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Isoscalar monopole and dipole compressional modes are computed for a variety of closed-shell nuclei in a
relativistic random-phase approximation to three different parametrizations of the Walecka model with scalar
self-interactions. Particular emphasis is placed on the role of self-consistency which by itself, and with little
else, guarantees the decoupling of the spurious isoscalar-dipole strength from the physical response and the
conservation of the vector current. A powerful new relation is introduced to quantify the violation of the vector
current in terms of various ground-state form factors. For the isoscalar-dipole mode two distinct regions are
clearly identified:(i) a high-energy component that is sensitive to the size of the nucleus and scales with the
compressibility of the model an@i) a low-energy component that is insensitivity to the nuclear compressibil-
ity. A fairly good description of both compressional modes is obtained by using a “soft” parametrization
having a compression modulus léf=224 MeV.
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I. INTRODUCTION [11,12 and the isoscalar giant dipole resonafd8-15
have existed for some time, the field has seen a revitalization
The study of nuclear compressional modes, while interdue to new and improved measurements of both compres-
esting in its own right, is motivated by our desire to under-sional modeq§16-18. The field has also seen significant
stand the equation of state of hadronic matter, especially iadvances in the theoretical domain. Indeed, calculations of
relation to its compression modulus. In turn, an accurate deauclear compressional modes using Hartree-HétiK) plus
termination of the equation of state places important confandom-phase approximatidiRPA) approaches with state-
straints on theoretical models of nuclear structure, heavy-ioof-the-art Skyrme interactions are now possill9,20.
collisions, neutron stars, and supernovae explosions. Relativistic RPA models have also enjoyed a great deal of
While it remains true that measuring the energy of thesuccess, especially now that scalar self-interactions have
nuclear compressional modes provides the most accurate deeen incorporated into the calculation of the respdide-
termination of the compression modulus, significant ad-24]. At the same time the philosophy behind the theoretical
vances in astronomical observations and terrestrial experextraction of the nuclear compressibility has evolved consid-
ments are providing important complimentary information.erably. Earlier attempts depended heavily on semiempirical
For example, explaining the time structure of the neutrindformulas that related the compressibility to the energies of
burst emitted from supernova SN1987A seems to require the compressional modelR5]. The field now demands
relatively soft equation of state as input in the simulations ofstricter standards: the model, without any recourse to semi-
core-collapsed supernoya,2]. Further, the recently inferred empirical mass formulas, must predict both the compressibil-
narrow mass distribution of neutron std8§ poses stringent ity of nuclear matter as well as the energy of the compres-
constraints on the nuclear equation of state. At the samsional modes.
time, a number of improved radii measurements of radio In this publication state-of-the-art calculations of the isos-
quite, isolated neutron stars — such as RX J185635-3754 —ealar giant-monopole resonan€¢&MR) and the isoscalar
will contribute significantly to our understanding of the high- giant-dipole resonand¢SGDR) are reported for a variety of
density component of the equation of ste4¢ We note that closed-shell nuclei. This paper represents an expanded ver-
although the extrapolation between the compressibility oiion of a short article published recently that focused exclu-
symmetric nuclear matter and the bulk properties of neutrorsively on 2%%Pb [23]. The model adopted in this work is
stars is largd5], it is now important, as well as realistic, to based on a relativistic random-phase approximation to three
demand from our models to be able to describe them bottdifferent parametrizations of the Walecka model with scalar
Finally, measurements of the elliptical flow in relativistic self-interactions. A nonspectral approach that treats discrete
heavy-ion reactions seem to have established the utility odnd continuum excitations on equal footing is implemented.
this observable as a probe of the stiffness of the equation ks a result, the conservation of the vector current is strictly
state[6]. maintained throughout the calculation. Moreover, for the cal-
Also significant is the strong correlation between seem-<ulation of the RPA response we employ a residual particle-
ingly unrelated experiments. Indeed, the radius of a neutrohole interaction consistent with the particle-particle interac-
star is predicted to be strongly correlated to the neutron skition used to generate the mean-field ground state. In this way
of a heavy nucleu§7,8]. Thus, the upcoming measurement the spurious isoscalar-dipole strength, associated with the
of the neutron radius of%Pb at the Jefferson Laboratory uniform translation of the center-of-mass, gets shifted to zero
[9,10] should place important limits on the radii of neutron excitation energy and is cleanly separated from the physical
stars. response.
Although measurements of the giant monopole resonance Having established the theoretical underpinning of our
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calculation, it is now useful to contrast it against alternativemodification, must then be used to generate the nucleon
self-consistent implementations. In a recent article bypropagator; in this way the conservation of the vector current
Shlomo and Sanzhule6], it is suggested that actual imple- is guaranteed to be maintained. The nucleon propagator is
mentations of the RPA, in spite of claiming otherwise, arecomputed nonspectrally to avoid any dependence on the ar-
not fully self-consistent. It is pointed out that these calcula-tificial cutoffs and truncations that plague most spectral ap-
tions often resort to a variety of approximations suchiigs proaches. Moreover, through a nonspectral approach one
neglecting the two-body Coulomb and spin-orbit terms in thegives equal treatment to both bound and continuum orbitals.
residual particle-hole interaction(i) approximating the Having generated the occupied single-particle spectrum
momentum-dependent parts in the particle-hole interactiorand the nucleon propagator, the computation of the lowest-
(iii ) limiting the particle-hole space in a discretized calcula-order (Hartreg polarization is reduced to the evaluation of
tion by a cutoff energ)Eg‘ﬁX, and(iv) introducing a smearing various matrix elements of the relevant transition operator.
parameter, such as a Lorentzian width. Each of these apo compute the RPA response one needs to go beyond the
proximations is now briefly addressed. In the relativistic for-single-particle response. The RPA builds coherence among
malism employed here neither the two-body Coulomb noithe many allowed particle-hole excitations by iterating the
the spin-orbit interaction are neglected. Rather, the residuddwest-order polarization to all orders via the residual
particle-hole interaction includes tliisoscalay contribution  particle-hole interaction. Yet special care must be taken in
from the photon as well as spin-orbit effects that are incoradopting a residual particle-hole interaction consistent with
porated — to all orders — by merely maintaining the rela-the particle-particle interaction used to generate the mean-
tivistic structure of the interaction. Moreover, the residualfield ground state. Only then can one ensure that the spurious
particle-hole interaction is momentum independent becauseomponent of the isoscalar-dipole response will get shifted to
one preserves intact its full Lorentz structure; no momentunzero excitation energh30,31]. As the polarization tensor is a
dependence is generated through a nonrelativistic reductidiindamental many-body operator, it can be computed sys-
of the interaction. Further, the nonspectral approach emtematically using well-known many-body techniquig2].
ployed here avoids any reliance on artificial cutoffs and trunHaving computed the polarization tensor, the nuclear re-
cations. Finally, while a Lorentzian width is included to com- sponse is extracted by simply taking its imaginary part. The
pute the properties of discrete excitations, it is done so byollowing sections provide a detailed account on the imple-
ensuring that the physically relevant quantities, the excitatioimentation of these ideas.

