PHYSICAL REVIEW C, VOLUME 64, 024303

Collective E2 transitions of midshell Ba isotopes in the boson expansion theory
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CollectiveE2 transitions of midshell Ba isotopes are studied by means of the boson expansion theory. The
fermion Hamiltonian is comprised of the self-consist@® interaction with higher-ordefmany-body terms,
monopole- and quadrupole-pairing interactions in addition to the spherical limit of the Nilsson Hamiltonian.
The Kishimoto-Tamura method of normal-ordered linked-cluster expansion of the modified Marumori boson
mapping is applied to construct the microscopic boson image of the Hamiltonian and thates thgerator.

It is shown that the marked increase of quadrupole collectivity, indicated by the enhancement of experimental
B(E2), as neutron numbers approach the midshell valué-e66 can be reproduced naturally in terms of the
microscopic boson expansion theory by using a standard value of the effective charge.
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I. INTRODUCTION nation for the systematics of the experimenB{E2;2;
—0;) values in this midshell region without any concomi-
Enlargement of thé8(E2;2; —0;) values is one of the tant change in the energies of the low-lying states, is an
fundamental indices of the enhanced quadrupole collectivitymportant challenge facing nuclear models. The purpose of
in even-even nuclei. The®(E2) values are often used most this paper is to report briefly some results of our recent in-
importantly to deduce the experimental deformation of thevestigation on the quadrupole collective properties of
nuclear ground state. The experimerB&E2;2; —0;) val- ‘2> *Ba by means of the boson expansion the®FT).
ues of the rare-earth nuclei in the s@<82, 82<N<126 The BET is known to be a very promising method for the
region are known to peak dbr very close tp midshell, description of anharmonicities in nuclear quadrupole collec-

- . . - tive motions, if couplings to noncollective states are faith-
while whether a similar behavior occurs in thes5,N) . ' ;
: . fully included in the calculatiof14,15. The present formal-
=82 region has been an open_and _challengmg problem fror|nsmy is based on the Kishi'raoto-?'amurap method of the
bofbexgerlm(;antaldand theoretical Y:)(TWR,OME' tion” of th normal-ordered linked-cluster expansion of the modified
9u+ a +eca|e ago,ha p.os?: ”e _sa uration™ of € arumori boson mappind16] (referred to as KT-8 in
B(E2;2, —0y) values in the midshellN=66) region was  nich hoson operators are allowed to act upon the ideal-

once suggested experimentally, and a systematic calculatiqfyson states. Numerical calculations are performed by using
of the collective states in the Xe-Ba-Ce region was mad‘?nany useful techniques reported in Refs4,15 with sev-

within the proton-neutron interacting boson mod&M-2). eral refinements developed in our previous wdrkg—19.
Then it was concluded that the Pauli blocking factors in the

IBM-2 are of particular importance to obtain the “satura-
tion” of the B(E2) in the midshell regiof2]. Il. MODEL HAMILTONIAN

Afterward, however, Walpet al. reported new data of the . . . L .
lifetime for the 2" —0; transition in2%e, which was more f The model Hamiltonian with which we start is given in
than a factor of 2 lower than the previously adopted value'crmion operators as
The data suggested a disappearance of the “saturation” ef-
fect and a significant discrepancy between experimental val- H= hspt (Hopair— AN)+ HZ-pair+V(2)+V(3)+V(4)
ues and the IBM-2 calculationsith the Pauli blocking fac- 1)
tors[3]. Then Ramaret al. reported a revised compilation of
experimental data including several additional modern Xith
periments and concluded that the measu¢E2;2,

