
PHYSICAL REVIEW C, VOLUME 64, 024306
Medium-mass nuclei with D excitations under compression
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The ground state properties of90Zr, 100Sn, and132Sn at equilibrium and at large amplitude compression are
investigated. We use a realistic effective baryon-baryon Hamiltonian that includesN-N, N-D, andD-D inter-
actions. We perform the calculations in no-core model spaces within the framework of the constrained spheri-
cal Hartree-Fock approximation. We specifically investigate the sensitivity to the sizes of the nucleon andD
model spaces. At equilibrium, we find no case of mixing between nucleons andD ’s in our largest model space
of eight major nucleon shells plus 16D orbitals. On the contrary, there is mixing in90Zr, and 132Sn in the
smaller model space of seven major nucleon shells plus eightD orbitals. Expanding the nucleon model space
has a larger effect on reducing the static compression modulus and softening the nuclear equation of state than
increasing the number ofD states. Most of the excitation energy delivered to the system during compression
is employed by two nuclei with a neutron excess~i.e., 90Zr, 132Sn) to create massiveD resonances. On the
other hand, in the100Sn nucleus most of the excitation energy goes to a simple reduction in the binding,
suggesting a suppressed role for theD states. Under extreme compression, at a density 2–3 times the normal
nuclear density, the excitation of nucleons toD ’s increases sharply up to 10% of the total number of constitu-
ents. At fixed excitation energy under compression, the number ofD excitations is not dependent on the
number ofD states over the range studied. TheD-excitation results are consistent with heavy-ion collision
data, and suggest an important mean field mechanism for subthreshold pion production in particle-nucleus and
nucleus-nucleus collisions.
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n
on
re
m
o

th
-
io
in
a

re

p
ha
po
c
th

ri-
ar

t
n

ith
at-
e-
ght
o-

es
t

ions

-

-

s.
-

of
I. INTRODUCTION

For many years there has been increasing interest iD
isobars as constituents of the nucleus together with nucle
This interest stems from the need to account for the disc
ancies between theoretical estimates and experimental
surements of several nuclear properties such as Gam
Teller strength distributions at low energies. In addition,
contribution of theD ’s to nuclear properties naturally be
comes more pronounced with an increase in the collis
energy. With the advent of high-precision experiments at
termediate and high energies using electromagnetic
heavy-ion beams, the contribution of theD resonances to the
structure of nuclei in their ground state and under comp
sion became a major theoretical question@1,2#. Nucleons
may no longer be treated as elementary structureless
ticles. Therefore, the internal dynamics of the nucleons
to be taken into consideration. One method, which incor
rates the dynamics associated with the structure of the nu
ons in the nuclear system, is to consider the excitations of
nucleon intoD isobars. In some heavy-ion collision expe
ments@3,4# the D ’s may constitute up to 10% of the nucle
constituents when the system is compressed.

We have investigated@5–7# the role of theD ’s in several
closed shell and closed subshell nuclei: namely,16O, 40Ca,
56Ni, 90Zr, 100Sn, and132Sn. Recently@8#, we investigated
the effect of neutron excess onD formation in the exotic
nuclei 28O, 60Ca, and70Ca. At equilibrium, we found tha
nucleons andD ’s mix only in nuclei that have a neutro
excess. By applying a static load the population of theD
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orbitals increases sharply with compression.
In the present work we incorporate larger spaces w

realistic effective Hamiltonians in order to improve the tre
ment of theD ’s and their effect on nuclear properties. Sp
cifically, we expand the size of the model space to ei
major oscillator shells~36 orbitals each for neutrons and pr
tons! and increase the number ofD states to 16D orbitals. In
our previous work@5–8# we have used smaller model spac
of varying sizes up to seven major nucleon shells and eighD
orbitals. In addition, we follow our recent efforts@5,8# and
adopt a realistic effective HamiltonianHe f f which contains
nucleon-nucleon (N-N), nucleon-D (N-D), and D-D inter-
actions and evaluate the effective baryon-baryon interact
using the BruecknerG-matrix @9,10# method.

