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Collective E2 transitions of midshell Ba isotopes in the boson expansion theory
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CollectiveE2 transitions of midshell Ba isotopes are studied by means of the boson expansion theory. The
fermion Hamiltonian is comprised of the self-consistentQQ interaction with higher-order~many-body! terms,
monopole- and quadrupole-pairing interactions in addition to the spherical limit of the Nilsson Hamiltonian.
The Kishimoto-Tamura method of normal-ordered linked-cluster expansion of the modified Marumori boson
mapping is applied to construct the microscopic boson image of the Hamiltonian and that of theE2 operator.
It is shown that the marked increase of quadrupole collectivity, indicated by the enhancement of experimental
B(E2), as neutron numbers approach the midshell value ofN566 can be reproduced naturally in terms of the
microscopic boson expansion theory by using a standard value of the effective charge.
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I. INTRODUCTION

Enlargement of theB(E2;21
1→01

1) values is one of the
fundamental indices of the enhanced quadrupole collecti
in even-even nuclei. TheseB(E2) values are often used mo
importantly to deduce the experimental deformation of
nuclear ground state. The experimentalB(E2;21

1→01
1) val-

ues of the rare-earth nuclei in the 50<Z<82, 82<N<126
region are known to peak at~or very close to! midshell,
while whether a similar behavior occurs in the 50<(Z,N)
<82 region has been an open and challenging problem f
both experimental and theoretical viewpoint@1#.

About a decade ago, a possible ‘‘saturation’’ of t
B(E2;21

1→01
1) values in the midshell (N566) region was

once suggested experimentally, and a systematic calcula
of the collective states in the Xe-Ba-Ce region was ma
within the proton-neutron interacting boson model~IBM-2!.
Then it was concluded that the Pauli blocking factors in
IBM-2 are of particular importance to obtain the ‘‘satur
tion’’ of the B(E2) in the midshell region@2#.

Afterward, however, Walpeet al. reported new data of the
lifetime for the 21

1→01
1 transition in120Xe, which was more

than a factor of 2 lower than the previously adopted val
The data suggested a disappearance of the ‘‘saturation
fect and a significant discrepancy between experimental
ues and the IBM-2 calculationswith the Pauli blocking fac-
tors @3#. Then Ramanet al. reported a revised compilation o
experimental data including several additional modern
periments and concluded that the measuredB(E2;21

1

→01
1) values for the light Xe isotopes show a marked

crease in the midshell region@1#.
Recently, also for the light Ba isotopes, several mod

experimental data have been accumulated and the sim
trend as above for theB(E2) in this region has been asce
tained@4–13#. In Ref. @5#, Uchiyamaet al. reported that the
revised systematic trend ofB(E2) values for even Ba iso
topes from124Ba to 136Ba is well reproduced by the IBM-2
calculationswithout the Pauli blocking factors, which seem
rather ironical considering the microscopic origin of t
IBM.

Thus, as stated in Ref.@1#, providing a consistent expla
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nation for the systematics of the experimentalB(E2;21
1

→01
1) values in this midshell region without any concom

tant change in the energies of the low-lying states, is
important challenge facing nuclear models. The purpose
this paper is to report briefly some results of our recent
vestigation on the quadrupole collective properties
1222136Ba by means of the boson expansion theory~BET!.

The BET is known to be a very promising method for t
description of anharmonicities in nuclear quadrupole coll
tive motions, if couplings to noncollective states are fai
fully included in the calculation@14,15#. The present formal-
ism is based on the Kishimoto-Tamura method of t
normal-ordered linked-cluster expansion of the modifi
Marumori boson mapping@16# ~referred to as KT-3!, in
which boson operators are allowed to act upon the ide
boson states. Numerical calculations are performed by u
many useful techniques reported in Refs.@14,15# with sev-
eral refinements developed in our previous works@17–19#.

II. MODEL HAMILTONIAN

The model Hamiltonian with which we start is given
fermion operators as

H5hsp1~H0-pair2lN̂!1H2-pair1V(2)1V(3)1V(4)

~1!

with

hsp5(
i 51

A F p2

2m
1

m

2
v̊2r 22k\v̊$2~ l•s!1m~ l22^ l2&!%G

i

,

~2!