—0;) values for the light Xe isotopes show a marked in- ,
crease in the midshell regida]. p m, .
Recently, also for the light Ba isotopes, several modern Nsp= ;1 >m E‘”zrz_Khw{2(|'3)+“(|2_<|2>)} K
experimental data have been accumulated and the similar '(2)

trend as above for thB(E2) in this region has been ascer-

tained[4-13. In Ref.[5], Uchiyamaet al. reported that the

revised systematic trend &@(E2) values for even Ba iso- _ Goaya

topes from*?“Ba to 13®Ba is well reproduced by the IBM-2 Ho-pair=~ 7"PoPo )

calculationswithoutthe Pauli blocking factors, which seems

rather ironical considering the microscopic origin of the

o Hapa=~ 2 (P @
Thus, as stated in Reff1], providing a consistent expla- 2-pair 2 22
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, X The strengths of the monopole-pairing interactions,
V@)= — (Q2:Q2), (5 Gg(p) for protons ands,(n) for neutrons, are fixed to fit the
experimental gap energies through the gap equations, where
NO) the gap parameters are derived from the atomic mass evalu-
V@3 =_ ?[ [56m/5(0,Q,0,) —3Ry(Q,- O,)],  (6)  ation compiled by Audi and \_/Vapsn[é;§]. The strengths of
: the self-consisten® Q interaction and its higher-order terms

are parametrized as
X(4)

48T . . PPN
V(4):__[_(Q -Q2)?—8+/56m/5R0(Q2Q2Q2)
41 5 2 %2 0l 2%2%2 f2:X(Z)/Xge”:X(B)/X:S;EIf:X(A)/Xie”a (9)

: (7)) wherex5®'", x5°'"", andx3®"" are the self-consistent values of

X, x®, and y¥, respectively, which are derived in Ref.
[27]. For the strengths of the quadrupole-pairing interactions,
G,(p) for protons andG,(n) for neutrons, we parametrize
them as

+12R3(Q,-Q,)

Here hg, is the spherical limit of the Nilsson Hamiltonian,
and the values ok, u, andw are fixed in accordance with
the systematicf20]

A )=G(p)/G5*'(p) = G(n)/G3®(n), 10
pn=0.624-123470-  Kn=0.0641-0.002 92~ G2P)/GZ7(P) =G/ G2 ) (19

000’
whereG5®'(p) andG$®'(n) are the self-consistent strengths
A A of the quadrupole-pairing interaction for protons and neu-
mp=0.493+0.649 550 #p=0.0766-0.0779 70, trons, respectivelyf34]. These parametrizations are intro-
duced to reduce the number of free parameters. In calculating
N—7 the energy spectra, the above two dimensionless parameters,
c‘bn'p=c‘b(1tﬁ>, ho=41A"18 (MeV), (8) f, andg,, are varied slightly around the vicinity of the
predicted value, i.e., unity.

and our fermion model space is spanned ps,2 2psp,
1f512, 3sy2, 2d32, 2dsj2, 1972, 1dgj2, and hyyj, orbits for
protons and 8,5, 2ds>, 2ds2, 19752, 2f72, 1hop, 1hyyp,
and 1i 13/, orbits for neutrons. As for the Nilsson parameters |n the KT-3 formalism of BET, a truncated fermion space

x and u, there are relatively recent parameters, e.g. thos@_ is mapped onto a corresponding subsp@da the ideal
proposed in Refd.21,22. If we use these parameters, how- hoson space. The one-to-one correspondence between a fer-

ever, in principle, we must reexamine the self-consistencynion state in the truncated space and a boson state is realized
between the one-body field and the effective interactions begs

cause these parameters possess complicated velocity depen-

Ill. BOSON EXPANSION

dences or density dependences. To avoid this complexity, we In:t)=U|n:t), |n:ty=UT|n:t), (11
adopted the simple and standard parameter set of ®gfin ]
the present work. with

In the above Hamiltonian,Hg s and H,p,i are
monopole- and quadrupole-pairing interactiok$?) is the U= |n:t)(n:t], (12)
ordinary two-bodyQQ interaction, whileV(®) andV*) are ()

the effective three- and four-body interactions introduced as . i . .