energy and the inelastic form factor, remain invariant under a

change in width. A. The Lagrangian density

The paper has been organized as follows. Section Il de- The starting point for the calculation of the nuclear re-

scr:Er;;)tes(,j ettt]jl ri:tct;:]nstlsc,: er;r(]:ie;n:rlﬁldhapsliuss OT,PQefOrrgl]:“jfmsgl]f-Sponse is a Lagrangian density having an isodoublet nucleon
great placing spec P . field (¢) interacting via the exchange of two isoscalar me-
consistency. Section Il illustrates the importance of self-

. . ons, the scalar sigmapj and the vector omegav{), one
consistency for the conservation of the vector current and for "
the decoupling of spurious strength from the physical'soveCtor meson, the rhdf), and the photonA*) [33,34.

isoscalar-dipole response. Here a powerful novel relation iéur thee gts?#goriceiﬁrf%%nlsvgft Iqucgjddd?gois t'(t) dr?lzssgritnz(c):?etgg_
introduced to quantify the violation of the vector current in . . .' oo
interactions the Lagrangian density includes scalar self-

terms of various known ground-state form factors. Results . . ;
teractions. These are responsible for reducing the nuclear

. . . . n
are displayed in Sec. IV, while a summary and conclusiond . .
are presented in Sec. V. compressibility from the unrealistically large value &f

=545 MeV, obtained in the original linear model of Wa-
lecka[35], all the way down to the acceptable value kof

Il. FORMALISM =224 MeV. Thus, without the inclusion of scalar self-
interactions a realistic calculation of the compressional

In this section a detailed description of the mean-fieldnqqes is not feasible. The Lagrangian density for the model
plus RPA formalism employed to compute the distribution ofjg ths given by

strength for both compressional modes is presented. This for-

malism, with the exception of its implementation in the case g, e

of scalar self-interactions, has now been available for almost  Lin= | 9s¢— 9V — 57 B=5(1+73) Al —U(¢);
fifteen yeard27-29. However, important lessons keep be-

ing ignored[21], just to be soon rediscover¢d?]. Thus, we 1 1

feel compelled to present, for what we hope is the last time, U(p)= §K¢3+ E)\qﬁ“, (1)
a thorough discussion of the relativistic RPA formalism. ' '

The first step in calculating a relativistic RPA response iS,here use of the*slash” notatiolf = ¥V has been made
“ .

the computation of the mean-field ground state in a selfrpe arious model parameters have been listed in Table .
consistent approximation. Once self-consistency is achieved,

three important pieces of information become availakile:
the single-particle energies of the occupied orbit@i$ their
single-particle wave functions, an@i) the self-consistent The mean-field propagator contains information about the
mean-field potential. This mean-field potential, without anyinteraction of the propagating nucleon with the average po-

B. The nucleon propagator
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TABLE I. Various relativistic parameter sef84]. The scalar negative-energy holes positive-energy holes
mass andk are given in MeV. =
XXX XX| | xxxx| )
2 5 5 | | | XxXXX
Set 9s 9y 9, ms K A -M +M E; m:les

L2 109.63 190.43 65.23 520 0 0
NLB 94.01 158.48 73.00 510 800 10
NLC 95.11 148.93 7499 501 5000 -200

FIG. 1. Spectral content of the nucleon propagator in a relativ-
istic Fermi-gas approximation.

) ) ~ Note that the sum oven is now restricted to only those
tential generated by the nuclear medium. However, even |nc?05itive_energy states below the Fermi energy. In a mean-

Fermi-gas description, where all interactions are neglectedield approximation these states satisfy a Dirac equation of
the nucleon propagator would still differ from its free-spacethe form

value because of the presence of a filled Fermi sea. Indeed,
the analytic structure of the free-nucleon propagator at finite

density is different from its free-space val(see Fig. L [E()90+iy- V=M =3 ye(x)]Un(x)=0, (5)
This suggests the following decomposition of the nucleon
propagatof 33]:
where the mean-field potential is given by
* da) s 0_.,0
G(x,y)= f 5 Gyw),  (2a
e () =300 + 72 (). ©®
G(X,Y;w)=Gr(X,Y;w)+Gp(X,y; ). (2b)

The quantities> 5 and X, denote the scalar and vector po-

. tentials that have been generated self-consistently at the
The Feynman part of the propagat@¥, admits a spectral mean-field level. Since this work is limited to the response of

decomposition in terms of the mean-field solutions to the A ;
Dirac equation. That is, closed-shell nuclei, it is assumed that the mean-field poten-

tial has been generated by a spherically symmetric, spin-
o o saturated ground state.
U,(X)UL(y)  V,(X)Vu(Y) Although the above spectral decomposition of the nucleon
3 propagator will become important in understanding the spec-
tral content of the nuclear response, in practice it suffers
- ) from a reliance on artificial cutoffs and truncations. An effi-
whereU, andV, are the positive- and negative-energy so-cient scheme that avoids such a dependence is the nonspec-
lutions to the Dirac equation, and the sum is over all states i g approach. A nonspectral approach has the added advan-
of the conventional Feynman propagal86]. The density-  yreated exactly. As a result, the contributions from the
dependent part of the propagatGi, correctsGg for the  pegative-energy states to the response are included automati-
presence of a filled Fermi sea. This correction occurs even igally. This is important to maintain fundamental physical
a noninteracting system and is due to the Pauli exclusioRyrinciples, as the positive-energy states by themselves are
principle. Forma”y, one effects this correction by Shlftlng the not Comp|ete_ To obtain the nucleon propagator in nonspec-
position of the pole of every occupied state from below totra| form one must solve the following inhomogeneous Dirac