H0-pair52
G0

4
P̂0

†P̂0 , ~3!

H2-pair52
G2

2
~ P̂2

†
• P̂2!, ~4!
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V(2)52
x (2)

2
~Q̂2•Q̂2!, ~5!

V(3)52
x (3)

3!
@A56p/5~Q̂2Q̂2Q̂2!23R̂0~Q̂2•Q̂2!#, ~6!

V(4)52
x (4)

4! F48p

5
~Q̂2•Q̂2!228A56p/5R̂0~Q̂2Q̂2Q̂2!

112R̂0
2~Q̂2•Q̂2!G . ~7!

Here hsp is the spherical limit of the Nilsson Hamiltonian
and the values ofk, m, andv̊ are fixed in accordance with
the systematics@20#

mn50.62421.234
A

1000
, kn50.064120.0026

A

1000
,

mp50.49310.649
A

1000
, kp50.076620.0779

A

1000
,

v̊n,p5v̊S 16
N2Z

3A D , \v̊541A21/3 ~MeV!, ~8!

and our fermion model space is spanned by 2p1/2, 2p3/2,
1 f 5/2, 3s1/2, 2d3/2, 2d5/2, 1g7/2, 1g9/2, and 1h11/2 orbits for
protons and 3s1/2, 2d3/2, 2d5/2, 1g7/2, 2f 7/2, 1h9/2, 1h11/2,
and 1i 13/2 orbits for neutrons. As for the Nilsson paramete
k and m, there are relatively recent parameters, e.g. th
proposed in Refs.@21,22#. If we use these parameters, how
ever, in principle, we must reexamine the self-consiste
between the one-body field and the effective interactions
cause these parameters possess complicated velocity d
dences or density dependences. To avoid this complexity
adopted the simple and standard parameter set of Ref.@20# in
the present work.

In the above Hamiltonian,H0-pair and H2-pair are
monopole- and quadrupole-pairing interactions,V(2) is the
ordinary two-bodyQQ interaction, whileV(3) and V(4) are
the effective three- and four-body interactions introduced
the higher-order terms of theQQ interaction to recover the
nuclear self-consistency~the nuclear saturation and the se
consistency @23,24#! in higher-order accuracy especial
when more than one mode is simultaneously excited i
system@25–27#. Essentially the same type of many-body i
teractions was derived by Marshalek@28#, and the three-body
interaction has been applied to the analysis of anharmong
vibrations in 168Er by Matsuo and Matsuyanagi@29# and
Stotts and Tamura@30#, to the analysis of two-phonon state
in Ru and Se isotopes by Aiba@31#, and to the analysis o
shape transition in Sm isotopes by Yamada@32#.

The origin of the quadrupole-pairing interaction with i
self-consistent coupling strength has been discussed in
nection with thelocal Galilean invarianceof the system un-
der the quadrupole collective motion in the presence of
monopole-pairing interaction@33,34#.
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The strengths of the monopole-pairing interaction
G0(p) for protons andG0(n) for neutrons, are fixed to fit the
experimental gap energies through the gap equations, w
the gap parameters are derived from the atomic mass ev
ation compiled by Audi and Wapstra@35#. The strengths of
the self-consistentQQ interaction and its higher-order term
are parametrized as

f 25x (2)/x2
sel f5x (3)/x3

sel f5x (4)/x4
sel f, ~9!

wherex2
sel f,x3

sel f , andx4
sel f are the self-consistent values o

x (2),x (3), and x (4), respectively, which are derived in Re
@27#. For the strengths of the quadrupole-pairing interactio
G2(p) for protons andG2(n) for neutrons, we parametriz
them as

g285G2~p!/G2
sel f~p!5G2~n!/G2

sel f~n!, ~10!

whereG2
sel f(p) andG2

sel f(n) are the self-consistent strength
of the quadrupole-pairing interaction for protons and ne
trons, respectively@34#. These parametrizations are intro
duced to reduce the number of free parameters. In calcula
the energy spectra, the above two dimensionless parame
f 2 and g28 , are varied slightly around the vicinity of th
predicted value, i.e., unity.