the higher-order terms of th@Q interaction to recover the Where [n:t) is the orthonormalized fermion state with

nuclear self-consistendghe nuclear saturation and the self- 1amm-Dancoff (TD) phonons (correlated - quasiparticle

consistency[23,24)) in higher-order accuracy especially pairs, |n:t) is the idealn-boson state, andrepresentg a set_

when more than one mode is simultaneously excited in &f all the other quantum numbers necessary to distinguish

system[25—27. Essentially the same type of many-body in- different states in the each subspace. A boson imagg ¢

teractions was derived by Marshalgg], and the three-body ©Of @ fermion operatoO¢ is defined by

interaction has been applied to the analysis of anharmpnic (0r)g=U0:UT (13)

vibrations in *%%r by Matsuo and Matsuyana@29] and FBT R MF

Stotts and TamurEGO], to the .analysis of two-phonon states gq as to satisfy

in Ru and Se isotopes by Aif&1], and to the analysis of

shape transition in Sm isotopes by Yama@da]. (m:t|Og|n:t")y=(m:t|(Og)g|n:t") (14)
The origin of the quadrupole-pairing interaction with its

self-consistent coupling strength has been discussed in coim the truncated subspace.

nection with thdlocal Galilean invarianceof the system un- In the presence of the superconducting correlation, to re-
der the quadrupole collective motion in the presence of thenove spurious modes associated with particle number non-
monopole-pairing interactiof33,34. conservation, we use the prescription developed in Refs.
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[17,19. In that case, all thén:t) in the above equations are HP=(a' a),

replaced by|n:t), the orthonormalizedphysical fermion

state, where the spurious modes are approximately projected HG=(a' a")+(a-a),

out. Detailed definitions, notations, and constructions of

these quantities are given in R¢L9]. HY =o' a)+(at - [aa)),
In order to include approximately the coupling effects be-

tween relevant and_lrre.le_vant _degrees of fregdom, the trun- Hg%):([aTaT],aT)Ha,[aa]),

cated boson spackis divided into two parts, i.e P space

and Q space. Since we are interested in the quadrupole col- (@) _, t

HY%=(a'a")(aa),

lective motions, the space spanned only by the coherent
qguadrupole TD mode is identified as tRespace(collective
space, and its complement corresponds to pepacenon-
collective spack In the present calculations, all the possible

HiR=(aTa){(aTa)—1},

noncollective boson states=0"—4") that can couple di- H=3-6(a"a),

rectly to the states with one or two collective phonons are

included. For the practical purpose, however, the space trun- H{Y=(a'a") (a'a)+(a'a)(@a),

cation is performed so that tH@ space is spanned by only

those noncollective states in which none of the noncollective H@=(aa)(aa’)+ (aa)(aa), (18

bosons excites more than once although the collective boson,
may excite multiply. Then, along the line of the FeschbachVith
formalism[36] and the perturbation theory for a quasidegen-
erate systenf26,37—4Q, we can construct effective opera-
tors to be used in the space.

The KT-3 formalism of BET is expressed in terms of the ! , o
so-calledA bosons, which correspond to the boson images ofive channels, whilé (), are the contributions from the non-
the TD fermion operators in the lowest order. In applicationscollective couplings. Detailed derivations and explicit ex-
to realistic nuclei, to include the RPA-type correlations at thePressions of these coefficients are given in Rgifs, 17-19.
early stage of the calculation for the collective branch, weOnce we obtain the collective Hamiltonian expressed by the
transform collectiveA bosons to new type of collective @ bosons, we can calculate the eigenenergies of the collec-

P=-10[a’a]V[a’a]D). (19

The coefficientsh{®), come directly from the purely collec-

bosons, the so-called bosons, defined by tive states by diagonalizing it in the space.
To visualize the physical properties described by the col-
Al=ya'+ pa, A=dpa’+ya, (15) lective Hamiltonian, we transform the bosons into mo-
menta and conjugate coordinates defined by
with
S ;
1 1 a'=—=(z2""By,—iz77,),

=52tz Y, ¢=3(-zH. e V2
This procedure ensures the elimination of the dangerous a:i(z*13ﬂ+iz772#)_ (20)
terms in the boson Hamiltonian and the parametesrdeter- V2

mined accordinglyf15].

Thus, by applying the above formalism, we can obtain
microscopic boson images of fermion operators, renormal- Heon=T(B2 1 m2,) +V(B2,) + Co, (21)
ized by including the noncollective coupling effects and ex- . o o
pressed entirely in terms of the bosons. In the present Where the generalized kinetic energy is given by
analysis, we expand the Hamiltonian and the E2 operators up T
to fourth and third order of the bosons, respectively.