Ge(Xy;w)= ,
FXY ; w—EE}+)+i77 w-l—Ef;)—i?]

above the real axitsee Fig. 1 equation:
Gp(Xy; ) =nZF Un(x)Un(y) [0Y°+iy- V=M=3=(X)]GE(X,y;0)=8(x—Y). (7)
1 1

Here w is taken to be a complex variable and the mean-field

potential is identical to the one used to generate the nuclear

ground state. Taking advantage of the spherical symmetry of

2> 5(w—EE1+))Un(X)Un(y)- (4) _the potential, one may decompos_e the Feynman propagator
n<r in terms of spin-spherical harmonics

w—Eff)—i?] w—Eg+)+i77

®

1 (g$1<x,y;w><%|+f<m><+f<ml9> —ig(X,y; 0)(X| + km)(— kmly)
XY km

Gr(xy;0)=— > | . - . ]
e ig510%,y: 0)(X| — km)(+ km]T)  ghx,y:)(X|— km)(— xkm]§)
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which are defined as > do . o9 0
H“E(x,y)=J s I (xye), (173
(xm)= >, (Im;, 112/ 11/2im)Yim () xzam, (9)
1"ls
I8(x,y; ) =TI2P(x,y; 0) + TE(x,y;w).  (17b)
+k if k>0,
—k—1 if k<0.

(10

) 1
j=|K|—§ and |=

The Feynman part of the polarizaticﬂﬁﬁ is independent of

Gp and describes the polarization of the vacuum. This piece,
The above decomposition enables one to rewrite the Dirag/hich diverges and needs to be renormalized, has been in-
equation as a set of first-order, coupled, ordinary differentiatorporated in our earlier calculations of the longitudinal re-

equations of the form sponse in the quasifree regip87]. However, it has been
. included only in a local-density approximation. To our

ot —M* i K . . knowledge an exact finite-nucleus calculation of vacuum po-
dx X 911 912 larization has yet to be performed. While a local-density ap-
d et =o(X—y), proximation is accurate in the quasifree region where many

K K K . . .
4 —p*—M* 921 922 angular-momentum channels contribute, it has proven inad-

dx = x equate for the description of discrete nuclear excitatiGg

(1) In particular, the spurious isoscalar dipole strength associated
with the uniform translation of the center-of-mass does not
get shifted all the way down to zero excitation energy. More
relevant, the role of vacuum polarization in effective had-
ronic theories is currently being revisited. Effective field
theories now suggest that the largely unknown physics asso-

It is important to underscore that the mean-field .pOtemiaI%iated with the short-distance dynamics may be effectively
used to compute the nucleon propagator must be identical O mulated by the use of various local operaf@8—41. It is

those _used fo generate the mea_m-field groqnd state if the COR5r these reasons that vacuum polarization will be ignored
servation of the vector current is to be maintained. henceforth. Note, however, that it is still possible to ignore
o vacuum effects and end up with a completely consistent
C. The nuclear polarization model of the nuclear respongel,33.
To illustrate the many-body techniques employed in the In contrast to the Feynman part of the polarization, the
manuscript, we define a general polarization insertion as th@ensity-dependent part is finite and can be computed exactly

where we have defined

w*=w—2,(x) and M*=M+ X ((X). (12

time-ordered product of two arbitrary nucleon currents in the finite systenj27-29. Itis given by
iHaﬁ(X-Y):<‘1’0|T[J“(X)JB(Y)]|‘I’0>7 (13 Hgﬁ(x,y;w)EHﬁg(x,y;w)+HS€(x,y;w), (18
whereW, denotes the exact nuclear ground state JHc)
is a one-body current operator of the form where
J*00 =g 0T “Y(x). (14)

H,‘ig(x,y;w)zr];: Un()TGe(xy; + 0+ES)TAU (y),

Note that the “big” gamma matrices have been defined so (193
that the one-body current operator be Hermifia@|. That is,

a_ D A M A MAD AV ; _aEOaTozoz o — "
PE=LIY vy, o) with TE=y Ty =T (15 BEOYi0)= 3 Un()IPGr(y X — o+ LUy (x).

(19b
In a mean-field approximation to the nuclear ground state,

h he one empl here and in m f th her . : . o
such as the one employed here and ost of the ot ote that the Pauli blocking of particle-hole excitations, a

relativistic calculations to date, the polarization insertion v d dBEEE  has already b , q
may be written exclusively in terms of the nucleon mean-€rM usually denoted bl pp , has already been incorporate

field propagator in the above two terms. The density-dependent part of the
polarization includes the excitation of particle-hole pairs plus
iT1*A(x,y) =TI L *G(x,y)T'AG(y,X)]. (16)  the mixing between positive- and negative-energy states; this

last term is sometimes referred to as the Pauli blocking of

The earlier decomposition of the nucleon propagator intd\ N excitations. The spectral contentldf, is easily revealed
Feynman and density-dependent contributijis). (2b)] by using the spectral decomposition of the Feynman propa-
suggests an equivalent decomposition for the polarization ingator[see Eq(3)]. For example, the Feynman-density com-
sertion ponent of the polarizatiohl#5 may be written as
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U-OT U (x)U(WTAU where V, .(k,k’;w) is the residual interaction to be dis-
HEE(X,y;w) = > () r(nf)) ”(19)/) - oY) cussed below anfll2?(q,q’;w) is the Fourier transform of
m.n<F o—(En’'—Ey")+ig the lowest-order polarization. That is,
Un()TVi()Vim(y)TPU(y)
+ 20 ap reoy— 3y By e i@ x—a" - NyaB iy v-
0+ (EQ+EM) iy (20 I15°(0,9"; @) fd xd’y e 15 (X.y,w)-(zz)

