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Self-consistent description of nuclear compressional modes

J. Piekarewicz
Department of Physics, Florida State University, Tallahassee, Florida 32306

~Received 5 March 2001; published 3 July 2001!

Isoscalar monopole and dipole compressional modes are computed for a variety of closed-shell nuclei in a
relativistic random-phase approximation to three different parametrizations of the Walecka model with scalar
self-interactions. Particular emphasis is placed on the role of self-consistency which by itself, and with little
else, guarantees the decoupling of the spurious isoscalar-dipole strength from the physical response and the
conservation of the vector current. A powerful new relation is introduced to quantify the violation of the vector
current in terms of various ground-state form factors. For the isoscalar-dipole mode two distinct regions are
clearly identified:~i! a high-energy component that is sensitive to the size of the nucleus and scales with the
compressibility of the model and~ii ! a low-energy component that is insensitivity to the nuclear compressibil-
ity. A fairly good description of both compressional modes is obtained by using a ‘‘soft’’ parametrization
having a compression modulus ofK5224 MeV.
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I. INTRODUCTION

The study of nuclear compressional modes, while in
esting in its own right, is motivated by our desire to und
stand the equation of state of hadronic matter, especiall
relation to its compression modulus. In turn, an accurate
termination of the equation of state places important c
straints on theoretical models of nuclear structure, heavy
collisions, neutron stars, and supernovae explosions.

While it remains true that measuring the energy of
nuclear compressional modes provides the most accurat
termination of the compression modulus, significant a
vances in astronomical observations and terrestrial exp
ments are providing important complimentary informatio
For example, explaining the time structure of the neutr
burst emitted from supernova SN1987A seems to requi
relatively soft equation of state as input in the simulations
core-collapsed supernova@1,2#. Further, the recently inferred
narrow mass distribution of neutron stars@3# poses stringen
constraints on the nuclear equation of state. At the sa
time, a number of improved radii measurements of ra
quite, isolated neutron stars — such as RX J185635-375
will contribute significantly to our understanding of the hig
density component of the equation of state@4#. We note that
although the extrapolation between the compressibility
symmetric nuclear matter and the bulk properties of neut
stars is large@5#, it is now important, as well as realistic, t
demand from our models to be able to describe them b
Finally, measurements of the elliptical flow in relativist
heavy-ion reactions seem to have established the utility
this observable as a probe of the stiffness of the equatio
state@6#.

Also significant is the strong correlation between see
ingly unrelated experiments. Indeed, the radius of a neu
star is predicted to be strongly correlated to the neutron s
of a heavy nucleus@7,8#. Thus, the upcoming measureme
of the neutron radius of208Pb at the Jefferson Laborator
@9,10# should place important limits on the radii of neutro
stars.

Although measurements of the giant monopole resona
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@11,12# and the isoscalar giant dipole resonance@13–15#
have existed for some time, the field has seen a revitaliza
due to new and improved measurements of both comp
sional modes@16–18#. The field has also seen significa
advances in the theoretical domain. Indeed, calculations
nuclear compressional modes using Hartree-Fock~HF! plus
random-phase approximation~RPA! approaches with state
of-the-art Skyrme interactions are now possible@19,20#.
Relativistic RPA models have also enjoyed a great dea
success, especially now that scalar self-interactions h
been incorporated into the calculation of the response@21–
24#. At the same time the philosophy behind the theoreti
extraction of the nuclear compressibility has evolved cons
erably. Earlier attempts depended heavily on semiempir
formulas that related the compressibility to the energies
the compressional modes@25#. The field now demands
stricter standards: the model, without any recourse to se
empirical mass formulas, must predict both the compress
ity of nuclear matter as well as the energy of the compr
sional modes.

In this publication state-of-the-art calculations of the iso
calar giant-monopole resonance~GMR! and the isoscalar
giant-dipole resonance~ISGDR! are reported for a variety o
closed-shell nuclei. This paper represents an expanded
sion of a short article published recently that focused exc
sively on 208Pb @23#. The model adopted in this work i
based on a relativistic random-phase approximation to th
different parametrizations of the Walecka model with sca
self-interactions. A nonspectral approach that treats disc
and continuum excitations on equal footing is implement
As a result, the conservation of the vector current is stric
maintained throughout the calculation. Moreover, for the c
culation of the RPA response we employ a residual partic
hole interaction consistent with the particle-particle intera
tion used to generate the mean-field ground state. In this
the spurious isoscalar-dipole strength, associated with
uniform translation of the center-of-mass, gets shifted to z
excitation energy and is cleanly separated from the phys
response.

Having established the theoretical underpinning of o
©2001 The American Physical Society07-1
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calculation, it is now useful to contrast it against alternat
self-consistent implementations. In a recent article
Shlomo and Sanzhur@26#, it is suggested that actual imple
mentations of the RPA, in spite of claiming otherwise, a
not fully self-consistent. It is pointed out that these calcu
tions often resort to a variety of approximations such as~i!
neglecting the two-body Coulomb and spin-orbit terms in
residual particle-hole interaction,~ii ! approximating the
momentum-dependent parts in the particle-hole interact
~iii ! limiting the particle-hole space in a discretized calcu
tion by a cutoff energyEph

max, and~iv! introducing a smearing
parameter, such as a Lorentzian width. Each of these
proximations is now briefly addressed. In the relativistic f
malism employed here neither the two-body Coulomb
the spin-orbit interaction are neglected. Rather, the resid
particle-hole interaction includes the~isoscalar! contribution
from the photon as well as spin-orbit effects that are inc
porated — to all orders — by merely maintaining the re
tivistic structure of the interaction. Moreover, the residu
particle-hole interaction is momentum independent beca
one preserves intact its full Lorentz structure; no moment
dependence is generated through a nonrelativistic reduc
of the interaction. Further, the nonspectral approach
ployed here avoids any reliance on artificial cutoffs and tr
cations. Finally, while a Lorentzian width is included to com
pute the properties of discrete excitations, it is done so
ensuring that the physically relevant quantities, the excita
energy and the inelastic form factor, remain invariant unde
change in width.