Then the collective Hamiltonian becomes

(BZM,WZM):a2772+a47T4

As a result, the collective Hamiltonian, i.e., the effective +bg([7B]P- 7))+ b (72 B2+ B2?)
Hamiltonian to be used in th® space, is expressed in a @
compact form as +by (B 7) (7 )
y +bE([pmI®-[7B]Y), (22)
Heon=Hgp=Uo+ 2 hmaHii, . . |
mni while the potential energy term is expressed as
, - — 2 3 4
h=h(@ 4+ h(@" 17) V(B2,)=V(B,y)=CaB + 3B cos3y+CyB", (23

~ with the intrinsic deformation parameters defined by
HereH{?). are operators of the forma(")™()" and the ad-

ditional indexi distinguishes terms that have the samand _ _ _ \ﬂ ;
n. They are expressed as Pao=pBeosy,  B2x1=0,  Paxz phsiny. (24
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TABLE I. Values of dimensionless parametgiHamiltonian coefficient$,,,;, and corresponding kinetic and potential coefficieaits
b’s, andc’s for barium isotopes calculated in the present work. Units are listed in the second column.

lZOBa lZZBa 124Ba 1268a 1ZBBa 13OBa 13ZBa 134Ba 1SGBa

z 1.892 2.162 1.976 1.838 1.762 1.643 1.491 1.450 1.255
hs 10°1 MeV 3.345 2.752 2.627 3.680 3.917 4.208 5.193 6.095 8.327
hao 1078 MeV 3.934 1.907 -5.961 0.238 5.662 3.099 -2.235 -0.775 1.527
hay 10°1 MeV 2.040 -0.122 -0.136 -0.004 -0.130 -0.221 -0.415 -0.475 0.139
hao 10°2 MeV 4.308 -1.926 -2.051 -1.569 -1.908 -1.782 -1.809 -1.795 -1.033
Rop 10°1 MeV 1.510 2.452 2.831 2.708 2.379 1.462 0.685 0.362 0.198
Roon 10°1 MeV 3.381 5.134 5.852 5.456 4.756 2.846 1.065 0.226 0.038
(. 1073 MeV 4348 4.156 5.688 6.605 6.831 6.419 7.222 7.810 5.726
ha 101 MeV 3.248 5.040 5.727 5.348 4.654 2.804 1.156 0.430 0.244
hao 101 MeV 0.782 1.235 1.371 1.247 1.067 0.626 0.248 0.100 0.048
Co 10° MeV 2.220 3.878 4.493 3.819 3.131 1.403 -0.375 -1.310 -2.027
c, 10?7 MeV -1.119 -1.448 -1.919 -2.053 -2.028 -1.416 -0.575 0.032 0.530
Cs 10' MeV  -3.509 0.327 0.440 0.260 0.636 1.063 2.375 3.310 -0.349
Ca 10° MeV 0.878 0.900 1.365 1.722 1.964 1.748 1.223 0.608 0.718
a, 10" MeV 2.417 2.459 1.639 2.262 2.145 2.180 2.455 2.699 2.422
bs 1073 MeV 7.325 4.954 4.853 4.384 3.878 2.491 0.890 0.407 2.321
b¢h 1073 MeV 8.345 5.288 6.984 6.316 6.102 3.293 -2.902 -8.394 -6.386
b(? 102 MeV  -0.632 -0.182 0.895 2.137 2.456 2.108 1.878 1.622 1.021
b¢) 102 MeV  -4.474 -4.156 -5.687 -6.605 -6.831 -6.419 -7.222 -7.810 -5.726
a, 1077 MeV  -3.906 -3.472 -3.093 -2.887 -2.350 -1.917 -1.506 -1.215 -1.125

To relate our microscopig,, with the deformation param- power in7. Such terms give corrections to the theories based
eters of the Bohr-Mottelson modet1,42, a scaling factoé  on the adiabatic assumption.