The first term in the sum represents the excitation of &At this point it is convenient to depart from the general for-
particle-hole pair. The excitation becomes real, namely, botlmalism adopted until now and restrict the discussion to the
particles go on-shell, when the energy transfer to the nucleusase of interest: the isoscalar compressional modes. Hence,
becomes identical to the pair-excitation energy=E{"~  the only component of the residual interaction that must be
—E("). The second term in the sum has no nonrelativistigetained is the one mediated by the exchange of the sigma
counterpart; it represents the mixing between positive- an@nd omega mesons, and tkisoscalar component of the
negative-energy states. Although the contribution fromphoton. Moreover we employ the simplest operator, the time-
vacuum polarization has been neglected, the inclusion of thike component of the vector current

mixing is of utmost importance for maintaining current con-

servation. Moreover, it is also essential for the removal of all ~eN 3y A4 X7 ) A0

spurious strength from the excitation of the isoscalar dipole p(q)—f X ) YY), @3
mode. The inclusion of the negative-energy sector in the cal- . o

culation of the response underscores the basic fact that ti{Bat can couple to these natural-parity excitations.

positive-energy sector of the spectrum, by itself, is not com- The computational demands imposed on a calculation of
plete. the RPA response for a nucleus as large’$®b can be

formidable indeed. Powerful symmetries that are present in

infinite nuclear matter, such as translational invariance, are
D. The RPA equations broken in the finite system. As a result, the RPA equations
ethat were algebraic in the infinite system become integral
equations in the finite nucleus. Moreover, modes of excita-
éion that were uncoupled before, such as longitudinal and
polarization tensor contains all information on the excitationtransverse modes, become coupled now. In this way the RPA

spectrum of the nucleus. Indeed, the polarization insertion igquatlons, because of _the ubiquitous scalar—longltL_JdlnaI mix-

an analytic function of the frequenay, except for the pres- Ing, pecome a compl|pated>65 set of coupl_ed |ntegral

ence of simple poles located at the excitation energies of thgguations. Correspondingly, the reS|_duaI particle-hole inter-

system. The residue at the pole is simply related to the in@ction. also a 5 kernel, may be written as

elastic form factof32]. 2A(K K> ) 0
The singularity structure of the lowest-order polarization  , (KK )= ( 9sa (KK )

tensor is easily inferred from the mean-field spectrum: the ap T 0 95D (kK@) )

nuclear excitation energidpoles appear at energies given (24

by the difference between the single-particle energies of a

nucleon above the Fermi levdparticlo and one below Where the vector propagator is given by

(hole). In this approximation the residual interaction between

The polarization tensor describes modifications to th
propagation of various mesofsuch as ther, w, p, ...) as
they move through the nuclear environment. In addition, th

the particle and the hole is neglected. However, the consis- Ds(k.k';0)=(2m)%8(k—k’)

tent response of the mean-field ground state demands that the

residual interaction between the particle and the hole be in- x| —g,g+ KaKg D(K,w):
corporated 31]. This may be implemented by solving Dys- *p 2 T

on's equation for the polarization insertion in a random-

phase approximation. In RPA the lowest-order polarization is

iterated to all orders via the residual particle-hole interaction. D(k,w)= 5
Because the iteration is to all orders, the singularity structure ®

of the propagator, and thus the location of the poles, is modi-
fied relative to the lowest-order predictions. Dyson’s equaNote that because vector self-interactions have not yet been

. 25

tion for the RPA polarization is given by included in the present version of the model, the vector
propagator remains locdln momentum spageand main-
IIRRA(G,0"; 0)=T157(9,q"; ») tains its simple Yukawa form. In contrast, scalar self-
s 5 interactions modify the propagator relative to its simple free-
f d’k d*k’ 1%\ k- space form. Hence, the scalar propagator now satisfies a
(2m)% (2m)% ° (Q.k;w) nontrivial Klein-Gordan equation of the forfi21,22

X V(KK o) IIEEAK" 0 0), (2D) [02+VZ-mi—U"($)]JAXY;0)=8(x—Y). (26)
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IIl. FUNDAMENTAL SYMMETRIES 70 T T T T T T .
. . , , 60 q=100 MeV -—-%0 4
In the following two sections we discuss important sym- 50 =10 MeV; =1 MeV —%ca ]

metries related to the conservation of the vector current and
to the elimination of the spurious isoscalar-dipole strength

N W B
(=R =)
\

A ]
Feynman—Density& N

from the physical response. We are adamant about the pres- 3

ervation of these two fundamental symmetries of nature as & -~ T T TTTTTTT T T ]
- . . s 10

we regard the predictions of theoretical formulations that = [ N

violate them as ambiguous at best. For example, in a frame- 'f,; 10 & ]

—~

work that violates the conservation of the vector current

Vel -20 ]
should one calculate the longitudinal response of the nuclear _30 Nensity—Feynman< ]
ground state by using the timelike component or the longi- a0 £ ]

tudinal one? Likewise, the predicted energy and distribution
of isoscalar-dipole strength in a model that retains even a
small fraction of spurious strength will bear little resem- J
blance to reality. It is only through consistency, the recurring
theme of this paper, that one can enforce these importaratensit i o i

. . . y-Feynman parts of the nuclear polarization as a function of
Qynamlcal demands. HOW is that consistency plays SUCh. e total angular momentum channel. Results are reportedf@r
important rolg in preserving these fundamental symmetries, 4 400, atq=q’ =100 MeV andw=10 MeV. In a consistent
will now be discussed. mean-field formalism these quantities should appraa¢h respec-

tively.

