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Medium-mass nuclei with A excitations under compression

Mahmoud A. Hasah? James P. Varg? and T.-S. H. Le®
*Applied Science University, Amman, Jordan
2International Institute of Theoretical and Applied Physics, Ames, lowa 50011
SDepartment of Physics and Astronomy, lowa State University, Ames, lowa 50011
4Physics Division, Argonne National Laboratory, Argonne, lllinois 60439
(Received 16 January 2001; published 2 July 2001

The ground state properties 3zr, 1°°Sn, and'®?Sn at equilibrium and at large amplitude compression are
investigated. We use a realistic effective baryon-baryon Hamiltonian that incNrdgsN-A, andA-A inter-
actions. We perform the calculations in no-core model spaces within the framework of the constrained spheri-
cal Hartree-Fock approximation. We specifically investigate the sensitivity to the sizes of the nuclean and
model spaces. At equilibrium, we find no case of mixing between nucleond’and our largest model space
of eight major nucleon shells plus 16 orbitals. On the contrary, there is mixing fiZr, and **%Sn in the
smaller model space of seven major nucleon shells plus @igibitals. Expanding the nucleon model space
has a larger effect on reducing the static compression modulus and softening the nuclear equation of state than
increasing the number & states. Most of the excitation energy delivered to the system during compression
is employed by two nuclei with a neutron excéss., °%Zr, 132Sn) to create massiv& resonances. On the
other hand, in the'®®Sn nucleus most of the excitation energy goes to a simple reduction in the binding,
suggesting a suppressed role for thestates. Under extreme compression, at a density 2—3 times the normal
nuclear density, the excitation of nucleonsAts increases sharply up to 10% of the total number of constitu-
ents. At fixed excitation energy under compression, the numbeX ekcitations is not dependent on the
number ofA states over the range studied. Theexcitation results are consistent with heavy-ion collision
data, and suggest an important mean field mechanism for subthreshold pion production in particle-nucleus and
nucleus-nucleus collisions.
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[. INTRODUCTION orbitals increases sharply with compression.
In the present work we incorporate larger spaces with

For many years there has been increasing interedt in realistic effective Hamiltonians in order to improve the treat-
isobars as constituents of the nucleus together with nucleonsient of theA’s and their effect on nuclear properties. Spe-
This interest stems from the need to account for the discregsifically, we expand the size of the model space to eight
ancies between theoretical estimates and experimental me@rajor oscillator shell$36 orbitals each for neutrons and pro-
surements of several nuclear properties such as Gamowens and increase the number Afstates to 1@ orbitals. In
Teller strength distributions at low energies. In addition, theour previous worK5-8] we have used smaller model spaces
contribution of theA’s to nuclear properties naturally be- of varying sizes up to seven major nucleon shells and eight
comes more pronounced with an increase in the collisiororbitals. In addition, we follow our recent effor{s,8] and
energy. With the advent of high-precision experiments at in-adopt a realistic effective Hamiltoniad¢; which contains
termediate and high energies using electromagnetic anducleon-nucleonN-N), nucleonA (N-A), andA-A inter-
heavy-ion beams, the contribution of theresonances to the actions and evaluate the effective baryon-baryon interactions
structure of nuclei in their ground state and under compresdsing the Brueckne&-matrix [9,10] method.
sion became a major theoretical questidn2]. Nucleons In our earlier work[6,7] the effective baryon-baryon in-
may no longer be treated as elementary structureless paeractions have been evaluated using the Bruedkamatrix
ticles. Therefore, the internal dynamics of the nucleons hamethod only for theN-N potential. That is, the matrix ele-
to be taken into consideration. One method, which incorpoments associated with th&’'s [11] were evaluated directly
rates the dynamics associated with the structure of the nuclérom a potential model. Therefore, the Brueckner-tjype\
ons in the nuclear system, is to consider the excitations of theorrelation effects were not included in the calculations.
nucleon intoA isobars. In some heavy-ion collision experi- Here and elsewhels,8], this deficiency is removed by us-
ments[3,4] the A’s may constitute up to 10% of the nuclear ing the method developed in RéfL2]. We define the effec-
constituents when the system is compressed. tive interaction from theG-matrix elements. Th&-matrix