III. BOSON EXPANSION

In the KT-3 formalism of BET, a truncated fermion spa
TF is mapped onto a corresponding subspaceT in the ideal
boson space. The one-to-one correspondence between
mion state in the truncated space and a boson state is rea
as

un:t)5Uun:t&, un:t&5U†un:t), ~11!

with

U5 (
(n:t)

un:t)^n:tu, ~12!

where un:t& is the orthonormalized fermion state withn
Tamm-Dancoff ~TD! phonons ~correlated quasiparticle
pairs!, un:t) is the ideal-n-boson state, andt represents a se
of all the other quantum numbers necessary to distingu
different states in the each subspace. A boson image (OF)B
of a fermion operatorOF is defined by

~OF!B[UOFU† ~13!

so as to satisfy

^m:tuOFun:t8&5„m:tu~OF!Bun:t8… ~14!

in the truncated subspace.
In the presence of the superconducting correlation, to

move spurious modes associated with particle number n
conservation, we use the prescription developed in R
3-2
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@17,19#. In that case, all theun:t& in the above equations ar
replaced by un:t&, the orthonormalizedphysical fermion
state, where the spurious modes are approximately proje
out. Detailed definitions, notations, and constructions
these quantities are given in Ref.@19#.

In order to include approximately the coupling effects b
tween relevant and irrelevant degrees of freedom, the t
cated boson spaceT is divided into two parts, i.e.,P space
andQ space. Since we are interested in the quadrupole
lective motions, the space spanned only by the cohe
quadrupole TD mode is identified as theP space~collective
space!, and its complement corresponds to theQ space~non-
collective space!. In the present calculations, all the possib
noncollective boson states (I p501241) that can couple di-
rectly to the states with one or two collective phonons
included. For the practical purpose, however, the space t
cation is performed so that theQ space is spanned by onl
those noncollective states in which none of the noncollec
bosons excites more than once although the collective bo
may excite multiply. Then, along the line of the Feschba
formalism@36# and the perturbation theory for a quasidege
erate system@26,37–40#, we can construct effective opera
tors to be used in theP space.

The KT-3 formalism of BET is expressed in terms of t
so-calledA bosons, which correspond to the boson images
the TD fermion operators in the lowest order. In applicatio
to realistic nuclei, to include the RPA-type correlations at
early stage of the calculation for the collective branch,
transform collectiveA bosons to new type of collectiv
bosons, the so-calleda bosons, defined by

A†5ca†1fã, Ã5fa†1cã, ~15!

with

c5
1

2
~z1z21!, f5

1

2
~z2z21!. ~16!

This procedure ensures the elimination of the danger
terms in the boson Hamiltonian and the parameterz is deter-
mined accordingly@15#.

Thus, by applying the above formalism, we can obt
microscopic boson images of fermion operators, renorm
ized by including the noncollective coupling effects and e
pressed entirely in terms of thea bosons. In the presen
analysis, we expand the Hamiltonian and the E2 operator
to fourth and third order of the bosons, respectively.

As a result, the collective Hamiltonian, i.e., the effecti
Hamiltonian to be used in theP space, is expressed in
compact form as

Hcoll[HPP
e f f5U01(

mni
hmniHmni

(a) ,

hmni[hmni
(a) 1hmni

(a)8 . ~17!

HereHmni
(a) are operators of the form (a†)m(ã)n and the ad-

ditional indexi distinguishes terms that have the samem and
n. They are expressed as
02430
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H11
(a)5~a†

•a!,

H20
(a)5~a†

•a†!1~a•a!,

H21
(a)5~@a†a†#•a!1~a†

•@aa#!,

H30
(a)5~@a†a†#•a†!1~a•@aa#!,

H22P
(a) 5~a†a†!~aa!,

H22N
(a) 5~a†a!$~a†a!21%,

H22J
(a)5 Ĵ226~a†a!,

H31
(a)5~a†a†!~a†a!1~a†a!~aa!,

H40
(a)5~a†a†!~a†a†!1~aa!~aa!, ~18!

with

Ĵ2[210~@a†a# (1)@a†a# (1)!. ~19!