The paper has been organized as follows. Section II
scribes the relativistic mean-field plus RPA formalism
great detail placing special emphasis on the role of s
consistency. Section III illustrates the importance of se
consistency for the conservation of the vector current and
the decoupling of spurious strength from the physi
isoscalar-dipole response. Here a powerful novel relatio
introduced to quantify the violation of the vector current
terms of various known ground-state form factors. Res
are displayed in Sec. IV, while a summary and conclusi
are presented in Sec. V.

II. FORMALISM

In this section a detailed description of the mean-fi
plus RPA formalism employed to compute the distribution
strength for both compressional modes is presented. This
malism, with the exception of its implementation in the ca
of scalar self-interactions, has now been available for alm
fifteen years@27–29#. However, important lessons keep b
ing ignored@21#, just to be soon rediscovered@22#. Thus, we
feel compelled to present, for what we hope is the last tim
a thorough discussion of the relativistic RPA formalism.

The first step in calculating a relativistic RPA response
the computation of the mean-field ground state in a s
consistent approximation. Once self-consistency is achie
three important pieces of information become available:~i!
the single-particle energies of the occupied orbitals,~ii ! their
single-particle wave functions, and~iii ! the self-consisten
mean-field potential. This mean-field potential, without a
02430
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modification, must then be used to generate the nucl
propagator; in this way the conservation of the vector curr
is guaranteed to be maintained. The nucleon propagato
computed nonspectrally to avoid any dependence on the
tificial cutoffs and truncations that plague most spectral
proaches. Moreover, through a nonspectral approach
gives equal treatment to both bound and continuum orbit

Having generated the occupied single-particle spectr
and the nucleon propagator, the computation of the low
order ~Hartree! polarization is reduced to the evaluation
various matrix elements of the relevant transition opera
To compute the RPA response one needs to go beyond
single-particle response. The RPA builds coherence am
the many allowed particle-hole excitations by iterating t
lowest-order polarization to all orders via the residu
particle-hole interaction. Yet special care must be taken
adopting a residual particle-hole interaction consistent w
the particle-particle interaction used to generate the me
field ground state. Only then can one ensure that the spur
component of the isoscalar-dipole response will get shifted
zero excitation energy@30,31#. As the polarization tensor is a
fundamental many-body operator, it can be computed s
tematically using well-known many-body techniques@32#.
Having computed the polarization tensor, the nuclear
sponse is extracted by simply taking its imaginary part. T
following sections provide a detailed account on the imp
mentation of these ideas.

A. The Lagrangian density

The starting point for the calculation of the nuclear r
sponse is a Lagrangian density having an isodoublet nuc
field (c) interacting via the exchange of two isoscalar m
sons, the scalar sigma (f) and the vector omega (Vm), one
isovector meson, the rho (bm), and the photon (Am) @33,34#.
The pseudoscalar pion is not included as it does not con
ute at the mean-field level. In addition to meson-nucle
interactions the Lagrangian density includes scalar s
interactions. These are responsible for reducing the nuc
compressibility from the unrealistically large value ofK
5545 MeV, obtained in the original linear model of Wa
lecka @35#, all the way down to the acceptable value ofK
5224 MeV. Thus, without the inclusion of scalar se
interactions a realistic calculation of the compressio
modes is not feasible. The Lagrangian density for the mo
is thus given by

Lint5c̄Fgsf2gvV” 2
gr

2
t•b”2

e

2
~11t3!A” Gc2U~f!;

U~f!5
1

3!
kf31

1

4!
lf4, ~1!

where use of the‘‘slash’’ notationV” [gmVm has been made
The various model parameters have been listed in Table

B. The nucleon propagator

The mean-field propagator contains information about
interaction of the propagating nucleon with the average
7-2
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SELF-CONSISTENT DESCRIPTION OF NUCLEAR . . . PHYSICAL REVIEW C64 024307
tential generated by the nuclear medium. However, even
Fermi-gas description, where all interactions are neglec
the nucleon propagator would still differ from its free-spa
value because of the presence of a filled Fermi sea. Ind
the analytic structure of the free-nucleon propagator at fi
density is different from its free-space value~see Fig. 1!.
This suggests the following decomposition of the nucle
propagator@33#:

G~x,y!5E
2`

` dv

2p
e2 iv(x02y0)G~x,y;v!, ~2a!

G~x,y;v!5GF~x,y;v!1GD~x,y;v!. ~2b!

The Feynman part of the propagator,GF , admits a spectra
decomposition in terms of the mean-field solutions to
Dirac equation. That is,

GF~x,y;v!5(
n

F Un~x!Ūn~y!

v2En
(1)1 ih

1
Vn~x!V̄n~y!

v1En
(2)2 ih

G , ~3!

whereUn and Vn are the positive- and negative-energy s
lutions to the Dirac equation, and the sum is over all state
the spectrum. The analytic structure ofGF is identical to that
of the conventional Feynman propagator@36#. The density-
dependent part of the propagatorGD correctsGF for the
presence of a filled Fermi sea. This correction occurs eve
a noninteracting system and is due to the Pauli exclus
principle. Formally, one effects this correction by shifting t
position of the pole of every occupied state from below
above the real axis~see Fig. 1!