In our earlier work@6,7# the effective baryon-baryon in
teractions have been evaluated using the BruecknerG-matrix
method only for theN-N potential. That is, the matrix ele
ments associated with theD ’s @11# were evaluated directly
from a potential model. Therefore, the Brueckner-typeN-D
correlation effects were not included in the calculation
Here and elsewhere@5,8#, this deficiency is removed by us
ing the method developed in Ref.@12#. We define the effec-
tive interaction from theG-matrix elements. TheG-matrix
elements are generated from a coupled-channelNN% ND
% pNN model @13–15# that was constrained by the data
both theNN elastic scattering and theNN→ND→pNN re-
action. Therefore, the strength for theNN to ND transition, a
crucial element in predicting theD component in nuclei, is
under better control than that of the potential model@11# in
Refs. @6,7# where theN-D and D-D interactions have been
©2001 The American Physical Society06-1
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incorporated in their ‘‘bare’’ form.
In the present work, we employ the recent Nijmeg

~Nijm.II ! local potential@16# for the N-N interaction. This
potential was fitted to the worldN-N scattering data with a
nearly optimalx2 per degree of freedom~1.03 per datum!. In
our earlier studies@7# we have used the Reid soft-core~RSC!
potential@17#. As in previous practices, we adjust the effe
tive interactions in simple ways to reproduce the kno
equilibrium ground state properties in the spherical Hartr
Fock method.

We anticipate that by investigating the role of theD ’s in
nuclei we may better understand intermediate-energy c
sion processes in which highly energetic heavy nuclei col
and penetrate each other. At suitable energies and with
propriate projectile-target combinations, these collisions
result in the formation of dense nuclear matter 2–3 tim
higher than the normal nuclear density. The nuclei we inv
tigate here may be viewed as representative of some of
intermediate systems formed in such heavy-ion collisio
again depending on the projectile-target combinations. In
dition, by investigatingD formation under compression, ou
approach could provide insight into a bulk~mean field!
mechanism for ‘‘subthreshold’’ pion production processes

In what follows, we present results for the ground st
energies, number ofD ’s formed, single-particle~s.p.! ener-
gies, and matter densities for90Zr, 100Sn, and132Sn at equi-
librium and under large compression. The framework is
radial constrained spherical Hartree-Fock~CSHF! approxi-
mation. In Sec. II we give a review of the effective Ham
tonianHe f f and the model space used in these calculatio
In Sec. III we summarize our procedure and strategy. Res
and a discussion are presented in Sec. IV.

II. EFFECTIVE NO-CORE HAMILTONIAN H eff

AND THE MODEL SPACE

For a nuclear system ofA baryons~nucleons of massm,
spin s51/2, and isospint51/2 andD baryons of massM,
spins53/2, and isospint53/2) the intrinsic operator can b
written as

H5T2Tc.m.1VBB81VC , ~1!

whereT is the s.p. mass and kinetic energy term,Tc.m. is the
center-of-mass kinetic energy, andVBB8 is the strong two-
baryon interaction operator given by

VBB85VNN↔NN1VNN↔ND1VND↔ND1VND↔DN1VND↔DD

1VNN↔DD1VDD↔DD. ~2!

The last six terms in Eq.~2! represent all possible transitio
potentials.

In our earlier work@6,7#, we have included all possibl
transitions. Lately, we have neglected the last four chan
of the transition potentials, anticipating that most of the co
tribution to D excitations comes from the first two channe
that is, fromVNN↔ND, andVND↔ND. We continue to neglec
these channels in the enlarged model spaces of the pre
work. Vc is the two-particle Coulomb interaction. We defin
02430
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Trel5T2Tc.m., ~3!

with

T5(
i 51

A F S pi
2

2m
1mDL i

1/21S pi
2

2M
1M DL i

3/2G ~4!

and

Tc.m.5
Pc.m.

2

2MA
5

1

A (
i j

pi•pj

2m
, ~5!

where pi is the s.p. momentum operator, andLt is a s.p.
isospin projection operator defined as

Ltut8&5dtt8ut8&, ~6!