is inevitably introduced ag— &8, m— w/£. The determina-
tion of ¢ is explained in Refs[15,18,19. The form of
T(B2,,m2,) cannot be given uniquely, because of the non-
commutativity betweens,, and m,,, although the sum As explained in Sec. Il, we introduced two dimensionless
T(B2, ,72,) +Co is unique[15]. parametersf, andg;, which measure the microscopic in-

It is interesting to compare our boson Hamiltonian with teractions between nucleons in nuclei. To obtain a good de-
the collective Hamiltonian of the generalized collective scription of the experimental level scheme, in the present
model (GCM). In Ref.[12], Petkovet al. applied the GCM  analysis, they are allowed to vary slightly around the vicinity
to the Ba isotopes witlth=124—-132. Inthat case, the ki- of the predicted value, i.e., unity, for individual nuclei.
netic part of the GCM Hamiltonian is comprised only of  The values of dimensionless parametetlamiltonian co-
second-order terms ofr, while the potential part of it is efficientsh,,,;, and corresponding kinetic and potential co-
considered up to the sixth-order terms @f and there are efficientsa’s, b’s, andc’s calculated in the present work are
eight adjustable coefficients in their total Hamiltonian. Onsummarized in Table |. The deviation affrom the unity
the other hand, since the mapped Hamiltonian is expandegpresents how important the RPA-type of ground-state cor-
up to the fourth-order of boson in the present work, the ki-relations and to what extent thebosons are far from tha
netic part of our boson Hamiltonian contains up to thebosons. We can verify that the ground-state correlations peak
fourth-order terms ofr, though the potential part of it con- at the midshell also in this mass region. Note thgf van-
tains at most fourth-order terms Bf and all the coefficients ishes here and indeed the dangerous terms are eliminated.

IV. RESULTS AND DISCUSSIONS

in our total Hamiltonian are determined as functionsf ef The coefficientsh,,,i=>0 for m+n>2 express the corre-
andg,, which are the only two adjustable parameters in oudations beyond RPA. We normally havg,,>0 for m+n
model Hamiltonian. =4, and therefore,>0, which is necessary to prevent the

We should notice that a strong correlation between theaucleus from collapsing into an infinitely large deformation
potential energy surface and the energy spectrum holds on[\L5]. If ¢c,<0, the spherically symmetric shape is unstable,
under the condition that all the anharmonic terms inand in that case i€;<<0(>0), a prolatgoblate deformation
T(B2,,m2,) are sufficiently small. If such a condition is not is favored. In the present work, the values @f become
met and a generalized collective mass depends crucially orather small reflecting the-unstable nature of the region
coordinates, then to predict the spectrum from the shape afnder consideration.
the potential surface only can be dangerpis,19. In the A stronger dependence of the inertial functions on defor-
boson expansion approach, the adiabatic assumption is notation has been suggested by Pomoetkal. [43] for rare-
made and generally there appear terms that are in highearth nuclei. In their expression for the collective kinetic
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energy[Eq. (2.5 of Ref.[43]], the coefficientp’s are scalar and that of effective interactions, both affect the mass coef-
functions of the collective coordinates, and contributionsficients, should be self-consistent with each other. However,
from higher-order terms of the coordinates are included alsprobably there is still room for improving the collective mass
through these coefficients. While in E@2) of the present parameters in our microscopic model.
work, where operators and coefficients are completely sepa- The nonadiabatic terrr* considered in this paper has to
rated out, the coordinatgs,,, and conjugate momentay,, be interpreted as arising from a velocity-dependent mass pa-
are treated on a same footing and are considered up to tliameter of the collective motion. In the framework of the
same order. Thus the relation between the two expressions tisne-dependent perturbation theory, such terms appear in the
not so simple. general cranking formula as fourth-order terms of perturba-
In our expression, the coefficienltss can be interpreted tion about couplings between single particles and collective
as arising from the dependence of the inertial functions orvelocity fields[45]. Looking at the values dd,, the velocity
deformation. As is known from Table I, the effects of suchdependences of the collective mass parameters do not seem
dependence are rather sensible. In RE8), we discussed to  so large in the present results.
a certain extent the effect of such dependence by trying to Figure 1 shows the theoretical potential energy surfaces
adjust the third-order mass coefficidmj without changing for 2% 13¢Ba obtained by the present two-parameter analy-
the values of all the other kinetic and potential coefficientssis. The calculated potential energy surfaces of the Ba iso-
and found that even a set of very little variations of coeffi-topes studied showy-soft features, and such features are
cientsh,; andhg, can sometimes produce significant differ- especially enhanced for*? 3®Ba. In fact, we see in Fig. 1
ence inb; and drastic change in the final level scheme, whilethat the difference in energy between the two potential
keeping the shape of the potential surface unchanged. Thusritinima are rather small compared to the zero-point energy
is very important to have a proper deformation dependencéor these nuclei.
of the mass coefficients microscopically. For that purpose, In Fig. 2, the theoretical excitation energies in the ground-
we have been investigating the self-consistent velocity destate band and those in the quasband are plotted as a
pendent effective interactions, e.g., the origin and the deforfunction of neutron numbeM and are compared with experi-
mation dependence of the multipole pairing interactionament. The theoretical spectra reproduce very roughly the
[34,44), requiring that the velocity dependence of potentialsgeneral trends of experimental spectra, though the tendency
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T 3 — T
Ba g-band N Ba y-band 8 -
. 65+
I
a