The coefficientshmni
(a) come directly from the purely collec

tive channels, whilehmni
(a)8 are the contributions from the non

collective couplings. Detailed derivations and explicit e
pressions of these coefficients are given in Refs.@15,17–19#.
Once we obtain the collective Hamiltonian expressed by
a bosons, we can calculate the eigenenergies of the co
tive states by diagonalizing it in theP space.

To visualize the physical properties described by the c
lective Hamiltonian, we transform thea bosons into mo-
menta and conjugate coordinates defined by

a†5
1

A2
~z21b2m2 izp2m̃!,

a5
1

A2
~z21b2m̃1 izp2m!. ~20!

Then the collective Hamiltonian becomes

Hcoll5T~b2m ,p2m!1V~b2m!1c0 , ~21!

where the generalized kinetic energy is given by

T~b2m ,p2m!5a2p21a4p4

1b3~@pb# (2)
•p!1b4

(1)~p2b21b2p2!

1b4
(2)~b•p!~p•b!

1b4
(3)~@bp# (1)

•@pb# (1)!, ~22!

while the potential energy term is expressed as

V~b2m![V~b,g!5c2b21c3b3cos3g1c4b4, ~23!

with the intrinsic deformation parameters defined by

b205bcosg, b26150, b2625A1

2
b sing. ~24!
3-3
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TABLE I. Values of dimensionless parameterz, Hamiltonian coefficientshmni , and corresponding kinetic and potential coefficientsa’s,
b’s, andc’s for barium isotopes calculated in the present work. Units are listed in the second column.

120Ba 122Ba 124Ba 126Ba 128Ba 130Ba 132Ba 134Ba 136Ba

z 1.892 2.162 1.976 1.838 1.762 1.643 1.491 1.450 1.25
h11 1021 MeV 3.345 2.752 2.627 3.680 3.917 4.208 5.193 6.095 8.32
h20 1026 MeV 3.934 1.907 -5.961 0.238 5.662 3.099 -2.235 -0.775 1.52
h21 1021 MeV 2.040 -0.122 -0.136 -0.004 -0.130 -0.221 -0.415 -0.475 0.13
h30 1022 MeV 4.308 -1.926 -2.051 -1.569 -1.908 -1.782 -1.809 -1.795 -1.03
h22P 1021 MeV 1.510 2.452 2.831 2.708 2.379 1.462 0.685 0.362 0.19
h22N 1021 MeV 3.381 5.134 5.852 5.456 4.756 2.846 1.065 0.226 0.03
h22J 1023 MeV 4.348 4.156 5.688 6.605 6.831 6.419 7.222 7.810 5.72
h31 1021 MeV 3.248 5.040 5.727 5.348 4.654 2.804 1.156 0.430 0.24
h40 1021 MeV 0.782 1.235 1.371 1.247 1.067 0.626 0.248 0.100 0.04
c0 100 MeV 2.220 3.878 4.493 3.819 3.131 1.403 -0.375 -1.310 -2.02
c2 102 MeV -1.119 -1.448 -1.919 -2.053 -2.028 -1.416 -0.575 0.032 0.53
c3 101 MeV -3.509 0.327 0.440 0.260 0.636 1.063 2.375 3.310 -0.34
c4 103 MeV 0.878 0.900 1.365 1.722 1.964 1.748 1.223 0.608 0.71
a2 1023 MeV 2.417 2.459 1.639 2.262 2.145 2.180 2.455 2.699 2.42
b3 1023 MeV 7.325 4.954 4.853 4.384 3.878 2.491 0.890 0.407 2.32
b4

(1) 1023 MeV 8.345 5.288 6.984 6.316 6.102 3.293 -2.902 -8.394 -6.38
b4

(2) 1022 MeV -0.632 -0.182 0.895 2.137 2.456 2.108 1.878 1.622 1.02
b4

(3) 1022 MeV -4.474 -4.156 -5.687 -6.605 -6.831 -6.419 -7.222 -7.810 -5.72
a4 1027 MeV -3.906 -3.472 -3.093 -2.887 -2.350 -1.917 -1.506 -1.215 -1.12
-
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To relate our microscopicb2m with the deformation param
eters of the Bohr-Mottelson model@41,42#, a scaling factorj
is inevitably introduced asb→jb, p→p/j. The determina-
tion of j is explained in Refs.@15,18,19#. The form of
T(b2m ,p2m) cannot be given uniquely, because of the no
commutativity betweenb2m and p2m , although the sum
T(b2m ,p2m)1c0 is unique@15#.