L1/21L3/251. ~7!

The intrinsic mass operatorH can be written

H5H1~one body!1H2~ two body!, ~8!

where

H15(
i 51

A F pi
2

2M S m2M

m D1~M2m!GL i
3/2 ~9!

and

H25Trel1VBB81VC , ~10!

where

@Trel~m!# i , j5
~pi2pj !

2

2mA
~11!

is the relative kinetic energy operator. In this manipulati
we eliminate the center-of-mass kinetic energy in favor
the relative kinetic energy. In Eq.~5!, MA is the total mass of
the nuclear system. In generalMA is state dependent, but w
approximateMA5Am and neglect binding energy effects
the kinetic energy operator. The termH1 serves as a correc
tion and gives a nonzero contribution when it acts on ma
body states withD components. States withD components
are said to comprise theD sector.H1 arises solely due to the
mass difference between the nucleon and theD.

In principle, if one solves the Schro¨dinger equation in the
full infinite Hilbert space of all possibleN andD many-body
configurations, then one gets the exact solution. Technica
this is not feasible beyond light nuclei (A.4). Therefore, we
truncate the infinite Hilbert space and define an effect
HamiltonianHe f f to be used in the truncated model spac

hence,VBB8 in Eq. ~10! becomesVe f f
BB8 and Eq.~10! reads

H2~ two body!5Trel~m!1Ve f f
BB81VC . ~12!

By applying the variational principle, Hartree-Fock equ
tions for N andD orbitals can be derived from the effectiv
Hamiltonian within the chosen model space. The compr
6-2
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sion of nuclei is achieved by imposing a static load with
radial r 2 constraint. For details see Ref.@6#.

The matrix elements of the effective baryon-baryon int
action have been calculated using the BruecknerG-matrix
method. The effectiveN-N interaction is the sum of the
BruecknerG matrix and the lowest-order folded diagra
@18# ~second order inG) acting between pairs of nucleons
a no-core@18# model space based on the Nijmegen~Nijm.II !
potential@16#. The effective interactions associated with t
D ’s are evaluated according to the method developed in R
@12#. The G-matrix elements are generated from a coupl
channel NN% ND % pNN model @13–15# that was con-
strained by the data of both theNN elastic scattering and th
NN→ND→pNN reaction up to 1 GeV.

The procedure and strategy for evaluating nuclear pro
ties from a defined Hamiltonian, which we follow here, a
the same as Refs.@5–8#.

We view the constructed effective Hamiltonian in th
many-body problem to consist of four sectors with mat
elements as follows:

~i! N-N sector:

^Trel~m!&1^Ve f f
NN&1^VC

pp&.

~ii ! N-D sector:

^Ve f f
ND&1^VC

pD1

&.

~iii ! D-N sector:

^Ve f f
DN&1^VC

D1p&.

~iv! D-D sector:

^H1~one body!&1^Trel~m!&1^Ve f f
DD&1^VC

D1D1

&.

We develop our completeHe f f in a sequence of steps
First, for theN-N sector@sector~i!# we evaluateHe f f in just
the lowest six major oscillator shells, i.e., 21 nucleon orbit
with fixed n, l, and total angular momentumj for the neu-
trons and for the protons. For theD orbitals we use the
following 16-oscillator states: 0S3/2, 0P1/2, 0P3/2, 0P5/2,
1S3/2, 1P1/2, 1P3/2, 1P5/2, 0D1/2, 0D3/2, 0D5/2, 0D7/2,
0F3/2, 0F5/2, 0F7/2, and 0F9/2. Second, we follow our ear
lier works @6,7# and expand the nucleon model space sin
we found this necessary to achieve model-space-indepen
results with increased compression. In keeping with
present goal to investigate the role of theD components
under large compression we have included a phenomeno
cal extension of the seventh and the eighth major nucl
oscillator shells in our model space. Therefore, the to
number of baryon states of specified (nls j) is 52 ~i.e., 36
nucleon orbitals plus 16Dorbitals!. Matrix elements involv-
ing nucleons in the first six shells are given by effecti
Hamiltonians defined above while nucleons in the seve
and the eighth shells are governed by a simple s.p. Ha
tonian

h5t1U~r !1UC , ~13!
02430
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wheret is the s.p. kinetic energy,U(r ) is the Woods-Saxon
potential given by