@

charges inevitably become ambiguous depending on the
choice of the model space.

Since the purposes of the present work is to study whether
the marked increase of quadrupole collectivity as neutron
numbers approach the midshell value\bf 66 can be repro-
duced naturally or not in terms of the microscopic BET by
using a standard value of the effective charge, we need to
remove such ambiguities and to know in advance the theo-
T retical reference values of the effective charges for transition

N operators as well as for interaction operators. By cutting off

FIG. 2. Calculated and experimental excitation energies in thdN€ AN=2 quadrupole matrix elements completely, we can
ground-state bandleft pane) and the quasi-gamma bardght  Tefer to the theoretical value 7'=1 for the quadrupole
pane) of even-even barium isotopes plotted as a function of neutrorinteraction operator and the value ff)=Z/A for the E2
numberN. transition operator as explained transparently by Mottelson

[23]. In the present analysis, to reduce the number of free
to the bunching of levels in the quagiband that is charac- parameters a commoB2 effective charge is adopted for
teristic to y instability is too prominent in the theoretical pboth protons and neutrons, and to investigate the systematics
result. A similar difficulty was observed in Refd5,18,19.  a uniform value of it is used for all the Ba isotopes consid-
The calculated excitation energy of thé; Btate is too low ered.
compared to the experiment for isotopes Witk 74. In Fig. 3 theoretical reduced transition probabilities from

For the effects of the higher-order interactions, we carthe first excited 2 state to the ground state of even-even
verify from the order estimation of the coupling strengthsbarium isotopes are plotted as a function of neutron number
that the contributions from the four-body interaction are al-N. Here, to give an idea of the sensitivity of the results upon
most negligible while the effects of the three-body interac-the choice of the effective charge, the results for three cases,
tion are visible in this mass region. Though the effects are,;; = 0.50, 0.55, and 0.60, are presented and are compared
not always so large, excitation energies of the states in th@ith experiment. We see that the experimental trend can be
quasi< band are relatively lowered while those in the quasi-well reproduced by the present calculation with a rather stan-
B band are raised due to the three-body interaction. Sucard value of effective charge, and the theoretical
effects can be consistently understood from the relation beB(E2;2; —0;) value peaks at the neutron midshell also for
tween the higher-order interactions and the doubly-stretcheghe Ba isotopes, though the experimental data are still miss-
guadrupole interactiofl9], but are disadvantageous for the ing for 1?%Ba.
present specific problem of the position of thenead ener- In Fig. 4, calculatedB(E2:1—|—2) reduced transition
gies. probabilities in the ground-state band of Ba isotopes are pre-

However, as generally observed in the RPA calculation okented for the case @f.¢s=0.55. Here, the first three panels
vibrational states in deformed nuclei, the positions of theshow the results for?* *288a with experimental data, and
band heads are very sensitive to the choice of the singlene final panel provides the theoretical systematics for all the
particle energies. Therefore the difficulty in the band headsa isotopes considered. It is interesting to see that promising

energy is not always so serious but sometimes can be reragreements between the theory and the experiment are ob-
edied by a proper choice of the single-particle energies. For

example, we can raise slightly the position of thfe Sate by

oS

Excitation Energy [MeV]