O+
—_
[\
T
w

FIG. 2. The real part oiqﬂl'[/‘0 for the Feynman-density and

A. Conservation of the vector current H“ﬁ( )= ph( N
H ;(l) = -
We start by discussing the conservation of the vector cur- G trota.d praTa

rent. Current conservation demands that the timelike compo- B 3, Cig-a) xS T P

nent of vector current be related to the longitudinal compo- Zf d°x e n;: Un()TPUn(X),

nent. This impacts greatly on the results; it forces the nuclear

polarization with one Lorentz vector index to be transverse (29

to the four-momentum transfer, irrespective of the Lorentz

character of the other vertex. That is, wherep?(q) represents a ground-state form factor. This is a

new and important result. First, such a simple relation would

qMHgB(q,q’;w)=O with g*=(w,q). (27 have been impossible to obtain had the mean-field potential

for the nucleon propagator been any different than the corre-

sponding one for the bound-state wave function. This is one
So how is current conservation realized in our model? Asf the many manifestations of consistency in the formalism.
indicated in Eq(18) the density dependent part of the polar- Second, because in spherical nuclei all form-factors are real
ization tensor consists of two terni$f§ and II3f. Does  [33], the imaginary part of1££, by itself, satisfies current
each term separately satisfy current conservation or does thwnservation. However, this is not true for the real part. In-
conservation of the current depend on a sensitive cancellateed, the violation to the real part of the polarization is regu-
tion between them? To address this question we introduce thated by the various ground-state form factors. This result
longitudinal (with respect tay) component of the vector cur- may be used as a stringent test on the numerics. For instance,
rent. We start with the Feynman-density piece if one letsT'?— ~° and setxj=q’ in Eq. (29), the violation

becomes identical to the mass number of the nucleus. That is,

3B TN — 3y 3 [ _
allzp(a,9"; @) fd xd ynZF Un(X) qMH‘F‘g(q,q;w)=f d®x nZF Un(%)9°U (%)

X(‘Y’q)e_iq'XGF(X!y;w_’_E$1+)) J d3 ( ) A (30)
L, = X pp(X)=A.
xe'd YTAU (y). (28) ’

In Fig. 2 we display the cumulative violation of the vector
To make contact with the timelike component of the polar-current as a function of the angular-momentum chadfel
ization we turn the momentum transferinto a gradient Note that the plot also includes the corresponding violation
operator [(y-q)e '9*=(y-iV)e %X and integrate by N the density-Feynman part of the nuclear polarization
parts. In this way the gradient operator acts now on both thé/hich is given by
bound-state nucleon spinor and the nucleon propagator. It is

then the difference between their respective Dirac equations a,115£(0,9";0)=—pP(a—0q'). (3D
[Egs. (5) and (7)] that dictates how severe the violation of
current conservation becomes. We obtain In this way current conservation is properly restored:
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2 T 1 1T 1T [ 1. 1T 1T T 1 1T T T 1T 1 T 111 0.40 T T 1 T T 1 T 1 &7 Tt 1T 171
L - 16 T 1T,
1, wCa(J”:l_;T=O) [ Hartree 0O "'=1;T=0) [NLC]
oIl (q/o))z ~100 MeV N / \‘ — RPA q=240 MeV
L * = e . r/ 4 | —-— RPAoY] n=1 MeV
_ n=1 MeV 0.30 [
> 1T 7 ~ [
E +— Imaginary '> o
P g 0.20 b
: 70
= 0 E-': r
! o il
@ i
0.10
8
f
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FIG. 3. The longitudinal polarization for the isoscalar dipole
state computed from the timelike component of the vector current FIG. 4. Isoscalar dipole strength /O in lowest-order Hartree
(solid ling) and from the longitudinal componeffilled circles. In (dashed ling and in a consistent RP#solid line) approximation.
a consistent mean-field formalism — such as the one used here -Fhe dot-dashed line is the RPA response with a residual interaction

they should be identical. Note that the imaginary component is théhat lacks the contribution from the isoscalar component of the pho-
longitudinal response. ton. The nonlinear model NLC was employed in the calculation.

q,I148(0,q";0) = q,[T1£8(0.q"; 0) + T1£E(0,q’ ;) ] = 0. entitled to a minor simplification: the longitudinal compo-
a a (32) nent of the current can be systematically eliminated in favor
of the timelike component. Thus, the RPA equations may be
Note that current conservation is maintained for each indifeduced from a %5 to a 4x4 set of integral equations by
vidual J™ channel. Figure 3 validates this statement by dis-Simply adopting a modified longitudinal propagator of the
playing the timelike component of the polarization alongsideform

the longitude component €3q) for the isoscalar-dipole state
in “°Ca. These results emerge from two powerful demands. Do(k,w)=
First, the interaction driving the nucleon propagator must be oL
identical to the one generating the mean-field ground state.
Second, the negative-energy part of the spectrum must beote that the gauge component of the vector propadéter
kept, otherwise the nucleon propagator fails to become thi,k; term in Eq.(25)] has been eliminated from any further
Green’s function for the relevant Dirac problem. One of thediscussion because the vector mesons do indeed couple to a
great virtues of the nonspectral approach is that the negativeonserved vector current.
energy states are included automatically.

So far our discussion of current conservation has been g, spurious strength in the isoscalar-dipole response
limited to the lowest-order polarization. Nevertheless, the . . .
conservation of the vector current at the RPA level places no hile we have argued earlier that the conservation of the
additional demands on the formalism. Indeed, it relies excluY€Ctor current at the RPA level is maintained irrespective of

sively on the conservation of the vector current at the Hartred1® nature of the residual particle-hole interaction, a consis-

level and it is independent of the nature of the residual intertent residual interaction becomes of utmost importance in the

action. This result may be derived from the structure of I:)ys_elimination of the spurious strength from the isoscalar-dipole

on's equation for the nuclear polarization. Using E¢g1) response. This result, first demonstrated by Thouless for the
and(32) we obtain nonrelativistic cas¢30] and later extended by Dawson and