It is interesting to compare our boson Hamiltonian w
the collective Hamiltonian of the generalized collecti
model ~GCM!. In Ref. @12#, Petkovet al. applied the GCM
to the Ba isotopes withA5124 – 132. Inthat case, the ki-
netic part of the GCM Hamiltonian is comprised only
second-order terms ofp, while the potential part of it is
considered up to the sixth-order terms ofb, and there are
eight adjustable coefficients in their total Hamiltonian. O
the other hand, since the mapped Hamiltonian is expan
up to the fourth-order of boson in the present work, the
netic part of our boson Hamiltonian contains up to t
fourth-order terms ofp, though the potential part of it con
tains at most fourth-order terms ofb, and all the coefficients
in our total Hamiltonian are determined as functions off 2

andg28 , which are the only two adjustable parameters in o
model Hamiltonian.

We should notice that a strong correlation between
potential energy surface and the energy spectrum holds
under the condition that all the anharmonic terms
T(b2m ,p2m) are sufficiently small. If such a condition is no
met and a generalized collective mass depends crucially
coordinates, then to predict the spectrum from the shap
the potential surface only can be dangerous@15,19#. In the
boson expansion approach, the adiabatic assumption is
made and generally there appear terms that are in hi
02430
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power inp. Such terms give corrections to the theories ba
on the adiabatic assumption.

IV. RESULTS AND DISCUSSIONS

As explained in Sec. II, we introduced two dimensionle
parameters,f 2 and g28 , which measure the microscopic in
teractions between nucleons in nuclei. To obtain a good
scription of the experimental level scheme, in the pres
analysis, they are allowed to vary slightly around the vicin
of the predicted value, i.e., unity, for individual nuclei.

The values of dimensionless parameterz, Hamiltonian co-
efficientshmni , and corresponding kinetic and potential c
efficientsa’s, b’s, andc’s calculated in the present work ar
summarized in Table I. The deviation ofz from the unity
represents how important the RPA-type of ground-state c
relations and to what extent thea bosons are far from theA
bosons. We can verify that the ground-state correlations p
at the midshell also in this mass region. Note thath20 van-
ishes here and indeed the dangerous terms are eliminat

The coefficientshmni.0 for m1n.2 express the corre
lations beyond RPA. We normally havehmni.0 for m1n
54, and thereforec4.0, which is necessary to prevent th
nucleus from collapsing into an infinitely large deformatio
@15#. If c2,0, the spherically symmetric shape is unstab
and in that case ifc3,0(.0), a prolate~oblate! deformation
is favored. In the present work, the values ofc3 become
rather small reflecting theg-unstable nature of the regio
under consideration.

A stronger dependence of the inertial functions on def
mation has been suggested by Pomorskiet al. @43# for rare-
earth nuclei. In their expression for the collective kine
3-4
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FIG. 1. Calculated potentia
energy surfaces for even-eve
barium isotopes. The horizonta
dot lines indicate the calculate
ground-state energy.
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energy@Eq. ~2.5! of Ref. @43##, the coefficientp’s are scalar
functions of the collective coordinates, and contributio
from higher-order terms of the coordinates are included a
through these coefficients. While in Eq.~22! of the present
work, where operators and coefficients are completely se
rated out, the coordinatesb2m and conjugate momentap2m
are treated on a same footing and are considered up to
same order. Thus the relation between the two expressio
not so simple.

In our expression, the coefficientsb’s can be interpreted
as arising from the dependence of the inertial functions
deformation. As is known from Table I, the effects of su
dependence are rather sensible. In Ref.@18#, we discussed to
a certain extent the effect of such dependence by trying
adjust the third-order mass coefficientb3 without changing
the values of all the other kinetic and potential coefficien
and found that even a set of very little variations of coe
cientsh21 andh30 can sometimes produce significant diffe
ence inb3 and drastic change in the final level scheme, wh
keeping the shape of the potential surface unchanged. Th
is very important to have a proper deformation depende
of the mass coefficients microscopically. For that purpo
we have been investigating the self-consistent velocity
pendent effective interactions, e.g., the origin and the de
mation dependence of the multipole pairing interactio
@34,44#, requiring that the velocity dependence of potenti
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and that of effective interactions, both affect the mass co
ficients, should be self-consistent with each other. Howe
probably there is still room for improving the collective ma
parameters in our microscopic model.