Excitation Energy [MeV}

=]

0.8F T T T T T T T ™

shifting the intruder protoh,,,, state upward without chang- Ba
ing the order of the single-particle levdl$8,46. 0.7t
In calculating the electromagnetic properties, the quadru- o
pole effective chargeg; is introduced as the only parameter g 0.8y
to fit the experimental data. The need for the effective charge = osl
in our calculations comes mainly due to the omission of the = ;
AN=2 quadrupole matrix elements, which we did intention- t 04y
ally, along the line of Ref[15], to reduce the dependence on tN\' 0al
the choice of the single-particle space. It is possible to take o
into account theAN=2 matrix elements disregarded in the o oz
paper for computing reasons. However, under the presence oAl T
of the pairing interactions, it is not possible to include com- |
pletely matrix elements connecting different major shells 64 %8 7,\2] e 80

even if we further enlarge the single-particle model space. As
we have to truncate the model space one way or another, F|G. 3. The reduced transition probability from the first excited
someAN=2 matrix elements are neglected to a certain ex2* state to the ground state of even-even barium isotopes plotted as
tent and usually it is necessary to introduce effective charges function of neutron numbéx. Experimental data are taken from
for transition operators as well as for interaction operators. In?Ba[4], 1*Ba[5], *®Ba[6], *Ba[7], 1*Ba[8], 1*2Ba[9], *Ba
such a situation, theoretical reference values of effectiv10], and **Ba[11].
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sence of free parameters, thBi(E2;2, —0;) seems to re-
produce correct tendency of increasing with decreasing neu-
tron number down to the midshell, though there remain
sensible discrepancies between the prediction and experi-
ment for the midshell Ba isotopes.

Compared to the potentials derived by Petlahal. for
124-13285 (Fig. 2 in Ref.[12]), the potential minimaBnm,
seem rather small in our cases. Also the prolate-oblate energy
differences seem too small in our present results, which may
relate to the problem of over bunching and staggering of
levels in the quasi band. In Ref[46], the problem of too
prominenty softness is remedied to a certain extent by ad-
justing artificially the position of the intruder protam,,
state in the way mentioned before. In the present analysis,
however, such an artificial adjustment of the single-particle
energy is not performed.