U~r !5
U0

11expS r 2R

a D , ~14!

where U05260 MeV, a50.6 fm, and R51.1A1/3 fm,
andUc is the Coulomb potential of a uniform charge sphe
of radiusR. In order to achieve a smooth matching of th
added s.p. states to the self-consistent states of the HF s
trum an additional overall shift of 20 MeV is added to th
oscillator diagonal terms of the phenomenological Ham
tonian. This shift is due to the fact that the relative kine
energy operator is utilized for the lowest six oscillator she
while a pure one-body kinetic energy is used for the hig
oscillator shells. For more details see Ref.@19#. This com-
pletes the outline of the dynamical model which we use
these calculations.

III. CALCULATIONAL PROCEDURE AND STRATEGY

The matrix elements of the two-body part in theN-N
sector of effective HamiltonianHe f f have been calculated in
an oscillator basis consisting of the lowest six oscilla
shells with\V514 MeV and aG-matrix starting energyv
59 MeV. We follow our established procedure of Re
@5–8,18,20# to adjust the two-body matrix elements in th
N-N sector to fit the Hartree-Fock energy (EHF) and the root
mean square radius (r rms) to the nuclear binding energy an
the nuclear radius. Therefore, we introduced the adjusta
parametersl t and lv to modify the strength of the matrix
elements ofTrel , andVe f f , respectively. We also scale th
two-body matrix elements in theN-N sector to an optimal
value of\V8, the oscillator energy.

A separate fit forl t , lv , and\V8 is achieved for each
nucleus in each model space with theD channels excluded
~for more details see Refs.@5–8,18,20#!. Nuclear ground
state energies and nuclear radii to which we fit theEHF and
r rms are 2784 MeV, 4.26 fm, 2826 MeV, 5.10 fm,
21104 MeV, and 5.63 fm for90Zr, 100Sn, and 132Sn, re-
spectively. Values of the parametersl t , lv , and\V8 used
in these calculations are given in Table I. We then apply

TABLE I. The oscillator energy\V8 and the strength param
etersl t andlv used to adjustTrel andVe f f

NN , respectively, to fitEHF

and r rms for each nucleus to the nuclear binding energy (EBE) and
nuclear rms radius (r rms). TheN-N interaction used in these calcu
lations is the Nijmegen~Nijm.II ! potential. TheN-only calculations
are performed in a model space of eight major oscillator shells.
nuclear ground state energies (Eg.s.) @and the nuclear radius (r rms)#
that we fit are2784 MeV ~4.26 fm!, 2826 MeV ~5.10 fm!, and
21104 MeV ~5.63 fm! for 90Zr, 100Sn, and132Sn, respectively.

Nucleus \V8 ~MeV! l t lv

90Zr 7.87 1.00 0.977
100Sn 5.30 0.998 1.141
132Sn 4.88 0.999 1.206
6-3
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static load (r 2 constraint! to compress the nucleus. Finall
we activate theD channels and apply the static load again
compress the nucleus.

Usually, if someD ’s appear at equilibrium once theD
channels are activated, we then adjust the fitting parame
in order to ensure the same starting point~the sameEHF and
the samer rms) before applying the static load. For the nuc
of the present study we found no mixing between nucle
andD ’s at equilibrium in the largest model space while90Zr
and 132Sn do exhibit such a mixing in the ground state in
smaller model space.

