o
boiling is accompanied by a decrease of the vapor asym
try with increasing temperatureT. In the case of high pres
. C

be

. D
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sure Pext.Pcr
(sym), the process of boiling leads to the ve

specific effect of a retrograde condensation with grow
temperatureT, see Fig. 3.

We have shown in Figs. 4 and 5 that the caloric curve
the process of isobaric heating of the asymmetric nuc
matter contains a plateau region where both the liquid
the saturated vapor phases co-exist. The position of the
teau region on the caloric curve depends on the pressurePext
and is almost insensitive to a change in the asymmetry
rameterX. As can be seen from Fig. 5, the shape of t
caloric curve is significantly changed with asymmetry.
low asymmetry the two-phase region of the caloric curve
flatter. We pointed out that the experimental observation
the saturation of the caloric curve at temperature of abou
MeV is obtained in our approach as an isobaric boiling of
nuclear liquid at the pressurePext'1022 MeV/fm3. Note,
however, that the effects of nuclear surface and Coulo
interaction are not included in our study. The asymme
parameterXvap of the vapor phase decreases along the b
ing path of the caloric curve~dashed line in Figs. 4 and 5!.
Thus, the present model predicts an increase of the yiel
the symmetric clusters at the condensation of the vapor ph
with an increase of the excitation energyE* /A in the plateau
region of the caloric curve.
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