Furnstahl to the relativistic domai81], reinforces the im-
portance of consistency in the formalism. As in the case of
the conservation of the vector current, the decoupling of the

k2

_~
2

D(k,w); Ki=(w?-k?. (39

9, J145(9,9";0)=9,115%(0,9"; )

d3k  d3k’ spurious component of the isoscalar-dipole response depends
f—g—s[quﬂg*(q,k;w)] on the consistency between the residual particle-hole inter-
(2m)* (2m) action and the particle-particle interaction driving the mean-
xvm(k,k’;w)HgéA(k’,q’;w) field ground state. Figu_re 4 vv_here the dis_tribution _of
isoscalar-dipole strength O is displayed, elucidates this
=0. (33 point in a particularly clear fashion. The lowest-order Har-

tree response(dashed ling concentrates most of the
We close this section with a brief comment. As the conserisoscalar-dipole strength in a single fragment located around
vation of the vector current is exact in our formalism, we arew=16 MeV of excitation energy. This is the region where
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03T T T T T T T T T T T T T T T T T T TABLE II. Bound single-particle orbitals if®0 and low-energy
E - Hariree O =17T=0) [L2] E dipole(single-_particletransit_ions in three different relativistic mod-
025 0  — Rrpa =300 MeV b els. All energies are given in MeV.
C n=0.05 MeV | ] -
: n . Orbital L2-n L2-p NLB-n NLB-p NLC-n NLC-p
—; 2 E T 182 4139 37.17 3875 3459 3933 3518
© ,‘n ] 1p372 20.57 16.68 19.89  16.02 20.77  16.91
§ 0.15 ;H} . 1p2 1253 877 1410 1030 1546  11.65
g, i ] 1D5? 3.34 3.44 4.46 1.03
o 01 R . 2s? 1.35 1.55 2.50
0.05 E Transition
C 1PY228% 11.18 ~10 1250 ~11 12.95 ~12
o [ Ll 1P321D%? 17.23 ~17 16.45 ~16 16.31  15.88

0 5 10 15 20 1p¥2_,2512 1922 ~18 18.30 ~17 18.27 ~17

FIG. 5. Distribution of isoscalar-dipole strength M0 in a . 12 12 . .
lowest-order Hartreédashed lingand in a consistent RPgsolid  Fourier transform of the B~“—2S"* single-particle transi-

line) approximation. The linear model L2 was employed in the cal-tion density. As such, it di§plays a very deep minimum due to
culation. the presence of a node in th&¥ wave function. Clearly,

even a small amount of configuration mixing will fill in this
many single-particle transitions from theshell to thesd ~ Minimum. Indeed, not only does the RPA form factsolid
shell occur. Yet most of this strength is spurious, as evinced"®) Shows no evidence of a minimum, but it actually peaks
by the large amount being shifted to zero excitation energy ifY€"Y close to the Hartree minimum. Further, if the separation
the RPA responsésolid line). What remains is a relatively Petween the spurious state and the physical states is com-
small fragment centered aroune=10 MeV of excitation pletg, then the momentum—trapsfer dependence of the isosca-
energy: we identify this fragment as the first physicall@ dipole form-factor should display an octupole<(3) be-
isoscalar-dipole state ifO. We have also included in Fig. 4 Navior rather than that of a dipol81,38,43. It may be seen
an RPA calculatior{dot-dashed linewith a slightly “tam- in Fig. 6 that .theq dgpendence of the physical form factor is
pered” residual interaction, namely, one that neglects thdndeed (practically identical to that of the octupole form
contribution from the isoscalar component of the photon. Al-factor.
though much weaker than its purely isoscalsigma and
omega counterparts, the photon contribution remains indis- IV. RESULTS

pensable at low-excitation energies. Indeed, without it the . . .
spurious center-of-mass state fails to move all the way down Hgvmg established the theoretical framework fqr the cal-
to zero excitation energy culations of the response, we now proceed to display our

A similar calculation for the linear L2 set is displayed in Ires%:j[s flor the dlstr:|but|on of |_soscaflarlmor;oprcl>ltlal and I'S.Os:‘a'
Fig. 5. This time, however, the width has been reduced Con[?(;th Im)ﬁoszleenga; d?j? 2|g2;§gsiag ?)Zee;(scit?a d ?#r%ﬁllh t?we
siderably (from =1 MeV to »=0.05 MeV) so that the timelik P i fpth ¢ i limit gd' i
various discrete single-particle excitatiogshed lingmay Imelike component of the vector current, we imit our dis
be resolved. For example, the two small fragments in th&USston to the longitudinal response
10-12 MeV region(dashed ling represent the proton and
neutron P2 282 single-particle excitations respectively SUA )= (Wp(@)]¥e)28(0— w,)

(see Table Il. Moreover, by reducing the width one removes n

any contamination from the spurious state into the first 1

physical excitatior(solid line). This is essential for a reliable =-—7,.11%%q,q,0), (36)
extraction of the inelastic form factor, which is proportional ™

to the area under the peak: R

where p(q) is the Fourier transform of the isoscalar vector
density, W, is the exact nuclear ground state, a#g is an
excited state with excitation energy, .

wnt

2@ tim L[
Fr(g)=Ilim yp- S (g,w)dw. (35
wn—n

7—0

Here w, represents thé&iscrete excitation energy. In Fig. 6 A. Isoscalar giant monopole resonance

we show the isoscalar dipole form factor extracted from the The isoscalar giant monopole resonance is the quintessen-
longitudinal response. As we compare with actual experitial compressional mode. Regarded as the “breathing mode”
mental data[42], the single-nucleon form factor has been of the nucleus, this excitation holds a special place in nuclear
folded into the calculation. The Hartree form factor is thephysics as it provides, perhaps more than any other measur-
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L O O A O |||||||||||||||||||||||10_1
T 0(GT=0)[L2] —- E,=112MeV_| [ 03 T=0)[L2] — - E,=9.0MeV
, E=7.12 MeV — Eg,=8.1 MeV — E=613MeV  — E,,,=6.0 MeV
e Ay = [
- . - = FIG. 6. Inelastic isoscalar-
;/\ 1 E 10 dipole (left pane) and isoscalar-
. & - octupole(right pane) form factors
= ¥ = = L for 10 in a lowest-order Hartree
Nu:l = 4 L (dashed ling and in a consistent
— n RPA (solid line approximation.
B = 10° The linear model was employed in
107 = E the calculation and the experimen-
\ 3 L tal data are from Ref42].
‘ 1 L
I . \
10° Lol bl froclvvve bl vl g9
50 150 250 350 450 550 50 150 250 350 450 550
q (MeV) q (MeV)