GD~x,y;v!5 (
n,F

Un~x!Ūn~y!

3F 1

v2En
(1)2 ih

2
1

v2En
(1)1 ih

G
52p i (

n,F
d~v2En

(1)!Un~x!Ūn~y!. ~4!

TABLE I. Various relativistic parameter sets@34#. The scalar
mass andk are given in MeV.

Set gs
2 gv

2 gr
2 ms k l

L2 109.63 190.43 65.23 520 0 0
NLB 94.01 158.48 73.00 510 800 10
NLC 95.11 148.93 74.99 501 5000 -200
02430
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Note that the sum overn is now restricted to only those
positive-energy states below the Fermi energy. In a me
field approximation these states satisfy a Dirac equation
the form

@En
(1)g01 ig•“2M2SMF~x!#Un~x!50, ~5!

where the mean-field potential is given by

SMF~x!5SS~x!1g0S0~x!. ~6!

The quantitiesSS and S0 denote the scalar and vector p
tentials that have been generated self-consistently at
mean-field level. Since this work is limited to the response
closed-shell nuclei, it is assumed that the mean-field po
tial has been generated by a spherically symmetric, s
saturated ground state.

Although the above spectral decomposition of the nucle
propagator will become important in understanding the sp
tral content of the nuclear response, in practice it suff
from a reliance on artificial cutoffs and truncations. An ef
cient scheme that avoids such a dependence is the non
tral approach. A nonspectral approach has the added ad
tage that both positive- and negative-energy continuua
treated exactly. As a result, the contributions from t
negative-energy states to the response are included auto
cally. This is important to maintain fundamental physic
principles, as the positive-energy states by themselves
not complete. To obtain the nucleon propagator in nonsp
tral form one must solve the following inhomogeneous Dir
equation:

@vg01 ig•“2M2SMF~x!#GF~x,y;v!5d~x2y!. ~7!

Herev is taken to be a complex variable and the mean-fi
potential is identical to the one used to generate the nuc
ground state. Taking advantage of the spherical symmetr
the potential, one may decompose the Feynman propag
in terms of spin-spherical harmonics

FIG. 1. Spectral content of the nucleon propagator in a rela
istic Fermi-gas approximation.
GF~x,y;v!5
1

xy (
km

S g11
k ~x,y;v!^x̂u1km&^1kmuŷ& 2 ig12

k ~x,y;v!^x̂u1km&^2kmuŷ&

ig21
k ~x,y;v!^x̂u2km&^1kmuŷ& g22

k ~x,y;v!^x̂u2km&^2kmuŷ&
D , ~8!
7-3
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J. PIEKAREWICZ PHYSICAL REVIEW C 64 024307
which are defined as

^x̂ukm&5 (
mlms

^ lml ,1/2msu l1/2jm&Ylml
~ x̂!x1/2ms

, ~9!

j 5uku2
1

2
and l 5H 1k if k.0,

2k21 if k,0.
~10!

The above decomposition enables one to rewrite the D
equation as a set of first-order, coupled, ordinary differen
equations of the form

S v* 2M*
d

dx
2

k*

x

d

dx
1

k*

x
2v* 2M*

D S g11
k g12

k

g21
k g22

k D 5d~x2y!,

~11!

where we have defined

v* [v2Sv~x! and M* [M1Ss~x!. ~12!

It is important to underscore that the mean-field potent
used to compute the nucleon propagator must be identic
those used to generate the mean-field ground state if the
servation of the vector current is to be maintained.

C. The nuclear polarization

To illustrate the many-body techniques employed in
manuscript, we define a general polarization insertion as
time-ordered product of two arbitrary nucleon currents

iPab~x,y!5^C0uT@ Ĵa~x!Ĵb~y!#uC0&, ~13!

whereC0 denotes the exact nuclear ground state andĴa(x)
is a one-body current operator of the form

Ĵa~x!5c̄~x!Gac~x!. ~14!

Note that the ‘‘big’’ gamma matrices have been defined
that the one-body current operator be Hermitian@36#. That is,

Ga5$1,ig5,gm,gmg5,smn% with Ḡa[g0Ga†g05Ga.
~15!

In a mean-field approximation to the nuclear ground sta
such as the one employed here and in most of the o
relativistic calculations to date, the polarization inserti
may be written exclusively in terms of the nucleon mea
field propagator

iPab~x,y!5Tr@GaG~x,y!GbG~y,x!#. ~16!

The earlier decomposition of the nucleon propagator i
Feynman and density-dependent contributions@Eq. ~2b!#
suggests an equivalent decomposition for the polarization
sertion
02430
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Pab~x,y!5E
2`

` dv

2p
e2 iv(x02y0)Pab~x,y;v!, ~17a!

Pab~x,y;v!5PF
ab~x,y;v!1PD

ab~x,y;v!. ~17b!

The Feynman part of the polarizationPF
ab is independent of

GD and describes the polarization of the vacuum. This pie
which diverges and needs to be renormalized, has been
corporated in our earlier calculations of the longitudinal
sponse in the quasifree region@37#. However, it has been
included only in a local-density approximation. To o
knowledge an exact finite-nucleus calculation of vacuum
larization has yet to be performed. While a local-density a
proximation is accurate in the quasifree region where m
angular-momentum channels contribute, it has proven in
equate for the description of discrete nuclear excitations@38#.
In particular, the spurious isoscalar dipole strength associ
with the uniform translation of the center-of-mass does
get shifted all the way down to zero excitation energy. Mo
relevant, the role of vacuum polarization in effective ha
ronic theories is currently being revisited. Effective fie
theories now suggest that the largely unknown physics a
ciated with the short-distance dynamics may be effectiv
simulated by the use of various local operators@39–41#. It is
for these reasons that vacuum polarization will be igno
henceforth. Note, however, that it is still possible to igno
vacuum effects and end up with a completely consist
model of the nuclear response@31,33#.