The nonadiabatic termp4 considered in this paper has t
be interpreted as arising from a velocity-dependent mass
rameter of the collective motion. In the framework of th
time-dependent perturbation theory, such terms appear in
general cranking formula as fourth-order terms of pertur
tion about couplings between single particles and collec
velocity fields@45#. Looking at the values ofa4, the velocity
dependences of the collective mass parameters do not s
so large in the present results.

Figure 1 shows the theoretical potential energy surfa
for 1202136Ba obtained by the present two-parameter ana
sis. The calculated potential energy surfaces of the Ba
topes studied showg-soft features, and such features a
especially enhanced for1222130Ba. In fact, we see in Fig. 1
that the difference in energy between the two poten
minima are rather small compared to the zero-point ene
for these nuclei.

In Fig. 2, the theoretical excitation energies in the groun
state band and those in the quasi-g band are plotted as a
function of neutron numberN and are compared with exper
ment. The theoretical spectra reproduce very roughly
general trends of experimental spectra, though the tende
3-5
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H. SAKAMOTO PHYSICAL REVIEW C 64 024303
to the bunching of levels in the quasi-g band that is charac
teristic to g instability is too prominent in the theoretica
result. A similar difficulty was observed in Refs.@15,18,19#.
The calculated excitation energy of the 2g

1 state is too low
compared to the experiment for isotopes withN<74.

For the effects of the higher-order interactions, we c
verify from the order estimation of the coupling strengt
that the contributions from the four-body interaction are
most negligible while the effects of the three-body intera
tion are visible in this mass region. Though the effects
not always so large, excitation energies of the states in
quasi-g band are relatively lowered while those in the qua
b band are raised due to the three-body interaction. S
effects can be consistently understood from the relation
tween the higher-order interactions and the doubly-stretc
quadrupole interaction@19#, but are disadvantageous for th
present specific problem of the position of theg head ener-
gies.

However, as generally observed in the RPA calculation
vibrational states in deformed nuclei, the positions of
band heads are very sensitive to the choice of the sin
particle energies. Therefore the difficulty in the band he
energy is not always so serious but sometimes can be
edied by a proper choice of the single-particle energies.
example, we can raise slightly the position of the 2g

1 state by
shifting the intruder protonh11/2 state upward without chang
ing the order of the single-particle levels@18,46#.

In calculating the electromagnetic properties, the quad
pole effective chargeee f f is introduced as the only paramet
to fit the experimental data. The need for the effective cha
in our calculations comes mainly due to the omission of
DN52 quadrupole matrix elements, which we did intentio
ally, along the line of Ref.@15#, to reduce the dependence o
the choice of the single-particle space. It is possible to t
into account theDN52 matrix elements disregarded in th
paper for computing reasons. However, under the prese
of the pairing interactions, it is not possible to include co
pletely matrix elements connecting different major she
even if we further enlarge the single-particle model space
we have to truncate the model space one way or ano
someDN52 matrix elements are neglected to a certain
tent and usually it is necessary to introduce effective char
for transition operators as well as for interaction operators
such a situation, theoretical reference values of effec

FIG. 2. Calculated and experimental excitation energies in
ground-state band~left panel! and the quasi-gamma band~right
panel! of even-even barium isotopes plotted as a function of neu
numberN.
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charges inevitably become ambiguous depending on
choice of the model space.

Since the purposes of the present work is to study whe
the marked increase of quadrupole collectivity as neut
numbers approach the midshell value ofN566 can be repro-
duced naturally or not in terms of the microscopic BET
using a standard value of the effective charge, we nee
remove such ambiguities and to know in advance the th
retical reference values of the effective charges for transi
operators as well as for interaction operators. By cutting
the DN52 quadrupole matrix elements completely, we c
refer to the theoretical value ofee f f

( int)51 for the quadrupole
interaction operator and the value ofee f f

(E2)5Z/A for the E2
transition operator as explained transparently by Mottel
@23#. In the present analysis, to reduce the number of f
parameters a commonE2 effective charge is adopted fo
both protons and neutrons, and to investigate the system
a uniform value of it is used for all the Ba isotopes cons
ered.