We have investigatefb—7] the role of theA’s in several elements are generated from a coupled-chamigis NA
closed shell and closed subshell nuclei: naméf@, “°Ca, @ 7NN model[13-15 that was constrained by the data of
6Ni, %9zr, 1%sn, and*?sn. Recently[8], we investigated both theNN elastic scattering and tféN—NA — 7NN re-
the effect of neutron excess ah formation in the exotic action. Therefore, the strength for tNeN to NA transition, a
nuclei 220, %%Ca, and’°Ca. At equilibrium, we found that crucial element in predicting th& component in nuclei, is
nucleons andA’s mix only in nuclei that have a neutron under better control than that of the potential moddl] in
excess. By applying a static load the population of the Refs.[6,7] where theN-A and A-A interactions have been
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incorporated in their “bare” form. Trer=T—Tem, ®)
In the present work, we employ the recent Nijmegen

(Nijm.11) local potential[16] for the N-N interaction. This ~ with

potential was fitted to the worltl-N scattering data with a

nearly optimaly? per degree of freedoifi.03 per datum In _ Pi2 2 pi2 32
our earlier studief7] we have used the Reid soft-caiRSO = Izzl om M AT om M Al } @
potential[17]. As in previous practices, we adjust the effec-
tive interactions in simple ways to reproduce the knownand
equilibrium ground state properties in the spherical Hartree- )
Fock method. CPem 1o pirp
Tc.m._ T (5)

We anticipate that by investigating the role of thés in 2M, A T 2m’
nuclei we may better understand intermediate-energy colli-

sion processes in which highly energetic heavy nuclei collidevhere p; is the s.p. momentum operator, and is a s.p.
and penetrate each other. At suitable energies and with afsospin projection operator defined as

propriate projectile-target combinations, these collisions can

result in the formation of dense nuclear matter 2—3 times A7) =60]7"), (6)
higher than the normal nuclear density. The nuclei we inves-
tigate here may be viewed as representative of some of the
intermediate systems formed in such heavy-ion coIIisions,I_h L .

' , - S e intrinsic mass operatét can be written
again depending on the projectile-target combinations. In ad-
dition, by investigating formation under compression, our H=H,(one body+ H(two body), (8
approach could provide insight into a bulknean field
mechanism for “subthreshold” pion production processes. where

In what follows, we present results for the ground state

AV A3P=1, @)

energies, number ak’s formed, single-particlés.p) ener- A p? —
gies, and matter densities f8%zr, 1°%Sn, and*3%Sn at equi- leizl ﬁ( o T(M- m)}/\islz C)
librium and under large compression. The framework is the -
radial constrained spherical Hartree-FAd€SHB approxi-  and
mation. In Sec. Il we give a review of the effective Hamil-
tonianHg¢; and the model space used in these calculations. H2:TreI+VBB'+V01 (10)
In Sec. Il we summarize our procedure and strategy. Results
and a discussion are presented in Sec. IV. where
IIl. EFFECTIVE NO-CORE HAMILTONIAN  H o (Too(m)], _(p—py)? (11
AND THE MODEL SPACE il 2mA

For a nuclear system dk baryons(nucleons of mass, s the relative kinetic energy operator. In this manipulation
spin s=1/2, and isospirt=1/2 andA baryons of mas$1,  we eliminate the center-of-mass kinetic energy in favor of
spins=3/2, and isospin=3/2) the intrinsic operator can be the relative kinetic energy. In E¢5), M, is the total mass of
written as the nuclear system. In genef¥dl, is state dependent, but we

, approximateM o= Am and neglect binding energy effects in
H=T—Tem+VE® +V, (1) the kinetic energy operator. The teithy serves as a correc-
. N . tion and gives a nonzero contribution when it acts on many-
whereT is the s.p.. mgss and kinetic gnfargy tefgy, is the body states withA components. States with components
center-of-mass kinetic energy, abf® is the strong two-  gre said to comprise th& sector.H, arises solely due to the
baryon interaction operator given by mass difference between the nucleon andAhe
In principle, if one solves the Scldimger equation in the
full infinite Hilbert space of all possiblsl andA many-body
4+ YNNSAA L\ ARG AL ) configurations, then one gets the exact solution. Technically,

this is not feasible beyond light nucleAt4). Therefore, we
The last six terms in Eq2) represent all possible transition truncate the infinite Hilbert space and define an effective
potentials. HamiltonianH.¢; to be used in the truncated model space;