These calculations are performed in a no-core mo
space containing a total of 52 baryon states as descr
above for each baryon isospin channel. We allow for tran
tions from the 36 nucleon orbitals to the 16D orbitals within
the limits of SHF theory. We work in a goodTz scheme
where, on the one hand, neutrons andD0 are allowed to mix
and, on the other hand, protons mix withD1. The number of
baryonic degrees of freedom, including magnetic substa
is 320 s.p. states~240 nucleon states and 80D s.p. states! for
eachTz511/2,21/2 value for an overall total of 640 state

IV. RESULTS AND DISCUSSION

We begin by introducing labels for our model spaces:
refer to the model space of seven major oscillator shells~ex-
cluding l .5) ~that is, 26 nucleon states! as the ‘‘7 space’’
and the model space consisting of the 7 space plus eigD
states as ‘‘space I.’’ We refer to the model space of ei
major oscillator shells~that is, 36 nucleon states! as the ‘‘8
space’’ and the model space of the 8 space plus 16D states
as ‘‘space II.’’ For convenience of presentation we will cha
acterize the compression in terms of the mean radiusr rms of
the nuclear volume.

We first present the results for90Zr. The only difference
between the results obtained here and those in Ref.@5# ~also
shown here for comparison! is the size of the nucleon mode
space and the number of theD orbitals included. Here, we
employ space II, while the results of Ref.@5# were obtained
using space I. The many-body approach, underlying inte
tions, effective Hamiltonian, and parameter adjustment p
cedure for90Zr are the same as those in Ref.@5#. It is worth
mentioning that at equilibrium in90Zr, there is a small
amount ofD present@5# using space I, while using space
we find no mixing between nucleon states and theD states.
The D presence in the ground state drops out in spite of
large increase in the number of delta states in space II r
tive to space I. One concludes from this that the presenc
absence of a trace amount ofD ’s at equilibrium in 90Zr is
sensitive to the model space selection and, possibly, to o
ingredients in the approach.

To see the role of theD in determining the equation o
state, we show in Fig. 1 the dependence of the calcula
Hartree-Fock energyEHF on the compression characterize
by the root mean square radiusr rms. Here we show the re
sults from using four different model spaces. It is seen t
near equilibrium (r rms;4.25 fm), all curves agree. This in
dicates that our results for the systems which are close to
nuclear ground state are rather independent of the consid
02430
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four different model spaces. On the other hand, theEHF cal-
culated with a much larger compression decreases as the
of the model space increases for either theN-only case~‘‘7
space’’ and ‘‘8 space’’! or the case including bothN andD
~space I and space II!. For example, atr rms53.75 fm ~the
nuclear volume is reduced by 32% from its ground st
volume!, there is a decrease of 108 MeV when the size of
N-only model space has expanded from ‘‘7 space’’ to
space’’@curves~a! and~b!#. A similar change is also seen i
the results from the calculations using a model space inc
ing bothN andD @curves~c! and~d!#. By comparing~a! and
~c! @or ~b! and ~d!#, we see that the inclusion ofD orbitals
tends to decreaseEHF for compressed nuclei. The role of th
D ’s is less significant as ther rms approaches the ground sta
value.

One can understand these results by examining the e
tation energies. For example, we find that it ‘‘costs’’ abo
227 MeV, 119 MeV, 134 MeV, and 69 MeV of excitatio
energy to achieve a 32% volume reduction using the 7 sp
8 space, space I, and space II, respectively. This means
the static compression modulus is significantly reduced
adding the eightD orbitals to the 7 space. A comparab
reduction in the static compression modulus is achie
when the size of the model space has expanded from th
space to the 8 space. The smallest values of the static c
pression modulus are achieved in space II, the largest of
model spaces combining nucleons andD ’s.

One may conclude from the above results the followin
Increasing the size of the model space and including of thD
resonances, together, induces a significant softening of
nuclear equation of state at large compression. While
qualitative nature of this conclusion is easy to understa
the quantitative behavior is quite striking. It is desirable

FIG. 1. Constrained spherical Hartree-Fock~SHF! energyEHF

vs r rms for 90Zr. Dotted lines correspond to the results of calcu
tions performed in the nucleon-only model spaces, the 7 space
8 space, respectively. Solid lines correspond to results obta
whenD excitations are included:~c! the 7 space withD excitations
restricted to the eightD orbitals 0S3/2, 0P1/2, 0P3/2, 0P5/2, 1S3/2,
1P1/2, 1P3/2, and 1P5/2; ~d! the 8 space withD excitations re-
stricted to the 16D orbitals 0S3/2, 0P1/2, 0P3/2, 0P5/2, 1S3/2,
1P1/2, 1P3/2, 1P5/2, 0D1/2, 0D3/2, 0D5/2, 0D7/2, 0F3/2, 0F5/2,
0F7/2, and 0F9/2.
6-4
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further investigate this model dependence of our predicti
by considering larger model spaces. This is, howeve
rather nontrivial numerical task and is beyond the scope
this paper.