In contrast to the Feynman part of the polarization, t
density-dependent part is finite and can be computed exa
in the finite system@27–29#. It is given by

PD
ab~x,y;v![PFD

ab~x,y;v!1PDF
ab~x,y;v!, ~18!

where

PFD
ab~x,y;v!5 (

n,F
Ūn~x!GaGF~x,y;1v1En

(1)!GbUn~y!,

~19a!

PDF
ab~x,y;v!5 (

n,F
Ūn~y!GbGF~y,x;2v1En

(1)!GaUn~x!.

~19b!

Note that the Pauli blocking of particle-hole excitations,
term usually denoted byPDD

ab , has already been incorporate
in the above two terms. The density-dependent part of
polarization includes the excitation of particle-hole pairs p
the mixing between positive- and negative-energy states;
last term is sometimes referred to as the Pauli blocking
NN̄ excitations. The spectral content ofPD is easily revealed
by using the spectral decomposition of the Feynman pro
gator@see Eq.~3!#. For example, the Feynman-density com
ponent of the polarizationPFD

ab may be written as
7-4
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PFD
ab~x,y;v!5 (

m,n,F
F Ūn~x!GaUm~x!Ūm~y!GbUn~y!

v2~Em
(1)2En

(1)!1 ih

1
Ūn~x!GaVm~x!V̄m~y!GbUn~y!

v1~Em
(2)1En

(1)!2 ih
G . ~20!

The first term in the sum represents the excitation o
particle-hole pair. The excitation becomes real, namely, b
particles go on-shell, when the energy transfer to the nuc
becomes identical to the pair-excitation energyv[Em

(1)

2En
(1) . The second term in the sum has no nonrelativis

counterpart; it represents the mixing between positive-
negative-energy states. Although the contribution fro
vacuum polarization has been neglected, the inclusion of
mixing is of utmost importance for maintaining current co
servation. Moreover, it is also essential for the removal of
spurious strength from the excitation of the isoscalar dip
mode. The inclusion of the negative-energy sector in the
culation of the response underscores the basic fact tha
positive-energy sector of the spectrum, by itself, is not co
plete.

D. The RPA equations

The polarization tensor describes modifications to
propagation of various mesons~such as thes, v, r, . . . ) as
they move through the nuclear environment. In addition,
polarization tensor contains all information on the excitat
spectrum of the nucleus. Indeed, the polarization insertio
an analytic function of the frequencyv, except for the pres-
ence of simple poles located at the excitation energies of
system. The residue at the pole is simply related to the
elastic form factor@32#.

The singularity structure of the lowest-order polarizati
tensor is easily inferred from the mean-field spectrum:
nuclear excitation energies~poles! appear at energies give
by the difference between the single-particle energies o
nucleon above the Fermi level~particle! and one below
~hole!. In this approximation the residual interaction betwe
the particle and the hole is neglected. However, the con
tent response of the mean-field ground state demands tha
residual interaction between the particle and the hole be
corporated@31#. This may be implemented by solving Dys
on’s equation for the polarization insertion in a rando
phase approximation. In RPA the lowest-order polarization
iterated to all orders via the residual particle-hole interacti
Because the iteration is to all orders, the singularity struct
of the propagator, and thus the location of the poles, is m
fied relative to the lowest-order predictions. Dyson’s eq
tion for the RPA polarization is given by

PRPA
ab ~q,q8;v!5PD

ab~q,q8;v!

1E d3k

~2p!3

d3k8

~2p!3
PD

al~q,k;v!

3Vls~k,k8;v!PRPA
sb ~k8,q8;v!, ~21!
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where Vls(k,k8;v) is the residual interaction to be dis
cussed below andPD

ab(q,q8;v) is the Fourier transform of
the lowest-order polarization. That is,

PD
ab~q,q8;v!5E d3xd3y e2 i (q•x2q8•y)PD

ab~x,y;v!.

~22!

At this point it is convenient to depart from the general fo
malism adopted until now and restrict the discussion to
case of interest: the isoscalar compressional modes. He
the only component of the residual interaction that must
retained is the one mediated by the exchange of the si
and omega mesons, and the~isoscalar component of the!
photon. Moreover we employ the simplest operator, the tim
like component of the vector current

r̂~q!5E d3x eiq•xc̄~x!g0c~x!, ~23!

that can couple to these natural-parity excitations.
The computational demands imposed on a calculation

the RPA response for a nucleus as large as208Pb can be
formidable indeed. Powerful symmetries that are presen
infinite nuclear matter, such as translational invariance,
broken in the finite system. As a result, the RPA equatio
that were algebraic in the infinite system become integ
equations in the finite nucleus. Moreover, modes of exc
tion that were uncoupled before, such as longitudinal a
transverse modes, become coupled now. In this way the R
equations, because of the ubiquitous scalar-longitudinal m
ing, become a complicated 535 set of coupled integra
equations. Correspondingly, the residual particle-hole in
action, also a 535 kernel, may be written as

Vab~k,k8;v!5S gs
2D~k,k8;v! 0

0 gv
2Dab~k,k8;v!

D ,

~24!

where the vector propagator is given by

Dab~k,k8;v!5~2p!3d~k2k8!

3S 2gab1
kakb

mv
2 D D~k,v!;

D~k,v!5
1

v22k22mv
2

. ~25!