In our earlier work[6,7], we have included all possible hence\V®®' in Eq. (10) becomea/Sfo' and Eq.(10) reads
transitions. Lately, we have neglected the last four channels
of the transition potentials, anticipating that most of the con- H,(two body) =T, (mM) +V25,+VC- (12
tribution to A excitations comes from the first two channels,
that is, fromVNN=N4 andVvNA=NA We continue to neglect By applying the variational principle, Hartree-Fock equa-
these channels in the enlarged model spaces of the presdittns for N and A orbitals can be derived from the effective
work. V, is the two-particle Coulomb interaction. We define Hamiltonian within the chosen model space. The compres-

VBB':VNN«—>NN+vNN<—>NA+VNA<—>NA+VNA<—>AN+VNA<—>AA
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sion of nuclei is achieved by imposing a static load with a TABLE I. The oscillator energyi(}’ and the strength param-
radial r? constraint. For details see R¢6]. etersh; and\, used to adjusT,, andVyfy, respectively, to fi€ e

The matrix elements of the effective baryon-baryon inter-andr s for each nucleus to the nuclear binding energy4) and
action have been calculated using the BrueckBanatrix nuclear rms radiusr(.,¢. TheN-N interaction used in these calcu-
method. The effectiveN-N interaction is the sum of the 'ationsis the NijmegeiiNijm.Il) potential. TheN-only calculations
BruecknerG matrix and the lowest-order folded diagram 2'€ performed in a model space of eight major oscillatqr shells. The
[18] (second order i) acting between pairs of nucleons in nuclear ground state energieS () [and the nuclear radius £, |
a no-core 18] model space based on the Nijmegdtijm.Il) 13t we fit are=784 Mev(4.26 fm, 826 MeV (5.10 fm), and
potential[ 16]. The effective interactions associated with the ~ 1104 MeV (5.63 fm for =Zr, °Sn, and'¥’Sn, respectively.

A’s are evaluated according to the method developed in Ref\.lucleus

[12]. The G-matrix elements are generated from a coupled- RO (Mev) M Mo

channel NN&eNA@® 7NN model [13-15 that was con- °%r 7.87 1.00 0.977
strained by the data of both tih&N elastic scattering and the 19%sp 5.30 0.998 1.141
NN—NA— 7NN reaction up to 1 GeV. 1325 4.88 0.999 1.206

The procedure and strategy for evaluating nuclear propet
ties from a defined Hamiltonian, which we follow here, are
the same as Ref§5-§|. wheret is the s.p. kinetic energy)(r) is the Woods-Saxon

We view the constructed effective Hamiltonian in the potential given by
many-body problem to consist of four sectors with matrix
elements as follows: U(r) = Uy

(i) N-N sector: r-RrR

1+exp{T

where Uy=—60 MeV, a=0.6 fm, and R=1.1A'° fm,
andU. is the Coulomb potential of a uniform charge sphere
NA At of radiusR. In order to achieve a smooth matching of the
(Verp (V& ). added s.p. states to the self-consistent states of the HF spec-
trum an additional overall shift of 20 MeV is added to the
(iii) A-N sector: oscillator diagonal terms of the phenomenological Hamil-
N tonian. This shift is due to the fact that the relative kinetic
(VAN +(Va'P), energy operator is utilized for the lowest six oscillator shells
while a pure one-body kinetic energy is used for the higher
(iv) A-A sector: oscillator shells. For more details see Rgf9]. This com-
L pletes the outline of the dynamical model which we use in
(H(one body) +(T,e (M) + (VAR + (V2 4 7). these calculations.