In the models defined within space I and space II,
nuclei will haveD components. It is interesting to see ho
the D components vary as nuclei are compressed. Thi
shown in Fig. 2. As expected, the number of theD ’s in-
creases as the nuclear volume decreases. It appears that
I generates moreD ’s than space II at fixed compression. Th
trend may be understood as a consequence of the expa
of the nucleon space which allows the nucleons to acc
modate more easily the compressive load and hence the
dency to convert toD ’s is reduced.

To further explore how theD components vary under th
compression of nuclei, we also have performed calculati
in the region where the nuclear volume is reduced by
much as about 3/4 or more of its size at equilibrium. Clea
this is a very exploratory study since the considered spac
is perhaps much too small for describing such dense nuc
systems. Nevertheless, the results can shed some light o
D dynamics at high densities accessible to relativistic hea
ion collisions. The predicted numbers ofD ’s as a function of
r rms are shown in Fig. 3. We see that the number of
createdD ’s increases sharply with compression. For e
ample, reducing the nuclear volume by about 72% (r rms
;2.65 fm) increases the percentage of theD ’s to about 10%
of the baryons. By an additional 14% volume reduction, su
that the resulting volume (r rms;2.2 fm) is now only 14% of
the original volume, theD population is almost doubled. It i
interesting to note in Fig. 3 that the number ofD0’s andD1’s
are the same until compression achieves about an
nuclear volume reduction. At that stage, the creation ofD0’s
becomes more favorable as the compression continues.

From the results shown in Figs. 1–3, one can draw sev
conclusions. First, space I produces a greater responsive
in generating theD ’s at fixed compression than space

FIG. 2. Number ofD ’s vs r rms under compression for90Zr. The
results of these calculations are performed in a model space o~a!
space I as described in the text and~b! space II as described in th
text.
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Second, the static compression modulus is reduced sig
cantly by enlarging the nucleon model space. Third, wh
moving to larger compression, including theD states reduces
the static compression modulus even further, but their role
reducing the static modulus is less dramatic than enlarg
the size of the nucleon model space. Fourth, the role of thD
states in reducing the static compression modulus is large
space I than in space II. The last result is consistent with
findings reported in Ref.@6#.

We now turn to discussing the results for100Sn. These
results are compared where possible with those of Ref.@7#.
In the calculations of Ref.@7#, theG-matrix elements for the
NN interactions were based on the RSC potential@17# and
the transitions to theD channels are described only by th
transition potentials taken from Ref.@11#. On the other hand
the results in the present study are obtained using a m
larger model space~space II!. TheG-matrix elements for the
NN interactions are based on the Nijmegen potential@16#,
and theG-matrix elements associated with theD ’s are ob-
tained from a coupled channel method developed in R
@12#.

The predicted Hartree-Fock energiesEHF for 100Sn as a
function of the mean radiusr rms are displayed in Fig. 4. The
differences between~a! and ~b! indicate the changes due t
the inclusion of theD in the model space with 26 nucleo
states~7 space! and eightD states. Clearly theD degree of
freedom tends to give more binding and soften the equa
of state. Similar but weaker softening effects are also s
from comparing~c! and ~d! which were obtained from cal
culations using a larger model space with 36 nucleon st
~8 space! and 16D states. All calculations give the sameEHF
in the region near the equilibrium volume (r rms;5.1 fm).
This is consistent with the results shown in Fig. 1 for90Zr.