In Fig. 3 theoretical reduced transition probabilities fro
the first excited 21 state to the ground state of even-ev
barium isotopes are plotted as a function of neutron num
N. Here, to give an idea of the sensitivity of the results up
the choice of the effective charge, the results for three ca
ee f f 5 0.50, 0.55, and 0.60, are presented and are comp
with experiment. We see that the experimental trend can
well reproduced by the present calculation with a rather st
dard value of effective charge, and the theoreti
B(E2;21

1→01
1) value peaks at the neutron midshell also f

the Ba isotopes, though the experimental data are still m
ing for 120Ba.

In Fig. 4, calculatedB(E2:I→I 22) reduced transition
probabilities in the ground-state band of Ba isotopes are
sented for the case ofee f f50.55. Here, the first three pane
show the results for1242128Ba with experimental data, an
the final panel provides the theoretical systematics for all
Ba isotopes considered. It is interesting to see that promis
agreements between the theory and the experiment are

e

n

FIG. 3. The reduced transition probability from the first excit
21 state to the ground state of even-even barium isotopes plotte
a function of neutron numberN. Experimental data are taken from
122Ba @4#, 124Ba @5#, 126Ba @6#, 128Ba @7#, 130Ba @8#, 132Ba @9#, 134Ba
@10#, and 136Ba @11#.
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COLLECTIVE E2 TRANSITIONS OF MIDSHELL Ba . . . PHYSICAL REVIEW C 64 024303
tained not only for theB(E2;21
1→01

1) but also for severa
other B(E2) transitions in the grand band of1242128Ba si-
multaneously, and the theoreticalB(E2:I→I 22) values
peak at the neutron midshell also forI 54,6, and 8 transitions
for the Ba isotopes.

Recently, Pro´chniak et al. @47# performed a microscopic
calculation of the low-lying quadrupole collective states
even-even nuclei from the region of 50,Z,N,82 within the
framework of the general Bohr Hamiltonian~GBH! with no
free parameters. They included the dynamical effects of
coupling with pairing vibrations and demonstrated that
effects are important for the description of the collecti
states. In our calculations the pairing vibrations have b
considered through the couplings between a two-phonon1

state and two-quasiparticle 01 states, and important effect
as well as remarkable cancellation mechanism for the1

couplings in connection with the three-body interaction ha
been discussed@18#. It should be noted here that th
quadrupole-pairing interaction has been included as a s
metry restoringresidual interaction and treateddynamically
in our BET analysis@34,18,19#.

The position of the present work may be considered
between the GCM analysis by Petkovet al. @12# and the
GBH analysis by Pro´chniaket al. @47# in terms of the num-
ber of adjustable parameters. The fits to the experiment
1242132Ba obtained by the GCM analysis@12# are consider-
ably good for both the level schemes and most of the str
E2 transitions, owing to the eight adjustable paramet
Looking at the results for1222136Ba in the GBH calculation
@47#, the first 21 state seems too high and the energy scale
the theoretical spectra is too stretched except for a few nu
in the midshell (N566) region, and such trend increases
going away from the midshell region. Considering the a

FIG. 4. Calculated and experimentalB(E2) reduced transition
probabilities in the ground-state band of1242128Ba. In the final
panel, the theoretical systematics is also shown as a functio
neutron numberN . Experimental data are taken from124Ba @5,12#,
126Ba @6,13#, and 128Ba @7#.
02430
f

e
e

n

e

-

n

or

g
s.

f
lei
s
-

sence of free parameters, theirB(E2;21
1→01

1) seems to re-
produce correct tendency of increasing with decreasing n
tron number down to the midshell, though there rem
sensible discrepancies between the prediction and exp
ment for the midshell Ba isotopes.