, (14

(Trel(m)> + <V§fo> + <Vgp>'

(i) N-A sector:

~We develop our completéls; in a sequence of steps. ;. CALCULATIONAL PROCEDURE AND STRATEGY
First, for theN-N sector{sector(i)] we evaluateH . in just

the lowest six major oscillator shells, i.e., 21 nucleon orbitals The matrix elements of the two-body part in theN
with fixed n, |, and total angular momentujnfor the neu-  sector of effective Hamiltoniahi.¢; have been calculated in
trons and for the protons. For th& orbitals we use the an oscillator basis consisting of the lowest six oscillator
following 16-oscillator states: $;,, 0Py, OPz,, OP,,  Shells with7i{}=14 MeV and aG-matrix starting energy»
1Sy, 1P1s, 1Pgj, 1Psj, ODyj, ODgj, ODsp, 0Dy, =9 MeV. We follow our established procedure of Refs.
OF 35, OFc)», OF 5,5, and (Fg». Second, we follow our ear- [5—8,18,2Q to adjust the two-body matrix elements in the
lier works [6,7] and expand the nucleon model space sincé\-N sector to fit the Hartree-Fock energdi,(¢) and the root
we found this necessary to achieve model-space-independef€an square radius {9 to the nuclear binding energy and
results with increased compression. In keeping with ouithe nuclear radius. Therefore, we introduced the adjustable
present goal to investigate the role of the components parameters\; and A, to modify the strength of the matrix
under large compression we have included a phenomenologélements ofT .|, andV,y;, respectively. We also scale the
cal extension of the seventh and the eighth major nucleotwo-body matrix elements in thN-N sector to an optimal
oscillator shells in our model space. Therefore, the totavalue of#()’, the oscillator energy.
number of baryon states of specifiedl$j) is 52 (i.e., 36 A separate fit forlny, \,, and# )}’ is achieved for each
nucleon orbitals plus 1@ orbitals. Matrix elements involv- nucleus in each model space with thechannels excluded
ing nucleons in the first six shells are given by effective(for more details see Ref$5-8,18,20). Nuclear ground
Hamiltonians defined above while nucleons in the seventistate energies and nuclear radii to which we fit Bpg- and
and the eighth shells are governed by a simple s.p. HamikF,s are —784 MeV, 4.26 fm, —826 MeV, 5.10 fm,
tonian —1104 MeV, and 5.63 fm for°zr, 1°%Sn, and%%Sn, re-
spectively. Values of the parametexs, \,, and#2 )’ used
h=t+U(r)+U¢, (13 in these calculations are given in Table I. We then apply the
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static load (? constrain} to compress the nucleus. Finally, 00} : ' : : : -
we activate thel channels and apply the static load again to ] v @ (7 space)(N-only)
compress the nucleus. 550 ., ."-,_(a) === (b} (8 space)(N-only) [
i ) e ] Y (¢) spaceI(N+A's)
Usually, if someA’s appear at equilibrium once th& AN \ @ space Il (Net's)
channels are activated, we then adjust the fitting parameter — sw{ ™ g, L

in order to ensure the same starting pgthe samee, and = ]
the same ;0 before applying the static load. For the nuclei € ]
of the present study we found no mixing between nucleons® 1
andA’s at equilibrium in the largest model space whif&r 700
and 132Sn do exhibit such a mixing in the ground state in a ]
smaller model space.

These calculations are performed in a no-core model
space containing a total of 52 baryon states as describe :
above for each baryon isospin channel. We allow for transi- 36 a 38 39 4 au 42 a3
tions from the 36 nucleon orbitals to the A6orbitals within o1
the limits of SHF theory. We work in a good, SChem_e FIG. 1. Constrained spherical Hartree-Fd&8HF) energyE ¢
where, on the one hand, neutrons.akﬂj_are allowed to mix g I'ms fOr 9°Zr. Dotted lines correspond to the results of calcula-
and, on the other hand, protons mix witli . The number of  tions performed in the nucleon-only model spaces, the 7 space and
baryonic degrees of freedom, including magnetic substateg, space, respectively. Solid lines correspond to results obtained
is 320 s.p. state®40 nucleon states and 80s.p. stategsfor  whenA excitations are includedc) the 7 space witl\ excitations
eachT,= +1/2,—1/2 value for an overall total of 640 states. restricted to the eighh orbitals 0S;/,, 0Py, 0P/, OPgp, 1Sy,