Note that because vector self-interactions have not yet b
included in the present version of the model, the vec
propagator remains local~in momentum space! and main-
tains its simple Yukawa form. In contrast, scalar se
interactions modify the propagator relative to its simple fre
space form. Hence, the scalar propagator now satisfie
nontrivial Klein-Gordan equation of the form@21,22#

@v21¹22ms
22U9~f!#D~x,y;v!5d~x2y!. ~26!
7-5
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III. FUNDAMENTAL SYMMETRIES

In the following two sections we discuss important sy
metries related to the conservation of the vector current
to the elimination of the spurious isoscalar-dipole stren
from the physical response. We are adamant about the p
ervation of these two fundamental symmetries of nature
we regard the predictions of theoretical formulations t
violate them as ambiguous at best. For example, in a fra
work that violates the conservation of the vector curr
should one calculate the longitudinal response of the nuc
ground state by using the timelike component or the lon
tudinal one? Likewise, the predicted energy and distribut
of isoscalar-dipole strength in a model that retains eve
small fraction of spurious strength will bear little resem
blance to reality. It is only through consistency, the recurr
theme of this paper, that one can enforce these impor
dynamical demands. How is that consistency plays such
important role in preserving these fundamental symmetr
will now be discussed.

A. Conservation of the vector current

We start by discussing the conservation of the vector c
rent. Current conservation demands that the timelike com
nent of vector current be related to the longitudinal com
nent. This impacts greatly on the results; it forces the nuc
polarization with one Lorentz vector index to be transve
to the four-momentum transfer, irrespective of the Lore
character of the other vertex. That is,

qmPD
mb~q,q8;v!50 with qm5~v,q!. ~27!

So how is current conservation realized in our model?
indicated in Eq.~18! the density dependent part of the pola
ization tensor consists of two termsPFD

ab and PDF
ab . Does

each term separately satisfy current conservation or does
conservation of the current depend on a sensitive canc
tion between them? To address this question we introduce
longitudinal~with respect toq) component of the vector cur
rent. We start with the Feynman-density piece

qPFD
3b~q,q8;v!5E d3xd3y (

n,F
Ūn~x!

3~g•q!e2 iq•xGF~x,y;v1En
(1)!

3eiq8•yGbUn~y!. ~28!

To make contact with the timelike component of the pol
ization we turn the momentum transferq into a gradient
operator @(g•q)e2 iq•x[(g• i“)e2 iq•x# and integrate by
parts. In this way the gradient operator acts now on both
bound-state nucleon spinor and the nucleon propagator.
then the difference between their respective Dirac equat
@Eqs. ~5! and ~7!# that dictates how severe the violation
current conservation becomes. We obtain
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qmPFD
mb~q,q8;v!5rb~q2q8!

[E d3x e2 i (q2q8)•x(
n,F

Ūn~x!GbUn~x!,

~29!

whererb(q) represents a ground-state form factor. This is
new and important result. First, such a simple relation wo
have been impossible to obtain had the mean-field poten
for the nucleon propagator been any different than the co
sponding one for the bound-state wave function. This is o
of the many manifestations of consistency in the formalis
Second, because in spherical nuclei all form-factors are
@33#, the imaginary part ofPFD

mb , by itself, satisfies curren
conservation. However, this is not true for the real part.
deed, the violation to the real part of the polarization is reg
lated by the various ground-state form factors. This res
may be used as a stringent test on the numerics. For insta
if one letsGb→g0 and setsq5q8 in Eq. ~29!, the violation
becomes identical to the mass number of the nucleus. Tha

qmPFD
m0~q,q;v!5E d3x (

n,F
Ūn~x!g0Un~x!

5E d3x rB~x![A. ~30!

In Fig. 2 we display the cumulative violation of the vect
current as a function of the angular-momentum channelJp.
Note that the plot also includes the corresponding violat
in the density-Feynman part of the nuclear polarizat
which is given by

qmPDF
mb~q,q8;v!52rb~q2q8!. ~31!

In this way current conservation is properly restored:

FIG. 2. The real part ofqmPm0 for the Feynman-density and
density-Feynman parts of the nuclear polarization as a function
the total angular momentum channel. Results are reported for16O
and 40Ca at q5q85100 MeV andv510 MeV. In a consistent
mean-field formalism these quantities should approach6A, respec-
tively.
7-6
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qmPD
mb~q,q8;v!5qm@PFD

mb~q,q8;v!1PDF
mb~q,q8;v!#50.

~32!

Note that current conservation is maintained for each in
vidual Jp channel. Figure 3 validates this statement by d
playing the timelike component of the polarization alongs
the longitude component (3ˆ 5q̂) for the isoscalar-dipole stat
in 40Ca. These results emerge from two powerful deman
First, the interaction driving the nucleon propagator must
identical to the one generating the mean-field ground st
Second, the negative-energy part of the spectrum mus
kept, otherwise the nucleon propagator fails to become
Green’s function for the relevant Dirac problem. One of t
great virtues of the nonspectral approach is that the nega
energy states are included automatically.

So far our discussion of current conservation has b
limited to the lowest-order polarization. Nevertheless,
conservation of the vector current at the RPA level places
additional demands on the formalism. Indeed, it relies exc
sively on the conservation of the vector current at the Har
level and it is independent of the nature of the residual in
action. This result may be derived from the structure of D
on’s equation for the nuclear polarization. Using Eqs.~21!
and ~32! we obtain

qmPRPA
mb ~q,q8;v!5qmPD

mb~q,q8;v!

1E d3k

~2p!3

d3k8

~2p!3
@qmPD

ml~q,k;v!#

3Vls~k,k8;v!PRPA
sb ~k8,q8;v!