able observable, the most direct determination of the comreported to be located at an excitation energyEef 14.2
pressibility of nuclear matter. In Fig. 7 we display the distri- =0.1[18]. As reported in a recent publicati$®3], we found
bution of isoscalar monopole strength for various closed+easonable agreement between experiment and our theoreti-
shell nuclei as predicted by three relativistic mean-fieldcal calculations using set NLC. The other two sets, with
models. These predictions are also compiled in Table Ill. Theompression moduli larger thali=420 MeV, predict the
three models have been defined in R84] as L2, NLB, and location of the GMR at too large an excitation energy. This
NLC and have been constrained to reproduce several bulkehavior continues all through the periodic table. Indeed, for
properties of nuclear matter at saturation as well as the rootedium-size nuclei, such @80 and*°Ca, it becomes diffi-
mean-square charge radius YCa; the last two models in- cult to even identify a genuine GMR with parameter sets L2
clude self-interactions among the scalar field. The model paand NLB. In contrast, the identification of the GMR with
rameters have been listed in Table I. First discovered irparameter set NLC is unambiguous for all nuclei and its
a-scattering experiments frofP®b[11] and recently mea- prediction for the location of the GMR i%r is in good
sured with better precision, the peak of the GMR has beeagreement with experiment. Finally, acceptable agreement

010 _IIII|IIII|IIII|IIII]IIII[IIII|IIII|II1I_ TTTTITTITT T I T I U T I T oo T uoIor ryvooToTeTT 04
16y 1+ — --L2 I~ 4w PR T
: O(I'=0;T=0) — — NLB : - Ca(1'=0;T=0) _
_ q=129 MeV 1 | _
008 R R 03
| C 1 L 4
- 0.06 | 4 ]
2, - 1 F 02
3 004 4 i
=) B 1 4
~ = - - 0.1
v 0.02 - N .
C > 3 L ]
0.00 Liigadiy Pl b b lsga 1 0.0 | d d ¢
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 FIG. 7. Nuclear dependence o
the isoscalar giant monopole reso-
BN BLNLALL BLBLELELE B OLELELE B B TTT T T T T T[T T T T T T T T[T T i Ti [ TTT1 nance in three relativistic mean-
100 £zt B 10 field models.
080 F 4 F o - o038
> C 1 T 1
2 0.60_— 7 — - 0.6
3 040 [ 3+ 04
o r - \
~ C 1 7 AN 7
020 g9 T NN —0.2
C ~J L - NS —
- R / —— \__
0_0041“11 11 «ANNE Y LSRR N RN R NN i 0.0
0

0 5 10 15 20 25 30
® (MeV)
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TABLE lIl. Nuclear dependence for the energy of the isoscalardependent determination of the compression modulus of
giant monopole resonance in three different relativistic models. Allnyclear matter. Moreover, it constraints, more than any other

energies are given in MeV. observable, theoretical models of the nuclear response. Even
" " o ” so, we should note that the most accurate of the models
Model O Ca Zr Pb (NLC) still overpredicts by almost 5 MeV the energy of the
L2 232 273 26.5 20.1 isoscalar dipole mode if%r.
NLB 226 27.9 241 18.1 _ In contrast to the high-energy component_of. the isoscalar-
dipole response, the low-energy component is independent of
NLC 215 21.0 16.9 13.1 : k
the compression modulus of nuclear mafsze Fig. 9. In-
Expt. 17.8-0.4 14.2+ 0.1 deed, the lowest-energy fragment #°Pb is located at an

excitation energy of about 8 MeV — irrespective of the pa-
rameters of the model. That is, relativistic models having
has been found with empirical formulas that suggest that theompression moduli ranging from 220 MeV all the way up to
position of the GMR should scale as the square root of th®50 MeV predict a similar distribution of low-energy
compressibility. For example, peak energies for this moddsoscalar-dipole strength iA°®Pb. This behavior continues
have been computed in the ratio of 1:1.38:1.53%Pb and  all throughout the periodic table. While the extraction of a
1:1.43:1.57 for®°zr, while the square root of the nuclear- sole RPA state, and thus of an associated form factor, is
matter compressibilities are in the ratio of 1:1.37:1.56. Thesdlifficult in the case of heavy nuclei, some interesting features
results suggest that models of nuclear structure having congmerge from the study of the momentum-transfer depen-
pression moduli well abovi ~200 MeV are likely to be in  dence of the distribution of strength. Figure 10 displays such

conflict with experiment. a dependence fof%Pb. It shows that the large amount of
spurious strength observed at low-momentum transéer (
B. Isoscalar giant dipole resonance =45 MeV) in the Hartree response gets shifted to zero ex-

i i ) ) citation energy(not shown in this figureleaving a barely
The special role played by the isoscalar giant dipole resogisiple physical fragment at around 7—8 MeV. Moreover, the
nance in constraining theoretical models of the nuclear rego|ution of RPA strength with momentum transfer seem to
sponse has been discussed extensively in previous sectiofigiow the trends displayed by the inelastic form factor of
We trust that our results have convinced the reader that thesg (see Fig. 6. It has been proposed in Ré24], from an
approach is sound and that the spurious contamination haasnalysis of the velocity fields, that the low-energy compo-

been efficiently removed from the physical excitations.pent of the isoscalar dipole mode is determined by surface
Hence, in the remainder of this section we focus on theects.

nuclear and model dependence of the ISGDR. Moreover, we
also discuss the substantial amount of isoscalar dipole
strength predicted to exist at low energy and already ob-
served experimentally. The distribution of isoscalar monopole and isoscalar di-
The distribution of isoscalar-dipole strength #zr and  pole strength has been computed in a relativistic random-
208pp is displayed in Fig. 8 for the three relativistic models.phase approximation to the Walecka model using various
Note that no attempt has been made to identify a resonaparametrizations that incorporate scalar self-interactions.
peak for the case of°0 and “°Ca as the strength becomes While all of these models provide an equally good descrip-
too fragmented. As remarked earlier, the model with the softtion of the properties of nuclear matter at saturation, their
est equation of stattNLC) provides the best description of predictions for the nuclear compressibility differ by more
the experimental dati23]. Thus, as hoped, the high-energy than a factor of 2. Predictions for the energy of various sur-
component of the isoscalar-dipole response provides an ifface modes in medium-mass nuclei within a self-consistent