1Py, 1P3p, and 1Pgp,; (d) the 8 space withA excitations re-

IV. RESULTS AND DISCUSSION stricted to the 16A orbitals (S;;,, OPy/,, OP3, OPsp, 1S5,
lPlIZl 1P3I21 1P5l21 ODllZ! 0D3/21 OD5/21 OD7/21 OF3/21 O':5/21

We begin by introducing labels for our model spaces: wedF,,, and (Fg,.
refer to the model space of seven major oscillator stiehts
cluding | >5) (that is, 26 nucleon statess the “7 space” four different model spaces. On the other hand,Ehe cal-
and the model space consisting of the 7 space plus @ight culated with a much larger compression decreases as the size
states as “space |.” We refer to the model space of eighbf the model space increases for either dhenly case(“7
major oscillator shellgthat is, 36 nucleon statess the “8  space” and “8 space) or the case including botN and A
space” and the model space of the 8 space plud Ifates  (space | and space)llFor example, at,,=3.75 fm (the
as “space II.” For convenience of presentation we will char-nuclear volume is reduced by 32% from its ground state
acterize the compression in terms of the mean radjysof  volume), there is a decrease of 108 MeV when the size of the
the nuclear volume. N-only model space has expanded from “7 space” to “8

We first present the results fdfZr. The only difference  space”[curves(a) and(b)]. A similar change is also seen in
between the results obtained here and those in[Bgfalso  the results from the calculations using a model space includ-
shown here for comparisoiis the size of the nucleon model ing bothN andA [curves(c) and(d)]. By comparing(a) and
space and the number of tlde orbitals included. Here, we (c) [or (b) and (d)], we see that the inclusion @ orbitals
employ space Il, while the results of R¢&] were obtained tends to decreadg, for compressed nuclei. The role of the
using space |. The many-body approach, underlying interacA’s is less significant as thg,,s approaches the ground state
tions, effective Hamiltonian, and parameter adjustment provalue.
cedure for®Zr are the same as those in RE]. It is worth One can understand these results by examining the exci-
mentioning that at equilibrium in®%Zr, there is a small tation energies. For example, we find that it “costs” about
amount ofA presen{5] using space I, while using space Il 227 MeV, 119 MeV, 134 MeV, and 69 MeV of excitation
we find no mixing between nucleon states and shsetates.  energy to achieve a 32% volume reduction using the 7 space,
The A presence in the ground state drops out in spite of th@® space, space I, and space Il, respectively. This means that
large increase in the number of delta states in space |l relghe static compression modulus is significantly reduced by
tive to space I. One concludes from this that the presence eidding the eightA orbitals to the 7 space. A comparable
absence of a trace amount afs at equilibrium in°%Zr is  reduction in the static compression modulus is achieved
sensitive to the model space selection and, possibly, to othevhen the size of the model space has expanded from the 7
ingredients in the approach. space to the 8 space. The smallest values of the static com-

To see the role of thé in determining the equation of pression modulus are achieved in space Il, the largest of our
state, we show in Fig. 1 the dependence of the calculatethodel spaces combining nucleons akd.
Hartree-Fock energi,- on the compression characterized One may conclude from the above results the following:
by the root mean square radiug,s. Here we show the re- Increasing the size of the model space and including ofAthe
sults from using four different model spaces. It is seen thatesonances, together, induces a significant softening of the
near equilibrium ¢,,s~4.25 fm), all curves agree. This in- nuclear equation of state at large compression. While the
dicates that our results for the systems which are close to thgualitative nature of this conclusion is easy to understand,
nuclear ground state are rather independent of the considerélte quantitative behavior is quite striking. It is desirable to

750 -]
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FIG. 2. Number ofA’s vs r,s under compression fot°Zr. The
results of these calculations are performed in a model spa¢® of
space | as described in the text ail space Il as described in the
text.