50. ~33!

We close this section with a brief comment. As the cons
vation of the vector current is exact in our formalism, we a

FIG. 3. The longitudinal polarization for the isoscalar dipo
state computed from the timelike component of the vector cur
~solid line! and from the longitudinal component~filled circles!. In
a consistent mean-field formalism — such as the one used her
they should be identical. Note that the imaginary component is
longitudinal response.
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entitled to a minor simplification: the longitudinal compo
nent of the current can be systematically eliminated in fa
of the timelike component. Thus, the RPA equations may
reduced from a 535 to a 434 set of integral equations b
simply adopting a modified longitudinal propagator of t
form

D0~k,v![S km
2

k2D D~k,v!; km
2 5~v22k2!. ~34!

Note that the gauge component of the vector propagator@the
kakb term in Eq.~25!# has been eliminated from any furthe
discussion because the vector mesons do indeed couple
conserved vector current.

B. Spurious strength in the isoscalar-dipole response

While we have argued earlier that the conservation of
vector current at the RPA level is maintained irrespective
the nature of the residual particle-hole interaction, a con
tent residual interaction becomes of utmost importance in
elimination of the spurious strength from the isoscalar-dip
response. This result, first demonstrated by Thouless for
nonrelativistic case@30# and later extended by Dawson an
Furnstahl to the relativistic domain@31#, reinforces the im-
portance of consistency in the formalism. As in the case
the conservation of the vector current, the decoupling of
spurious component of the isoscalar-dipole response dep
on the consistency between the residual particle-hole in
action and the particle-particle interaction driving the mea
field ground state. Figure 4, where the distribution
isoscalar-dipole strength in16O is displayed, elucidates thi
point in a particularly clear fashion. The lowest-order Ha
tree response~dashed line! concentrates most of th
isoscalar-dipole strength in a single fragment located aro
v516 MeV of excitation energy. This is the region whe

nt

—
e

FIG. 4. Isoscalar dipole strength in16O in lowest-order Hartree
~dashed line! and in a consistent RPA~solid line! approximation.
The dot-dashed line is the RPA response with a residual interac
that lacks the contribution from the isoscalar component of the p
ton. The nonlinear model NLC was employed in the calculation
7-7
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many single-particle transitions from thep shell to thesd
shell occur. Yet most of this strength is spurious, as evin
by the large amount being shifted to zero excitation energ
the RPA response~solid line!. What remains is a relatively
small fragment centered aroundv510 MeV of excitation
energy; we identify this fragment as the first physic
isoscalar-dipole state in16O. We have also included in Fig.
an RPA calculation~dot-dashed line! with a slightly ‘‘tam-
pered’’ residual interaction, namely, one that neglects
contribution from the isoscalar component of the photon.
though much weaker than its purely isoscalar~sigma and
omega! counterparts, the photon contribution remains ind
pensable at low-excitation energies. Indeed, without it
spurious center-of-mass state fails to move all the way do
to zero excitation energy.

A similar calculation for the linear L2 set is displayed
Fig. 5. This time, however, the width has been reduced c
siderably ~from h51 MeV to h50.05 MeV) so that the
various discrete single-particle excitations~dashed line! may
be resolved. For example, the two small fragments in
10–12 MeV region~dashed line! represent the proton an
neutron 1P1/2→2S1/2 single-particle excitations respective
~see Table II!. Moreover, by reducing the width one remov
any contamination from the spurious state into the fi
physical excitation~solid line!. This is essential for a reliable
extraction of the inelastic form factor, which is proportion
to the area under the peak:

FL
2~q!5 lim

h→0

1

4pEvn2h

vn1h
SL~q,v!dv. ~35!

Herevn represents the~discrete! excitation energy. In Fig. 6
we show the isoscalar dipole form factor extracted from
longitudinal response. As we compare with actual exp
mental data@42#, the single-nucleon form factor has bee
folded into the calculation. The Hartree form factor is t

FIG. 5. Distribution of isoscalar-dipole strength in16O in a
lowest-order Hartree~dashed line! and in a consistent RPA~solid
line! approximation. The linear model L2 was employed in the c
culation.
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Fourier transform of the 1P1/2→2S1/2 single-particle transi-
tion density. As such, it displays a very deep minimum due
the presence of a node in the 2S1/2 wave function. Clearly,
even a small amount of configuration mixing will fill in thi
minimum. Indeed, not only does the RPA form factor~solid
line! shows no evidence of a minimum, but it actually pea
very close to the Hartree minimum. Further, if the separat
between the spurious state and the physical states is c
plete, then the momentum-transfer dependence of the iso
lar dipole form-factor should display an octupole (J53) be-
havior rather than that of a dipole@31,38,43#. It may be seen
in Fig. 6 that theq dependence of the physical form factor
indeed ~practically! identical to that of the octupole form
factor.

IV. RESULTS

Having established the theoretical framework for the c
culations of the response, we now proceed to display
results for the distribution of isoscalar monopole and isos
lar dipole strength on a variety of closed-shell nuclei.
both monopole and dipole states can be excited through
timelike component of the vector current, we limit our di
cussion to the longitudinal response

SL~q,v!5(
n

u^Cnur̂~q!uC0&u2d~v2vn!

52
1

p
I mP00~q,q,v!, ~36!

where r̂(q) is the Fourier transform of the isoscalar vect
density,C0 is the exact nuclear ground state, andCn is an
excited state with excitation energyvn .