Figure 5 shows the predicted dependence of the num
of theD ’s on the mean radiusr rms of 100Sn. The results from
Ref. @7# ~dotted curve! are also shown for comparison. A
equilibrium (r rms;5.1 fm) we find that both calculation

FIG. 3. Number ofD ’s vs r rms under compression for90Zr. The
model space used is the one for curve~d! of Fig. 1. Dotted, dashed
and solid lines correspond to the number ofD1, D0, andD11D0

created, respectively.
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yield no D ’s. However, they have rather a different depe
dence on ther rms. We find that this difference in ther rms
dependence is mainly due to the change in model spa
rather than to the change in effectiveNN and ND interac-
tions. The larger model space~solid curve, space II! obvi-
ously gives a softer equation of state at high densities.

Figure 6 shows that the number of createdD ’s increases
sharply if we further compress100Sn to a volume of abou
half of its equilibrium size. However, at this nuclear densi
which is twice the normal nuclear density, the percentage
nucleons converted toD ’s is only about 6% in100Sn. This
result is consistent with our previous results@5# and with the
information extracted from the data of relativistic heavy-i
collisions @1,2#. We also note that the numbers ofD1’s and

FIG. 4. Constrained SHF energyEHF vs r rms for 100Sn. Lines
with the labels~a!, ~b!, ~c!, and~d! represent the results of calcula
tions performed in various model spaces as indicated in the l
and described in the text. Solid~dashed! line corresponds toN
1D ’s (N-only!.

FIG. 5. Number ofD ’s vs r rms under compression for100Sn.
Lines with the labels~a! and~b! represent the results of calculation
performed in the space I and space II, respectively, as describe
the text.
02430
-

es,

,
of

D0’s are equal at allr rms values examined here.
The density distributions of100Sn evaluated at equilib

rium (r rms55.1 fm) and at an about 20% reduced volum
(r rms54.75 fm) are compared in Fig. 7. Comparing curvec
andc8, we observe that the 20% reduction of nuclear volu
greatly enhances the total density in the interior of t
nucleus. Accordingly, the density is decreased with comp
sion for ther .5.63 fm region. Similar situations are als
observed for proton~neutron! densities if we compare curve
b and b8 (a and a8). The D density ~curve d8) for the
20%-compressed volume has a rather different distribut
It is peaked at a larger distance from the nuclear center
equilibrium, the predictedD component is almost zero an
hence is not shown in Fig. 7.

el

in

FIG. 6. Number ofD1, D0, and D11D0 vs r rms under com-
pression for100Sn for the entire range of compression examine
The model space used is the one of curve~d! in Fig. 1.

FIG. 7. Radial density distribution vsr for 100Sn at r rms

55.1 fm ~equilibrium! ~solid lines! and 4.75 fm~dotted lines!.
Lines labeled witha anda8 correspond to neutrons;b andb8 cor-
respond to protons;d8 corresponds toD ’s while lines labeled with
c and c8 correspond to total radial density at theser rms radii,
respectively.
6-6
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In Fig. 8 we compare the densities calculated in this w
~space II, solid curves! and those in Ref.@7# ~space I, dashed
curves!. By comparing the curvesa and d, we see that the
predicted shapes of the total densities in the region near
nuclear center are rather different for the nuclear volume
equilibrium (r rms55.1 fm). This is also the case~curvesb
ande) at 20%-reduced volume (r rms54.75 fm). The oscil-
lating behavior of space II calculation~solid curves! is rather
striking. In the lower part of Fig. 8, we see that the predic
D distributions atr rms55.1 and 4.75 fm have rather differen
magnitudes while their shapes are very similar.

In Ref. @8# we have examined the effects due to add
more neutrons to the nucleus. Here we address the s
issue by performing calculations for132Sn which has a large
neutron excess over100Sn. Qualitatively, we find that the
results for 132Sn are similar to those presented in Figs. 4
for 100Sn. For completeness, we show the predictedEHF ,
number ofD ’s, and densities for132Sn in Figs. 9–11.

By comparing the solid and dotted curves in Fig. 9,
see again that theD degree of freedom induces a conside
able reduction in the compressibility along with a sof
equation of state.