FIG. 3. Number ofA’s vs r,,s under compression fot’zr. The
model space used is the one for cufdgof Fig. 1. Dotted, dashed,
and solid lines correspond to the numberAof, A%, andA* +A°
created, respectively.

further investigate this model dependence of our predictionSecond, the static compression modulus is reduced signifi-
by considering larger model spaces. This is, however, gantly by enlarging the nucleon model space. Third, when
rather nontrivial numerical task and is beyond the scope ofmoving to larger compression, including thestates reduces
this paper. the static compression modulus even further, but their role in
In the models defined within space | and space I, thereducing the static modulus is less dramatic than enlarging
nuclei will have A components. It is interesting to see how the size of the nucleon model space. Fourth, the role oAthe
the A components vary as nuclei are compressed. This istates in reducing the static compression modulus is larger in
shown in Fig. 2. As expected, the number of thés in-  space | than in space Il. The last result is consistent with the
creases as the nuclear volume decreases. It appears that spfweeings reported in Ref6].
| generates mord’s than space Il at fixed compression. This ~ We now turn to discussing the results f6%°Sn. These
trend may be understood as a consequence of the expansimsults are compared where possible with those of Ref.
of the nucleon space which allows the nucleons to accomh the calculations of Ref.7], the G-matrix elements for the
modate more easily the compressive load and hence the teN-N interactions were based on the RSC potentlal] and
dency to convert ta\’s is reduced. the transitions to thé\ channels are described only by the
To further explore how thé& components vary under the transition potentials taken from RéfL1]. On the other hand,
compression of nuclei, we also have performed calculationghe results in the present study are obtained using a much
in the region where the nuclear volume is reduced by a$arger model spacéespace I). The G-matrix elements for the
much as about 3/4 or more of its size at equilibrium. ClearlyNN interactions are based on the Nijmegen potentiél,
this is a very exploratory study since the considered space Bnd theG-matrix elements associated with thés are ob-
is perhaps much too small for describing such dense nucleaained from a coupled channel method developed in Ref.
systems. Nevertheless, the results can shed some light on tf2].
A dynamics at high densities accessible to relativistic heavy- The predicted Hartree-Fock energigge for 1°%Sn as a
ion collisions. The predicted numbers &fs as a function of  function of the mean radius,, are displayed in Fig. 4. The
rms are shown in Fig. 3. We see that the number of thedifferences betweefs) and (b) indicate the changes due to
createdA’s increases sharply with compression. For ex-the inclusion of theA in the model space with 26 nucleon
ample, reducing the nuclear volume by about 72%4.{ states(7 space and eightA states. Clearly th& degree of
~2.65 fm) increases the percentage of Aieto about 10% freedom tends to give more binding and soften the equation
of the baryons. By an additional 14% volume reduction, suctof state. Similar but weaker softening effects are also seen
that the resulting volumer (,,s~2.2 fm) is now only 14% of from comparing(c) and (d) which were obtained from cal-
the original volume, thé population is almost doubled. Itis culations using a larger model space with 36 nucleon states
interesting to note in Fig. 3 that the numberAdfs andA*'s (8 spacgand 16A states. All calculations give the sarfigg
are the same until compression achieves about an 80% the region near the equilibrium volume, (s~5.1 fm).
nuclear volume reduction. At that stage, the creation®  This is consistent with the results shown in Fig. 1 f8zr.
becomes more favorable as the compression continues. Figure 5 shows the predicted dependence of the number
From the results shown in Figs. 1-3, one can draw severalf the A’s on the mean radius,s of 1°°Sn. The results from
conclusions. First, space | produces a greater responsivendgsf. [7] (dotted curvg are also shown for comparison. At
in generating theA’s at fixed compression than space Il. equilibrium (r,,s~5.1 fm) we find that both calculations
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FIG. 4. Constrained SHF enerdyr Vs rms for 1°°Sn. Lines FIG. 6. Number ofA™, A° andA*+A° vs r s under com-

with the labels(a), (b), (c), and(d) represent the results of calcula- pression for'®sn for the entire range of compression examined.
tions performed in various model spaces as indicated in the labefhe model space used is the one of cufkein Fig. 1.

and described in the text. Soli@lashed line corresponds td\
+A4’s (N-only). A%s are equal at alt, s values examined here.