V. CONCLUSIONS

0.6 [TTTTTTTTTITTTT I ITI T I TTTL _I TTTTTTTTTTTTTTTTI I_ 2
- "ze=m=0) —--12 4 [ "Po’=15T=0) —--12 ]
05 ~  q=129 MeV —— NLB ] - q=129 MeV —--NLB 4
“E e —NLC H | —— NLC —
~ Z . - — 1.5
T 04 F 4 L ]
> ~ J1 L _
[} - - | A H
S 03 - 4 " — 1 FIG. 8. Nuclear dependence of the isoscalar
@ = 1 L { \ i giant dipole resonance in three relativistic mean-
S 02 [ I\ J r A . field models.
~ T J\ — - o \ -
175) C| i A I / v \ — 0.5
\ L
01 b NN VN
N L \ L
0'l|||||||||||||I||||I||||I||| aSARENREEER 0
20 25 30 35 40 45 50 20 25 30 35 40
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random-phase approximation to the Walecka model have exearned, others were being forgotten. Chief among these was
isted for over a decade. However, attempts at calculatinthe important role of the negative-energy states in the for-
compressional modes in the original model, with a compressmalism.

ibility of K=545 MeV, were doomed to failure. Recently, In this paper the relativistic RPA formalism with scalar
however, scalar self-interactions, so instrumental in softeningelf-interactions has been reviewed in great detail. A non-
the equation of state, were incorporated into the calculatiospectral approach has been implemented that automatically
of the response. Unfortunately, as lessons were beingncludes both positive- and negative-energy continuua with-

20 [ 1 I I I I 1 1 1 1 | I 1 1 T i 1 I I 1 | T I I 1 I 1 T T I 15
N Ppp(I=13T=0) ] L q=180 MeV i
B ! q=45 MeV 4 F ! -
'T'_‘ 15 r ” — — - Hartree __ - -1
> I RRA o [ 110
kP L I 4 L ]
210F 1 F .
= N \ 1 L i
g r 1y ]
= 1 € 100
s F Ny ]t -
- N vl {1 F i FIG. 10. Momentum-transfer
oL AN I\‘_A\LJA\J\IJJ - B . 5 dependence of t.he Iow-eqergy
5 10 15 20 5 20 component of the isoscalar dipole
0.8 015 strength in a lowest-order Hartree
BN ' (dashed lingand RPA(solid line)
i q=240 MeV ] B - approximations. All calculations
— 0.6 | 4 [ 0. were performed using the NLC
' ' 1 F set.
% R ] — 0.09
= 04 1 r
2 L 1 F 0.06
Busl 1 [
i el A A 1 F 0.03
C W -
0.0 N Vas LN f - 3 0.00
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o (MeV) o (MeV)
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out any reliance on artificial cutoffs and truncations. Speciah six-dimensional integral, the spherical nature of the under-
emphasis was placed on the role of self-consistency whiclying mean-field potential enables one to carry out the four
demands that the same interaction used to generate the meamgular integrals analytically leaving a two-dimensional in-

field ground state be used (0 compute the nucleon propa- tegral to be performed numerically. Thus, through a multi-

gator and(ii) the RPA response. Enforcirg guarantees the pole decomposition, the density-dependent part of the time-
conservation of the vector current, while enforcifig suc-  like polarization may be written 487,38

cessfully decouples the spurious isoscalar-dipole strength

from the physical response. A novel relation that quantifies 0 . - 0 . 3~

the violation of the vector current exclusively in terms of Hp(a,q ,w)=go 57(0.9"; 0)Pg(a.a"), (A1)
ground-state form factors was introduced. This relation may

be used as a stringent test on the numerics. where all the dynamical information is contained in

Predictions for the. isoscalar glant—monopolg resonance 'T‘Igo(q,q’;w) and the “geometrical” (or angulay depen-
the NLC model, with a nuclear compressibility df dence is given by the function
=224 MeV, were in good agreement with experiment and
also with semiempirical formulas that suggest that the posi- 3 A a PP
tion of the GMR should scale as the square root of the PM/(CI,Q')E%: Dw(a)Dyy . (a"). (A2)
nuclear compressibility. For the isoscalar-dipole mode the
best description of the data was still obtained with the NLC 3 ,n . .
set, but here the discrepancies were larger than in the mon lereDy, (q) are the ngneD funquons. Two of these_ func_—
pole case. In particular, theoretical calculation overestimat jons rpay be combined by using the following identity
the position of the ISGDR in°%Zr by almost 5 MeV. In 37.38;
addition to the high-energy component of the ISGDR, a low- X L A .
energy component that is insensitive to the compressibility of f dkPj (9,k) Pfﬂ’(k'q/)ZZJJr 1 5JJ’Piw(qvql)’
the model was clearly identified in all nuclei. It has been
proposed elsewhere that the low-energy component of the (A3)
isoscalar dipole mode is determined by surface effects. Th

S ) : . §o that the three-dimensional integral equation required for
existing discrepancies between theory and experiment, pajpe eyajuation of the RPA polarization be reduced to a one-

ticularly in the case of the ISGDR if’Zr, are significant.  gimensional one, albeit one for each angular-momentum
The resolution of this differences demands substantial effor; hannel. Computing any specific multipole of the polariza-

on both fronts. While extracting moments of the distribution;q, jnsertion requires the evaluation of various reduced ma-

will continue to be useful, we suggest that in future studies,;, elements, which are constrained by angular-momentum

the full distribution of strength be adopted for comparisons,,q arity selection rules. Because of the timelike nature of
between theory and experiment.

the vertex ) only natural-parity states, such as the isosca-
lar monopole and dipole compressional modes, may be ex-
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tions Eq.(21) are solved using standard matrix-inversion
techniqued44], the lowest-order polarization must be com-
puted on every point of a square momentum-transfer grid
and for every polarization insertion that mixes wii3’. The

The first step into the calculation of the RPA response idowest-order polarization must therefore be evaluated several
the computation of the lowest-order polarization given in Eq.thousands times for a reliable extraction of the RPA re-
(22). Although this step apparently requires the evaluation osponse.

APPENDIX: THE J™ CONTENT OF THE NUCLEAR
POLARIZATION
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