Compared to the potentials derived by Petkovet al. for
1242132Ba ~Fig. 2 in Ref. @12#!, the potential minimabmin

seem rather small in our cases. Also the prolate-oblate en
differences seem too small in our present results, which m
relate to the problem of over bunching and staggering
levels in the quasi-g band. In Ref.@46#, the problem of too
prominentg softness is remedied to a certain extent by a
justing artificially the position of the intruder protonh11/2

state in the way mentioned before. In the present analy
however, such an artificial adjustment of the single-parti
energy is not performed.

In the macroscopic-microscopic calculations of Ragna
son et al. @48#, there appear some barriers between obl
and prolate shapes, when passing through theg degree of
freedom for lighter isotopes of barium. The potential stru
ture aroundg530° that acts as a kind of potential barri
between oblate and prolate shapes in the lighter barium
topes and its disappearance in128Ba are also discussed b
Petkovet al. @12#. The barriers increase the rigidity of th
potential energy to the gamma deformation. In the pres
analysis, however, the microscopic Hamiltonian is expan
up to the fourth order in terms of the collective bosons, a
the g dependence of the potential surface is limited only
to the order ofb3cos 3g accordingly. This may be one of th
reasons for the present discrepancies between our calcu
and experimental properties of the quasi-g levels. To im-
prove theg dependence of the potentials in the present ty
of analysis, further investigations based on a much high
order boson expansion are advisable.

The deformation energies obtained by Ragnarssonet al.
@48# are much smaller than that of the present paper. A se
solutions with smaller deformation energies~e.g., about 2
MeV for 126Ba) are also obtained in our previous calculati
@18#, which is due to the weaker interaction strengthsf 2 and
g2 adopted with the use of smaller pairing gap energies
rived from the experimental nuclear binding energies av
able at that time@49–52#. In the present analysis, however,
different set of solutions with larger deformation energ
~e.g., about 6 MeV for126Ba) are obtained resulting from th
use of slightly larger interaction strengths, which are
quired when we adopt slightly larger pairing gap energ
estimated from the recent compilation of experimen
nuclear binding energies@35#. Relatively larger deformation
energies are also obtained in the GCM analysis by Pet
et al. ~e.g., about 5.2 MeV for126Ba), where a good descrip
tion of the ground-state andg bands is obtained by varying
freely the eight parameters in their GCM Hamiltonian. F
1242128Ba, the deformation energies in the present mic
scopic calculation are rather comparable with that of
GCM potentials, while for heavier isotopes our potentials
more shallow.

Finally we will make a brief comment on the structure
the 02

1 state. In the GCM calculations, the most domina

of
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component in the 02
1 state of128Ba was shown to be the sta

with phonon triplets coupled toL50 ~Fig. 7 in Ref. @12#!.
Also in our present analysis, the main component of the2

1

state of 128Ba appears to be the three-phonon state, and
two-phonon component is rather dominant in the 03

1 state.
Detailed investigation on the structure of the boson wa
functions for the low-lying collective states and the 02

1 band
based on the BET analysis will be reported elsewhere.

V. CONCLUSIONS

The low-lying quadrupole collective states of midshell B
isotopes are studied by means of the boson expansion th
The original fermion Hamiltonian of the present model i
cludes higher-order~many-body! terms of theQQ interac-
tion to ensure the nuclear self-consistency in higher-or
accuracy, and the quadrupole-pairing interaction to ens
the local Galilean invariance of the system. The microsco
boson image of the Hamiltonian and that of theE2 operator
rg

S.
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Y.
t-
J.

.
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G
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.
C

ar

nd

.J

.
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are constructed by using the normal-ordered linked-clu
expansion of the modified Marumori boson mapping. N
merical calculations are performed by using the techniq
developed by Kishimoto and Tamura@14,15# with several
refinements developed in Refs.@17–19#.

It is shown that the marked increase of quadrupole coll
tivity, indicated by the enhancement of experimentalB(E2),
as neutron numbers approach the midshell value ofN566
can be reproduced naturally in terms of the microscopic B
by using a rather standard value of the effective charge.
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Tiesler, O. Vogel, K.O. Zell, P. von Brentano, D. Bazzacco,
Rossi-Alvarez, P. Pavan, D. De Acun˜a, G. De Angelis, and M.
De Poli, Phys. Rev. C54, R2119~1996!.

@7# P. Petkov, S. Harissopulos, A. Dewald, M. Stolzenwald,
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