. , , The density distributions of%°Sn evaluated at equilib-
yield no A’s. However, they have rather a different depen-;,n, (r.m=5.1 fm) and at an about 20% reduced volume

dence on the . We find that this difference in the,, rm=4.75 fm) are compared in Fig. 7. Comparing curees

deﬁendﬁnce IS hmalr;]Iy due to ;fhe _changedln Am(_)del space%ndc,' we observe that the 20% reduction of nuclear volume
rather than to the change in effectidéN and NA interac- greatly enhances the total density in the interior of the

tlonls. T_he Iarge; model s_pac(e?lld curveh_s;r)]age )I_o_bw- nucleus. Accordingly, the density is decreased with compres-
ously gives a softer equation of state at high densities. — giqn for ther>5.63 fm region. Similar situations are also

Figure 6 shows that the number of creatk8 increases  ,sqreq for protogneutron densities if we compare curves
sharply if we further compress®Sn to a volume of about ",/ (a anda’). The A density (curve d') for the

half of its equilibrium size. However, at this nuclear density, 5qo,_compressed volume has a rather different distribution.
which is twice the normal nuclear density, the percentage oft is peaked at a larger distance from the nuclear center. At

nucleons converted ta’s is only about 6% in*™Sn. This equilibrium, the predictedd component is almost zero and
result is consistent with our previous resylg and with the hence is not shown in Fig. 7

information extracted from the data of relativistic heavy-ion o
collisions[1,2]. We also note that the numbers »f"’s and

]
. . a:Neutron(r  =5.1fm)(equilibrium)
0.07. ] ] ! 2 e —— b:Proton(r "£5.1fm)

- - c:Total(r,_"Z5.1fm)

----a":Neutron(r  =4.75fm)
b':Proton(r "=4.75fm)
oA =4.75fm)
- ¢':Total(r _ =4.75fm)

18"

16

(a) : Spacel
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,"s’caledbyl\O‘\\.\_

Number of A's

04
0.014

0.2

3 4 5
r(fm)
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v * 4'9 r_(fm) : i FIG. 7. Radial density distribution vs for 1°°Sn at r

=5.1 fm (equilibrium) (solid lineg and 4.75 fm(dotted lines.
FIG. 5. Number ofA’s Vs s under compression fot%Sn. Lines labeled witha anda’ correspond to neutronb;andb’ cor-
Lines with the labelg¢a) and(b) represent the results of calculations respond to protongd’ corresponds ta's while lines labeled with
performed in the space | and space I, respectively, as described m and ¢’ correspond to total radial density at thesg, radii,
the text. respectively.
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(a):Total(r =5.1fm), space II

—— (b):Total(™=4.75fm), space IT S N Nonly -
(c:A(r_ =X75fm), space I1 o] 131+A
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13

--------- (d):To{é"i(r =5.1fm), space I

16 ™
————————— (e):Total(r " "=4.75fm), space I 1
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r(fm) r (fm)
. . . . . . H 13!
FIG. 8. Radial density distribution vsfor 1°°Sn. Dashedsolid) FIG. 9. Constrained SHF ener@yr vsr s for *3°Sn. The full

lines represent results of calculations performed in the model spad80del space of both nucleons ands is referred to as space Il in
called space [space I} in the text. Lines labeleda) and (b) cor-  the text. The solid line represents the result of calculations per-
respond tda) total radial density at,,=5.1 fm (equilibrium) and ~ formed for nucleons onlyalso called the 8 spagwhile the dotted

(b) total radial density at,=4.75 fm. Lines labeledd) and(e)  line presents the full space Il result.

correspond tdd) total radial density at,,s=5.1 fm (equilibrium)

and (e) total radial density at,,=4.77 fm. Lines labeledc) and is interesting to note that the oscillating behavior is reduced
(f) correspond to the\ density at(c) rme=4.75 fm and(f) rrns  for the neutron density compared with the proton density and
=4.77 fm, respectively. also reduced compared to th&Sn neutron density in Fig. 7.