Figure 10 displays the dependence of the number ofD ’s
on the mean radiusr rms of 132Sn. The results from using
space I and space II are compared. We see that the pred
D population depends on the size of model space, simila
what we have observed in Fig. 2 for90Zr and Fig. 5 for
100Sn. For both cases shown in Fig. 10, the number ofD0’s
is larger than the number ofD1’s at all radii during
compression.

The predicted densities for132Sn are shown in Fig. 11
Similar to the pattern seen in Fig. 7, all densities near
center of the nucleus are greatly enhanced by compressio

FIG. 8. Radial density distribution vsr for 100Sn. Dashed~solid!
lines represent results of calculations performed in the model s
called space I~space II! in the text. Lines labeled~a! and ~b! cor-
respond to~a! total radial density atr rms55.1 fm ~equilibrium! and
~b! total radial density atr rms54.75 fm. Lines labeled~d! and ~e!
correspond to~d! total radial density atr rms55.1 fm ~equilibrium!
and ~e! total radial density atr rms54.77 fm. Lines labeled~c! and
~f! correspond to theD density at~c! r rms54.75 fm and~f! r rms

54.77 fm, respectively.
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is interesting to note that the oscillating behavior is reduc
for the neutron density compared with the proton density a
also reduced compared to the100Sn neutron density in Fig. 7

In summary, we have investigated the ground state pr
erties of 90Zr, 100Sn, and132Sn at equilibrium and at large
compressions. A realistic effective Hamiltonian that includ
NN, ND, andDD interactions is used. We have performe
calculations in no-core model spaces within the framew
of the CSHF approximation. The focus of our investigation
on the sensitivity of our predictions to the sizes of t
nucleon andD model spaces. Our main findings are the fo
lowing. TheD degrees of freedom tend to soften the equ
tion of state. The precise percentage of theD components at
a specified compression depend on the size of the m
space. At equilibrium, we find no case of mixing betwe

ce

FIG. 9. Constrained SHF energyEHF vs r rms for 132Sn. The full
model space of both nucleons andD ’s is referred to as space II in
the text. The solid line represents the result of calculations p
formed for nucleons only~also called the 8 space! while the dotted
line presents the full space II result.

FIG. 10. Number ofD1, D0, andD11D0 vs r rms under com-
pression for132Sn. The model spaces that are used are the one
Fig. 5. Solid ~dotted! lines represent results of calculations pe
formed in space I~space II!.
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nucleons andD ’s in our largest model space of eight maj
nucleon shells plus 16D orbitals. On the contrary, there i
mixing in 90Zr, and 132Sn in the smaller model space o
seven major nucleon shells plus eightD orbitals. Expanding

FIG. 11. Radial density distribution vsr for 132Sn at r rms

55.63 fm ~equilibrium! ~dotted lines! and 5.38 fm~solid lines!.
Lines labeled witha anda8 correspond to neutrons;b andb8 cor-
respond to protons;c correspond toD ’s while lines labeled withd
and d8 correspond to the total radial density at theser rms radii,
respectively.
.

.

.
.

,

2

02430
the nucleon model space has a larger effect on reducing
static compression modulus and softening the nuclear e
tion of state than increasing the number of theD states in the
cases we examined. Under extreme compression, at a de
2–3 times the normal nuclear density, the excitation
nucleons toD ’s increases sharply up to 10% of the tot
number of constituents.

To end this paper, we must note that our predictions
pend rather strongly on the size of the chosen model sp
especially at larger compression. This happens in spite of
adjustments to the effective Hamiltonian where we match
experimental ground state properties in each model sp
Thus the results presented here should be viewed as
stage qualitative indications of the role of theD degree of
freedom in the compressed nuclei. The results also serv
motivate efforts with yet larger model spaces. In the futu
we will both enlarge the model space further and solve
the corresponding model-space-dependent effective Ham
nians from microscopic theory in order to make more qu
titative predictions for analyzing the data ofD production in
relativistic heavy-ion collisions.
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