In the macroscopic-microscopic calculations of Ragnars-

son et al. [48], there appear some barriers between oblate
and prolate shapes, when passing throughthdegree of
FIG. 4. Calculated and experimenB(E2) reduced transition freedom for lighter isotopes of barium. The potential struc-
probabilities in the ground-state band & '**Ba. In the final  ture aroundy=30° that acts as a kind of potential barrier
panel, the theoretical systematics is also shown as a function dietween oblate and prolate shapes in the lighter barium iso-
ngutron numbeNl.zExperlmental data are taken frotffBa[5,12), topes and its disappearance i#Ba are also discussed by
*Ba[6,13 and “Ba|[7]. Petkovet al. [12]. The barriers increase the rigidity of the
potential energy to the gamma deformation. In the present
analysis, however, the microscopic Hamiltonian is expanded
other B(E2) transitions in the grand band ¢f* 1?®Ba si-  up to the fourth order in terms of the collective bosons, and
multaneously, and the theoretic®B(E2:I—1—2) values the y dependence of the potential surface is limited only up
peak at the neutron midshell also for 4,6, and 8 transitions  to the order of33cos 3y accordingly. This may be one of the
for the Ba isotopes. reasons for the present discrepancies between our calculated
Recently, Prohniak et al. [47] performed a microscopic and experimental properties of the quasievels. To im-
calculation of the low-lying quadrupole collective states ofprove they dependence of the potentials in the present type
even-even nuclei from the region of 8&,N<82 within the  of analysis, further investigations based on a much higher-
framework of the general Bohr Hamiltonid@®BH) with no  order boson expansion are advisable.
free parameters. They included the dynamical effects of the The deformation energies obtained by Ragnarssoal.
coupling with pairing vibrations and demonstrated that thg 48] are much smaller than that of the present paper. A set of
effects are important for the description of the collectivesolutions with smaller deformation energiés.g., about 2
states. In our calculations the pairing vibrations have beeMeV for 12°Ba) are also obtained in our previous calculation
considered through the couplings between a two-phorfon 0[18], which is due to the weaker interaction strengthsnd
state and two-quasiparticle*Ostates, and important effects g, adopted with the use of smaller pairing gap energies de-
as well as remarkable cancellation mechanism for tfie 0O rived from the experimental nuclear binding energies avail-
couplings in connection with the three-body interaction haveable at that tim¢49-52. In the present analysis, however, a
been discussed18]. It should be noted here that the different set of solutions with larger deformation energies
quadrupole-pairing interaction has been included as a synte.g., about 6 MeV for-?®Ba) are obtained resulting from the
metry restoringresidualinteraction and treatedynamically  use of slightly larger interaction strengths, which are re-
in our BET analysi§34,18,19. quired when we adopt slightly larger pairing gap energies
The position of the present work may be considered irestimated from the recent compilation of experimental
between the GCM analysis by Petket al. [12] and the nuclear binding energig85]. Relatively larger deformation
GBH analysis by Prchniaket al. [47] in terms of the num- energies are also obtained in the GCM analysis by Petkov
ber of adjustable parameters. The fits to the experiment foet al. (e.g., about 5.2 MeV fot?®Ba), where a good descrip-
124132845 obtained by the GCM analysj42] are consider- tion of the ground-state angl bands is obtained by varying
ably good for both the level schemes and most of the stronfreely the eight parameters in their GCM Hamiltonian. For
E2 transitions, owing to the eight adjustable parameters!?* 12®Ba, the deformation energies in the present micro-
Looking at the results for??> 13%Ba in the GBH calculation scopic calculation are rather comparable with that of the
[47], the first 2" state seems too high and the energy scale o6CM potentials, while for heavier isotopes our potentials are
the theoretical spectra is too stretched except for a few nuclenore shallow.
in the midshell N=66) region, and such trend increases as Finally we will make a brief comment on the structure of
going away from the midshell region. Considering the ab-the 0; state. In the GCM calculations, the most dominant

tained not only for theéB(E2;2; —0;) but also for several
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component in the § state of'?®Ba was shown to be the state are constructed by using the normal-ordered linked-cluster
with phonon triplets coupled ta=0 (Fig. 7 in Ref.[12]). expgnsion of th.e modified Marumori bos_on mapping._Nu-
Also in our present analysis, the main component of the 0 merical calculations are performed by using the techniques

state of1?®Ba appears to be the three-phonon state, and ihgeveloped by Kishimoto and Tamufa4,19 with several
two-phonon component is rather dominant in the tate refinements developed in Refd7—19.

. . S ' It is shown that the marked increase of quadrupole collec-
Detailed investigation on the structure of the boson wave, .

functi for the low-Ivi llecti tat d th band ty, indicated by the enhancement of experimeéE?2),
unctions for the Jow-lying collective stales an an as neutron numbers approach the midshell valu®&l ef66
based on the BET analysis will be reported elsewhere.

can be reproduced naturally in terms of the microscopic BET

by using a rather standard value of the effective charge.
V. CONCLUSIONS

The low-lying quadrupole collective states of midshell Ba
isotopes are studied by means of the boson expansion theory.
The original fermion Hamiltonian of the present model in- The author is grateful to K. Uchiyama for many critical
cludes higher-ordefmany-body terms of theQQ interac-  discussions on experimental data. Thanks are also due to Dr.
tion to ensure the nuclear self-consistency in higher-ordeK. Matsuyanagi for helpful comments. This research was
accuracy, and the quadrupole-pairing interaction to ensursupported in part by the Grant-in-Aid of the Ministry of Edu-
the local Galilean invariance of the system. The microscopication, Science, Sports and Culture under Contract No.
boson image of the Hamiltonian and that of ta2 operator 09740195.
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