A. Isoscalar giant monopole resonance

The isoscalar giant monopole resonance is the quintes
tial compressional mode. Regarded as the ‘‘breathing mo
of the nucleus, this excitation holds a special place in nuc
physics as it provides, perhaps more than any other mea

-

TABLE II. Bound single-particle orbitals in16O and low-energy
dipole~single-particle! transitions in three different relativistic mod
els. All energies are given in MeV.

Orbital L2-n L2-p NLB-n NLB- p NLC-n NLC-p

1S1/2 41.39 37.17 38.75 34.59 39.33 35.1
1P3/2 20.57 16.68 19.89 16.02 20.77 16.9
1P1/2 12.53 8.77 14.10 10.30 15.46 11.6
1D5/2 3.34 3.44 4.46 1.03
2S1/2 1.35 1.55 2.50

Transition

1P1/2→2S1/2 11.18 ;10 12.50 ;11 12.95 ;12
1P3/2→1D5/2 17.23 ;17 16.45 ;16 16.31 15.88
1P3/2→2S1/2 19.22 ;18 18.30 ;17 18.27 ;17
7-8
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FIG. 6. Inelastic isoscalar-
dipole ~left panel! and isoscalar-
octupole~right panel! form factors
for 16O in a lowest-order Hartree
~dashed line! and in a consistent
RPA ~solid line! approximation.
The linear model was employed i
the calculation and the experimen
tal data are from Ref.@42#.
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able observable, the most direct determination of the co
pressibility of nuclear matter. In Fig. 7 we display the dist
bution of isoscalar monopole strength for various clos
shell nuclei as predicted by three relativistic mean-fi
models. These predictions are also compiled in Table III. T
three models have been defined in Ref.@34# as L2, NLB, and
NLC and have been constrained to reproduce several
properties of nuclear matter at saturation as well as the r
mean-square charge radius of40Ca; the last two models in
clude self-interactions among the scalar field. The model
rameters have been listed in Table I. First discovered
a-scattering experiments from208Pb @11# and recently mea-
sured with better precision, the peak of the GMR has b
02430
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n

reported to be located at an excitation energy ofE514.2
60.1 @18#. As reported in a recent publication@23#, we found
reasonable agreement between experiment and our theo
cal calculations using set NLC. The other two sets, w
compression moduli larger thanK5420 MeV, predict the
location of the GMR at too large an excitation energy. Th
behavior continues all through the periodic table. Indeed,
medium-size nuclei, such as16O and 40Ca, it becomes diffi-
cult to even identify a genuine GMR with parameter sets
and NLB. In contrast, the identification of the GMR wit
parameter set NLC is unambiguous for all nuclei and
prediction for the location of the GMR in90Zr is in good
agreement with experiment. Finally, acceptable agreem
f
-

-

FIG. 7. Nuclear dependence o
the isoscalar giant monopole reso
nance in three relativistic mean
field models.
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has been found with empirical formulas that suggest that
position of the GMR should scale as the square root of
compressibility. For example, peak energies for this mo
have been computed in the ratio of 1:1.38:1.53 for208Pb and
1:1.43:1.57 for90Zr, while the square root of the nuclea
matter compressibilities are in the ratio of 1:1.37:1.56. Th
results suggest that models of nuclear structure having c
pression moduli well aboveK'200 MeV are likely to be in
conflict with experiment.

B. Isoscalar giant dipole resonance

The special role played by the isoscalar giant dipole re
nance in constraining theoretical models of the nuclear
sponse has been discussed extensively in previous sec
We trust that our results have convinced the reader that
approach is sound and that the spurious contamination
been efficiently removed from the physical excitation
Hence, in the remainder of this section we focus on
nuclear and model dependence of the ISGDR. Moreover
also discuss the substantial amount of isoscalar dip
strength predicted to exist at low energy and already
served experimentally.

The distribution of isoscalar-dipole strength in90Zr and
208Pb is displayed in Fig. 8 for the three relativistic mode
Note that no attempt has been made to identify a reso
peak for the case of16O and 40Ca as the strength become
too fragmented. As remarked earlier, the model with the s
est equation of state~NLC! provides the best description o
the experimental data@23#. Thus, as hoped, the high-energ
component of the isoscalar-dipole response provides an

TABLE III. Nuclear dependence for the energy of the isosca
giant monopole resonance in three different relativistic models.
energies are given in MeV.

Model 16O 40Ca 90Zr 208Pb

L2 23.2 27.3 26.5 20.1
NLB 22.6 27.9 24.1 18.1
NLC 21.5 21.0 16.9 13.1

Expt. 17.860.4 14.26 0.1
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dependent determination of the compression modulus
nuclear matter. Moreover, it constraints, more than any ot
observable, theoretical models of the nuclear response. E
so, we should note that the most accurate of the mod
~NLC! still overpredicts by almost 5 MeV the energy of th
isoscalar dipole mode in90Zr.

In contrast to the high-energy component of the isosca
dipole response, the low-energy component is independe
the compression modulus of nuclear matter~see Fig. 9!. In-
deed, the lowest-energy fragment in208Pb is located at an
excitation energy of about 8 MeV — irrespective of the p
rameters of the model. That is, relativistic models hav
compression moduli ranging from 220 MeV all the way up
550 MeV predict a similar distribution of low-energ
isoscalar-dipole strength in208Pb. This behavior continue
all throughout the periodic table. While the extraction of
sole RPA state, and thus of an associated form factor
difficult in the case of heavy nuclei, some interesting featu
emerge from the study of the momentum-transfer dep
dence of the distribution of strength. Figure 10 displays su
a dependence for208Pb. It shows that the large amount o
spurious strength observed at low-momentum transferq
545 MeV) in the Hartree response gets shifted to zero
citation energy~not shown in this figure! leaving a barely
visible physical fragment at around 7–8 MeV. Moreover, t
evolution of RPA strength with momentum transfer seem
follow the trends displayed by the inelastic form factor
16O ~see Fig. 6!. It has been proposed in Ref.@24#, from an
analysis of the velocity fields, that the low-energy comp
nent of the isoscalar dipole mode is determined by surf
effects.