In Fig. 8 we compare the densities calculated in this work In summary, we have investigated the ground state prop-

: . erties of %zr, 1%%n, and®?sn at equilibrium and at large
(space II, solid curv_esand those in Ret.7] (space |, dashed compressions. A realistic effective Hamiltonian that includes
curves. By comparing the curvea andd, we see that the

predicted shapes of the total densities in the region near th'gN’ NA, andAA interactions is used. We have performed

: alculations in no-core model spaces within the framework
nuclear center are rather different for the nuclear volume a RO . T
o L of the CSHF approximation. The focus of our investigation is
equilibrium (r,ms=5.1 fm). This is also the cadeurvesb

: on the sensitivity of our predictions to the sizes of the
05 - = -

anpl €) at 20./0 reduced volume ’G“S. 4.75 fm). The oscil nucleon andA model spaces. Our main findings are the fol-
lating behavior of space Il calculatigeolid curve$is rather

striking. In the lower part of Fig. 8, we see that the predicteoj.owmg' Thed degree; of freedom tend fo soften the equa
S N . tion of state. The precise percentage of theomponents at
A distributions at,,,s=5.1 and 4.75 fm have rather different . . )
: ; . L a specified compression depend on the size of the model
magnitudes while their shapes are very similar.

In Ref. [8] we have examined the effects due to adolingspace. At equilibrium, we find no case of mixing between
more neutrons to the nucleus. Here we address the same
issue by performing calculations fd#?Sn which has a large
neutron excess ovet®®Sn. Qualitatively, we find that the Solid curves : space |
results for32Sn are similar to those presented in Figs. 4—8 o] Daghed curves : space Tl
for 19%Sn. For completeness, we show the predidieg ,
number ofA’s, and densities fot*%Sn in Figs. 9-11. 020

By comparing the solid and dotted curves in Fig. 9, we
see again that thA degree of freedom induces a consider-
able reduction in the compressibility along with a softer
equation of state.

Figure 10 displays the dependence of the numbek’sf 010
on the mean radius,,s of **%Sn. The results from using
space | and space Il are compared. We see that the predicte s
A population depends on the size of model space, similar tc
what we have observed in Fig. 2 fofZr and Fig. 5 for

Number of A's
=3
]
>
+
.

100Sn. For both cases shown in Fig. 10, the numbeA %§ i 52 S dm) T 5%
is larger than the number oA™’'s at all radii during e
compression. FIG. 10. Number ofA*, A®, andA*+A° vs r s under com-

The predicted densities fol*’Sn are shown in Fig. 11. pression for'®2Sn. The model spaces that are used are the ones of
Similar to the pattern seen in Fig. 7, all densities near thesig. 5. Solid (dotted lines represent results of calculations per-
center of the nucleus are greatly enhanced by compression.fiirmed in space (space I).
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a: Neutron
— b: Proton

c: Delta
—d: Total (r_ =5.38 fm)
--------- a': Neutrofi™
--------- b': Proton
e @' Total (v =5.63 fm)(equilibrium)

12 132g, Space I

P(baryon fm™)

r(fm)

FIG. 11. Radial density distribution vs for %2Sn at r
=5.63 fm (equilibrium) (dotted line$ and 5.38 fm(solid lines.
Lines labeled witha anda’ correspond to neutronb;andb’ cor-
respond to protons; correspond ta\’s while lines labeled wittd
and d’ correspond to the total radial density at thesgs radii,
respectively.

nucleons and\’s in our largest model space of eight major

nucleon shells plus 1@ orbitals. On the contrary, there is
mixing in °Zr, and *%5n in the smaller model space of
seven major nucleon shells plus eightorbitals. Expanding

PHYSICAL REVIEW C64 024306

the nucleon model space has a larger effect on reducing the
static compression modulus and softening the nuclear equa-
tion of state than increasing the number of thetates in the
cases we examined. Under extreme compression, at a density
2-3 times the normal nuclear density, the excitation of
nucleons toA’s increases sharply up to 10% of the total
number of constituents.

To end this paper, we must note that our predictions de-
pend rather strongly on the size of the chosen model space,
especially at larger compression. This happens in spite of our
adjustments to the effective Hamiltonian where we match the
experimental ground state properties in each model space.
Thus the results presented here should be viewed as first-
stage qualitative indications of the role of thedegree of
freedom in the compressed nuclei. The results also serve to
motivate efforts with yet larger model spaces. In the future,
we will both enlarge the model space further and solve for
the corresponding model-space-dependent effective Hamilto-
nians from microscopic theory in order to make more quan-
titative predictions for analyzing the data &fproduction in
relativistic heavy-ion collisions.
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