V. CONCLUSIONS

The distribution of isoscalar monopole and isoscalar
pole strength has been computed in a relativistic rando
phase approximation to the Walecka model using vari
parametrizations that incorporate scalar self-interactio
While all of these models provide an equally good descr
tion of the properties of nuclear matter at saturation, th
predictions for the nuclear compressibility differ by mo
than a factor of 2. Predictions for the energy of various s
face modes in medium-mass nuclei within a self-consist

r
ll
lar
n-
FIG. 8. Nuclear dependence of the isosca
giant dipole resonance in three relativistic mea
field models.
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FIG. 9. Low-energy compo-
nent of the isoscalar dipole
strength in three relativistic mean
field models.
e
tin
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tio
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ith-
random-phase approximation to the Walecka model have
isted for over a decade. However, attempts at calcula
compressional modes in the original model, with a compre
ibility of K5545 MeV, were doomed to failure. Recentl
however, scalar self-interactions, so instrumental in soften
the equation of state, were incorporated into the calcula
of the response. Unfortunately, as lessons were be
02430
x-
g
s-

g
n
g

learned, others were being forgotten. Chief among these
the important role of the negative-energy states in the
malism.

In this paper the relativistic RPA formalism with scal
self-interactions has been reviewed in great detail. A n
spectral approach has been implemented that automati
includes both positive- and negative-energy continuua w
y
e
e

FIG. 10. Momentum-transfer
dependence of the low-energ
component of the isoscalar dipol
strength in a lowest-order Hartre
~dashed line! and RPA~solid line!
approximations. All calculations
were performed using the NLC
set.
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out any reliance on artificial cutoffs and truncations. Spec
emphasis was placed on the role of self-consistency wh
demands that the same interaction used to generate the m
field ground state be used to~i! compute the nucleon propa
gator and~ii ! the RPA response. Enforcing~i! guarantees the
conservation of the vector current, while enforcing~ii ! suc-
cessfully decouples the spurious isoscalar-dipole stren
from the physical response. A novel relation that quantifi
the violation of the vector current exclusively in terms
ground-state form factors was introduced. This relation m
be used as a stringent test on the numerics.

Predictions for the isoscalar giant-monopole resonanc
the NLC model, with a nuclear compressibility ofK
5224 MeV, were in good agreement with experiment a
also with semiempirical formulas that suggest that the p
tion of the GMR should scale as the square root of
nuclear compressibility. For the isoscalar-dipole mode
best description of the data was still obtained with the N
set, but here the discrepancies were larger than in the m
pole case. In particular, theoretical calculation overestim
the position of the ISGDR in90Zr by almost 5 MeV. In
addition to the high-energy component of the ISGDR, a lo
energy component that is insensitive to the compressibility
the model was clearly identified in all nuclei. It has be
proposed elsewhere that the low-energy component of
isoscalar dipole mode is determined by surface effects.
existing discrepancies between theory and experiment,
ticularly in the case of the ISGDR in90Zr, are significant.
The resolution of this differences demands substantial ef
on both fronts. While extracting moments of the distributi
will continue to be useful, we suggest that in future stud
the full distribution of strength be adopted for compariso
between theory and experiment.
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APPENDIX: THE Jp CONTENT OF THE NUCLEAR
POLARIZATION

The first step into the calculation of the RPA response
the computation of the lowest-order polarization given in E
~22!. Although this step apparently requires the evaluation
ro
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a six-dimensional integral, the spherical nature of the und
lying mean-field potential enables one to carry out the fo
angular integrals analytically leaving a two-dimensional
tegral to be performed numerically. Thus, through a mu
pole decomposition, the density-dependent part of the tim
like polarization may be written as@37,38#

PD
00~q,q8;v!5 (

J50

`

PJ
00~q,q8;v!P00

J ~ q̂,q̂8!, ~A1!

where all the dynamical information is contained
PJ

00(q,q8;v) and the ‘‘geometrical’’ ~or angular! depen-
dence is given by the function

Pll8
J

~ q̂,q̂8![(
M

DMl
J ~ q̂!DMl8

J* ~ q̂8!. ~A2!

HereDMl
J (q̂) are the WignerD functions. Two of these func-

tions may be combined by using the following identi
@37,38#:

E dk̂Pls
J ~ q̂,k̂!Psl8

J8 ~ k̂,q̂8!5
4p

2J11
dJJ8Pll8

J
~ q̂,q̂8!,

~A3!

so that the three-dimensional integral equation required
the evaluation of the RPA polarization be reduced to a o
dimensional one, albeit one for each angular-moment
channel. Computing any specific multipole of the polariz
tion insertion requires the evaluation of various reduced m
trix elements, which are constrained by angular-moment
and parity selection rules. Because of the timelike nature
the vertex (g0) only natural-parity states, such as the isos
lar monopole and dipole compressional modes, may be
cited.

Note that there are large computational demands impo
on an RPA calculation of a heavy nucleus. As the RPA eq
tions Eq. ~21! are solved using standard matrix-inversio
techniques@44#, the lowest-order polarization must be com
puted on every point of a square momentum-transfer g
and for every polarization insertion that mixes withPD

00. The
lowest-order polarization must therefore be evaluated sev
thousands times for a reliable extraction of the RPA
sponse.
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